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DYNAMICS OF THE SAVING RATE
IN THE NEOCLASSICAL GROWTH
MODEL WITH CES PRODUCTION

MANUEL A. GÓMEZ
University of A Coruña

This paper characterizes the global dynamics of the saving rate in the neoclassical growth
model with CES production. The study is based on qualitative phase-diagram analysis.
The analytical conditions characterizing the cases that may arise theoretically depending
on the parameters’ configuration are obtained. It is well known that the saving rate
behaves monotonically if technology is Cobb-Douglas. However, when the elasticity of
substitution is nonunitary, the saving rate path may exhibit nonmonotonic behavior.
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1. INTRODUCTION

The Ramsey-Cass-Koopmans model is one of the most important theoretical
frameworks in macroeconomics (Ramsey, 1928; Cass, 1965; Koopmans, 1965). It
has become so familiar that one may presume that there is nothing new to say about
it. However, the dynamics of the saving rate path is rather elusive from a theoretical
standpoint, and general statements on its properties are hard to obtain. Cass and
Koopmans dropped the fixed savings assumption of the Solow (1956) model,
allowing dynamic optimizing savings behavior á la Ramsey. Recently, Barro and
Sala-i-Martin (1995) characterized the global dynamics of the saving rate in the
neoclassical growth model in the case of isoelastic utility and a Cobb-Douglas
(CD) production function. They proved that, in this case, the saving rate is either
monotonically increasing, monotonically decreasing, or constant throughout the
entire transition path. However, a similar analysis assuming a constant-elasticity-
of-substitution (CES) technology is lacking in the literature. The purpose of the
present paper is to fill this gap.

This paper adds to a growing literature that analyzes the effect of the elasticity
of substitution on a variety of issues in macroeconomics. The departure from the
assumption of a unitary elasticity of substitution has important consequences in
growth theory. If the elasticity of substitution is above one, long-run growth may
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arise even without any technological progress in the Solow and Ramsey-Cass-
Koopmans growth models (e.g., Pitchford, 1960; Barro and Sala-i-Martin, 1995).
If the elasticity of substitution is below one, the existence of multiple equilibria
and poverty traps in the Diamond (1965) overlapping-generations growth model
is possible (e.g., Azariadis, 1996). If the technology is CD, the factor income
shares are constant and the direction of technical change is irrelevant for income
distribution. However, the pronounced cycles in factor income distribution visible
in many countries support the more general CES function and make possible biases
of technical change an important issue (e.g., Blanchard, 1997; Bentolila and Saint-
Paul, 2003; Acemoglu, 2003). Caselli (2005) shows that the relative roles assigned
to differences in factor quantities and differences in the efficiency with which those
factors of production are used in explaining cross-country income variations are
sensitive to the elasticity of substitution. Klump and de La Grandville (2000)
show a positive relationship between the elasticity of substitution and economic
growth in the Solow growth model, a property the Diamond growth model does
not exhibit (Miyagiwa and Papageorgiou, 2003). The elasticity of substitution
also plays a key role in other issues such as the impact of corporate taxation on
capital formation (Chirinko, 2002), the speed of convergence toward the balanced
growth path (Turnovsky, 2002), the local determinacy properties of equilibria
(Nishimura and Venditti, 2004), and the existence of scale effects (Zuleta, 2004).
This renewed interest in the elasticity of substitution has been fostered by the
empirical literature and, although the estimates obtained are wide-ranging [see,
e.g., the reviews in Chirinko (2002) and Klump et al. (in press)], it appears that
the CD specification must be rejected in favor of the CES specification (see also
Duffy and Papageorgiou, 2000; Antràs, 2004; and Masanjala and Papageorgiou,
2004).

This paper analyzes the dynamics of the saving rate in the neoclassical growth
model with CES production, which has as a particular case the CD technology.
Our work hinges mainly on a phase-diagram analysis. This allows the qualitative
characterization of the global dynamics of the saving rate. We obtain analytical
conditions that characterize all the cases that may arise theoretically depending
on the parameters’ configuration. In particular, we identify the cases in which
the saving rate exhibits globally nonmonotonic behavior. The monotonicity of
the saving rate path that is obtained with CD technology does not fit in with the
nonmonotonic saving patterns observed in many regions and countries around
the world (see, e.g., Schmidt-Hebbel et al., 1996; Loayza et al., 2000). Hence,
that theoretically the saving rate may exhibit nonmonotonic behavior when the
elasticity of substitution is nonunitary suggests that the elasticity of substitution
could also play a role in explaining the saving dynamics observed. For the sake of
completeness, we characterize the dynamics of the saving rate for all configurations
of the parameters, including those leading to endogenous growth, and take into
account the irreversibility constraint on investment.

Recent related work has been done by Smetters (2003). He shows that for an
elasticity of substitution below (above) one, the saving rate decreases (increases)
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along the transition path after the capital stock reaches a critical value identified
analytically therein. Before reaching this value, the saving rate might increase (de-
crease) and so the entire saving rate path manifests overshooting (undershooting).
He also devises a necessary and sufficient condition for the saving rate path to be
nonmonotonic. However, checking this condition requires knowing the value of
the saving rate (a jump variable) at the initial time, which is not available unless the
transition path of the saving rate is (numerically) computed for specific parameter
values. Hence, although Smetters’s analytical results shed light on the behavior of
the saving rate, these results do not allow us to characterize the global dynamics
of the saving rate given the parameters’ configuration, which is the goal of the
present paper.

The remainder of this paper is organized as follows. Section 2 describes the
model. Sections 3 and 4 analyze the dynamics of the saving rate for the cases of
exogenous and endogenous growth, respectively. Section 5 concludes.

2. THE MODEL

Consider a closed economy populated by a fixed number of identical infinitely
lived households that, for simplicity, is normalized to one. The household size,
L, grows at the exogenous rate n, L(t)= ent , where L(0) is normalized to one.
Let C(t) be aggregate consumption, and Ĉ(t)≡ C(t)/L(t) be consumption per
capita. Each household maximizes its dynastic utility

U =
∫ ∞

0
u[Ĉ(t)]L(t)e−ρtdt =

∫ ∞

0
u[Ĉ(t)]e−(ρ−n)t dt, (1)

where ρ is the rate of time preference, ρ >n. The time argument is suppressed
in all subsequent equations. The instantaneous utility function takes the isoelastic
form

u(Ĉ) =
⎧⎨
⎩

Ĉ1−θ

1 − θ
, if θ �= 1,

logĈ, if θ = 1,

(2)

where 1/θ > 0 is the elasticity of intertemporal substitution.
Each individual supplies inelastically one unit of labor each period. Output, Y ,

is produced with the CES technology:

Y = F(K, T · L) = A [αK1−1/σ + (1 − α)(T · L)1−1/σ ]1/(1−1/σ)

A > 0, 0 < α < 1, σ > 0, (3)

where K denotes the capital stock and T the labor-augmenting technological
progress. Labor productivity grows at the exogenous rate x, T (t)= ext , where
T (0) is normalized to 1. The term T · L is known as “effective labor.” The
parameter σ is the elasticity of substitution between capital and labor, and α is
the capital weight in production. The CD technology is a particular case of the
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CES technology where the elasticity of substitution is one and α equals the capital
share of output.

The household’s budget constraint is

F(K, T · L) = I + C, (4)

where I is gross investment. Throughout this paper, a dot over a variable denotes
its time derivative, that is, ḣ ≡ dh/dt . The capital stock accumulates according
to

K̇ = I − δ K, (5)

where δ is the depreciation rate. We assume that gross investment must be non-
negative,

I ≥ 0. (6)

The household maximizes its dynastic utility (1) subject to constraints (4), (5),
and (6). Let y ≡ Y/(T · L), k ≡ K/(T · L), i ≡ I/(T · L), and c ≡ C/(T · L)

denote output, capital stock, gross investment and consumption per effective labor
unit, respectively. The production function (3) can be expressed in intensive form
as

y = f (k) = A [αk1−1/σ + (1 − α)]1/(1−1/σ). (7)

The household’s optimization problem can be equivalently expressed as

max
∫ ∞

0
u(c) e−(ω−π) tdt, (8a)

subject to

k̇ = i − π k, (8b)

f (k) = i + c, (8c)

i ≥ 0, (8d)

where

ω = ρ + θ x + δ, (9a)

π = x + n + δ. (9b)

Let J be the current-value Lagrangian of this problem,

J = u(c) + λ(i − πk) + µ[f (k) − c − i].

The first-order necessary conditions for an interior optimum are1

∂J

∂c
= c−θ − µ = 0, (10a)

∂J

∂i
= λ − µ ≤ 0, i ≥ 0, (λ − µ)i = 0, (10b)

∂J

∂k
= −π λ + µf ′(k) = (ω − π) λ − λ̇, (10c)
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plus the transversality condition:

lim
t→∞ e−(ω−π)tλk = 0. (10d)

When the nonnegativity constraint on gross investment is nonbinding, i > 0,
equation (10b) yields λ = µ. Log-differentiating (10a) and using (10c), we get

ċ

c
= 1

θ
[f ′(k) − ω]. (11a)

From (8b) and (8c), we get the overall resources constraint

k̇

k
= f (k)

k
− c

k
− π. (11b)

The system (11a)–(11b) describes the dynamics of the economy in terms of c and
k.

Because we want to focus on the behavior of the saving rate, we reformulate
this system in terms of the marginal product of capital, r ≡ f ′(k), and the ratio of
consumption to output, z ≡ c

/
f (k). The saving rate, s, is then given by s = 1 − z.

Henceforth, let

B = Aσ−1ασ , (12a)

r̄ = B1/(σ−1). (12b)

Noting that
r ≡ f ′(k) = B1/σ [f (k)

/
k]1/σ , (13)

the resource constraint (11b) can be rewritten as

k̇

k
= 1

B
(1 − z) rσ − π. (14)

Differentiating (13) with respect to time, we get

ṙ = f ′′(k) k̇ = 1

σ
B1/σ [f (k)

/
k]−1+1/σ [f ′(k) − f (k)

/
k]

k̇

k
,

which after using (13), (14) and some algebra can be expressed in terms of r and
z as

ṙ = − 1

σ

[
1

B
(1 − z) rσ − π

]
(1 − Br1−σ ) r. (15a)

Log-differentiating z ≡ c/f (k) yields ż/z = (ċ/c)− f ′(k) [k/f (k)] (k̇/k),
which after using (11a), (13), and (14) can be rewritten as

ż =
[
Bπ r1−σ −

(
1 − z − 1

θ

)
r − ω

θ

]
z. (15b)
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The system (15a)–(15b) has two nontrivial steady states if the elasticity of
substitution is nonunitary, σ �= 1, and only one if it is unitary, σ = 1. The first
steady state is

r∗ = f ′(k∗) = ω, (16a)

z∗ = 1 − Bπω−σ = 1 − (π /r ∗) (r ∗/r̄)1−σ . (16b)

The transversality condition (10d) is equivalent to

r ∗ = ω > π. (17)

We say that r∗ is feasible if there exists k∗ ∈ (0,+∞) such that condition
(16a) is satisfied. If the elasticity of substitution is one, σ = 1, the fulfillment
of the Inada conditions, limk→0 f ′(k)= ∞ and limk→∞ f ′(k)= 0, guarantees
that r∗ is feasible. However, if the elasticity of substitution is below one, σ < 1,
one of the Inada conditions is violated, namely, limk→0 f ′(k)= r̄ , and so, the
condition

ω = r∗ < r̄ = B1/(σ−1) if σ < 1 (18a)

is required to ensure that r∗ is feasible. If the elasticity of substitution is above
one, σ > 1, the other Inada condition is violated because limk→∞ f ′(k)= r̄ , and
so, the following condition is required for r∗ to be feasible:

ω = r∗ > r̄ = B1/(σ−1) if σ > 1. (18b)

We assume in this and in the following section that the steady state (r∗, z∗) is fea-
sible, so that (18a) or (18b) is fulfilled if the elasticity of substitution is nonunitary,
and that condition (17) is satisfied.2 This steady state is one of exogenous growth,
in which the variables expressed in per effective labor units are constant; that is,
ẏ∗/y∗ = ċ∗/c∗ = k̇∗/k∗ = 0.3 The phase-diagram analysis performed in Section 3
shows that (r∗, z∗) is a saddle point.

If the elasticity of substitution is nonunitary, σ �= 1, the second steady state of
the system (15a)–(15b) is

r̄ = B1/(σ−1), (19a)

z̄ = 1 − r̄ − ω

θr̄
− π

r̄
. (19b)

We say that the steady state (r̄, z̄) is feasible if 0 ≤ z̄ ≤ 1. The phase-diagram
analysis performed in Section 3 shows that the steady state (r̄, z̄) is unstable if
(r∗, z∗) is feasible.

So far we have considered the case where the irreversibility constraint is not
binding. When the irreversibility constraint, i ≥ 0, is binding, the dynamics of the
economy is driven by c = f (k) and k̇ = − πk, or, equivalently, in terms of r and
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z, by z = 1 and

ṙ = π

σ
(1 − Br1−σ ) r. (20)

3. PHASE DIAGRAM ANALYSIS

In this section, we perform a phase-diagram analysis of the dynamics of the
economy in (r, z)-plane. It should be noted that because f ′′(k)< 0 for all k > 0,
there is a one-to-one monotonically decreasing relationship between the capital
stock per effective labor unit, k, and the marginal product of capital, r ≡ f ′(k).
Thus, the phase diagrams in (r, z)-plane may be easily interpreted in terms of the
capital stock per effective labor unit, k, and the saving rate, s = 1 − z, by noting
that k and s behave exactly opposite to how r and z, respectively, do. In the unitary
elasticity case, σ = 1, the fulfillment of the Inada conditions entails that r take
values in (0,+∞). In the low elasticity case, σ < 1, given that limk→0 f ′(k)= r̄ ,
the relevant range of r is (0, r̄). In the high elasticity case, σ > 1, given that
limk→∞ f ′(k)= r̄ , the relevant range of r is (r̄,+∞). To facilitate the interpreta-
tion of the phase diagrams, the portions of the figures corresponding to irrelevant
values of the marginal product of capital, r , are shaded.

Equation (15a) implies that there are three ṙ = 0–loci. The first two are vertical
at r = 0 and r = r̄ , respectively. The third one is the curve:

zr(r) = 1 − Bπr−σ , (21)

which is upward sloping and concave, increases from minus infinity at r = 0,
and goes to one as r goes to infinity, irrespective of the value of the elasticity
of substitution. Given the configuration of the ṙ = 0–loci, the arrows point west
(east) above (below) this curve for r ∈ (0, r̄) if σ < 1, for r ∈ (0,+∞) if σ = 1,
and for r ∈ (r̄,+∞) if σ > 1, which are the relevant ranges of r in each case.

From (15b), the ż = 0–locus is (aside from z = 0) the curve

zz(r) = 1 − Bπr−σ − 1

θ
+ ω

θr
. (22)

It easily can be observed that the ż = 0–locus is above the ṙ = 0–locus given by
(21) up to r = r∗ and is below it from r = r∗ onward. Given the configuration of
the ż = 0–locus, for z > 0 the arrows point north (south) above (below) this curve
irrespective of the value of the elasticity of substitution. Because the shape of
the ż = 0–locus depends on the elasticity of substitution, it is analyzed for each
particular case.

Whereas the nonnegativity constraint on gross investment is binding, z remains
constant at 1, and (20) entails that r increases for r ∈ (0, r̄) if σ < 1, for r ∈
(0,+∞) if σ = 1, and for r ∈ (r̄,+∞) if σ > 1, which are the relevant ranges of
r in each case.

The phase diagrams that follow have been depicted taking into account the
results derived by Arrow and Kurz (1970) and summarized in the Appendix. We
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FIGURE 1. Transitional dynamics in the unitary elasticity case, σ = 1.

first consider the benchmark case of unitary elasticity of substitution, σ = 1, which
has been analyzed by Barro and Sala-i-Martin (1995). Next, we analyze the cases
of low elasticity, σ < 1, and high elasticity of substitution, σ > 1.

3.1. Unitary Elasticity of Substitution, σ = 1

In this case, the ż = 0–locus defined by (22) is the curve zz(r)= 1 − 1/θ +
(ω − θαπ)/(θr), which is upward sloping and concave if r∗ =ω < αθπ ; down-
ward sloping and convex if r∗ > αθπ , and horizontal if r∗ = αθπ . In any case, as
r goes to infinity, z goes to 1 − 1/θ .

Figure 1 illustrates the various phase diagrams in (r , z)-plane that may arise.
In any case, the saving rate behaves in monotonic fashion. If r∗ < θαπ , panel (a)
shows that the saving rate increases monotonically toward its stationary value as
the economy grows, starting at k(0) < k∗. If r ∗ > θαπ , panel (b) shows that the
saving rate decreases monotonically during the transition toward its steady state if
the economy starts at k(0)< k∗. If r ∗ = θαπ , panel (c) shows that the saving rate
is constant during the transition.

3.2. Low Elasticity of Substitution, 0 < σ < 1

In this case, equation (22) implies that the ż = 0–locus decreases from plus infinity
at r = 0, reaches a minimum at

rC = (Bπθσ/ω)1/(σ−1), (23)
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FIGURE 2. Transitional dynamics in the low-elasticity case, σ < 1.

and increases toward 1 − 1/θ as r goes to infinity. Furthermore, it is convex up to
the inflexion point rI = [(1 + σ)/2]1/(σ−1)rC , which is to the right of the minimum
(rI > rC), and concave thereafter.

Figure 2 illustrates the various phase diagrams in (r , z)-plane that may arise.
Depending on the relative position of rC with respect to r∗ and r̄ , we can distinguish
three cases. In each case, the configuration of the two loci entails that the steady
state (r∗, z∗) be a saddle point, whereas the steady state (r̄, z̄) is unstable when it
is feasible.

In Case 1, rC ≥ r̄ > r∗, panels (a) and (b) show that convergence is monotonic,
and that the saving rate decreases monotonically toward its stationary value as the
economy grows, starting at k(0) < k∗.4 In Case 2, r̄ > r∗ ≥ rC , panel (c) shows
that the saving rate increases monotonically toward its steady-state level as the
economy develops, starting at k(0) < k∗. However, in the (unlikely) case that the
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economy starts with an initial capital stock sufficiently higher than its steady-
state level, the saving rate would exhibit nonmonotonic behavior.5 In Case 3,
r̄ > rC > r∗, panel (e) shows that convergence is monotonic if z̄ ≤ 0, whereas panel
(d) shows that convergence is globally nonmonotonic if z̄ > 0. In this case, if the
economy starts with an initial capital stock sufficiently lower than its steady-state
level, as the economy evolves the saving rate first increases, reaches a maximum
at the turning point rT where the saving rate path crosses the ż = 0–locus, and
decreases thereafter toward its steady-state value. Because the turning point rT

must be to the right of rC , an upper bound kB on the turning value of k is implicitly
defined by f ′(kB)= rC .

The following Proposition summarizes the former findings, focusing on the
(more interesting) case that the initial value of k is below its steady-state level,
k(0)<k∗.

PROPOSITION 1. Let 0 < σ < 1, and assume that r̄ > r∗ and r∗ > π .

i) If a) rC ≥ r̄ or b) r̄ > rC > r∗ and z̄ ≤ 0, the saving rate path is monotonically
decreasing for all k ∈ (0, k∗).

ii) If r∗ ≥ rC , the saving rate path is monotonically increasing for all k ∈ (0, k∗).
iii) If r̄ > rC > r∗ and z̄ > 0, then there exists kT ∈ (0, k∗) such that the saving rate path

is monotonically increasing for all k ∈ (0, kT ), and monotonically decreasing for
all k ∈ (kT , k∗). Furthermore, an upper bound kB on the turning point kT is defined
implicitly by

f ′(kB) = rC = (Bπθσ/ω)1/(σ−1). (24)

Smetters (2003, Proposition 1) also provides an upper bound k1 of the turn-
ing point kT defined implicitly by s∗[f ′(k1)/f

′(k∗)]1−σ = 1/θ , which can be
equivalently expressed as

f ′(k1) = r∗ [(1 − z∗)θ ]1/(σ−1) = (Bπθ/ω)1/(σ−1). (25)

Because σ 1/(σ−1) > 1 for all σ ∈ (0, 1), we have that kB < k1, and so, the upper
bound defined implicitly by (24) is sharper than that derived by Smetters.

The condition r̄ > rC > r∗ in case iii of Proposition 1 can be equivalently
expressed as B <Bπθσ/ω < ωσ−1. Because r∗ =ω > π , a necessary condition
for nonmonotonic behavior to arise when k(0) < k∗ is that θσ > 1. The next
corollary summarizes this result.

COROLLARY 2. Under the conditions of Proposition 1, a necessary condition
for the saving rate path to exhibit nonmonotonic behavior in the interval (0, k∗)
is that σ > 1/θ .

3.3. High Elasticity of Substitution, σ > 1

In this case, equation (22) implies that the ż = 0–locus increases from minus
infinity at r = 0, reaches a maximum at rC = (Bπθσ/ω)1/(σ−1), and decreases
toward 1 − 1/θ as r goes to infinity. Furthermore, it is concave up to the inflexion
point rI = [(1 + σ)/2]1/(σ−1)rC , which is to the right of the maximum (rI > rC),
and convex thereafter.
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FIGURE 3. Transitional dynamics in the high-elasticity case, σ > 1.

Figure 3 illustrates the various phase diagrams in (r , z)-plane that may arise.
Depending on the relative position of rC with respect to r∗ and r̄ , we can distinguish
three cases. The configuration of the two loci entails that in each case the steady
state (r∗, z∗) be a saddle point, whereas the steady state (r̄, z̄) is unstable when it
is feasible.

In Case 1, rC > r∗ > r̄ , panels (a) and (b) show that convergence is globally
nonmonotonic. If the economy starts with an initial capital stock sufficiently lower
than its steady-state level, as the economy grows the saving rate first decreases,
reaches a minimum at the turning point rT where the saving rate path crosses
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the ż = 0–locus, and increases thereafter towards its stationary value. Because the
turning point rT must be to the right of rC , an upper bound kB on the corresponding
turning value of k is implicitly defined by f ′(kB)= rC . In Case 2, r∗ ≥ rC > r̄ ,
panels (c) and (d) show that if z̄ < 1, the saving rate decreases monotonically
toward its steady state as the economy grows, starting at k(0)< k∗. However, if
the economy starts with an initial capital stock sufficiently higher than its steady-
state level, the saving rate would exhibit nonmonotonic behavior.6 Panels (e) and
(f) show that if z̄ ≥ 1, convergence is monotonic instead.7 In Case 3, r∗ > r̄ ≥ rC ,
panels (g) and (h) show that convergence is monotonic as well. Thus, we can state
the following Proposition.

PROPOSITION 3. Let σ > 1, and assume that r∗ > r̄ and r∗ >π .

i) If a) r∗ ≥ rC > r̄ or b) r̄ ≥ rC , the saving rate path is monotonically decreasing for
all k in, (0, k∗).

ii) If rC > r∗, then there exists kT ∈ (0, k∗) such that the saving rate path is monotonically
decreasing for all k ∈ (0, kT ), and monotonically increasing for all k ∈ (kT , k∗).
Furthermore, an upper bound kB on the turning point kT is defined implicitly by

f ′(kB) = rC = (Bπθσ
/
ω)1/(σ−1). (26)

Smetters (2003, Proposition 1) also provides an upper bound k1 of the turning
point kT defined implicitly by (21). Because σ 1/(σ−1) > 1 for all σ ∈ (1,+∞),
we have that kB < k1, and so, the upper bound defined implicitly by (26) is sharper
than that derived by Smetters.

Using (16a), (16b), and (23), the condition rC > r∗ in case ii of Proposition 3
can be equivalently expressed as (1 − z∗)θσ > 1. Hence, a necessary condition
for nonmonotonic behavior to arise when k(0) < k∗ is again that θσ > 1. We can
state the following result.

COROLLARY 4. Under the conditions of Proposition 3, a necessary condition
for the saving rate path to exhibit nonmonotonic behavior in the interval (0, k∗)
is that σ > 1

/
θ .

4. THE CASE OF ENDOGENOUS GROWTH

Up to this point, we have assumed that r∗ is feasible when the elasticity of
substitution is nonunitary; that is, that there exists k∗ ∈ (0,+∞) such that (16a) is
satisfied or, equivalently, that condition (18a) or (18b) is fulfilled. It is well known
(e.g., Barro and Sala-i-Martin, 1995) that when the elasticity of substitution is
above one, σ > 1, endogenous growth may arise because the marginal and average
product of capital approach a positive constant, r̄ , as k goes to infinity.8 Actually,
endogenous growth arises if r∗ is infeasible, that is, if condition (18b) is not
satisfied, so that

ω = r∗ ≤ r̄ = B1/(σ−1). (27)

Equation (19b) implies that the fulfillment of (27) ensures that z̄ < 1, whereas the
transversality condition (10d) is equivalent to z̄ > 0. Thus, if parameter values are
such that condition (27) is met and z̄ > 0, the steady state (r̄, z̄) is feasible, and
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FIGURE 4. Transitional dynamics in the endogenous-growth case.

the phase diagram analysis (see Figure 4) shows that it is a saddle point. The
arguments of Arrow and Kurz (1970) can be easily extended to deduce that
the solution for the irreversible case coincides with the solution for the reversible
case for all k, so that the irreversibility constraint is never binding. At the steady
state (r̄, z̄), output, consumption and capital stock per effective labor units all grow
at the common rate:9

˙̄y/ȳ = ˙̄c/c̄ = ˙̄k/k̄ = (r̄ − r∗)/θ ≥ 0. (28)

Recalling the arguments given in Section 3, Figure 4 illustrates the various phase
diagrams in (r ,z)-plane that may arise. Depending on the relative position of rC

relative to r∗ and r̄ , we can distinguish two cases. In Case 1, r̄ ≥ max(rC, r∗),
panel (a) shows that the saving rate decreases monotonically toward its steady-
state value as the economy develops. In Case 2, rC > r̄ ≥ r∗, panel (b) shows
that the saving rate exhibits nonmonotonic behavior. The following proposition
summarizes these findings.

PROPOSITION 5. Let σ > 1, and assume that r̄ ≥ r∗ and z̄ > 0.

i) If r̄ ≥ rC , the saving rate path is monotonically decreasing for all k ∈ (0,∞).
ii) If rC > r̄ , then there exists kT ∈ (0,∞) such that the saving rate path is

monotonically decreasing for all k ∈ (0, kT ), and monotonically increasing for all
k ∈ (kT , ∞). An upper bound kB on the turning point kT is defined implicitly by
f ′(kB) = rC = (Bπθσ/ω)1/(σ−1).

If case ii arises, then rC > r̄ ≥ r∗. Using (16a), (16b), and (23), the condition
rC > r∗ can be equivalently expressed as (1 − z∗)θσ > 1. Hence, as in the exoge-
nous growth case, a necessary condition for the saving rate to exhibit nonmonotonic
behavior is that θσ > 1.

5. CONCLUSIONS

This paper has analyzed the dynamics of the saving rate in the neoclassical growth
model with CES production. The global dynamics of the saving rate has been
analyzed by means of a phase-diagram analysis. Analytical conditions have been
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obtained that characterize the different cases that may arise theoretically depending
on the parameters’ configuration. Differently from the Cobb-Douglas case, when
the elasticity of substitution is nonunitary, the saving rate may exhibit globally
nonmonotonic behavior.

Using panel data techniques with a data set for 82 countries over the period 1960
to 1987, Duffy and Papageorgiou (2000) found that the elasticity of substitution
is lower than one in the poorest group of countries and greater than one in the
richest group. This suggests that the elasticity of substitution may depend on the
stage of development, being lower than one for developing economies and greater
than one for developed economies. This paper has shown that when the elasticity
of substitution is below one, as the economy grows, the saving rate path may be
(i) monotonically decreasing, (ii) monotonically increasing, or (iii) nonmono-
tonic—first increasing and then decreasing—depending on the parameters’ values.
When the elasticity of substitution is above one, as the economy evolves, the
saving rate path may be (i) monotonically decreasing, or (ii) nonmonotonic—first
decreasing and then increasing. The richer dynamics that the saving rate may
exhibit theoretically when the elasticity of substitution is nonunitary relative to
that arising in the Cobb-Douglas case suggests that the elasticity of substitution
may play a role in explaining the different saving patterns observed in the data.
The results obtained by Duffy and Papageorgiou (2000) also indicate that the
conditions for endogenous growth to arise when the elasticity of substitution is
greater than one may not be in place. Nevertheless, we have characterized the
dynamics of the saving rate for all configurations of the parameters, including
those leading to endogenous growth.

NOTES

1. These conditions are also sufficient because, using (8c) to eliminate i from (8b) and (8d), the
current-value Hamiltonian, H = u(c) + λ(f (k) − c − πk), and the constraint are jointly concave in
the states and the controls.

2. In this case, it can be readily shown that 0 <z∗ < 1. In particular, note that z* can be rewritten
as z∗ = 1 − (π /ω) (r∗/r̄)1−σ if the elasticity of substitution is nonunitary, σ �= 1.

3. The case of endogenous growth is considered in Section 4.
4. Note that the minimum rC , which is to the right of r̄ , is not depicted in Figure 2.
5. If rC = r∗, the saving rate path crosses the ż = 0–locus at r = r∗, where the ż = 0–locus reaches

a minimum and the saving rate path reaches a maximum. Thus, in this knife-edge case, the saving rate
increases toward its steady-state value regardless of k approaching k∗ from above or below.

6. If z̄ < 1, whether there exists an intermediate blocked interval [as illustrated in panel (c)] or not
[as illustrated in panel (d)] depends on the parameters’ configuration, and a general characterization
may be intractable.

7. If rC = r∗, the saving rate path crosses the ż = 0–locus at r = r∗, where the ż = 0–locus reaches
a maximum and the saving rate path reaches a minimum. Thus, in this knife-edge case, the saving rate
decreases toward its steady state regardless of k approaching k∗ from above or below.

8. When the elasticity of substitution is below one, σ < 1, the model does not generate endogenous
growth because the key Inada condition is satisfied, as the marginal and average products of capital
approach zero as k goes to infinity. However, the violation of the Inada condition as k approaches zero
entails that, if r* is infeasible [i.e., condition (18a) is not satisfied], no steady state exists with a positive
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value of k. The growth rate is always negative during the transition, the economy shrinks over time,
and k, y, and c all approach zero (see, e.g., Barro and Sala-i-Martin, 1995).

9. We have included, somewhat arbitrarily, the borderline case r∗ = r̄ in the endogenous growth
case, although the long-run growth rate is zero, because k does not approach a finite constant.
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APPENDIX

THE STRUCTURE OF THE POLICY FUNCTION: FREE AND BLOCKED INTERVALS

Following the terminology of Arrow and Kurz (1970), a free interval is a maximal interval
in which the nonnegativity constraint on gross investment is nonbinding and the solution
is equivalent to that obtained under the assumption that investment is reversible, and a
blocked interval is a maximal interval in which the nonnegativity constraint is binding.
If the elasticity of substitution is below 1 (and so, limk→∞[f ′(k) k/f (k)] = 0), or if the
elasticity of substitution is unitary (and so, limk→∞[f ′(k) k/f (k)] = α > 0) and r∗ > αθπ ,
Arrow and Kurz (1970, Proposition 5) show that there exists km > k∗ such that for all k ≤ km

the solution coincides with that of the reversible case, while investment is zero for all k ≥ km.
When the elasticity of substitution is unitary and r∗ ≤αθπ , the solution coincides with that
of the reversible case for all k, so that the nonnegativity constraint is never binding.

If the elasticity of substitution is constant and above 1, Arrow and Kurz (1970, Proposition
6) show that the solution has one of the following three forms: (i) it coincides with the
solution for the reversible case for all k; (ii) it coincides with the solution for the reversible
case for k ≤ km, and calls for zero investment for k ≥ km; (iii) it coincides with the solution
for the reversible case for k ≤ km, calls for zero investment for km ≤ k ≤ kM , and has a free
interval for k > kM . Using Proposition 3a of Arrow and Kurz (1970), conveniently adapted
to also consider the depreciation of the capital stock, we can distinguish between the cases
of terminal free or blocked interval. Because limk→∞ f ′(k)= limr→r̄ r = r̄ , we have that if
r̄ < r∗ − πθ , or equivalently, using (15b), if z̄ > 1, then there is a final blocked interval;
however, if r̄ ≥ r∗ − πθ , i.e., if z̄ ≤ 1, then there is a terminal-free interval.
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