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Abstract

QuantitativeMiocene climate and vegetation data from the Siwalik succession of western Nepal
indicate that the development of the Indian summer monsoon has had an impact, though in
part, on vegetation changes. The climate and vegetation of the Lower (middle Miocene) and
Middle (late Miocene–Pliocene) Siwalik successions of Darjeeling, eastern Himalaya, have been
quantified. Reconstructed climate data, using the Coexistence Approach, suggest a decrease in
winter temperatures and precipitation during the wettest months (MPwet) from the Lower to
Middle Siwalik. The floristic assemblage suggests that Lower Siwalik forests were dominated by
wet evergreen taxa, whereas deciduous ones becamemore dominant during theMiddle Siwalik.
The vegetation shift in the eastern Himalayan Siwalik was most likely due to a decrease in
MPwet. The quantified climate–vegetation data from the eastern and western Himalayan
Siwalik indicate that changes in the Indian summer monsoon had a profound impact on veg-
etation development during the period of deposition. We suggest that the decrease in winter
temperature and summer monsoon rainfall during the Middle Siwalik might be linked with
the Northern Hemisphere glaciation/cooling or a number of other things that were also going
on at the time, including the continued rise of the Himalaya, and drying across the Tibetan
region, which may have affected atmospheric circulation regionally.

1. Introduction

Globally, monsoon regions are mainly located in low latitude areas, which are subdivided into
eight domains, namely the Indian Summer Monsoon (ISM), Western North Pacific Monsoon
(WNPM), East Asia Monsoon (EAM), Indonesia–AustralianMonsoon (I-AM), North America
Monsoon (NAmM), South America Monsoon (SAmM), North Africa Monsoon (NAfM) and
South AfricaMonsoon (SAfM), depending on their location and characteristics (Yim et al. 2014;
Wang et al. 2017). The ISM, EAM and WNPM are collectively known as the Asian Monsoon
System that effects Asian climates and is considered the largest and strongest monsoon system
on Earth (Wang et al. 2017). Basically, summermonsoons can be defined as the seasonal reversal
of surface winds, and these reversals of seasonal winds are associated with rainy summers and
dry winter seasons (Webster, 1987; Wang et al. 2017). The prediction of future South Asian
monsoon behaviour in a warming world is complex, despite major advancements in under-
standing the variability of the ISM (Wang et al. 2015). The strength of the monsoon mainly
depends on the land–ocean configuration, regional topography and insolation (Wang et al.
2017). The ISM is a topographically modified system (Boos & Kuang, 2010; Molnar et al.
2010; Ding et al. 2017), and the major heat source for the ISM to generate the temperature gra-
dient between the land and ocean is located in the non-elevated part of northern India (Molnar
et al. 2010; Boos & Kuang, 2013), while the Himalaya insulates this region from the cold and dry
mid-latitude winds (Boos & Kuang, 2010; Acosta &Huber, 2020) (Fig. 1). In meteorology, mon-
soon characterization and monitoring is based on instrumental records of climatic parameters
(Parthasarathy et al. 1992; Liu & Yin, 2002; Zhang & Wang, 2008; Zhao et al. 2009) or atmos-
pheric circulation (Goswami et al. 1999; Wang & Fan, 1999) primarily to understand the short-
term temporal changes in monsoon behaviour. However, understanding deep time monsoon
features from geological records is complicated and modern meteorological indices are not
applicable. For deep timemonsoonal climate characterization, different proxies such as isotopes
and terrestrial fossils (animals and plants), often combined with climate modelling, have been
used to understand its behaviour (Clift et al. 2008, 2020; Srivastava et al. 2018; Farnsworth et al.
2019; Bhatia et al. 2021a,b) and thus have to use different criteria to define monsoon patterns.
Typically, geological proxies use estimates of rainfall to understand monsoon fluctuations
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(Sanyal et al. 2004, 2005; Clift et al. 2008, 2020; Farnsworth et al.
2019), while plant proxies use either seasonal rainfall data (Ding
et al. 2017; Srivastava et al. 2018) or integrated climate variable data
as derived from leaf physiognomy (Spicer et al. 2016; Bhatia et al.
2021a,b) to understand monsoon presence.

In the central and western Himalayan Foreland Basin, isotopic
studies indicate that a vegetation shift from C3 to C4 photosynthe-
sis is linked with an increase in the seasonality of rainfall during
late Miocene time (Quade et al. 1989, 1995; Sanyal et al. 2004,
2010). Moreover, recent data also suggest that winter precipitation
caused by the western disturbances (WDs) and increase in fre-
quency of forest fires also played an important role in providing
positive feedback for this vegetation shift (Vögeli et al. 2017;
Karp et al. 2018, 2021; Srivastava et al. 2018).

Quantitative palaeoclimate data using the Climate Leaf
Analysis Multivariate Program (CLAMP) and Coexistence
Approach (CA) on two palaeofloras retrieved from the Lower
(middle Miocene: ~13–11 Ma) and Middle (late Miocene: 9.5–
6.8 Ma) Siwalik succession of the western Himalaya, Nepal,
indicate an increasing trend in mean annual temperature and
cold month mean temperature throughout this interval, while
the warm month mean temperature remained the same
(Srivastava et al. 2018; Bhatia et al. 2021b). Moreover, rainfall
data reveal that the ratio of summer to winter season precipita-
tion increased from 3.47:1 to 9.16:1 (Srivastava et al. 2018).
However, quantitative climate data from the Lower (13–
10.5 Ma) and Middle (10.5–2.6 Ma) Siwalik climate of
Arunachal Pradesh (Fig. 1) in the eastern Himalaya using
CLAMP analysis indicate a decreasing trend in the mean annual

temperature and cold month mean temperature, while the warm
month mean temperature remained nearly the same.

The CLAMPmethodology is independent of taxonomy and uti-
lizes the relationship between dicot leaf morphological traits and
their prevailing climatic conditions (Yang et al. 2015; Spicer
et al. 2021). In angiosperms, dicot leaves are directly exposed to
their immediate prevailing climatic conditions, and evolutionary
selectionmeans they are tuned formaximizing photosynthetic per-
formance against resource investment, and this includes optimiz-
ing transpiration and leaf mechanics (Givnish, 1984; Pigliucci,
2003; Juenger et al. 2005; Rodriguez et al. 2014). Because of this,
dicot leaves display distinctive physiognomic/morphological trait
spectra reflective of the prevailing local climate (Spicer et al. 2021).
However, CLAMP has some limitations as it can only be applied to
dicot fossil leaves and requires a minimum of 20 different leaf mor-
photypes (Wolfe, 1993; Yang et al. 2015). Although CLAMP is
robust in reconstructing the temperature-related climate variables,
it however bears large uncertainties for rainfall prediction, because
leaf forms are weakly constrained in wet regimes (Khan et al. 2014).
In comparison, the CA can be applied to any fossil assemblages
having leaves, wood, flowers, fruits and pollen, requires a mini-
mum of ten taxa and is based on the nearest living relative
(NLR) approach (Mosbrugger & Utescher, 1997; Utescher et al.
2014). The CA has a similar bias, to some extent, as that of
CLAMP where water-loving taxa may be preferentially more rep-
resented near water bodies that provide the conditions for
fossilization.

The quantitative palaeoclimate estimations derived from
CLAMP and CA indicate that in each region different forcing

Fig. 1. (Colour online) Physiographic map showing the present fossil locality and previously studied sites: 1 – Darjeeling Siwalik, India; 2 – Surai Khola, Nepal (Hoorn et al. 2000);
3, 4 – Himachal Pradesh, India (Sanyal et al. 2004); 5 – Arunachal Pradesh Siwalik, India; 6 – Indus marine A-1, Arabian Sea (Clift et al. 2008); 7 – IODP site 1456, eastern Arabian Sea
(Clift et al. 2020); 8 – ODP site 718, southern Bay of Bengal (Clift et al. 2008).
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factors were responsible for climate and vegetation changes.
Isotopic, palynological and phytolith data from different sites
within the central and western Himalayan Foreland Basin, marine
sites from the Arabian Sea, Bay of Bengal and South China Sea, and
the northern part of China indicate an overall decreasing trend in
annual moisture and temperature, particularly after middle
Miocene time (Quade et al. 1989, 1995; Hoorn et al. 2000; Ohja
et al. 2000; Sanyal et al. 2004; Clift et al. 2008; Qin et al. 2011;
Miao et al. 2012, 2017; Wang et al. 2019) (Fig. 1), and this change
was most likely linked to the Northern Hemisphere glaciation/
global cooling (Zachos et al. 2001, 2008). However, a recent study
based on climate modelling and data comparison for eastern Asia
shows an increase in overall rainfall up to Pliocene time due to the
development of a ‘supermonsoon’ (Farnsworth et al. 2019).

The NE region of India is surrounded by mountains in the
north, east and south with hills within the region and an opening
to the west to receive moisture transported by the westerlies
(Fig. 1). This region receives most of the rainfall (~151.3 cm) dur-
ing themonsoon season, a considerably larger amount than the all-
India average rainfall (86.5 cm) (Parthasarathy et al. 1995).
Moreover, the monthly variability of rainfall during the summer
monsoon season is also low (Parthasarathy & Dhar, 1974).
Besides this, the NE region receives a significant amount of rainfall
(~25 % of its annual total) during the pre-monsoon season
(March–May/MAM), related to thunderstorms (Mahanta et al.
2013). The pre-monsoon (March–May/MAM) rainfall is a local
convective rainfall, while summer monsoon (June–September/
JJAS) rainfall is mainly delivered by large-scale summer monsoon
circulation. Overall, the region receives 80 % of the annual rainfall
during the pre-monsoon and summer monsoon seasons (Mahanta
et al. 2013). Because of the unique hydrological setting of NE India,
it is important to understand the evolution of such hydrological
changes in the geological past. However, only a few attempts have
been made to quantitatively reconstruct the hydrological changes
in NE India (Tiwari et al. 2012; Khan et al. 2014; Srivastava et al.
2017). The CA has the ability to quantitatively reconstruct
Neogene seasonal rainfall such as precipitation during the warmest
months (MPwarm), which represents the pre-monsoon (March–
May/MAM), and precipitation during the wettest months
(MPwet), i.e. summer monsoon (June–September/JJAS)
(Srivastava et al. 2017, 2018).

Here, using the CA, we quantitatively reconstruct the climate of
the Lower (middle Miocene) and Middle (late Miocene–Pliocene)
Siwalik successions based on the fossil megaflora of the Darjeeling
district (Fig. 2), eastern Himalaya (Fig. 1). The reconstructed cli-
mate data will be helpful in understanding the changing patterns
in climate (temperature, rainfall and summer monsoon strength),
vegetation shifts and C4 plant expansion during the Mio-Pliocene.

1.a. Geological setting of the study area

The deposition of muds, sands and gravels between the Lesser
Himalaya in the north and the Gangetic Plains in the south since
middle Miocene time was the product of ancient rivers draining
from the active Himalayan orogeny. This sediment accumulation
took place all along the length of the Himalayan Foreland Basin
covering a longitudinal distance of ~2400 km and attaining a thick-
ness of ~6 km (Kumar et al. 2011; Jain et al. 2020) in a coarsening
upward succession known as the Siwalik Group (Fig. 1). The
Siwalik succession is divided into three sub-groups, namely the
Lower, Middle and Upper Siwalik (Pilgrim, 1910, 1913). The sedi-
ments of the Lower Siwalik are characterized by an alternation of

fine- to medium-grained sandstones and variegated mudstones
and are interpreted to have been deposited by meandering river
systems, while the Middle Siwalik sediments are marked by
medium- to coarse-grained, grey, micaceous salt-and-pepper col-
oured sandstone and are interpreted to have been deposited by a
braided fluvial system. The Upper Siwalik comprises pebble and
cobble conglomerates and formed as alluvial fan deposits near
the mountain front (Tandon, 1991; Chakraborty et al. 2020; Jain
et al. 2020).

In Darjeeling, the Siwalik Group is represented by three forma-
tions, namely the Gish Clay, Geabdat Sandstone and Parbu Grit,
which are equivalent to the Lower, Middle and Upper Siwalik
(Ganguly & Rao, 1970; Acharya, 1994) (Fig. 2). The Gish Clay
Formation is characterized by medium- to fine-grained, well-
sorted sandstones, subordinate micaceous sandstones, bluish
nodular silty shale and claystone, while the Geabdat Sandstone
Formation bears weakly indurated, medium- to coarse-grained
salt-and-pepper coloured sandstones. Calcareous concretions of
various shapes and sizes are also present. The Parbu Grit
Formation is characterized by pebbly sandstone and coarse to
medium sandstone (Ganguly & Rao, 1970; Acharyya, 1994;
Matin &Mukul, 2010; Khan et al. 2014) (Table 1). Abundant plant
fossils are present in the Gish Clay and Geabdat Sandstone forma-
tions (Fig. 3).

1.b. Age and depositional environment of the study area

In Darjeeling, based on the lithostratigraphy, the age of the Lower
and Middle Siwalik is assigned to the middle–late Miocene and
Pliocene, respectively (Ganguly & Rao, 1970; Acharyya, 1994;
Khan et al. 2014). Furthermore, the dominance of characteristic
leaf megafossils (such as Shorea sp., Albizia sp. and Acacia sp.)
and invertebrate (Globigerenoides sp.) fossil assemblages suggest
a depositional period of between middle Miocene and Pliocene
in the Tista valley of the Darjeeling Siwalik (Acharyya et al.
1979; D. K. Paruya, unpub. Ph.D. thesis, Univ. Calcutta, 2012;
Khan et al. 2016; More et al. 2018). However, recent works based
on lithostratigraphy, magnetostratigraphy and sub-basin correla-
tion assigned the age of the Lower (Gish Clay Formation) and
Middle (Geabdat Sandstone Formation) Siwalik of Darjeeling to
the middle Miocene and late Miocene–Pliocene, respectively
(Acharyya, 1994; Taral et al. 2017; Taral & Chakraborty, 2018;
Chakraborty et al. 2020; Roy et al. 2021).

It has been observed that the depositional environment of the
eastern Siwalik differed from that of the western and central
Siwalik. The sediments of the western and central regions are
exclusively terrestrial and were deposited by meandering and
braided rivers (DeCelles et al. 1998; Nakayama & Ulak, 1999;
Kumar et al. 2003a,b, 2011). However, the depositional environ-
ment of the eastern Siwalik has some marine influence (Mitra
et al. 2000; Chirouze et al. 2012; Coutand et al. 2016; More
et al. 2016; Taral et al. 2017; Roy et al. 2021). This dissimilarity
is referable to the fact that the eastern region of India was not con-
nected to Eurasia in the way that the western and central regions
were before middle Miocene time (Sinha et al. 1982; Ranga Rao,
1983). This is due to the diachronous collision of the Indian
Plate with the Eurasian Plate, which started from the west and pro-
gressed towards the east, and might have delayed the closure of
marine incursions in the eastern Siwalik region (Rowley, 1996;
Uddin & Lundberg, 2004; Yin, 2006; Acharyya, 2007).

In the Darjeeling Siwalik, the palynological assemblages recov-
ered from the Geabdat Sandstone Formation of the Churanthi
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River section, which is 4 km west of the Gish River, include pollen
grains of Palaeosantalaceaepites sp., Zonocostites sp.
(Rhizophoraceae), Malvacearumpollis sp. (Malvaceae),
Araliaceoipollenites (Araliaceae) and isolated salt glands of man-
grove plant leaves (Heliospermopsis siwalikii and
Heliospermopsis sp.) indicating the presence of brackish water in
a possible nearshore marine environment (Mitra et al. 2000;
More et al. 2016). Moreover, the sedimentary structure, vertical
succession of strata, palaeocurrent patterns and characteristic trace
fossils, such as Cylindrichnus, Rosselia, Rhizocorallium, Chondrites
and Zoophycos reported from the Geabdat Sandstone Formation of
the Tista valley, strongly suggest a marine deltaic environment
(Taral et al. 2017). Additionally, characteristic biomarkers derived
from organic matter from upper Miocene to Pliocene sediments of
the Darjeeling Siwalik indicate, apart from the dominance of a ter-
restrial environment, substantial contributions from marine
sources (Roy et al. 2021). Furthermore, sedimentology, plant meg-
afossils and palynological analysis indicate a brackish or marginal
marine deltaic environment in the Bhutan and Arunachal Pradesh
Siwalik of NE India (Singh & Tripathi, 1990; Joshi et al. 2003;
Chirouze et al. 2012; Coutand et al. 2016).

1.c. Modern climate of the fossil locality

The Darjeeling area has a sub-tropical to temperate/montane type
of climate depending on elevation and aspect. The study site is
located in the Oodlabari area of the Darjeeling district, West
Bengal, and the present-day elevation of the area is ~200 m above
sea level. The studied area is under the influence of a strong
summer monsoon climate, where moisture is mostly sourced from
the Bay of Bengal. The mean annual precipitation is 2047 mm, the
mean precipitation during the wettest month is 1655 mm, the
mean precipitation during the driest month is 38 mm, while the
mean precipitation during the warmest month is 255 mm. The
ratio of WET:DRY is 43.5 (India Meteorological Department,
1931–1960).

2. Materials and methods

In the present study, we use plant megafossils reported from the
Lower and Middle Siwalik succession of the Darjeeling district.
All fossils were collected from two formations, namely the Gish
Clay (Lower Siwalik) and Geabdat Sandstone (Middle Siwalik)

Fig. 2. (Colour online) Geological map of the fossil locality showing different formations and fossil localities (red asterisks) (modified after Prasad et al. 2015).

Table 1. The lithostratigraphy of the Siwalik Group in the Darjeeling–Sikkim Himalayan region (after Taral & Chakraborty, 2018)

Age
Generalized lithostra-
tigraphy Formation Description

Pliocene Upper Siwalik Murti boulder bed Crudely bedded, pebble-boulder conglomerate and pebble sandstone

Parbu grit Pebbly, coarse- to fine-grained sandstone with pebble conglomerate; minor
mudstone

Late Miocene–
Pliocene

Middle Siwalik Geabdat sandstone Medium- to coarse-grained sandstone; local pebble beds, mudstone and minor
marl

Middle Miocene Lower Siwalik Gish/Chunabati
Formation

Fine- to medium-grained sandstone, siltstone, grey to greenish grey mudstone;
bedded and nodular marl
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(Table 2; Figs 2, 3). The fossils were excavated from sedimentary
rocks exposed near the rivers, namely the Ghish, Lish, Ramthi and
Tista in the Oodlabari area of the Darjeeling district, West Bengal
(Figs 2, 3) (Antal &Awasthi, 1993; Antal & Prasad, 1995, 1996a,b,c,
1997, 1998; Antal et al. 1996; Prasad et al. 2009, 2015).

In this study, we first identified the NLRs of all the fossil taxa
and then segregated their habitats into the different forest types in
which they are normally found. The forest types are classified
according to their geographic, climatic and floristic traits that
determine forest structure and composition (Champion & Seth,
1968; Rundel, 1999). A plant is considered evergreen when it bears
leaves throughout the year, while deciduous ones are those that
shed their leaves each year, particularly during the dry season
(Champion & Seth, 1968).

The CA is used for the reconstruction of the Lower and Middle
Siwalik climate of Darjeeling (Figs 1, 2). The CA is based on the

philosophy of the NLR approach, which assumes that the modern
analogues of the plant fossils have the same climatic tolerance as
those of the fossils, and the technique can be applied to any fossil
assemblage of leaves, wood, fruits, seeds and pollen. This method-
ology returns values consistent with those of other proxies for the
Neogene to Quaternary periods where the majority of cases
showed no significant change in the climatic requirement of any
taxon (MacGinitie, 1941; Hickey, 1977; Chaloner & Creber,
1990; Mosbrugger, 1999). In this methodology, the fossils are first
identified systematically and then the climatic tolerances of their
modern analogues are obtained by documenting the climatic con-
ditions of the area within which that taxon is found today.
Thereafter, the coexistence interval can be determined by observ-
ing themaximumoverlap of each climatic variable across the entire
fossil assemblage composition. The observed coexistence intervals
are considered, where climatic tolerances of the maximum taxa are

Fig. 3. (Colour online) Generalized lithology of the
Lower and Middle Siwalik of the studied area
(Darjeeling).
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Table 2. Fossil plants and their nearest living relatives (NLRs) from the Darjeeling Siwalik, West Bengal, India

Fossil taxa Organ NLRs Numerical identifiers in Figures 7 & 9

Lower Siwalik

Bauhinium palaeomalabaricum Prakash & Prasad Wood Bauhinia sp. 3

Beddomea palaeoindica Antal & Prasad Leaf Meliaceae 12

Bouea premacrophylla Antal & Awasthi Leaf Anacardiaceae 1

Cananga tertiara Prasad et al. Leaf Annonaceae 2

Casearia pretomentosa Antal & Awasthi Leaf Casearia sp. 4

Combretum sahnii Antal & Awasthi Leaf Combretum sp. 5

Glochidion palaeohirsutum Antal & Prasad Leaf Euphorbiaceae 7

Grewia tistaensis Antal & Prasad Fruit Grewia sp. 9

Homonoia mioriparia Antal & Prasad Leaf Homonoia sp. 10

Hopea kathgodamensis Prasad Leaf Hopea sp. 11

Millettia oodlabariensis Antal & Prasad Leaf Millettia sp. 13

Nothopegia eutravancorica Antal & Awasthi Leaf Nothopegia sp. 14

Paranephelium seriaensis Prasad & Dwivedi Leaf Sapindaceae 18

Polyalthia palaeosimiarum Awasthi & Prasad Leaf Polyalthia sp. 15

Pongamia siwalika Antal & Awasthi Leaf Fabaceae 8

Pterospermum siwalicum Antal & Prasad Leaf Pterospermum sp. 16

Shorea bengalensis Antal & Prasad Leaf Shorea roxburghii 6

Shorea siwalika Antal & Awasthi Leaf Shorea sp. 19

Swintonia miocenica Antal & Prasad Leaf Swintonia sp. 20

Syzygium palaeocuminii Prasad & Awasthi Leaf Syzygium sp. 21

Terminalia miobelerica Prasad Leaf Terminalia sp. 22

Uvaria ghishia Antal & Prasad Leaf Uvaria sp. 23

Ventilago tistaensis Antal & Prasad Leaf Rhamnaceae 17

Xanthophyllum mioflavescens Antal & Prasad Leaf Xanthophyllum sp. 24

Zizyphus palaeoapetala Antal & Prasad Leaf Zizyphus sp. 25

Middle Siwalik

Actinodaphne palaeoangustifolia Antal & Awasthi Leaf Actinodaphne sp. 1

Albizia palaeolebbek Antal & Awasthi Leaf Albizia sp. 2

Alstonia mioscholaris Antal & Awasthi Leaf Apocynaceae 5

Bambusa sp. Leaf Bambusa sp. 6

Bauhinium palaeomalabaricum Wood Bauhinia sp. 7

Bombax palaeomalabaricum Prasad et al. Leaf Bombax sp. 8

Buchanania palaeosessilifolia Prasad et al. Leaf Anacardiaceae 3

Bursera preserrata Antal & Awasthi Leaf Bursera sp. 9

Calophyllum suraikholaensis Awasthi & Prasad Leaf Calophyllum sp. 10

Callicarpa siwalika Antal & Awasthi Leaf Verbenaceae 38

Chionanthus siwalicus Prasad et al. Leaf Chionanthus sp. 11

Cinnamomum sp. Leaf Cinnamomum sp. 12

Cupania oodlabariensis Prasad et al. Leaf Cupania sp. 13

Cynometra palaeoiripa Prasad et al. Leaf Cynometra sp. 14

Diospyros koilabasensis Prasad Leaf Diospyros sp. 15

Dipterocarpus siwalicus Lakhanpal & Guleria Leaf Dipterocarpus sp. 17

(Continued)
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included, as the most suitable ranges of different palaeoclimatic
variables for a given fossil flora. The taxa which are present outside
these coexistence intervals are considered outliers. Outliers result
from many factors including wrong identification, imprecise cli-
matic information for the modern analogues and a change in cli-
matic tolerances through geologic time (Mosbrugger & Utescher,
1997; Utescher et al. 2014). The CA, like CLAMP, relies only on the
presence/absence of taxa and is independent of sample size and rel-
ative abundance. CA reconstructions have been validated by other
independent methodologies such as CLAMP (Liang et al. 2003;
Uhl et al. 2007; Xing et al. 2012; Bondarenko et al. 2013).
Generally, the CA results are also supported by oxygen isotope data
retrieved from marine archives and palaeovegetational
reconstruction (Mosbrugger et al. 2005; Utescher et al. 2015;
Srivastava et al. 2016, 2018).

The CA reconstructs climatic variables such as mean annual
temperature, cold month temperature, warm month temperature,
mean annual precipitation, mean precipitation during the wettest
months, mean precipitation during the driest months and mean
precipitation during the warmest months. The climatic tolerances
for all taxa in this study were obtained from the PALAEOFLORA
database (Utescher & Mosbrugger, unpub. data, 2018: previously
available at http://www.palaeoflora.de) (online Supplementary
Material). The details of the PALAEOFLORA database and extrac-
tion of climate data for fossil NLRs are discussed by Utescher
et al. (2014).

3. Results

3.a. Palaeofloristic analysis of the Lower and Middle Siwalik
flora of Darjeeling

Modern analogues of the fossils reported from the Lower Siwalik
succession belong to the families Anacardiaceae, Annonaceae,
Combretaceae, Dipterocarpaceae, Euphorbiaceae, Fabaceae,
Flacourtiaceae, Malvaceae, Meliaceae, Myrtaceae, Rhamnaceae,
Rubiaceae, Sapindaceae and Xanthophyllaceae. A detailed list of
taxa is provided in the online Supplementary Material. The most
diverse plant families in the Lower Siwalik assemblage are:
Flacourtiaceae and Fabaceae, followed by Anacardiaceae,
Dipterocarpaceae, Combretaceae, Euphorbiaceae, Rhamnaceae,
Meliaceae, Myrtaceae, Rubiaceae, Sapindaceae, Malvaceae,
Tiliaceae and Xanthophyllaceae (Figs 4a, 5). The floristic assem-
blage suggests that 71 % of taxa are typically found in evergreen
forests, whereas 19 % of taxa are typical of moist deciduous forests.
However, only 10 % of taxa are evergreen to moist deciduous
(Fig. 4b) (Champion & Seth, 1968).

Modern analogues of the fossils from the Middle Siwalik suc-
cession belong to families such as Anacardiaceae, Annonaceae,
Apocynaceae, Bombacaceae, Burseraceae, Calophyllaceae,
Clusiaceae, Compositae (Asteraceae), Dilleniaceae,
Dipterocarpaceae, Ebenaceae, Euphorbiaceae, Fabaceae,
Flacourtiaceae, Lauraceae, Lythraceae, Marantaceae, Moraceae,
Oleaceae, Poaceae, Rhamnaceae, Rutaceae, Sabiaceae,

Table 2. (Continued )

Fossil taxa Organ NLRs Numerical identifiers in Figures 7 & 9

Entada palaeoscandens Awasthi & Prasad Seed Fabaceae 18

Ficus oodlabariensis Antal & Awasthi Fruit Ficus sp. 19

Ficus retusoides Prasad Leaf Moraceae 28

Fissistigma senni Lakhanpal Leaf Annonaceae 4

Garcinia eocambogia Prasad Leaf Garcinia sp. 20

Gardenia precoronaria Prasad et al. Leaf Gardenia sp. 21

Grewia ghishia Antal & Awasthi Leaf Grewia sp. 22

Hopea siwalika Antal & Awasthi Leaf Hopea sp. 23

Lagerstroemia patelli Lakhanpal & Guleria Leaf Lagerstroemia sp. 24

Macaranga siwalika Antal & Awasthi Leaf Macaranga sp. 25

Mallotus kalimpongensis Antal & Awasthi Leaf Mallotus sp. 26

Millettia miosericea Prasad et al. Leaf Millettia sp. 27

Paranephelium miocenica Prasad et al. Leaf Sapindaceae 32

Pterospermum mioacerifolium Prasad et al. Leaf Pterospermum sp. 29

Rhamnus siwalicus Prasad et al. Leaf Rhamnaceae 30

Sabia eopaniculata Prasad Leaf Sabia sp. 31

Shorea miocenica Antal & Prasad Leaf Shorea sp. 33

Sterculia miocolorata Prasad et al. Leaf Sterculia sp. 34

Sterculia siwalica Prasad et al. Leaf Sterculiaceae 35

Toddalia miocenica Prasad et al. Leaf Toddalia sp. 36

Uvaria siwalica Prasad Leaf Uvaria sp. 37

Vatica siwalica Prasad et al. Leaf Dipterocarpaceae 16
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Sapindaceae, Malvaceae, Verbanaceae and Vitaceae. The most
diverse families in the Middle Siwalik assemblage are Fabaceae,
Dipterocarpaceae, Annonaceae and Malvaceae followed by
Sapindaceae, Apocynaceae, Flacourtiaceae, Moraceae,
Burseraceae, Ebenaceae, Euphorbiaceae, Lauraceae,
Anacardiaceae, Bombacaceae, Calophyllaceae, Clusiaceae,
Compositae, Dilleniaceae, Lythraceae, Marantaceae, Oleaceae,
Poaceae, Rhamnaceae, Rubiaceae, Rutaceae, Sabiaceae, Tiliaceae,
Verbenaceae and Vitaceae (Figs 4c, 6). The floristic assemblage
suggests that 49 % of taxa today belong to evergreen forests,
whereas 24 % of taxa are affiliated with moist deciduous forests,
and 27 % of taxa are evergreen to moist deciduous (Fig. 4d)
(Champion & Seth, 1968).

3.b. Temperature and rainfall reconstruction of the Lower
and Middle Siwalik succession of Darjeeling

In the Lower Siwalik, 25 NLR taxa have been used for the climate
reconstruction (Fig. 7) and a list of all the taxa, their NLRs and
numerical identifiers used are provided in Table 2.

The reconstructed temperatures for the Lower Siwalik flora are:
27.2 ± 0.3 °C for the mean annual temperature, 28.2 ± 0.1 °C for
the warmmonth temperature and 25.6 ± 0.3 °C for the cold month
temperature (Fig. 8a). The reconstructed precipitations are:
2269.5 ± 58.5 mm for the mean annual precipitation,
367 ± 4 mm for the mean precipitation during the wettest months,
31 ± 12 mm for the mean precipitation during the driest months

Fig. 4. (Colour online) (a–d) Bar and pie diagrams showing the floristic diversity and forest types during the Lower and Middle Siwalik of Darjeeling. (a) Floristic diversity during
the Lower Siwalik. 1 – Flacourtiaceae; 2 – Fabaceae; 3 – Anacardiaceae; 4 – Annonaceae; 5 – Dipterocarpaceae; 6 – Combretaceae; 7 – Euphorbiaceae; 8 – Rhamnaceae; 9 –
Meliaceae; 10 –Myrtaceae; 11 – Rubiaceae; 12 – Sapindaceae; 13 –Malvaceae; 14 – Tiliaceae; 15 – Xanthophyllaceae. (b) Pie diagram showing the forest types during the deposition
of the Lower Siwalik sediments. (c) Floristic diversity during the Middle Siwalik. 1 – Fabaceae; 2 – Dipterocarpaceae; 3 – Annonaceae; 4 – Malvaceae; 5 – Sapindaceae; 6 –
Apocynaceae; 7 – Flacourtiaceae; 8 – Moraceae; 9 – Burseraceae; 10 – Ebenaceae; 11 – Euphorbiaceae; 12 – Lauraceae; 13 – Anacardiaceae; 14 – Bombacaceae; 15 –
Calophyllaceae; 16 – Clusiaceae; 17 – Compositae; 18 – Dilleniaceae; 19 – Lythraceae; 20 – Marantaceae; 21 – Oleaceae; 22 – Poaceae; 23 – Rhamnaceae; 24 – Rubiaceae; 25
– Rutaceae; 26 – Sabiaceae; 27 – Tiliaceae; 28 – Verbenaceae; 29 – Vitaceae. (d) Pie diagram showing the forest types during the deposition of the Middle Siwalik sediments.
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and 174 ± 47 mm for the mean precipitation during the warmest
months (Fig. 8b). The results of the reconstruction are given in
Table 3. As nearly 100 % of the NLR taxa coexist in the resulting
coexistence intervals, the results are considered highly reli-
able (Fig. 7).

In the Middle Siwalik, 38 NLR taxa have been used for the cli-
mate reconstruction (Fig. 9) and a list of all the fossils, their NLRs
and numerical identifiers are provided in Table 2. The recon-
structed temperatures of the Middle Siwalik flora are:
25.5 ± 1.6 °C for the mean annual temperature, 27.6 ± 0.5 °C for
the warmmonth temperature and 22.2 ± 2.8 °C for the cold month
temperature (Fig. 8a). The precipitation reconstruction indicates
1652 ± 275 mm for the mean annual precipitation,
260.5 ± 35.5 mm for the mean precipitation during the wettest
months, 38 ± 31 mm for the mean precipitation during the driest

months and 152.5 ± 24.5 mm for themean precipitation during the
warmest months (Fig. 8b; Table 3). Climatic ranges of all the taxa
included as NLRs overlap in the coexistence intervals (Fig. 9), again
suggesting a robust result for the Middle Siwalik climate.

4. Discussion

4.a. Changing patterns in temperature and rainfall during
the Lower and Middle Siwalik succession of the eastern
Himalaya

The reconstructed temperature data suggest that the mean annual
temperature and coldmonth temperature were lower by 1.7 °C and
3.4 °C, respectively, in theMiddle Siwalik than in the Lower Siwalik
as far as the means of their coexistence intervals are concerned,

Fig. 5. (Colour online) Fossil leaf assemblage
from the Lower Siwalik of Darjeeling. (a)
Combretum sahnii Antal & Awasthi. (b)
Polyalthia palaeosimiarum Awasthi & Prasad.
(c) Hydnocarpus palaeokurzii Antal & Awasthi.
(d) Casearia pretomentosa Antal & Awasthi. (e)
Pongamia siwalika Antal & Awasthi. (f)
Nothopegia eutravancorica Antal & Awasthi (all
scale bars = 1 cm).
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while the warm month temperature was nearly the same (Fig. 8a;
Table 3). The overall reconstructed temperature data indicate that
a decrease in the mean annual temperature is due to a decrease in
temperature of the cooler part of the year, while the warm season
remained nearly the same from the Lower to Middle Siwalik
(Fig. 8a; Table 3). Our temperature reconstruction is also sup-
ported by a previous CLAMP analysis conducted by Khan et al.
(2014) on the Lower and Middle Siwalik of Arunachal Pradesh,
eastern Himalaya (Fig. 1). Considering the entire coexistence

interval ranges, and confidence intervals cited for the CLAMP
results, bothmethods show overlapping returns for all temperature
estimates (Table 3). Khan et al. (2014) also inferred a decreasing
trend in mean annual temperature and cold month temperature
by 2.6 °C and 4.3 °C, while the warm month temperature remains
the same (Table 3). The CLAMP methodology is entirely different
from that of the CA and is based on the physics of leaf morphology
and climate relationships, which is independent of taxonomic
affinities (Yang et al. 2015).

Fig. 6. (Colour online) Fossil leaf assemblage
from the Middle Siwalik of Darjeeling.
(a) Grewia ghishia Antal & Awasthi. (b) Vitis siwa-
licus Prasad et al. (c) Lagerstroemia patelii
Lakhanpal & Guleria. (d) Hopea siwalika Antal
& Awasthi. (e) Cynometra tertiara Antal &
Awasthi. (f) Alsodeia palaeozeylanicum Antal
& Awasthi. (g) Calophyllum suraikholaensis
Awasthi & Prasad (all scale bars = 1 cm).
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The rainfall reconstruction suggests a lower mean annual pre-
cipitation, mean precipitation during the wettest months andmean
precipitation during the warmest months in the Middle Siwalik
than in the Lower Siwalik (Table 3). This suggests that the

Middle Siwalik was much drier than the Lower Siwalik. The data
also imply that increased dryness in the Middle Siwalik was due to
reductions in pre-monsoon (March–May/MAM) (MPwarm) and
monsoon rainfall (June–September/JJAS) (MPwet) (Table 3).

Fig. 7. (Colour online) Climatic
ranges of the NLRs identified
for the palaeoflora of the Lower
Siwalik of Darjeeling. Red shaded
areas: Coexistence Intervals (CIs).
(a) Mean annual temperature (MAT).
(b) Warm month mean temperature
(WMT). (c) Cold month mean tempera-
ture (CMT). (d) Mean annual precipita-
tion (MAP). (e) Mean precipitation of
the wettest month (MPwet). (f) Mean
precipitation of the driest month
(MPdry). (g) Mean precipitation of the
warmest month (MPwarm). For taxa
names, see Table 2.
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The overall reconstructed climate data from the present and
previous reconstructions (Table 3) suggest a cooling trend, particu-
larly in the cooler (MPdry) part of the year and a decrease in pre-
monsoon (MPwarm) and summer monsoon (MPwet) rainfall
from the Lower to Middle Siwalik in the eastern Himalaya
(Table 3).

In the western Himalaya, Sanyal et al. (2004), based on oxygen
isotopes, suggested a high annual rainfall total at ~10.5 Ma, which
subsequently weakened during 10.5–6Ma, and again became high
at 6Ma, with a peak at 5.5 Ma. However, in the central Himalayan
Siwalik, Sanyal et al. (2005) inferred that the monsoon became
stronger after 8Ma and attained a high level at ~6Ma, and sub-
sequently diminished at ~4Ma to a level lower than that at
8 Ma. In a comparative study between the western and eastern
Himalayan Siwalik, Vögeli et al. (2017) suggested that the modern
E–W differentiation in climate was already established at ~7Ma.
Regional changes towards a more seasonal climate in the west were
linked to a decrease in the winter precipitation, while the eastern
part remained year-round humid, due to the proximity of an abun-
dant moisture source from the Bay of Bengal. Srivastava et al.
(2018) suggested that the Middle (9.5–6.8 Ma) Siwalik was drier

than the Lower (~13–11Ma) Siwalik, and this was most likely
due to a decrease in rainfall during the winter season (dry season).
A decrease in rainfall was also recorded from the Siwalik of
Pakistan and Nepal during late Miocene time (10.5–6Ma)
(Dettman et al. 2001; Badgley et al. 2008), while increased evapo-
ration of soil and leaf water was recorded from the upper Miocene
(~9–6Ma) of Pakistan (Nelson, 2005; Badgley et al. 2008).
Hydrogen isotope data from the Bengal Fan show variability from
10.2 to 7.4 Ma and an increasing trend after 7.4 Ma, which suggests
drying (Polissar et al. 2021).

The cooling in temperature and weakening of the Asian
summer monsoon during the Neogene period have also been
reported from other terrestrial and marine archives. Sanyal et al.
(2004), on the basis of an oxygen isotopic study from the
Siwalik of the western Himalaya, inferred that the ISM strength
was higher in late Miocene time than in Pliocene time. The paly-
nological evidence from the Surai Khola section of Nepal indicates
a cooling from late Miocene to Pliocene times (Hoorn et al. 2000).

Neogene chemical weathering data from ODP site 718 (Bengal
Fan) and Indus Marine A-1 well (Arabian Sea), along with sedi-
mentation rates from the Indus fan, indicate an overall wetter cli-
mate in middle Miocene time than in late Miocene–Pliocene times
(Clift et al. 2008) (Fig. 1). Moreover, recent data of increasing hae-
matite/goethite ratios from International Ocean Discovery
Program Site U1456 indicate an overall long-term drying after
~7.7 Ma (Clift et al. 2020) (Fig. 1). Studies based on inorganic
and organic proxies derived from marine archives from the
Arabian Sea, Bay of Bengal and South China Sea have inferred that
the decrease in temperature and overall rainfall during late
Miocene–Pliocene times might be linked with the Northern
Hemisphere glaciation/cooling (Wei et al. 2006; Miao et al.
2017; Clift et al. 2020). All the aforesaid data either derived from
continental sediments or marine sediments suggest a drying (mean
annual) trend during the Neogene period.

However, recent climate modelling suggests the late Miocene to
Pliocene as being a time of ‘supermonsoon’ and high annual rain-
fall total, based on overall rainfall modelled for East Asia
(Farnsworth et al. 2019). In the future, more quantitative terrestrial
palaeoclimate data are required from different regions of south
Asia to better understand the linkages of a decrease in temperature
and Asian monsoon dynamics during the Neogene period.

4.b. Climate and vegetation changes during Lower and
Middle Siwalik time in the Himalaya

The vegetation reconstructions suggest that the Middle Siwalik
(Fig. 4c) flora was more diverse than the Lower Siwalik
(Fig. 4a), but many families were common to both. However, fam-
ilies such as Combretaceae, Meliaceae and Myrtaceae were exclu-
sive to the Lower Siwalik (Fig. 4a), while Apocynaceae, Asteraceae,
Bombacaceae, Burseraceae, Calophyllaceae, Clusiaceae,
Dilleniaceae, Ebenaceae, Lauraceae, Lythraceae, Marantaceae,
Oleaceae, Poaceae, Rutaceae, Sabiaceae, Verbenaceae and
Vitaceae were present only in the Middle Siwalik (Fig. 4c). In
the Lower Siwalik, the Flacourtiaceae family was the most domi-
nant and was followed by members of the Fabaceae,
Anacardiaceae, Annonaceae and Dipterocarpaceae. The
Fabaceae family was the most dominant in the Middle Siwalik
and was followed by Dipterocarpaceae, Annonaceae, Malvaceae
and Sapindaceae (Fig. 4a, c).

In the Lower Siwalik, evergreen taxa dominated over those typ-
ical of moist deciduous vegetation (Fig. 4b), while in the Middle

Fig. 8. (Colour online) Climate reconstruction of the Lower and Middle Siwalik. (a)
Temperature reconstruction of the Lower andMiddle Siwalik. (b) Bar diagram showing
rainfall reconstruction of the Lower and Middle Siwalik. Abbreviations as in Figure 7.
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Siwalik evergreen taxa decreased significantly and those classed as
moist deciduous increased (Fig. 4d). The forest types of the Siwalik
overall suggest that the evergreen taxa decreased significantly,
while moist deciduous and evergreen to moist deciduous taxa
increased from the Lower to Middle Siwalik (Fig. 4b, d). This
change in the forest type coincides with the longer dry season
(Champion& Seth, 1968). Overall, the dominance ofmoist decidu-
ous forest in theMiddle Siwalik in comparison to the Lower Siwalik
suggests an increase in seasonal aridity.

C4 plants are physiologically more efficient than C3 plants and
can survive under more extreme conditions such as drought, high
temperatures and low CO2 concentration. This allows them to
broaden their ecological niches (Lundgren et al. 2016) and survive
in a variety of habitats from low to high latitudes, from desert to
submerged conditions, open grassland to forest understorey, and
from nutrient depleted to fertile soils (Christin & Osborne,
2014). Molecular phylogenetic studies reveal that the C4 plants
evolved between 33 and 25Ma (Gaut & Doebley, 1997;
Bouchenak-Khelladi et al. 2009) and were most likely favoured
by the lowering of atmospheric CO2 concentration during
Oligocene–early Miocene times (Tipple & Pagani, 2007). The
available isotopic data indicate that the expansion of C4 plants
was not synchronous either globally (Quade et al. 1989, 1994;
Cerling, 1992; Cerling & Quade, 1993; Cerling et al. 1993;
Kingston et al. 1994; Latorre et al. 1997; Fox & Koch, 2003,
2004; Feakins et al. 2005) or regionally (Sanyal et al. 2010).

A large number of studies have been conducted in the western
and central Himalayan Siwalik to understand the vegetation shift
and expansion of C4 plants (Quade et al. 1989, 1995; Tanaka, 1997;
Hoorn et al. 2000; Sanyal et al. 2004, 2005, 2010; Singh et al. 2011;
Srivastava et al. 2018; Karp et al. 2018, 2021; Tauxe & Feakins,
2020); however, few studies have been done in the eastern
Himalayan Siwalik (Vögeli et al. 2017). The isotopic data available

from the western Himalayan Siwalik indicate that C4 plants
expanded during late Miocene time (Singh et al. 2011 and referen-
ces therein), and an increase in the dryness was inferred as themost
plausible cause of their expansion (Quade et al. 1989, 1995;
Tanaka, 1997; Hoorn et al. 2000; Sanyal et al. 2004, 2005;
Srivastava et al. 2018). Sanyal et al. (2010), based on the isotopic
data, suggested that the timing and nature of enrichment in the
carbon isotope ratio varied from one section to another, implying
that the expansion of C4 plants in different zones of the Indian
Siwaliks did not take place at the same time. They further suggested
that changing monsoon intensity was not the sole cause for C4

plant expansion in this region because monsoon intensity and
C4 plant expansion do not show a one to one correlation.
Moreover, recent studies based on isotopic (oxygen and carbon)
data derived from leaf wax and bivalves archived in marine
(Arabian Sea and Indus River Basin) and continental (western
and central Himalayan Siwalik) sediments indicate that the
increase in aridity paved the way for the expansion of C4 plants
over C3 plants (Dettman et al. 2001; Huang et al. 2007; Suzuki
et al. 2020).

Palaeoclimatic data from the Siwalik succession of the western
and central Himalaya suggest that the expansion of C4 plants is
linked to a weakening of winter rainfall brought by the WDs
(Vögeli et al. 2017; Srivastava et al. 2018). TheWDs are the atmos-
pheric disturbances which bring rainfall particularly to northern
India during the winter season. They originate mainly in the
Mediterranean or West Atlantic region. In the Himalayan region,
the WDs intensify owing to high orography and are the main
source of snowfall over the region (Dimri & Chevuturi, 2016).
Sometimes WDs bring heavy rainfall and heavy snowfall over
the northwestern Himalaya during the winter season (Dimri &
Mohanty, 1999; Dimri, 2006). In northern India, the WDs have
an impact in delaying or advancing the ISM (Das et al. 2002).

Table 3. Quantitative climate reconstruction of the Lower and Middle Siwalik using the Coexistence Approach (CA) (present study) and Climate Leaf Analysis
Multivariate Program (CLAMP) (previous study)

Climate variables

CA of Lower Siwalik
(Middle Miocene)

(Darjeeling) (Present
study)

CA of Middle Siwalik
(Late Miocene–Pliocene)
(Darjeeling) (Present

study)

CLAMP of Lower Siwalik (13–
10.5 Ma; Chirouze et al. 2012)

(Arunachal Pradesh) (Khan et al.
2014)

CLAMP of Middle Siwalik (10.5–
2.6 Ma; Chirouze et al. 2012)

(Arunachal Pradesh) (Khan et al.
2014)

Mean annual temperature
(°C)

27.25 ± 0.35 25.55 ± 1.65 25.3 ± 2.8 23.6 ± 2.8

Warm month mean
temperature (°C)

28.2 ± 0.1 27.6 ± 0.5 27.9 ± 3.3 28.1 ± 3.3

Cold month mean
temperature (°C)

25.6 ± 0.3 22.2 ± 2.8 21.3 ± 4 16.9 ± 4

Mean annual precipitation
(mm)

2269.5 ± 58.5 1652 ± 275 1741.3 ± 916.2 1981.2 ± 916.2

Precipitation during the
wettest months (mm)

367 ± 4 260.5 ± 35.5 – –

Precipitation during the
driest months (mm)

31 ± 12 38 ± 31 – –

Precipitation during the
warmest months (mm)

174 ± 47 152.5 ± 24.5 – –

Precipitation during 3
wettest months (mm)

– – 961.5 ± 528 994.1 ± 528

Precipitation during 3
driest months (mm)

– – 73.4 ± 115 137.8 ± 115
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Fig. 9. (Colour online) Climatic
ranges of the NLRs identified for
the palaeoflora of the Middle
Siwalik of Darjeeling. Red shaded
areas: Coexistence Intervals (CIs).
(a) Mean annual temperature
(MAT). (b) Warm month mean tem-
perature (WMT). (c) Cold month
mean temperature (CMT). (d) Mean
annual precipitation (MAP). (e)
Mean precipitation of the wettest
month (MPwet). (f) Mean precipita-
tion of the driest month (MPdry).
(g) Mean precipitation of the warm-
est month (MPwarm). For taxa
names, see Table 2.
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Beyond that, Wu et al. (2014) and Srivastava et al. (2018) have also
pointed out the role of higher temperatures, particularly in the
cooler part of the year, in the expansion of C4 plants during the
Middle Siwalik.

In contrast to the western and central Himalayan Siwalik, few
studies are available for the eastern Himalaya to understand the
C3–C4 vegetation change. Isotopic data from the Kameng section
of the Arunachal Pradesh Siwalik suggested a persistent C3 vegeta-
tion since 13Ma, and this is most likely explained by the absence of
seasonal climate and lack of aridity, owing to the abundant mois-
ture supply from the Bay of Bengal (Vögeli et al. 2017). For the
Darjeeling Siwalik no study has been done so far to understand
possible C3 and C4 vegetation shifts during the Neogene period.
However, our quantitatively reconstructed climate and vegetation
data are important in understanding the dominance of seasonal
forest in the Middle Siwalik (late Miocene–Pliocene) in compari-
son to the Lower Siwalik (middle Miocene). This expansion of sea-
sonal forest can be related to the decrease in rainfall in the pre-
monsoon (MPwarm) and monsoon seasons (MPwet) (Table 3).
C4 plants preferentially grow in seasonal forests, compared to for-
ests that have no seasonal climate (Srivastava et al. 2018).

Recently, Ghosh et al. (2018, 2021) suggested that changes in
C3/C4 vegetation may also depend on the substrate (sand/clay).
They explained that areas of fine-grained (silt and clay) overbank
sediments, far from the active channels, have a pore water defi-
ciency and favour the growth of C4 plants. A comparative study
of the sedimentary structures among different Siwalik regions indi-
cates that the abundance of fine-grained (silt and clay) overbank
sediments is higher in the western Siwalik than the central and
eastern Siwalik. The strong correlation between δ13C values and
abundance of fine-grained (silt and clay) overbank sediments
across different Siwalik regions suggests a significant influence
of substrate on the abundance of C4 plants (Ghosh et al. 2018,
2021). Therefore, substrate level control in limiting the growth
of C4 vegetation since 13Ma in NE India cannot be ignored.
Moreover, the marine influence in the Himalayan Foreland
Basin of NE India might also have imposed some restriction on
the growth of C4 vegetation, but this needs further investigation.

Overall, the aforesaid discussion indicates that more studies are
required, particularly on the northeastern part of India, to under-
stand the vegetation–climate relationship.

5. Conclusions

The climate of the Lower (middle Miocene) and Middle (late
Miocene–Pliocene) Siwalik succession of Darjeeling (eastern
Himalaya) was reconstructed using the Coexistence Approach.
The reconstructed mean annual temperature and cold month tem-
perature show a decreasing trend, while the warm month temper-
ature remained the same from the Lower to Middle Siwalik. The
CA result suggests that pre-monsoon (MPwarm) and summer
monsoon rainfall (MPwet) decreased significantly from the
Lower to Middle Siwalik, while winter rainfall (MPdry) remained
nearly the same. The floristic assemblages suggest a vegetation shift
from the dominance of evergreen taxa in the Lower Siwalik tomore
deciduous taxa during the Middle Siwalik. The data also suggest
that the Middle Siwalik flora was more diverse than that of the
Lower Siwalik.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0016756822000243
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