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Abstract

We show how logic programs with “delays” can be transformed to programs without delays

in a way that preserves information concerning floundering (also known as deadlock). This

allows a declarative (model-theoretic), bottom-up or goal-independent approach to be used

for analysis and debugging of properties related to floundering. We rely on some previously

introduced restrictions on delay primitives and a key observation which allows properties

such as groundness to be analysed by approximating the (ground) success set.
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1 Introduction

Constructs for delaying calls have long been a popular extension to conventional

Prolog. Such constructs allow sound implementation of negation, more efficient

versions of “generate and test” algorithms, more flexible modes and data-flow, a

mechanism for coordinating concurrent execution and forms of constraint program-

ming. These also introduce a new class of errors into logic programming: rather

than computing the desired result, a computation may flounder (some calls are

delayed and never resumed). Tools for locating possible bugs, either statically or

dynamically, are desirable. Static analysis can also be used to improve efficiency

and in the design of new languages where data and control flow are known more

precisely at compile time.

The core contribution of this paper is to show how a program with “delays” can

be transformed into a program without delays whose (ground) success set contains

much information about floundering and computed answers of the original program.

Some technical results are given, which extend known results about floundering, and

these are used to establish the properties of two new program transformations. The

main motivation we discuss is program analysis, though we also mention declarative

debugging. Analysis of properties such as which goals flounder can be quite subtle,

even for very simple programs.
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The term floundering was originally introduced in the context of negation, where

negated calls delay until they are ground, and sometimes they never become ground.

In this paper we do not directly deal with negation but our approach can equally be

used for analysing this form of delaying of negated calls. Subcomputations are also

delayed in some other forms of resolution, for example, those which use tabling. For

these computational models delaying is more determined by the overall structure

of the computation (for example, recursion) rather than the instantiation state of

variables in the call, and it is doubtful our methods could be adapted easily.

This paper is structured as follows. In Section 2 delay declarations are described

and the procedural semantics of Prolog with delays is discussed informally. In

Section 3 we give some sample programs which use delays. In Section 4 we discuss

in more detail some properties of delaying code, which, ideally, we would like

to be able to analyse. In Section 5 we briefly discuss an observation concerning

computed answers, which is important to our approach. In Section 6 we review a

theoretical model of Prolog with delays and extend some previous results concerning

floundering. In Section 7 we give a program transformation that converts floundering

into success. In Section 8 a more precise characterisation of floundering is provided,

along with a second transformation. In Section 9 we briefly discuss declarative

debugging of floundering and a related model-theoretic semantics. In Section 10 we

discuss some related work and we conclude in Section 11.

2 Delay declarations and their procedural meaning

Dozens of different control annotations have been proposed for logic programming

languages. In the programs in this paper we use “delay” declarations of the form

:- delay A if C where A is an atom p(V1, V2, . . . , VN), Vi are distinct variables,

p/N is a predicate and C is a condition consisting of var/1, nonground/1 (with

arguments the Vi), “,” and “;”. Procedurally, a call p(V1, V2, . . . , VN) delays if C

holds (with the conventional meaning of var and nonground).

The procedural semantics of Prolog with delays is typically difficult to describe

precisely and, to our knowledge, is not done in any manuals for the various Prolog

systems which support delays. Here we describe the procedural semantics of NU-

Prolog, and where the imprecision lies; other systems we know of are very similar.

By default, goals are executed left to right, as in standard Prolog. If the leftmost

sub-goal delays (due to some delay annotation in the program), the next leftmost is

tried. Thus, the leftmost non-delaying subgoal is selected. Complexities arise when

delayed goals become further instantiated and may be resumed. When a delayed

goal becomes instantiated enough to be called (due to unification of another call

with the head of a clause), the precise timing of when it will be resumed can be

difficult to predict. With a single call to resume, it is done immediately after the head

unification is completed.1 With multiple calls to resume, they are normally resumed

1 In some systems it may occur after the head unification plus calls to certain built-in predicates at the
start of the matching clause.
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:- delay append(As, Bs, Cs) if var(As), var(Cs).

append([], As, As).

append(A.As, Bs, A.Cs) :- append(As, Bs, Cs).

append3(As, Bs, Cs, ABCs) :- append(Bs, Cs, BCs), append(As, BCs, ABCs).

:- delay reverse(As, Bs) if var(As), var(Bs).

reverse([], []).

reverse(A.As, Bs) :- append(Cs, [A], Bs), reverse(As, Cs).

Fig. 1. Multi-moded append, append3 and reverse.

in the order in which they were first delayed. It is as if they are inserted at the start

of the current goal in this order. However, this is not always the case.

Some calls may delay until multiple variables are instantiated to non-variable

terms. This is implemented by initially delaying until one of those variables is

instantiated. When that occurs, the call is effectively resumed but may immediately

delay again if the other variables are not instantiated. Similarly, when delaying until

some term is ground, the delaying occurs on one variable at a time and the call

can be resumed and immediately delayed again multiple times. The order in which

multiple calls are resumed depends on when they were most recently delayed. This

depends on the order in which the variables are considered, which is not specified.

In NU-Prolog, the code generated to delay calls is combined with the code for

clause indexing and it is difficult to predict the order in which different variables are

considered without understanding a rather complex part of the compiler.

The situation is even worse in parallel logic programming systems. In Parallel

NU-Prolog (Naish 1988) the default computation rule is exactly the same as for

NU-Prolog. However, if an idle processor is available, a call which is instantiated

enough may delay and be (almost) immediately resumed on another processor. Even

with total knowledge of the implementation, the precise execution of a program

cannot be determined. Any program analysis based on procedural semantics must

respect the fact that the computation rule is generally not known precisely but (we

hope) not lose too much information.

3 Example code with delays

We now present two small examples of code which uses delays. The first will be used

later to explain our techniques. Figure 1 gives a version of append which delays until

the first or third argument is instantiated. This delays (most) calls to append which

have infinite derivations. Delaying such calls allows append to be used more flexibly

in other predicates. For example, append3 can be used to append three lists together

or to split one list into three. Without the delay declaration for append, the latter

“backwards” mode would not terminate. With the delay declaration, the first call to

append delays. The second call then does one resolution step, instantiating variable

BCs. This allows the first call to resume, do one resolution step and delay again etc.

In a similar way, this version of reverse works in both forward and backward

modes – if either argument is instantiated to a list, it will compute the other
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submaxtree(Tree, NewTree) :-

submaxtree1(Tree, Max, Max, NewTree).

submaxtree1(nil, _, 0, nil).

submaxtree1(t(L, E, R), GMax, Max, t(NewL, NewE, NewR)) :-

submaxtree1(L, GMax, MaxL, NewL),

submaxtree1(R, GMax, MaxR, NewR),

max3(E, MaxL, MaxR, Max),

plus(NewE, GMax, E). % delays; later mode o,i,i

max3(A, B, C, D) :- ...

:- delay plus(A, B, C) if var(A), var(B) ; var(A), var(C) ; var(B), var(C).

Fig. 2. Filling slots in a tree.

argument. If the second argument is instantiated, no calls are delayed. However, if

only the first argument is instantiated, all the calls to append initially delay and after

the last recursive call to reverse succeeds, the multiple calls to append proceed in

an interleaved fashion. For any given mode, the code for append3 and reverse

can be statically reordered to produce a version which works without delaying. The

Mercury compiler does such reordering automatically (Somogyi et al. 1995), but

without automatic reordering it requires some slightly tricky coding to produce such

flexible versions of these predicates.

Figure 2 is a variant of the maxtree program (see Boye and Maluszynski 1995, for

example) which takes a tree and constructs a new tree containing copies of a logic

variable in each node, then binds the variable to a number (the maximum number in

the original tree). The submaxtree program fills each node in the new tree with the

original value minus the maximum. This is done by delaying a call to plus for each

node until the maximum is known, then resuming all these delayed calls. We assume

a version of plus which delays until two of its three arguments are instantiated; NU-

Prolog has such a predicate built in. All calls to plus become sufficiently instantiated

at the same time (when GMax becomes instantiated). In most systems they will be

called in the order they were delayed. If plus only worked in the forward mode, the

calls would not be sufficiently instantiated and the computation would flounder. We

also assume a predicate max3/4 which calculates the maximum of three numbers. It

is not possible to statically reorder the clause bodies to eliminate the delays. Even

dynamic reordering clause bodies each time a clause instance is introduced (also

known as a local computation rule) is insufficient. Without coroutining, two passes

over the tree are necessary, doubling the amount of “boilerplate” traversal code –

the first to compute GMax and the second to build the new tree.

4 Analysis of code with delays

Delays can be used to write concise and flexible code, the behaviour of which can

be very subtle. For example, Naish (2012) shows that when bugs are introduced to

a four-clause permutation program with delays, a wide variety of counter-intuitive
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behaviour results. Even with such a tiny program, the combination of interleaved

execution and backtracking makes it a challenge to understand why the program

misbehaves. Another tiny example is the (arguably correct) definition of reverse in

Figure 1. Having first written and used equivalent code around 25 years ago, the au-

thor did not become fully aware of its floundering properties until the preparation of

this paper. It was incorrectly thought that all calls to reverse which have an infinite

number of solutions with different list lengths (such as reverse([a,b,c|Xs],Ys))

would flounder. Section 8.2 gives a precise characterisation of the actual behaviour.

Automated methods of analysis of code with delays are highly desirable because

manual analysis is just too complex to be reliable.

Analysis of code with delays can address many different issues. It may be that

we expect code to succeed or finitely fail for certain classes of goals but some such

goals may actually flounder, typically with a computed answer less instantiated

than expected – this is the main focus of the declarative debugging work of Naish

(2012), also discussed in Section 9. In Section 7 we give a transformation which

allows analysis of computed answers (of successful or floundered derivations) which

can detect such cases. Conversely, we may expect certain goals to flounder when

actually they succeed. This is particularly important if the goal has an infinite

number of solutions and is a part of a larger computation – success can result

in non-termination where floundering would not. In Section 8 we give a further

transformation which captures floundering precisely. Both methods reduce the

problem of analysing a program with delays to analysing the success set of a

program without delays. A deeper understanding of floundering can also help us in

other ways. For example, although the declarative debugger of Naish (2012) does

not rely on either of these transformations directly, it is based on the insights of

this paper. Similarly, these insights may help us optimise code, either by simplifying

delay annotations or, more significantly, eliminating them entirely (possibly with

some reordering of code). They may also help our understanding of termination

properties of code with delays.

5 Semantics and computed answers

Before proceeding further, with more technical material, we make an observation

about computed answers which is fundamental to our work. The conventional

approach to the semantics of logic programs is that the set of function symbols in

the language is precisely that in the program – see, for example, the textbook (Lloyd

1984) which combines and refines work of van Emden and Kowalski (1976), Apt

and van Emden (1982) and others. This means that, unlike in Prolog, new function

symbols cannot occur in the goal (or the semantics of the program differs depending

on the goal). An alternative is to define the (typically infinite) set of function symbols

a priori and assume that both program and goals use a subset of these function

symbols. This approach has been examined in Apt (1996), where various results are

given, and earlier in Maher (1988), where forms of equivalence of logic programs are

explored. For example, Figure 3 gives three programs with different sets of computed

answers for p(Y). They are all equivalent using the “Lloyd” declarative semantics,
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P1 P2 P3

p(a). p(X). p(a).

p(X).

q(a). q(a). q(a).

Fig. 3. Differing semantics dependent on the set of function symbols.

but with extra function symbols programs P2 and P3 are equivalent but P1 is not.

One advantage of the latter semantics is that the universal closure of a goal is true

if and only if it succeeds with a computed answer substitution which is empty (or

simply a renaming of variables) – see the discussion in Ross (1989). Another is that

the model-theoretic and fixed-point semantics can capture information about (non-

ground) computed answers and, as we will show later, floundering! Since the Lloyd

semantics deals only with sets of ground atoms, this fact is somewhat surprising,

and does not seem to have been exploited for program analysis until now.

Definition 1

We partition the set of function symbols into program function symbols and ex-

traneous function symbols. Programs and goals may only contain program function

symbols. Program atoms are atoms containing only program function symbols.

Observation 1

Substitutions in derivations (including computed answer substitutions) contain only

program function symbols.

This is a consequence of most general unifiers being used (indeed, programming

with delays makes little sense without this). Non-ground computed answers can be

identified in the success set by the presence of extraneous function symbols. For

example, if �� is an extraneous function symbol, then an atom such as p(��) appears

in the success set if and only if it is an instance of some non-ground computed

answer. If we assume there are an infinite number of terms whose principal function

symbol is an extraneous function symbol, then computed answers can be captured

more precisely – we make this assumption later for our analysis of floundering.

Note that this semantics cannot determine whether a variable exists in all computed

answers (or derivations) of a goal – in both P2 and P3 of Figure 3 the success

set contains p(��) and p(a). However, it does precisely capture groundness in all

computed answers (or variables in some computed answer), a property which has

attracted much more interest. For example, many consider it of interest that in

all computed answers of append, if the third argument is ground, then the second

argument is also ground. Using the semantics that we suggest, this is equivalent to

saying if �� occurs in the second argument, it also occurs in the third argument.

If we can find a superset of the success set (for example, a model) which has this

property, the groundness dependency must hold. Thus, a small variation to the

Lloyd semantics leads to significant additional precision while retaining the simple

model-theoretic and fixed-point semantics and the relationship between them.
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6 SLDF resolution

A model of Prolog with delays, SLDF resolution, is presented in Naish (1993).

Here we review the model and main results concerning ground atoms, and extend

these results to non-ground atoms. We define the non-ground flounder set, which

approximates the floundering behaviour of a program. However, we first discuss

two important closure properties which hold for SLD resolution (where there is no

floundering).

Proposition 1 (Closure properties)

If an atom A has a successful SLD derivation with computed answer A (an

empty computed answer substitution), then using the same program clauses in

the derivation

(1) any atom with A as an instance has a computed answer with A as an instance,

and

(2) any atom Aθ has a computed answer Aθ.

Such properties allow computed answers to be captured precisely by the set of

computed answers of maximally general atoms, and generally simplifies analysis.

When delays are introduced (SLDF resolution), only closure property 2 holds for

successful atoms – a less instantiated version of a successful atom may flounder rather

than succeed. For floundered atoms only closure property 1 holds (see Proposition

3) – an instance of a floundered atom may succeed, loop, finitely fail or flounder

with an even more instantiated floundered computed answer. The weaker closure

properties (compared with SLD resolution) means that it is harder to precisely

characterise the behaviour of SLDF resolution using sets of atoms.

We now review SLDF resolution, define the set of atoms we use to approximate

its behaviour and show the relationship between the two. SLDF resolution is similar

to SLD resolution (see Lloyd 1984), but the computation (atom selection) rule is

restricted to be safe: an atom may only be selected if it is in the “callable atom set”.

It is desirable that this set is closed under instantiation and the results below and

those in this paper rely on this property. This property seems quite intuitive and

holds for most logic programming systems with flexible computation rules. Another

restriction suggested in Naish (1993) is that all ground atoms should be callable.

While this is not required for our technical results, it is a pragmatic choice.

SLDF derivations can be failed, successful, infinite or floundered, in which the

last resolvent consists only of atoms which are not callable (we say it is immediately

floundered ). Given the above assumption, for a program P the following sets of

ground atoms can be defined independently of the (safe, and also fair in the case of

finite failure) computation rule:

• The success set SS(P ) (ground atoms with successful derivations).

• The finite failure set FF(P ) (ground atoms with finitely failed SLD trees).

• The flounder set FS(P ) (ground atoms with floundered derivations).

Note that some atoms in FS(P ) may also be in SS(P ) and have infinite (fair)

derivations. The fact that floundering is independent of the computation rule suggests
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that it is a declarative property in some sense. However, it has not been fully exploited

for analysis until now, perhaps due to the lack of non-procedural definitions of

FS(P ).

Note also that the above results only refer to ground atoms. An atom such as q(X)

may have floundered derivations, but no instance may appear in FS because no

ground instance flounders. However, FS can contain information about floundering

of non-ground atoms and conjunctions. For example, if the program contains the

definition p :- q(X), FS will contain p if and only if q(X) flounders. Relying on

the existence of such definitions is a problem unless we know a priori which goals we

want to analyse, and FS gives us no information about substitutions in floundered

derivations. Substitutions in floundered (sub)computations can influence termination

and are very important for certain programming styles, particularly those associated

with parallel programming. Most Prolog systems that support delays print variable

bindings at the top level for both successful and floundered derivations. Thus, we

use the term(s) computed answer (substitution) for both successful and floundered

derivations, explicitly adding the words “successful” or “floundered” where we feel

it aids clarity.

The analysis proposed in this paper can be seen as being based on the following

generalisation of FS .

Definition 2

The non-ground flounder set, NFS(P ), of a program P is the set of program

atoms which have floundered derivations with empty floundered computed answer

substitutions.

Successful derivations can be conservatively approximated by simply ignoring

delays – the lack of closure property 1 for successful atoms and the fact that an

atom can have both successful and floundered derivations prevents our approach

being more precise for analysis of success. The key results of this section, Propositions

2 and 3, show how NFS(P ) contains much but not all information about computed

answers of floundered derivations.

The results in Naish (1993), and some we prove in this paper, rely on the notion

of two derivations of the same goal using the same clause selection. Used in Lloyd

(1984) in the context of successful derivations, we formalise it here. We assign each

clause in the program a unique positive integer and use zero for the top level goal.

We annotate each atom used in the derivation with a superscript to indicate the

sequence of clauses and atoms within those clauses used to introduce it. Annotations

are lists of pairs 〈c, a〉, where c is a clause number and a is the number of an atom

within the clause. We use these annotations for both SLD and SLDF resolutions.

Definition 3

The annotation si of an atom used in a derivation is as follows. If goal As1
1 , A

s2
2 , . . . A

sn
n

is the top level goal, si = 〈0, i〉:nil. Applying substitutions to atoms does not change

their annotation. If Ai is selected and resolved with a variant of clause number j,

H ← B1, B2, . . . Bk , each Bm atom is annotated with 〈j, m〉:si. Two atoms in different

derivations or goals are corresponding atoms if they have the same annotation. Two
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derivations with the same top level goal, or with one top level goal at an instance of

the other, have the same clause selection if all pairs of corresponding selected atoms

in the two derivations are matched with the same clause.

Although not explicitly stated, the proofs in Naish (1993) can easily be adapted to

show that (successful and floundered) computed answers of successful and floundered

derivations are independent of the computation rule (see Lemma 1). For any two

successful or floundered derivations of the same goal with the same clause selection

but a different (safe) computation rule, each selected atom in one has a corresponding

atom selected in the other. Derivation length, computed answer substitutions and

the last resolvent are all the same, up to renaming.

Lemma 1

Suppose D is the SLD derivation G,G1α1, G2α2, . . . , GNαN, . . . , where αi is the

composition of the most general unifiers used in the first i steps, and D′ is the

SLD derivation Gθ,G′1α
′
1, G

′
2α
′
2, . . . , G

′
Nα
′
N, . . . , where θ affects only variables in G.

Suppose also that D and D′ use the same set of program clauses and corresponding

set of selected atoms in the first N steps. Then G′Nα
′
N is the most general instance

(m.g.i.) of GNθ and GNαN , and Gθα′N is the m.g.i. of Gθ and GαN .

Proof

Let Hi ← Bi, 1 � i � N, be the ith program clause variant used in the first N

steps of D, Ci, 1 � i � N, be the atom in a body of one of these clauses or in G

whose corresponding instance is selected and matched with Hi, and Ri, 1 � i � K

be the atoms as above corresponding to those in GN (they are not selected in the

first N steps). Let terms C and H be as follows, where the connectives and predicate

symbols are mapped to function symbols:

C = f(H1, B1, H2, B2, . . . , HN, BN, C1, C2, . . . , CN, R1, R2, . . . , RK )

H = f(H1, B1, H2, B2, . . . , HN, BN,H1, H2, . . . , HN, R1, R2, . . . , RK )

The m.g.i. of C and H can be obtained by left to right unification of the arguments

of C and a variant of H which shares no variables with C . The first 2N argument

unifications yield a renaming substitution, resulting in the same variants of program

clause heads and bodies in the instances of H and C . The next N unifications are

the same as the unifications in D, modulo the clause variants used, and the other

unifications yield empty unifiers. Thus, CαN is the m.g.i. of C and H . Other orders of

the arguments Ci and Hi (or unification orders) correspond to different computation

rules but result is the same m.g.i., or a variant. So, by the same construction, Cα′N
is the m.g.i. of H and Cθ, and must be an instance of CαN . CαN is an instance of

H so Cα′N must be the m.g.i. of Cθ and CαN . The instances of the initial goals and

Nth resolvents can be extracted from the arguments of CαN , Cθ and Cα′N , so the

result follows. �

We can now show something similar to the converse of closure property 1, for

floundering. This allows us to infer certain information about program behaviour

from NFS(P ).
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Proposition 2

If D is the floundered SLDF derivation G,G1α1, G2α2, . . . , GNαN with floundered

computed answer Gθ, then Gθ has a floundered SLDF derivation D′ with a renaming

(or empty) floundered computed answer substitution (Gθ ∈ NFS(P )).

Proof

Let D′ be a derivation using the same selection and computation rule as D. D′

cannot flounder before N steps because the ith resolvent is an instance of Giαi and

the callable atom set is closed under instantiation. D′ cannot fail before N steps

because the ith resolvent is no more instantiated than GiαN , and αN is a unifier of

all pairs of calls and clause heads in the first N steps. Consider the Nth resolvent,

G′Nα
′
N . By Lemma 1, G′Nα

′
N is the m.g.i. of GNθ and GNαN , and since GNαN is an

instance of GNθ, G
′
Nα
′
N must be a variant of GNαN , so it is immediately floundered.

Similarly, Gθα′N is a variant of Gθ, so the floundered computed answer substitution

is a renaming. �

Lemma 2

If Gθ has a floundered SLDF derivation D′ with the last resolvent being F ′1, F
′
2, . . . , F

′
k

and G has a SLDF derivation D using the same clause selection rule, then each F ′i
is an instance of all its corresponding atoms in D.

Proof

If G is immediately floundered, the result is trivial. We use induction on the length

of D′. For length 0, since the callable atom set is closed under instantiation and Gθ

is immediately floundered, G must also be immediately floundered. Assume that it is

true for length N. Suppose the first selected atom in D is A. Aθ is also callable, so we

can construct a derivation D′′ using the same clause selection as D′ but with Aθ as

the first selected atom. The lengths of D′′ and D′ are equal and their last resolvents

are variants due to the earlier stated result. The first resolvent in D′′ (after selecting

Aθ) is an instance of the first resolvent in D and has a derivation of length N, so

the result follows. �

We can now show that closure property 1 holds for floundering.

Proposition 3

If Gθ has a floundered SLDF derivation D′ with a renaming (or empty) floundered

computed answer substitution (Gθ ∈ NFS(P )), then G has a floundered SLDF

derivation D with a floundered computed answer with Gθ as an instance.

Proof

From G we can construct a derivation D using the same clause selection as that

used in D′ and any safe computation rule. The callable atom set is closed under

instantiation, so by Lemma 2, any atom selected in D must have a corresponding

atom selected in D′ and thus D cannot be successful or longer than D′. D uses the

variants of the same clauses used in D′, which has a more (or equally) instantiated

top level goal, Gθ, so D cannot be failed. It must therefore be floundered and have

a computed answer with Gθ as an instance. �
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From these propositions we know that an atom A will flounder if and only if it

has an instance in NFS(P ). Also, the maximally general instances of A in NFS(P )

will be floundered computed answers. The imprecision of NFS(P ) with respect to

floundered computed answers is apparent when there are atoms in NFS(P ), which

are instances of other atoms in NFS(P ). If NFS(P ) = {p(f(X)), p(f(f(f(X))))}, for

example, we know p(Y ) will have the first atom as a floundered computed answer.

The second atom may also be a floundered computed answer (via a different

floundered derivation) or it may only be returned for more instantiated goal such as

p(f(f(X))). In practice, there is usually a single maximally general instance of a goal

in NFS(P ) and this is the only answer computed, even when there are an infinite

number of instances. For example, the non-ground flounder set for append has an

infinite number of instances of the atom append(A, [B], C), including append(Xs,

[Y], Zs), append([X1|Xs], [Y], [X1|Zs]) and append([X1, X2|Xs], [42],

[X1, X2|Zs]), but only the first is computed.

7 Converting floundering into success

We now present a program transformation which converts a program P , with delays,

into a program P ′, without delays. The success set of P ′ is the union of the success

set of P and a set isomorphic to the non-ground flounder set of P . Thus, analysis

of some properties of programs with delays can be reduced to analysis of programs

without delays.

7.1 The SF() transformation

Type, groundness and other dependencies are of interest in programs with and

without delays as they give us important information concerning correctness. In the

version of naive reverse without delays, analysis can tell us that in all computed

answers of reverse/2 both arguments are lists. In the delaying version (Fig. 1) this

is not the case, since there are floundered computed answers where both arguments

are variables. This increases the flexibility of reverse/2, since it can delay rather

than computing an infinite number of answers (this is particularly important when

reverse/2 is called as part of a larger computation).

In (successful and floundered) computed answers for the delaying version of

reverse/2, the first argument is a list if and only if the second argument is a list.

This tells us that if either argument is a list in a call, then the other argument will

be instantiated to a list by the reverse/2 computation (assuming it terminates).

If the delay declaration for append/3 was changed so that it delayed if just the

first argument was a variable, then reverse/2 would not work backwards. It would

flounder rather than instantiate the first argument to a list and the “if” part of this

dependency would not hold. This section shows how a program with delays can be

very simply transformed into a program without delays which can be analysed to

reveal information such as this.

Analysis of success in a program without delays cannot give us information about

(non-ground) delayed calls directly because success is closed under instantiation
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evar(’VAR’(_)).

enonground(A) :- evar(A).

enonground([A|B]) :- enonground(A).

enonground([A|B]) :- enonground(B).

Fig. 4. Possible Prolog definitions of evar and enonground.

(closure property 2) whereas floundering is not. However, extraneous function

symbols allow us to encode non-ground atoms using ground atoms, re-establishing

this proposition and allowing analysis. The encoding uses an isomorphism between

the (infinite) set of variables and the set of terms with extraneous principal function

symbols (this set must also be infinite to avoid loss of precision in the encoding; it is

sufficient to have a single extraneous function symbol with arity greater than zero).

Definition 4

The encoded flounder set, EFS(P ), of a program P is the set of ground instances

of atoms in NFS(P ) such that distinct variables are replaced by distinct terms

with extraneous principal function symbols. NFS(P ) can be reconstructed from the

atoms in EFS(P ) by finding the set of most specific generalisations which contain

only program function symbols.

For example, the non-ground flounder set for append contains atoms such as

append(Xs, [Y], Zs) whereas the encoded flounder set contains atoms such as

append(��, [⊗(1)], ⊗(2)), assuming �� and ⊗ are extraneous function symbols.

We introduce two new “builtin” predicates, evar/1 and enonground/1, which

are true if their argument is an encoded variable or non-ground term respectively.

For simplicity, our treatment assumes that they are defined using an (infinite) set

of facts: evar(T) for all terms T , where the principal function symbol is not a

program function symbol, and enonground(T) for all terms T which have at least

one extraneous function symbol. This can cause an infinite branching factor in SLD

trees (for example, a call such as evar(X)). However, since in this paper we deal with

single derivations but not SLD trees (or finite failure), it causes us no difficulties.

It is also possible to define evar/1 and enonground/1 in Prolog. Figure 4 gives

a definition which assumes ’VAR’/1 is the only extraneous function symbol of the

original program and ’.’/2 is the only program function symbol with arity greater

than zero for the original program (if there are other such function symbols, more

clauses are needed for enonground/1). These definitions depart from our theoretical

treatment in that they can involve deeper proof trees (due to recursive calls) and

can have non-ground computed answers. However, they can be useful for observing

floundering behaviour, especially with a fair (or depth-bounded) search strategy –

see Section 8.2.

We now define the SF() transformation.

Definition 5

Given a program P (not defining predicates evar/1 or enonground/1) containing

delay declarations, SF(P ) is the program with all clauses of P plus, for each

delay declaration :- delay A if C in P , the clause A :- C’ where C’ is C with
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append_sf(As, Bs, Cs) :- evar(As), evar(Cs).

append_sf([], As, As).

append_sf(A.As, Bs, A.Cs) :- append_sf(As, Bs, Cs).

reverse_sf(As, Bs) :- evar(As), evar(Bs).

reverse_sf([], []).

reverse_sf(A.As, Bs) :- append_sf(Cs, [A], Bs), reverse_sf(As, Cs).

Fig. 5. Computing the success plus flounder set for reverse.

p(X, Y) :- q(X), q(Y). p_sf(X, Y) :- q_sf(X), q_sf(Y).

:- delay q(V) when var(V). q_sf(V) :- evar(V).

q(a). q_sf(a).

Fig. 6. Extra derivations with SF(P ).

p :- q(X). p_sf :- q_sf(X)

:- delay q(V) when var(V). q_sf(V) :- evar(V).

q(a). q_sf(a).

q(X) :- q(X). q_sf(X) :- q_sf(X).

Fig. 7. Extra (unbounded) derivations with SF(P ).

var replaced by evar and nonground replaced by enonground. These additional

clauses introduced for delay declarations and those in the definitions of evar/1 and

enonground/1 are referred to as delay clauses.

To avoid possible confusion, the code in this paper uses “_sf” suffixes for the new

predicate definitions; our theoretical treatment assumes that the original predicate

names are used for the new predicate definitions. For example, Figure 7 shows the

transformed version of reverse (from Fig. 1). Figures 6 and 7 give further examples.

Immediately floundered atoms in NFS(P ) have matching delay declarations with

true right-hand sides. Corresponding (encoded) atoms in EFS(P ) have matching

ground delay clause instances with successful bodies. We have described how evar

and enonground behave. Some languages have delay conditions, which cannot be

expressed using var and nonground. For example, in NU-Prolog X ~= Y delays

whereas X ~= X does not. To analyse such constructs, we need additional primitives

similar to evar and enonground. The key to designing such constructs is that the

delay clauses should implement the encoding as defined above.

7.2 Properties of SF()

The following propositions show how successful derivations in SF(P ) correspond to

successful or floundered derivations in P : the success set of SF(P ) is the union of the

success set of P without delays and the encoded flounder set of P (Proposition 6).

Note that when we talk of successful derivations and/or SS(P ) here, SLD resolution

rather than SLDF resolution is used (delays are ignored when dealing with success).
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The lack of closure property 2 is problematic when dealing with success if delays

are considered and SLDF resolution is used.

Proposition 4

A goal G has a successful SLD derivation D with program P (ignoring delays) if

and only if it has a successful derivation D with SF(P ) which uses no delay clauses.

Proof

SF(P ) without delay clauses is the same as P without delays. �

We now deal with floundering, which is more complex.

Lemma 3

A goal G is immediately floundered with program P if and only if it has a successful

derivation D with SF(P ) which uses only delay clauses.

Proof

Follows from the way in which delay clauses implement the encoding of the flounder

set. �

Lemma 4

A goal G which is immediately floundered with program P has a computed answer

substitution θ in SF(P) such that all variables bound by θ are bound to distinct

terms with extraneous principal function symbols (or are simply renamed).

Proof

By Lemma 3, there is a derivation where all non-renaming substitutions are due to

calls to evar/1 and enonground/1. A call to evar/1 binds its argument to a term

with an extraneous principal function symbol. Multiple calls with distinct variables

will have some of the infinite number of computed answers binding their arguments

to distinct terms. Similarly, some computed answers to enonground/1 will bind all

distinct variables in its argument to distinct terms with extraneous principal function

symbols. �

Lemma 5

Given a program P , a goal G has a floundered derivation D with an empty floundered

computed answer substitution if and only if it has a successful derivation D′ with

SF(P ) in which delay clauses are selected and the successful computed answer, Gθ,

is such that all variables bound by θ are bound to distinct terms with extraneous

principal function symbols (or are simply renamed).

Proof

(Only if) Derivation D can be reproduced with SF(P ) since it has all the clauses

of P and the computation rule is unrestricted. By Lemma 4 the last resolvent in D

must have a successful derivation such that the computed answer substitution has

the desired property.

(If) By repeated application of the switching lemma (Lloyd 1984) to D′ we can

construct a successful derivation D′′ = G,G1, G2, . . . , Gn with SF(P ) such that callable

atoms are selected in preference to atoms which would delay in P . The derivation
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has a prefix D = G,G1, G2, . . . , Gm where only callable atoms are selected, except

for Gm, which would be immediately floundered in P (a delay clause is used in D′′

so an immediately floundered goal must be reached at some stage). Callable atoms

are not matched with delay clauses (by Lemma 3 if a callable atom is resolved with

a delay clause, the resolvent cannot succeed). Variables bound by the computed

answer substitution θ of D′′ are bound to distinct terms with extraneous principal

function symbols (or simply renamed), and all of the non-renaming bindings must

be due to delay clauses. Thus, D is a floundered SLDF derivation in P with an

empty (or renaming) answer substitution. �

Lemma 6

Given a program P , a goal G has a successful derivation with SF(P ) with computed

answer, Gθ, such that all variables bound by θ are bound to distinct terms with

extraneous principal function symbols (or are simply renamed) if and only if there

are successful derivations with all such computed answers.

Proof

All such substitutions are due to delay clauses and the sets of enonground/1

and evar/1 atoms which succeed are closed under the operation of replacing one

extraneous function symbol with another. �

Proposition 5

Goal G has a floundered SLDF derivation D with program P if and only if it has

a successful derivation D′ with SF(P ) in which delay clauses are selected.

Proof

Propositions 2 and 3 imply that G flounders if and only if an instance flounders

with an empty floundered computed answer substitution. So by Lemma 5 it is

sufficient to show that an instance of G has a successful derivation with SF(P ) in

which delay clauses are selected and all variables bounded by the computed answer

substitution are bound to distinct terms with extraneous principal function symbols

(or are simply renamed) iff G has a successful derivation D′ with SF(P ) in which

delay clauses are selected.

(Only if) By closure property 1.

(If) Consider a derivation G,G1α1, G2α2, . . . , GNαN using the same clause selection

as in D′ but with a computation rule such that atoms resolved with delay clauses

are selected at the end, from Gmαm. By Lemma 1, Gαm has a derivation where the

mth resolvent is a variant of Gmαm and the substitution at that point is a renaming

substitution for Gαm. By Lemma 4, a computed answer substitution for Gmαm has

the desired property. �

Proposition 6

For any program P , SS(SF(P )) = EFS(P ) ∪ SS(P ).

Proof

The set of atoms in SS(SF(P )) with derivations which do not use delay clauses is

SS(P ) by Proposition 4. The set of atoms in SS(SF(P )) with derivations which use

delay clauses is EFS(P ) by Lemmas 5 and 6. �
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Note that although there is a bijection between successful SLD derivations with

P and successful SLD derivations with SF(P ) which do not use delay clauses,

there is not a bijection between floundered SLDF derivations with P and successful

derivations with SF(P ) which use delay clauses, even if multiple solutions to evar/1

and enonground/1 are ignored. SF(P ) generally has additional derivations. This

is unavoidable due to the imprecision of NFS(P ) mentioned in Section 6. For

example, consider the definition of p/2 in Figure 6. The success set, ignoring

delays, is {p(a,a)} and NFS(P ) is {p(X,Y), p(a,V), p(V,a)}. Thus, the computed

answers of p sf(X,Y) encode all these four atoms, since SF(P ) computes the union

of the success set and the encoded flounder set. However, p(X,Y) only has one

floundered derivation with the empty answer substitution. The other two atoms in

NFS(P ) are only computed for more instantiated goals and the derivations in SF(P )

correspond to these computations (the same atoms are selected, ignoring evar/1

and enonground/1).

It is also possible to have successful derivations in SF(P ) which do not correspond

to any SLD or SLDF derivation in P . For example, in Figure 7, the goal p has a

single floundered SLDF derivation, where q(X) immediately flounders, whereas p sf

has an infinite number of derivations which use delay clauses and the derivations of

q(X) have unbounded length. This is related to the fact that p has an infinite SLD

tree.

7.3 Analysis using SF(P )

Type dependencies of SF(P ) can be analysed in the same ways as any other Prolog

program. The following set of atoms, where l(X) means X is a list, is a model of the

transformed reverse program, showing that these type dependencies hold (and thus

they hold for computed answers in the original reverse program with delays):

{append(A,B, C)|(l(A) ∧ l(B))↔ l(C)} ∪ {reverse(A,B)|l(A)↔ l(B)}

It is not necessary to consider the complex procedural semantics of Prolog with

delays, or even the procedural semantics of Prolog without delays since bottom-up

analysis can be used. Similarly, the SF() transformation makes it relatively easy to

show that submaxtree/2 can indeed compute a tree of integers when given a tree

of integers as the first argument.

Groundness in P can also be analysed by analysing SF(P ) using specialised types.

We can define the type ground to be the set of terms constructed from only program

function symbols. The dependencies which hold for above lists also hold for type

ground, indicating the corresponding groundness dependencies hold for computed

answers of reverse with delays. Similarly, nonvar can be defined as the set of terms

with a program principal function symbol. By extending the type/mode checker

described in Naish (1996) we have demonstrated that it is possible to check non-

trivial useful properties of P by checking models of SF(P ). For more complicated

cases it is necessary to support sub-types, as nonvar and list are both subtypes of

ground.
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This approach to groundness analysis is not reliant on the SF() transformation –

it can be applied to any logic program due to Observation 1. The analysis can be

identical to conventional groundness analysis using Boolean functions because logic

programs can be abstracted in an identical way. A unification X = f(Y1, Y2, . . . , YN)

can be abstracted by X ↔ Y1 ∧ Y2 ∧ . . . ∧ YN , assuming f/N is a program function

symbol. Calls evar(X) and enonground(X) can be abstracted as X ↔ False.

8 New characterisations of the flounder set

We now present a second transformation, which allows us to capture the non-ground

flounder set more precisely.

8.1 The F() transformation

The results here suggest a solution to the open problem posed in Naish (1993):

How can the flounder set be defined inductively? Such a definition may be a

very useful basis for analysis of floundering as an alternative to a purely model

theoretic approach. The semantics of SF(P ) captures both successful and floundered

derivations of P . By defining a variant of the immediate consequence operator TP

we can distinguish atoms with derivations which use delay clauses.

Definition 6

An f-interpretation is a set of ground atoms, some of which may be flagged (to

indicate floundering). If I is an f -interpretation, A(I) is the set of atoms in I and

FA(I) is the set of atoms in I which are flagged. The union of two f -interpretations

I and J is the f -interpretation K such that A(K) = A(I) ∪ A(J) and FA(K) =

FA(I) ∪ FA(J).

Definition 7

Given a program P , Tf
P is a mapping from f -interpretations to f -interpretations,

defined as follows. A(Tf
P (I)) = TSF(P )(A(I)) and an atom A in this set is flagged

if there is a ground instance of a clause in SF(P ), A ← B1, B2, . . . , Bk , such that

each Bi is in I and some Bi is flagged in I or if the predicate of A is evar/1 or

enonground/1. Tf
P ↑ n and T

f
P ↑ ω are defined in the same way as TP ↑ n and

TP ↑ ω.

Proposition 7

A ground atom other than evar/1 or enonground/1 is flagged in T
f
P ↑ n if and

only if it has a proof tree of height � n in SF(P ) which uses a delay clause, and is

flagged in T
f
P ↑ ω if and only if it has a successful derivation in SF(P ) which uses

a delay clause.

Proof

A standard result is that TSF(P ) ↑ ω (and TSF(P ) ↑ n) contains exactly those ground

atoms with proof trees in SF(P ) (of height � n respectively). A(Tf
P ↑ n) = TSF(P ) ↑ n

since ∀ I A(Tf
P (I)) = TSF(P )(I). From the definition of Tf

P , these atoms are flagged if

and only if they are derived using evar/1 or enonground/1, that is if a delay clause

is used in the derivation. �

https://doi.org/10.1017/S147106841200035X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841200035X


232 L. Naish

Proposition 8

A ground atom A other than evar/1 or enonground/1 is flagged in T
f
P ↑ ω if and

only if it is in the encoded flounder set of P .

Proof

By Proposition 7 it is sufficient to show that A ∈ EFS(P ) iff A has a successful

derivation D in SF(P ) which uses a delay clause.

If: The decoded version of A (distinct terms with extraneous principal function

symbols are replaced by distinct variables), B, has a successful derivation D′ in

SF(P ) using the same clause selection as that in D, with a computed answer Bθ,

which has A as an instance. Since Bθ has A as an instance, any variables bound by

θ must be bound to distinct terms with extraneous principal function symbols (or

simply renamed). Thus, D′ satisfies the condition of Lemma 5, so B is in NFS(P ).

Only if: A ∈ EFS(P ), so A = Bγ, where B ∈ NFS(P ). By Lemmas 5 and 6, B has

a derivation which uses delay clauses and has a computed answer with an instance

Bγ. A has a successful derivation using the same clause selection. �

Thus, we have an inductive/fixed-point characterisation of (a set isomorphic to)

the non-ground flounder set. It may be practical to base floundering analysis on

T
f
P . It is monotonic with respect to the set of atoms (A(Tf

P (I)) ⊆ A(Tf
P (I ′)) if

A(I) ⊆ A(I ′)) and for a given set of atoms it is monotonic with respect to the flagged

atoms in the set (FA(Tf
P (I)) ⊆ FA(Tf

P (I ′)) if A(I) = A(I ′) and FA(I) ⊆ FA(I ′)).

Monotonicity is important for the structure of fixed-points, particularly the existence

of the least fixed-point. Alternatively, the definition of T
f
P can be mirrored by a

further transformation which produces a program whose success set is the encoded

flounder set of P . An advantage is that it can then be analysed using standard

techniques. A disadvantage is that the transformation increases the program size,

which will affect analysis time.

Definition 8

Given a Horn clause program P , F(P ) is the program consisting of the predicate

definitions in SF(P ) (we assume each predicate has a sf subscript/postfix) plus the

following new definitions. For each clause psf(X̄):-B in SF(P ) we add a clause

pf(X̄):-B′. For delay clauses, B′ = B. For other clauses, B′ = B,D, where D is

the disjunction of all calls in B, with “ sf” replaced by “ f”. If B is the empty

conjunction (true), then B′ is the empty disjunction (fail).

Figure 8 gives the new clauses generated for reverse. Note that we assume

that the original program consists of only Horn clauses but the transformed

program contains disjunctions. These could be eliminated by further transformation.

The transformation is designed so that TF(P ) (extended to handle disjunctions) is

essentially the same as Tf
P : flagged atoms correspond to the f subscripted predicates

and the set of all atoms corresponds to the sf subscripted predicates. The success

set of the f subscripted predicates in F(P ) is the encoded non-ground flounder set

of the corresponding predicates in P .
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append_f(As, Bs, Cs) :- evar(As), evar(Cs).

append_f([], As, As) :- fail.

append_f(A.As, Bs, A.Cs) :-

append_sf(As, Bs, Cs), append_f(As, Bs, Cs).

reverse_f(As, Bs) :- evar(As), evar(Bs).

reverse_f([], []) :- fail.

reverse_f(A.As, Bs) :-

reverse_sf(As, Cs), append_sf(Cs, [A], Bs),

(reverse_f(As, Cs) ; append_f(Cs, [A], Bs)).

Fig. 8. Computing the flounder set for reverse.

8.2 Analysis using F(P )

The transformation allows us to very clearly observe the floundering behaviour

of the original program. If we define evar as in Figure 4 and run the goal

append f(X,Y,Z) using a fair search strategy, we get computed answers of the

form X = [A1,A2,...,AN|’VAR’(B)], Y = C, Z = [A1,A2,...,AN|’VAR’(D)]. Oc-

currences of ’VAR’/1 in answers correspond to variables in computed answers of

floundered derivations of the original program and variables correspond to arbitrary

terms. Thus, a call to append flounders if and only if it has an instance such

that the first and third arguments are “incomplete lists” (lists with a variable at

the tail rather than nil) of the same “length” with pair-wise identical elements.

For example, append(X,[a],[a|Z]) flounders (it also has a successful derivation)

whereas append([a,V|X],Y,[V,b|Z]) does not. Running reverse_f we discovered

to our surprise (as mentioned in Section 3) that reverse flounders if and only if the

first argument is an incomplete list and the second argument is a variable (rather

than incomplete list). A call such as reverse(X,[a|Y]) returns an infinite number

of answers rather than floundering!

With a suitably expressive domain, the transformed program can be analysed with

established techniques to obtain precise information about the original program

with delays. Powerful techniques have been developed to help construct domains.

For example, we can start with a simple domain containing four types: lists, var

(the complement of our type nonvar), incomplete lists (this is a supertype of var)

and a “top” element (the universal type). Completing this domain using disjunction

(Cousot and Cousot 1992) adds two additional elements: “list or var” and “list or

incomplete list”. The Heyting completion (Giacobazzi and Scozzari 1998) of this

domain introduces implications or dependencies such as X is a list if Y is a list.

This domain can be used as a basis for interpretations of the program and to infer

and express useful information about floundering. For example, Figure 9 gives the

minimal model of the program for this domain, where v represents the type var, l the

type list and il the set of incomplete lists (this was found using the system described

in Naish (1996), with additional modifications and manual intervention). It expresses

the fact that reverse flounders only if the first argument is an incomplete list and

the second is a variable. The condition for append is somewhat more complex. It

is possible to drop the last conjunct for appendsf and replace ↔ by → for appendf
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reversef(X,Y ) = X ∈ il ∧ Y ∈ v

reversesf(X,Y ) = reversef(X,Y ) ∨ X ∈ l ∧ Y ∈ l

appendf(X,Y , Z) = X ∈ il ∧ Z ∈ il ∧ (X ∈ v ↔ Z ∈ v)

appendsf(X,Y , Z) = appendf(X,Y , Z) ∨

X ∈ l ∧ (Y ∈ l ↔ Z ∈ l) ∧ (Y ∈ il ↔ Z ∈ il)

Fig. 9. A model including the flounder set for append and reverse.

to obtain a simpler model. Further simplification does not seem possible without

weakening the condition for reverse.

We note that careful design of the types in the domain is crucial for the precision.

The incomplete list type is able to make the important distinction between (encoded

versions of) [X] and [[]|X]. Analysis without this distinction must conclude that

calls to reverse/2 where both arguments are (complete) lists may flounder. To see

this, consider the following instance of the recursive clause for reverse/2.

reverse([a,X], [X]) :- append([X], [a], [X]), reverse([X], [X]).

If we replace the two occurrences of [X] in append by [[]|X] then the clause

body flounders with an empty computed answer substitution. Thus, any safe

approximation to the set of floundering atoms must include the head of this clause.

Inferring models is significantly more challenging than checking models. The

domain is huge and the models can be quite complex, even for simple programs (see

the condition for appendsf in Fig. 9, for example). After some ad hoc attempts to find

models for F(P ), particularly minimum models within our abstract domain, a more

systematic approach was developed. We use the relationship between predicates in

P and their subscripted variants in minimum models. We first compute a model

AP for P (the minimum model for P in our abstract domain). We use this as a

starting point to compute a (larger) model ASF(P ) for the "_sf" predicates. We then

use ASF(P ) \ AP as a starting point to compute a model for the "_f" predicates.

This strategy may also be useful for automatic inference of precise floundering

information, since although there are three separate fixed-point calculations, each

one is relatively simple and should converge quickly.

9 Declarative debugging, inadmissibility and semantics

Declarative debugging (Shapiro 1983) can be an attractive alternative to static

analysis since more information is known at debug time than at static analysis

time and hence bugs can potentially be located more easily and precisely. The

F() transformation of Section 8 potentially provides a mechanism for declarative

debugging of incorrectly floundered computations – a floundered derivation of P

corresponds to a successful derivation of F(P ) and debugging of incorrect successful

derivations is well understood. The main novel requirement is that the user must be

able to determine which (encoded) atoms should flounder (that is, an intended

interpretation for the f predicates). It is also important for the debugger to
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understand the relationship between the f and sf predicates because their intended

interpretations are not independent.

In Naish (2012) we propose a more practical approach which does not use the

transformations and encoding explicitly, but use them to guide the design. It uses

the three-valued debugging scheme of Naish (2000), where atoms can be correct,

incorrect or inadmissible, meaning they should never occur. Atoms which have

insufficiently instantiated “inputs” (and hence flounder) are considered inadmissible.

The user effectively supplies a three-valued interpretation in the style of Naish (2006)

for SF(P ) and the debugger finds a clause (possibly a delay clause) for which this

interpretation is not a (three-valued) model. As well as model-theoretic semantics,

Naish (2006) provides a fixed-point semantics. This could also be applied to analysis

of delays by using transformation and encoding, particularly if the user specifies

intended modes in some way.

10 Related work

The transformation-based method used to detect deadlocks in parallel logic pro-

grams (Naish 2007) bears superficial similarity to our work here. However, those

transformations do not eliminate delays, and both original code and transformed

code have impure features such as pruning operators for committed choice non-

determinism and nonvar checks.

Here our approach to analysis of floundering is unusual in that it supports

a declarative “bottom-up” or “goal independent” approach. Analysis of logic

programs with the conventional left to right computation rule has been done

using both top-down and bottom-up methods. The top-down methods are based

on the procedural semantics – SLD resolution – maintaining information about

variables and substitutions to obtain approximations to the sets of calls and

answers to procedures. The bottom-up methods (which are independent of the

computation rule) are based on the fixed-point semantics (the immediate consequence

operator, which is very closely related to the model-theoretic semantics) to obtain

approximations to the set of answers to procedures.

An advantage of the bottom-up approach is its simplicity. Using the standard fixed

point semantics (van Emden and Kowalski 1976; see also Lloyd 1984) the domain

contains sets of ground atoms and a clause can be treated as equivalent to the set

of its ground instances. The disadvantage is lack of precision: the naive bottom-up

approach obtains no information about calls or non-ground computed answers, both

of which seem important for modeling systems with flexible computation rules. Two

methods are used to regain this information. Non-ground computed answers can be

captured by using a more complicated immediate consequence operator, such as the

S-semantics, making the domain more complex by reintroducing variables. Calls can

be captured by using the magic set (or similar) transformation, adding complexity to

the program being analysed, but this assumes a left-to-right computation rule. Since

there has been no known bottom-up method for approximating the instantiation

states of calls in logic programs with delays, it is natural that most other works on

analysis of such programs (Codognet et al. 1990; Marriott et al. 1990; Codish et al.
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1994; Marriott et al. 1994; Codish et al. 1997; Puebla et al. 1997; Cortesi et al. 2001)

are based on the top-down procedural semantics.

The more recent approach of Genaim and King (2008) uses bottom-up analysis,

and argues strongly for the practicality of bottom-up methods. A relatively standard

bottom-up least fixed-point analysis is used to compute groundness dependencies

for successful computed answers of all predicates using the Pos domain (positive

Boolean functions). In addition, a novel greatest fixed-point computation is used

to find sufficient conditions for predicates to be flounder-free, using the Mon

domain (monotonic Boolean functions). However, this analysis assumes that a local

computation rule is used. Programs such as submaxtree/2 (and examples given

in Genaim and King 2008) have cyclic data-flow and do not work with a local

computation rule, so the greatest fixed-point computation results in significant loss

of precision. Our transformations make no assumptions about the computation rule

other than that it is safe with respect to the delay declarations, so (in this respect)

it can be more precise.

We have shown an alternative way the “Lloyd” semantics can be adapted to

capture information about variables: simply change the set of function symbols

rather than the immediate consequence operator. The extra function symbols allow

us to encode and capture the behaviour of non-ground atoms. Furthermore, by

encoding the non-ground flounder set it becomes closed under instantiation, allowing

safe approximation by the success set of a (transformed) program without delays.

Floundering information can then be obtained by a simple bottom-up analysis using

sets of ground atoms. The complexity associated with variables does not magically

disappear entirely. In practice, it can re-emerge in the abstract domain of types used

in the analysis. However, careful integration of type and instantiation information

seems unavoidable if analysis of floundering is to be precise, so combining both in

the type domain is probably a good idea.

Using the procedural semantics has the advantage of being (strictly) more

expressive than the declarative approach, so analysis of more properties is possible.

Analysis of (for example) whether a particular sub-goal will ever delay (for a

particular computation rule) is beyond the scope of our approach and can only

be done with procedural information. A disadvantage is the additional complexity.

Each (non-ground) atom has a set of computed answers and for each one there

is a set of immediately floundered atoms. The analysis domain typically contains

representations of sets of these triples. We believe that analysis of such things as

computed answers and whether a computation flounders is likely to benefit from

the declarative approach we have proposed, where the analysis domain can contain

just sets of ground atoms. Expressive languages for defining such sets have been

developed for type-related analysis.

11 Conclusion

With an intuitive restriction on delay primitives, floundering is independent of the

computation rule. However, the development of a declarative rather than procedural

understanding of floundering has been hindered because it is not closed under
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instantiation. In this paper we have shown how non-ground atoms can be encoded

by ground atoms, using function symbols which do not occur in the program or

goal. Some may consider this to be a theoretical “hack”, but it has numerous

advantages. This technique, along with two quite simple program transformations,

allows floundering behaviour of a logic program with delays to be precisely captured

by the success set of a logic program without delays. By simply executing the

transformed program using a fair search strategy, the delaying behaviour can be

exposed. Declarative debugging can be used to diagnose errors related to control

as well as logic, and alternative semantic frameworks can be applied. Finally, the

wealth of techniques which have been developed for analysing downward closed

properties such as groundness and type dependencies can be used to check or infer

floundering behaviour.
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