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An almost subharmonic instability in the flow
past rectangular cylinders
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The three-dimensional instability of the flow past a 5 : 1 rectangular cylinder is investigated
via Floquet analysis and direct numerical simulations. A quasi-subharmonic (QS) unstable
mode is detected, marking an important difference with the flow past bodies with lower
aspect ratio and/or with smooth leading edge. The QS mode becomes unstable at Reynolds
number (based on the cylinder thickness and free-stream velocity) Re ≈ 480; its spanwise
wavelength is approximately three times the cylinder thickness. The structural sensitivity
locates the wavemaker region over the longitudinal sides of the cylinder, indicating that
the instability is triggered by the mutual inviscid interaction of vortices generated by the
leading edge shear layer.

Key words: wakes, vortex shedding, absolute/convective instability

1. Introduction

The flow around bluff bodies with sharp corners is encountered frequently in practical
applications, especially in the field of vortex-induced oscillations (Williamson &
Govardhan 2008), and is also of importance for fundamental research. The flow is
complex, with massive separations at the corners producing shear layers that may reattach,
several recirculating regions that may foster different instabilities, and a large downstream
wake.

The rectangular cylinder is the prototype of such bodies. Varying its aspect ratio A,
i.e. the ratio between the length L and the cross-stream dimension D, a set of blunt bodies
is obtained, ranging from the flat plate perpendicular to the incoming flow (A = 0), to
the square cylinder (A = 1) and to the flat plate parallel to the flow (A→ ∞). Already
at moderate Reynolds numbers, the flow dynamics depends on the aspect ratio. For small
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A, i.e. A ≤ 1, two shear layers separate from the leading edge (LE) corners and roll
up to create the classic von Kármán vortex street. In contrast, for intermediate A, i.e.
1 <A ≤ 3, the shear layers separating from the LE reattach intermittently over the lateral
sides of the cylinder. For large A, the shear layers reattach permanently and the flow
eventually separates at the trailing edge (TE) corners, leading to vortex shedding from
both LE and TE. When the Reynolds number Re (defined with the unperturbed velocity
U∞ and the thickness D) is large enough, say Re ≥ 300, the two sheddings lock to the
same frequency, leading to an almost stepwise dependence of the Strouhal number St – i.e.
the shedding frequency made dimensionless with U∞ and L – on the aspect ratio (Okajima
1982; Nakamura, Ohya & Tsuruta 1991; Ozono et al. 1992; Mills et al. 1995). The number
n of LE vortices present simultaneously over the cylinder side increases in a quantised
manner with A, being for example n = 1 forA = 4, n = 2 forA = 7, and n = 3 for
A = 11. In a previous work (Chiarini, Quadrio & Auteri 2022b), we have found that
the flow assumes different configurations depending on the prevalence of either shedding.
When the overall frequency is selected by the LE vortices, St ≈ nUc, where Uc ≈ 0.55U∞
is the mean convection velocity of the LE vortices (Mills, Sheridan & Hourigan 2002; Tan,
Thompson & Hourigan 2004), as the shedding frequency locks to the passing frequency
of the LE vortices over the TE. In contrast, when the TE shedding dominates, the flow
matches the shedding frequency of elongated bodies with rounded LE that do not produce
shedding. When allowed by the phasing of the LE vortices, the flow preferentially assumes
the latter configuration.

The primary and secondary instability of the flow past a square cylinder has been studied
by several scholars. The onset of the primary, two-dimensional (2-D) instability resembles
closely that of the circular cylinder, where the flow undergoes a Hopf bifurcation, albeit at
a slightly lower Reynolds number (Sohankar, Norberg & Davidson 1999; Saha, Muralidhar
& Biswas 2000; Jiang & Cheng 2018). A Floquet analysis was used by Robichaux,
Balachandar & Vanka (1999), Blackburn & Lopez (2003) and Blackburn & Sheard (2010)
to study the secondary, three-dimensional (3-D) instability; again, it was found to be quite
similar to the circular cylinder case, with unstable synchronous A and B Floquet modes.
At larger Re, a further unstable quasi-periodic mode, called QP, was identified for circular
and square cylinders (Blackburn & Lopez 2003; Blackburn, Marques & Lopez 2005).
Modes A and B were also observed via a direct numerical simulation (DNS) by Jiang,
Cheng & An (2018), who remarked that the instability of mode A is hysteretic. Sheard,
Fitzgerald & Ryan (2009) and Sheard (2011) studied how the angle of incidence affects
the unstable modes: mode A is the most unstable one at small and large incidences,
while a subharmonic mode, called C, is the most unstable at intermediate angles. Park
& Yang (2016) studied how instabilities change when the sharp edges become rounded
and the square shape approaches the circular one. For the 3-D instability, they found that
rounding does not alter the sequence at which the three modes become unstable, yet their
critical Reynolds number, i.e. the Reynolds number evaluated at their first onset, is affected
because of changes of the periodic base flow.

The instabilities of the flow past rectangular cylinders withA /= 1 have received less
attention, perhaps under the assumption that no substantial changes from the square
cylinder are to be expected. However, studying the primary instability for 0.25 ≤A ≤
30, Chiarini, Quadrio & Auteri (2021) observed recently that already at low Reynolds
numbers, some characteristics of the flow instabilities do change with the aspect ratio.
They found that the primary instability is invariably the result of a Hopf bifurcation,
but that the increase of A consistently delays its first onset, with the critical Reynolds
number going from Re ≈ 34 for A = 0.25 to Re ≈ 140 for A = 30. Moreover, the

950 A20-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

71
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.712


An almost subharmonic instability in the flow past rectangular cylinders

stabilising/destabilising effect of rounded LE and/or TE corners was shown to depend
on A, being related to different modifications of the base flow with respect to the
sharp-corner configuration. Choi & Yang (2014) studied the secondary instability of the
flow past rectangular cylinders ranging from a flat plate normal to the flow (A→ 0)
to the square cylinder (A = 1): the decrease of A was found to stabilise modes A, B
and QP, while two other (synchronous and quasi-periodic) modes, called A2 and QP2,
become unstable (see also Thompson et al. 2006). Chaurasia & Thompson (2011) and
Huang et al. (2017) studied the flow past a semi-indefinite plate of finite thickness,
i.e. A→ ∞. With a Floquet stability analysis, they found that the vortices arising
from the Kelvin–Helmholtz instability of the LE shear layer become globally unstable
to 3-D perturbations at Re ≈ 380, and that the unstable mode is subharmonic. Ryan,
Thompson & Hourigan (2005) observed that the onset of the 3-D instability for elongated
cylinders depends on the aspect ratio even in the simplified case without LE shedding.
They investigated the transition to 3-D flow for cylinders with elliptic LE and square
TE using both Floquet analysis and 3-D DNS. They found mode A and two new
modes as well, called B′ and S′ in analogy with the circular and square cylinder cases.
They observed that for small A, i.e. A ≤ 7.5, the first mode that becomes unstable is
mode A, while for larger A, the first unstable mode is B′. For elongated rectangular
cylinders with sharp LE corners, the scenario is likely to be complicated further, as
vortex shedding occurs from both LE and TE. However, the 3-D instability of the
flow past elongated rectangular cylinders has not yet been properly addressed. To the
best of our knowledge, only Hourigan, Thompson & Tan (2001) performed DNS for
rectangular cylinders with A = 6, 10, 13 at Re = 350–400 to describe the structure of
the 3-D flow in the laminar regime. For the two largest A, they observed hairpin-like
structures arranged in a staggered manner on both sides of the cylinder, closely resembling
those classified as pattern B in Sasaki & Kiya (1991) for a flat plate parallel to the
flow.

The rectangular cylinder with A = 5 defines the benchmark of the aerodynamics of
a rectangular 5 : 1 cylinder or BARC (see https://www.aniv-iawe.org/barc-docs), which
aims to characterise the flow and set the standards for simulations and experiments in
the turbulent regime. At large Reynolds numbers, the small-scale velocity fluctuations
associated with the turbulent motions coexist and interact with the large-scale motions
due to the flow instabilities, giving rise to a self-sustaining cycle (Cimarelli, Leonforte &
Angeli 2018; Moore, Letchford & Amitay 2019; Chiarini et al. 2022a). Hence the study of
the flow instabilities at low Reynolds numbers and the comprehension of their triggering
mechanisms is crucial also to understand the complex and multiscale flow dynamics in the
turbulent regime.

The present study addresses the 3-D instability of the flow past a rectangular
cylinder with A = 5 via Floquet analysis and 3-D DNS. An unstable mode of almost
subharmonic nature, undetected for other bluff bodies, will be characterised, and a physical
interpretation of the triggering mechanism will be proposed. The paper is organised as
follows. After this Introduction, brief descriptions of the mathematical formulation and
the numerical methods are provided in § 2. Then the 2-D periodic base flow is detailed
in § 3. The unstable mode resulting from both the Floquet analysis and the 3-D DNS is
characterised in § 4. Section 5 describes the onset of a second 2-D instability of the 2-D
base flow at larger Re. Finally, a concluding discussion is presented in § 6. The Appendix
concludes the paper and addresses the dependence of the results on the domain size and
grid resolution.
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Figure 1. Sketch of the computational domain Ω containing the rectangular cylinder, and the reference
system.

2. Problem set-up, mathematical formulation and discretisation

2.1. Flow configuration
The incompressible flow past a 2-D rectangular cylinder with aspect ratioA ≡ L/D = 5
is considered, with L and D being the cylinder length and thickness. Figure 1 shows the
geometry, the reference system and the notation. A Cartesian coordinate system is used,
with origin at the LE of the cylinder, with the x-axis aligned with the flow direction, and
the y-axis denoting the cross-stream direction. The cylinder is placed in a uniform stream
with velocity U∞. The computational domainΩ is rectangular with dimensions Lx and Ly.
The Reynolds number, based on the undisturbed velocity U∞ and the cylinder thickness,
is defined as Re = U∞D/ν, where ν is the kinematic viscosity. The flow is governed by
the incompressible Navier–Stokes equations written in dimensionless form:

∂U
∂t

+ U · ∇U = −∇P + 1
Re
�U,

∇ · U = 0,

⎫⎬
⎭ (2.1)

where U is the velocity vector of components (U,V,W), and P is the reduced pressure.
No-slip and no-penetration boundary conditions are applied on the cylinder surface,
whereas an undisturbed uniform velocity is assumed in the far field. The outflow boundary
condition Pn − (1/Re)∇U · n = 0, where n is the normal vector, is used at the outflow
boundary.

2.2. Secondary instability: Floquet analysis
When the value of the Reynolds number is above the critical value Rec1 of the Hopf
bifurcation for the primary instability, but below the critical value Rec2 for the secondary
instability, the flow is periodic and 2-D. The Floquet theory is used to study the linear
stability analysis of the 2-D and time-periodic base flow to 3-D disturbances. As long
as Rec1 ≤ Re ≤ Rec2, the flow field {U,P} is written as the sum of a 2-D base flow
{Ub,Pb}, which is periodic with period T , and an unsteady 3-D perturbation with small
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amplitude ε:

U(x, y, z, t) = Ub(x, y, t)+ ε
1√
2π

∫ ∞

−∞
u(x, y, k, t) eikz dk,

P(x, y, z, t) = Pb(x, y, t)+ ε
1√
2π

∫ ∞

−∞
p(x, y, k, t)eikz dk,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

where i is the imaginary unit, u and p indicate the Fourier transform of the velocity and
pressure disturbances in the homogeneous spanwise direction z, and k is the corresponding
wavenumber.

Introducing the decompositions (2.2) into the governing equations (2.1), the 2-D base
flow equation is obtained at order ε0, while the eigenproblem describing the linear
evolution of the 3-D disturbances is obtained at order ε. By applying the Fourier transform
in z, the linearised Navier–Stokes equations (LNSEs) read for each k:

∂u
∂t

+ Lk{Ub,Re} u + ∇kp = 0,

∇k · u = 0,

⎫⎬
⎭ (2.3)

where ∇k ≡ (∂/∂x, ∂/∂y, ik) is the Fourier-transformed gradient operator, and Lk is the
Fourier-transformed linearised Navier–Stokes operator:

Lk{Ub,Re} u = Ub · ∇ku + u · ∇kUb − 1
Re
�ku, (2.4)

in which �k ≡ ∇k · ∇k is the Fourier-transformed Laplacian operator. According to the
Floquet theory, we assume the functional form for the perturbation field {u, p} given by

u(x, y, k, t) = û(x, y, k, t) eσ t,

p(x, y, k, t) = p̂(x, y, k, t) eσ t,

}
(2.5)

where σ is the Floquet exponent, and {û, p̂} is the Floquet mode associated with σ and k,
possessing the same periodicity of the base flow:

{û, p̂}(x, y, k, t + T) = {û, p̂}(x, y, k, t). (2.6)

These modes can be obtained by a Krylov subspace method together with the Arnoldi
iteration algorithm (Barkley & Henderson 1996). The stability of the system is determined
by the sign of the real part Re(σ ) of the Floquet exponent or, equivalently, by the modulus
of the Floquet multiplier μ = eσT . If all Re(σ ) < 0, or |μ| < 1, then the perturbations
decay and the flow remains 2-D; otherwise, if at least one exponent exists with Re(σ ) > 0,
or |μ| > 1, then the perturbations grow exponentially and the flow becomes 3-D if k /= 0.

2.3. Structural sensitivity
A better understanding of the instability can be obtained through the structural sensitivity,
introduced by Giannetti & Luchini (2007) for the primary instability and then extended by
Giannetti, Camarri & Luchini (2010) to the secondary instability. It is based on direct and
adjoint modes.
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The adjoint LNSEs are

−∂f +

∂t
+ L+

k {Ub,Re} f + − ∇km+ = 0,

∇k · f + = 0,

⎫⎬
⎭ (2.7)

where L+
k {Ub,Re} is the Fourier-transformed adjoint linearised Navier–Stokes operator:

L+
k {Ub,Re} f + = −(Ub · ∇k) f + + (∇kUb) · f + − 1

Re
�kf +. (2.8)

The adjoint solution { f +,m+} provides the receptivity of the modes to an external
forcing, so that direct and adjoint perturbation modes highlight the regions of maximum
perturbation and maximum receptivity. The structural sensitivity tensor S puts these
pieces of information together, and identifies the so-called wavemaker region (Monkewitz,
Huerre & Chomaz 1993), i.e. the region where the instability takes place. It is defined as

S(x, y, k) =
∫ t+T

t f̂
+
(x, y, k, t) û(x, y, k, t) dt∫ t+T

t

∫
Ω

f̂
+ · û dΩ dt

. (2.9)

The instability mechanism may be elucidated by inspecting the different components of
S. However, as shown by Giannetti et al. (2010), it is easier to choose a norm ‖ · ‖ and to
extract information from S by plotting ‖S(x, y, k)‖ at each point of the space. Note that
while S provides information that is averaged over the period T , it may be meaningful to
consider the instantaneous sensitivity tensor I(x, y, k, t) defined as

I(x, y, k, t) = f̂
+
(x, y, k, t) û(x, y, k, t)∫ t+T
t

∫
Ω

f̂
+ · û dΩ dt

. (2.10)

2.4. Numerical methods
The 2-D periodic base flow is computed by integrating in time the discretised 2-D
version of the Navier–Stokes equations (2.1). The time integration employs an explicit
third-order low-storage Runge–Kutta method for the nonlinear term, combined with an
implicit second-order Crank–Nicolson scheme (Rai & Moin 1991) for the linear terms. The
spatial discretisation uses finite elements, with quadratic elements for velocity, and linear
elements for pressure, to satisfy the Ladyzhenskaya–Babus̆ka–Brezzi (LBB) condition
(Brezzi 1974). Simulations are implemented in the non-commercial software FreeFem++
(Hecht 2012). The BoostConv algorithm, an iterative algorithm inspired by the Krylov
subspace methods, is used to accelerate the convergence of the simulations to the periodic
limit cycle (Citro et al. 2017). Figure 2 shows the decrease of residuals, defined as the
absolute value of the largest difference over the computational domain between variables
at t and t + T . At Re = 500, velocity and pressure residuals decrease fast, as well as
the residual of the period T . An almost exponential decrease is observed, with residuals
reaching 10−10 after 38 shedding periods, and the base flow is verified to satisfy the
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Figure 2. Convergence of the base flow to its periodic limit cycle at Re = 500. Decrease of the residuals with
the number N of shedding cycles.

required spatio-temporal symmetries

Ub(x, y, t) = Ub(x,−y, t + T/2),

Vb(x, y, t) = −Vb(x,−y, t + T/2),

Pb(x, y, t) = Pb(x,−y, t + T/2)

⎫⎪⎬
⎪⎭ (2.11)

within the same threshold.
The numerical method used for the Floquet analysis is similar to that used in other

works, for example, Barkley & Henderson (1996) and Jallas, Marquet & Fabre (2017). If
uk(t0) is the velocity perturbation with wavenumber k at time t0, then its evolution after
one period can be written using the linearised Poicaré map Pk as

uk(t0 + T) = Pk uk(t0). (2.12)

The eigenvalues and eigenvectors of Pk are the Floquet multipliers μk and the Floquet
modes ûk(t0) at the time t0 of the operator Lk. We have used the Arnoldi method
(Saad 2011) to compute the eigenvalues of Pk with largest modulus, and the associated
eigenvectors. To this purpose, the action of Pk on the perturbation uk(t0) is obtained by
integrating (2.3) in time from t0 to t0 + T . The modified Gram–Schmidt algorithm is used
for the orthogonalisation of the eigenvectors, and all the computed modes are normalised
using their total kinetic energy. Finally, the evolution of the Floquet mode ûk(t) over the
period T is evaluated by integrating (2.3) in time. In doing this, the initial condition is
the approximated eigenvector ûk(t0) computed previously; the result of the integration
is then corrected by e−λt to account for (2.5). For consistency, the time integration of
the LNSEs is carried out using the same numerical scheme used for integrating the 2-D
Navier–Stokes equations to compute the base flow. During the time integration of the
LNSEs, the base flow is evaluated at each time step by the Fourier interpolation of 100
instantaneous fields stored uniformly over one period T . The same approach is used when
computing the adjoint modes, but considering (2.7) instead of (2.3); the adjoint modes are
normalised by their total kinetic energy.

The computational domain extends for −25D ≤ x ≤ 50D in the streamwise direction
and for −20D ≤ y ≤ 20D in the cross-stream direction, corresponding to size (Lx, Ly) =
(75D, 40D). A symmetric grid with respect to the x-axis has been used, to avoid the
introduction of asymmetries in the flow. The number of triangles is approximately
1.2 × 105, with 200 and 100 elements over the longitudinal and vertical sides of the
cylinder, respectively. The sensitivity of the results on the domain size and grid resolution
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is discussed in the Appendix. For the direct problem, homogeneous Dirichlet boundary
conditions are used at the inlet and at the far field, while homogeneous Neumann boundary
conditions for the velocity are used at the outflow. For the adjoint problem, instead, we have
used homogeneous Dirichlet boundary conditions for the velocity at all the boundaries of
the domain, as in Giannetti et al. (2010).

The 3-D DNS has been performed using a DNS code introduced by Luchini (2016).
The code solves the 3-D incompressible Navier–Stokes equations written in primitive
variables on a staggered Cartesian grid using second-order finite differences in all
directions. The momentum equations are advanced in time by a fractional-step method
using a third-order Runge–Kutta scheme. The Poisson equation for the pressure is solved
by an iterative successive over-relaxation algorithm. The cylinder is considered with a
second-order implicit immersed-boundary method, implemented in staggered variables
(Luchini 2013, 2016). The unperturbed flow (U∞, 0, 0) is imposed at the inlet and in
the far field, and periodic boundary conditions are used in the spanwise direction and
convective outlet conditions at the outflow. This DNS code has been used previously
to compute the flow past a rectangular cylinder withA = 5 in the turbulent regime by
Chiarini & Quadrio (2021).

The computational domain used for the 3-D simulation extends for −30D ≤
x ≤ 80D, −25D ≤ y ≤ 25D and 0 ≤ z ≤ 2πD, corresponding to size (Lx, Ly, Lz) =
(110D, 50D, 2πD); here, z denotes the spanwise periodic direction. The cylinder is placed
at 0 ≤ x ≤ 5D and −0.5D ≤ y ≤ 0.5D. The domain is discretised with Nx ≈ 1072, Ny ≈
590 and Nz ≈ 200 points in the three directions, for a total of approximately 130 million
points. Their distribution is homogeneous in the spanwise direction, whereas a geometric
progression is adopted in the streamwise and vertical directions to properly refine the
grid near the corners of the body. The numbers of points along the longitudinal and
vertical sides of the cylinder are respectively 270 and 170. The cell size near the corners is
approximately �x = �y ≈ 0.005. Hereafter, if not otherwise indicated, all variables are
in dimensionless form with D as length scale, U∞ as velocity scale, and D/U∞ as time
scale.

3. Base flow

To characterise the 2-D periodic base flow, the beginning of each cycle is identified by
the conditions C� = 0 and ∂C�/∂t > 0, where C� is the lift coefficient, i.e. the vertical
component of the aerodynamic force, made dimensionless with 0.5ρU2∞D. The flow
separates at the LE and reattaches at a point xr along the cylinder side; the recirculating
region on each side of the cylinder periodically enlarges and shrinks while LE vortices are
being shed. This is described by the evolution in time of the reattachment point xr over one
shedding period, shown in figure 3 for Re = 550. The length of the recirculating region
reaches its minimum, xr ≈ 2.6, after the shedding of a new LE vortex at t/T ≈ 0.85. Then
xr increases linearly until the maximum xr ≈ 4.25 is reached, to shrink again as a new
vortex is shed downstream.

Figure 4 shows streamlines and the vorticity (ωz) colour map at four instants within
one half of the shedding period (the spatio-temporal symmetry allows one to reconstruct
the base flow over the complete period). The stagnation points are marked with symbols.
Grey diamonds are used for the elliptic stagnation points corresponding to a local
maximum or minimum of the stream function ψ , defined as ∇2ψ = −ωz; green diamonds
indicate hyperbolic stagnation points corresponding to saddle points of ψ . Within the
large recirculating region over the cylinder side, the reverse boundary layer separates
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Figure 3. Position of the reattachment point xr on the top surface along the period as a function of t/T for
Re = 550.
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Figure 4. Snapshots of the base flow at Re = 550, taken at four different instants along the period. Streamlines
are superimposed on the ωz vorticity map (blue and red are clockwise and counterclockwise vorticity,
respectively). Grey/green diamonds indicate elliptic/hyperbolic stagnation points.

periodically, owing to the adverse pressure gradient, and produces a smaller secondary
counter-rotating recirculation region near the body. The size of this recirculating region
increases over the shedding period, until a new LE vortex is shed downstream towards the
TE. As shown by Chiarini et al. (2022b), this vortex reaches the TE in phase with the
development of a new TE vortex from the same side (figure 4b) and the two then coalesce
before being shed in the wake (figures 4c,d).

The vortex splitting taking place in the main top and bottom recirculation regions and
responsible for the LE vortex shedding is described following the work by Boghosian &
Cassel (2016). In a 2-D incompressible flow, a splitting event takes place at a point within
a recirculation region if and only if: (i) the point is a critical point for the stream function,
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Figure 5. Dependence of St on Re.

∂ψ/∂x = ∂ψ/∂y = 0, i.e. a stagnation point with u = v = 0; and (ii) the quantity

Q = ∂u
∂x
∂v

∂y
− ∂u
∂y
∂v

∂x
(3.1)

evaluated at the point is negative. In other words, a hyperbolic stagnation point is required
for splitting. For the top side at t/T = 0, shedding has just occurred and the size of
the recirculation region is at its minimum. Two elliptic stagnation points (with Q > 0)
identify the centre of rotation of the main recirculation region and the vortex just shed
from it. A similar situation is observed for t/T = 0.15, but a new elliptic stagnation point
indicates the appearance of the secondary counter-rotating recirculation. At t/T = 0.32, a
hyperbolic stagnation point appears at x ≈ 2, just above the secondary recirculation; at this
time, vortex splitting is allowed. Shortly thereafter, the elliptic stagnation point associated
with the counter-rotating region and the new hyperbolic one become closer until they
collapse, and vortex splitting actually occurs. Splitting completes at t/T ≈ 0.85, resulting
in the abrupt reduction of the length of the primary recirculation shown in figure 3.

Figure 5 shows the dependence of the Strouhal number St = fL/U∞, i.e. the shedding
frequency made dimensionless with L and U∞, on Re in the range 400 ≤ Re ≤ 550.
Within this range, St does not change significantly, with a maximum variation of
approximately 1.4 %. However, St increases to a maximum at Re ≈ 485 and then decreases
monotonically. Interestingly, the Re of maximum St corresponds approximately to the
first onset of the 3-D instability, as will be shown in the following. We also note that for
Re ≥ 555, the 2-D base flow undergoes a further 2-D instability and enters a non-periodic
regime where the LE and TE shedding are no longer locked to the same frequency. This is
described in § 5.

4. An almost subharmonic instability

4.1. Floquet multipliers
Figure 6 shows the dominant Floquet multipliers for four values of Re in the range 480 ≤
Re ≤ 550. Figure 6(a) shows the magnitude of the multipliers for wavenumbers 1.5 ≤ k ≤
4 for which they become unstable, while figure 6(b) plots the Floquet multipliers in the
complex space for Re = 500 and k = 2.1.

A first multiplier with |μ| > 1 appears for Re = Rec2 ≈ 480 and k ≈ 2.1. For Re >
Rec2, a band of unstable wavenumbers appears. As Re increases, this band widens and
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Figure 6. (a) Modulus of the most unstable Floquet multiplier at Re = 480, 500, 525, 550 for 1.5 ≤ k ≤ 4.
(b) Floquet multipliers in the complex plane for k = 2.1 at Re = 500. The inset zooms on the unstable pair
outside the unitary circle.

the branch moves towards slightly larger k. Figure 6(b) shows the unstable branch to
correspond to a pair of complex conjugate multipliers with negative real part and very
small imaginary part. The plot shows the expected multiplier μ = (1, 0) associated with
the time-translation symmetry of the base flow, and highlights in the inset a pair of
complex conjugate multipliers μ = (−1.087,±0.000816) outside the unit circle. This pair
indicates that the periodic 2-D base flow is linearly unstable to 3-D quasi-subharmonic
perturbations. Indeed, it corresponds to a pair of complex conjugate eigenvalues σ =
1/T log(μ) ≈ (0.0073,±0.6012) that denote an unstable mode (Re(σ ) > 0) with period
2π/Im(σ ) ≈ 10.45, which is almost twice the period of the base flow. Hereafter we refer
to this mode as mode QS.

Mode QS differs substantially from mode QP observed for the square cylinder
(Blackburn & Sheard 2010) and mode S′ observed for elongated cylinders without LE
vortex shedding (Ryan et al. 2005). Indeed, the wavenumber is clearly different: the latter
modes both have k ≈ 5 − 6 instead of k ≈ 2. More importantly, they are quasi-periodic
modes corresponding to a pair of complex conjugate Floquet multipliers with relatively
large imaginary part: Blackburn & Sheard (2010) report Im(μ) ≈ 0.4 for mode QP, and we
have computed Im(μ) ≈ 0.1 for mode S′ in the case of a D-shaped cylinder withA = 5
at Re = 500. This should be contrasted with Im(μ) = 0.000816 of mode QS in the present
case. The different nature of this mode and its triggering mechanism will be illustrated
later (see § 4.5).

The existence of this pair of unstable Floquet multipliers with negative real part and
nearly zero imaginary part is in agreement with the observation by Marques, Lopez
& Blackburn (2004) and Blackburn et al. (2005), based on the seminal work of Swift
& Wiesenfeld (1984), that systems with a spatio-temporal symmetry cannot undergo a
period-doubling codimension-one bifurcation. In terms of Floquet analysis, it means that
multipliers outside the unit circle cannot have negative real part and null imaginary part.
This recalls the dispute regarding the nature of the mode QP instability in the wake of a
square cylinder. Robichaux et al. (1999) reported a subharmonic instability, but Blackburn
& Lopez (2003) demonstrated its quasi-periodic nature. Later, Blackburn & Sheard (2010)
showed that this mode is subharmonic only when the base flow becomes asymmetric,
proving their claim by placing the square cylinder at an incidence of seven degrees with
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Figure 7. Unstable mode for Re = 550 and k = 2.1. (a) Real part of the streamwise vorticity of the direct
mode. (b) Real part of the f̂ +

y component of the adjoint mode.

respect to the incoming flow. Following the same reasoning, we have repeated the Floquet
analysis at Re = 500 using slightly asymmetric boundary conditions at the inlet and at
the far field, by enforcing V = 0 but U = U∞(1 + δy/D). A very small δ = 1.6 × 10−5 is
enough for the multipliers to collapse to the real axis, thus yielding a generic subharmonic
unstable mode.

4.2. Direct and adjoint modes
Figure 7(a) shows the spatial structure of the real part of the streamwise vorticity of the
unstable QS mode for Re = 500 and k = 2.1. The perturbation field is maximum near the
vortex cores of the base flow, as for the flow past other bluff bodies (see, for example,
Thompson, Leweke & Williamson 2001; Chaurasia & Thompson 2011). Unlike the square
and circular cylinders (Noack & Eckelmann 1994; Barkley & Henderson 1996; Robichaux
et al. 1999), elongated cylinders with elliptic LE (Ryan et al. 2005) and the primary
instability of the same rectangular cylinders (Chiarini et al. 2021), here the perturbation
field is not localised in the wake; indeed, large perturbations are observed also over the
cylinder side. Hence the QS mode is not an unstable mode of the wake, but relates to the
separating and reattaching flow over the cylinder side and to the vortex splitting/shedding,
as will be discussed later (see § 4.5). The symmetry is such that the sign of the streamwise
vorticity changes from one period to the next, in agreement with the nearly subharmonic
nature of the mode.

Figure 7(b) shows the spatial structure of the real part of the f +
y component of the adjoint

mode, which propagates upstream. Large values are observed over the fore portion of the
cylinder, with maxima placed near the LE corners, identified as the region of maximum
receptivity of the flow. This differs from the primary instability, where the maximum
receptivity is found close to the TE corners (Chiarini et al. 2021).

4.3. Structural sensitivity
Following the work by Giannetti et al. (2010), figure 8 plots the spectral norm of the
time-averaged structural sensitivity tensor S for k = 2.1 at Re = 550, with the mean
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Figure 8. Streamlines and spectral norm of the tensor field S evaluated at k = 2.1 and Re = 550.

streamlines in the background. We have compared other norms and several values of k
and Re, but the map did not change significantly.

The norm ‖S‖ of the sensitivity tensor vanishes almost everywhere, except near the
top/bottom sides of the cylinder, indicating a localised wavemaker region. It differs from
the 3-D instability of the circular and square cylinders (Giannetti et al. 2010) and the
primary instability of rectangular cylinders (Chiarini et al. 2021), where the sensitivity
is always located within the recirculation region downstream of the TE, thus suggesting
a different triggering mechanism for the present instability. Figure 8 shows four local
maxima of the sensitivity norm, two for each side. One maximum of each pair is located
very close to the cylinder surface at x ≈ 2.6 and y ≈ ±0.55. A second, slightly lower
maximum is placed at x ≈ 2.56 and y ≈ ±0.8, very close to the stagnation point at the
centre of the mean recirculation. Overall, the map of ‖S‖ confirms the suggestion put
forward above that the unstable QS mode does not originate in the wake, and that the
triggering mechanism is embedded in the dynamics of the side recirculation, namely in its
periodic sequence of enlargement, vortex splitting and shrinking.

Although the cycle-averaged tensor S locates the core of the 3-D instability on the
cylinder side, the instantaneous sensitivity tensor I provides further insight, as it describes
intracycle variations. Since I is the result of the product of the direct and adjoint Floquet
modes (see (2.10)), it possesses the the same periodicity of the base flow, i.e. I(x, y, k, t) =
I(x, y, k, t + T). In figure 9, the norm ‖I‖ is plotted at eight instants along one shedding
cycle. The two pairs of maxima remain localised over the sides of the cylinder during the
entire shedding cycle. The first maximum is centred in the hyperbolic stagnation point that
separates the side recirculation before the shedding (see the bottom side at t/T = 0.15),
whereas the second highlights the recirculation region that is about to be shed (see the
top side at t/T = 0.32). Referring to the top side only, ‖I‖ first becomes significant at
t/T ≈ 0.32, when the vortex splitting starts and the hyperbolic stagnation point appears.
At first, I is mostly localised in the recirculation region identifying the new generated
vortex before being shed, with large values in the elliptic stagnation point (i.e. its centre
of rotation) and close to the cylinder side where the streamlines have large curvature.
Then, in the phases before the vortex is shed, I is mostly relevant in the region close to
the hyperbolic stagnation point where the vortex splitting is occurring; see t/T = 0.65
and t/T = 0.82. When the vortex is eventually shed and the hyperbolic stagnation point
disappears, no further significant values of I are observed; see t/T = 0 and t/T = 0.15.
Overall, this indicates that the onset of the 3-D instability is embedded in the vortex
splitting and in the interaction between the involved recirculation regions, before the LE
vortex shedding occurs.
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Figure 9. Structural sensitivity for k = 2.1 at Re = 550. Spectral norm of the tensor field I and streamlines
of the base flow at eight times along the shedding cycle. Grey/green diamonds indicate elliptic/hyperbolic
stagnation points.

4.4. Three-dimensional direct numerical simulation
A 3-D DNS has been performed to confirm and expand the result of the Floquet analysis.
The Reynolds number has been set to Re = 500, i.e. just above the critical value Rec2 =
480 predicted by the Floquet analysis. The 2-D potential flow solution has been used
as initial condition. After having discarded the initial transient, the simulation has been
advanced for approximately 400 shedding cycles with a variable time step to ensure the
Courant–Friedrichs–Lewy number is ≤1, yielding on average �t ≈ 0.0077D/U∞.

We start focusing on the temporal flow scales, shown in figure 10 in terms of power
spectra against the dimensionless frequency St = fL/U∞. Figure 10(a) shows the power
spectrum of the lift coefficient S(C�); in this case, the lift coefficient is defined as the
vertical component of the aerodynamic force per unit span made dimensionless with
0.5ρU2∞D. Figure 10(b), instead, shows the spectrum of the spanwise velocity component
w evaluated at the point with coordinates (x, y, z) ≈ (7, 0.5,π). The peak in the spectrum
of C� identifies the shedding frequency of the base flow, i.e. St = 0.966. This value is
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Figure 10. Temporal flow scales extracted by a 3-D DNS at Re = 500. Power spectra of (a) the lift coefficient
C�, and (b) the spanwise velocity component w measured at the position (x, y, z) ≈ (7, 0.5,π).

nearly coincident with the frequency identified by the 2-D simulation, i.e. St = 0.960,
with a difference of less than 1 %. The 3-D simulation reveals that the flow is 3-D at
this Reynolds number, confirming the results of the linear Floquet stability analysis. The
power spectrum of w contains two dominant frequencies. The largest one, i.e. St ≈ 0.961,
is associated with the vortex shedding and coincides with the C� peak. A second, lower
peak is found for St ≈ 0.480, indicating the time scale of the 3-D instability and confirming
its almost subharmonic nature. Again, this time scale is in excellent agreement with the
results of the Floquet analysis. In fact, the unstable pair of Floquet multipliers found for
Re = 500 at k = 2.1 are μ = (−1.087,±0.000816), corresponding to an unstable mode
with frequency St ≈ 0.475; the difference between the two values is again approximately
1 %. The frequency associated with the unstable QS mode appears in the power spectrum
of the signal for the three velocity components recorded in various positions, but it is not
visible in the signal of the lift and drag coefficients. This is because the 3-D flow repeats
identically at two successive shedding cycles modulo a π phase shift in the spanwise
homogeneous direction, and integration over the lateral surface of the cylinder is invariant
under such phase shifts. This point is better appreciated looking at figure 11, where the
3-D flow in two corresponding instants of two successive shedding cycles is shown.

Figure 12 presents the spatial structure of the 3-D unstable mode, visualised through
the λ2 quantity (Jeong et al. 1997). Grey surfaces corresponding to λ2 = −2 are drawn
together with surfaces of positive (red) and negative (blue) streamwise vorticity ωx =
±0.25. Three-dimensional hairpin-like structures originate from the lift up and stretching
of the spanwise-aligned vortices at x ≈ 2.6, i.e. the position over the cylinder side where
the structural sensitivity is largest. The spanwise wavelength of the hairpin vortices,
constrained by the spanwise size of the computational domain, is λ = 2π/k ≈ π and fits
well the result of the Floquet analysis. These structures are then convected in the wake,
where they transform into rib-like, streamwise-aligned structures. The field of streamwise
vorticity resembles closely the direct mode plotted in figure 7. It is generated over the
cylinder side at x ≈ 2.6, close to the legs of the hairpin structures, and develops in
the wake. Its sign changes from one period to the next, in agreement with the almost
subharmonic nature of the QS mode.

To further emphasise the quasi-subharmonic nature of the 3-D QS mode, figure 11
plots isosurfaces of λ2 = −2 at the same phase of two consecutive shedding cycles. The
hairpin-like structures characterising the instability are the same, but they are spatially
shifted by half a period π in the spanwise direction, as anticipated above. Sasaki & Kiya
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(b)(a)

Figure 11. Instantaneous flow visualisation from DNS at Re = 500. Isosurfaces of λ2 = −2 at the same
phase for two consecutive shedding cycles.

(1991), Tenaud et al. (2016) and Chaurasia & Thompson (2011) for a blunt flat plate
observed a staggered pattern of hairpin-like vortices, denoted ‘pattern B’. Here, due to
the lower aspect ratio, such a staggered pattern is not observed: only one line of hairpin
vortices appears that is alternately shifted. In fact, when the hairpin vortices are generated,
those generated at the previous period have already broken up and convected in the wake.
The same pattern of staggered hairpin vortices was observed by Cimarelli et al. (2018) and
Chiarini & Quadrio (2021) for the same rectangular cylinder withA = 5 in the turbulent
regime at Re = 3000. Therefore, the mechanism triggering this 3-D instability appears to
remain active in the turbulent regime, where the large-scale motions associated with the
flow instabilities coexist with the small-scale turbulent fluctuations. This suggests that this
3-D instability is involved in the generation of small-scale turbulent structures that, in turn,
do not destroy the large coherent structures, as they are detected also in the turbulent flow
where they contribute to turbulent kinetic energy production (Bernal et al. 1979; Browand
& Troutt 1980). Hairpin vortices arranged in a staggered manner and with spanwise
wavelength λ ≈ 3 have also been observed by Hourigan et al. (2001) for more elongated
rectangular cylinders with A = 10 and A = 13 at Re = 350 − 400. This suggests that
the QS unstable mode discovered here might be at play even for more elongated cylinders.
Furthermore, the lower Reynolds number of their simulations suggests that the critical
Reynolds number might decrease slightly withA.

4.5. Physical mechanism
In this subsection, the physical mechanism responsible for the onset of the 3-D instability is
investigated. The structural sensitivity map indicates that the wavemaker is localised over
the longitudinal sides of the cylinder. The phase sensitivity tensor I shows that the onset of
the instability is associated with the interaction of the two recirculation regions separated
by the hyperbolic stagnation point before the downstream vortex is shed. One would be
tempted to interpret this as an elliptic instability, with the implication that the transition
from 2-D to 3-D flow would be due to a linear mechanism that breaks up singular regions
of elliptic streamlines. However, this instability is in fact not elliptic. The discussion below
considers the unstable mode for k = 2.1 at Re = 550, but the general picture is unchanged
for other wavenumbers and Re.
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(b)
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Figure 12. Instantaneous flow visualisation from DNS at Re = 500. Grey surfaces indicate λ2 = −2. Red
and blue surfaces indicate positive and negative streamwise vorticity ωx = ±0.25.

Figure 13 considers four phases within one half of the shedding period. Isocontours of
the base flow vorticity are plotted together with the stagnation points and a colourmap
of the spanwise vorticity of the unstable QS mode. The occurrence of the maximum of
the perturbation field in the base flow vortex cores and the distribution of the spanwise
perturbation vorticity may indicate that the instability is elliptic (Kerswell 2002). Indeed,
as required for an elliptic instability, the streamlines marking the base flow vortices have
an elliptic shape, with major and minor axes approximately aligned with the x and y
directions; see figure 4. Moreover, the spanwise perturbation vorticity shows the two-lobe
structure typical of an elliptic instability (Waleffe 1990). The centres of the two lobes
are aligned at approximately 45◦ with respect to the axis of the ellipses (the direction of
maximum strain is shown in figure 13 by dashed black lines). Interestingly, these features
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Figure 13. Four instants within half of the shedding period at Re = 550. The colourmap represents the
spanwise vorticity of the unstable mode. Red/blue lines denote values of the base flow spanwise vorticity of
ωz = ±1. Grey/green diamonds indicate elliptic/hyperbolic stagnation points. The dashed black lines denote
the direction of maximum strain within the base flow vortices.

of the base flow and of the unstable mode resemble closely what was found by Chaurasia
& Thompson (2011) for a blunt flat plate and, as they conclude, correspond to the required
features for an elliptic instability. However, the flow past elongated rectangular cylinders
possesses two features that are not consistent with an elliptic instability. The first is the
almost subharmonic unstable mode. As shown by Waleffe (1990) and Kerswell (2002), for
an unbounded strained vortex with strain rate tending to 0, the instability is a subharmonic
resonance, and has a frequency that is twice that of the elliptic flow. Therefore, the
present quasi-subharmonic instability would fit the elliptic instability theory if the turnover
rate of the base flow vortices was approximately equal to the shedding period T ≈ 5.2.
This is not the case: their rotational rate Ω ≈ ω/2 can be estimated at 2 − 2.5, which
corresponds to a turnover time τ ≈ 3.1 − 3.5. The second problem is the lack of this
instability for shorter rectangular cylinders with only n = 1 LE vortex accommodated over
the cylinder side (Chiarini et al. 2022b). Indeed, we have not detected the QS mode for
3 ≤A < 4.8, although isolated recirculation regions with elliptic streamlines are present
over the cylinder sides.

Hence we surmise that the transition towards a 3-D flow does not result from an
elliptic instability of each recirculating region placed over the cylinder sides. The physical
mechanism, instead, is purely inviscid and results from the mutual interaction between
the vortices. This route was first shown by Pierrehumbert & Widnall (1982) for the
family of periodic coherent shear layer vortices introduced by Stuart (1967), based on
an exact solution of the 2-D Euler equations. They found this configuration of vortices
to be unstable to both 2-D and 3-D subharmonic perturbations, with the former having
a larger growth rate. They observed that the 3-D unstable mode stretches successive
vortices alternately above/below and forwards/backwards, leading to a configuration that is
reminiscent of the pattern of the staggered hairpin vortices discussed above. Pierrehumbert
& Widnall (1982) associated this instability with the so-called ‘helical pairing’ seen by
Chandrsuda et al. (1978). However, in their model, the presence of the wall is not accounted
for, and the 2-D instability dominates with its larger growth rate. Robinson & Saffman
(1982) investigated the stability, in the limit of small vortex cross-sectional area and
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long axial-disturbance wavelength, of different vortex configurations, including the one
of co-rotating vortices over a slip wall. For this case, they found that the fastest growing
disturbances are subharmonic and 3-D, with spanwise wavelength approximately twice
the distance between two successive vortices Lv (see figure 9 of their paper), which fits
very well our observations as λ/Lv ≈ 2. By means of the Taylor frozen flow hypothesis,
this spatially subharmonic instability can be translated easily to our spatially evolving
case, where the instability is almost subharmonic in time. At lowerA, we argue that this
instability is not observed because the dynamics of the base flow is quite different (Chiarini
et al. 2022b), and much less time is available for the recirculation regions to interact with
each other. An identical mechanism was later proposed by Huang et al. (2017) to explain
the onset of three-dimensionality in the flow over a blunt flat plate; see also Abdalla &
Yang (2004). However, the flow past a rectangular cylinder is quite different from that
past a blunt flat plate. In fact, for the rectangular cylinder at the present Re, the 2-D
periodic base flow is the result of the so-called impinging leading-edge vortex (ILEV)
instability (Hourigan et al. 2001). Due to the interaction of an LE vortex with the TE
corner, a pressure pulse arises, travels upstream and triggers the shedding of a new LE
vortex, producing a self-sustained mechanism. In the flow over a blunt flat plate, instead,
the ILEV instability does not occur, as there is no TE. In this case, the vortices shed
from the LE shear layer that foster the 3-D instability result from a Kelvin–Helmholtz
instability of the shear layer (Chaurasia & Thompson 2011). In the flow past elongated
rectangular cylinders, a Kelvin–Helmholtz instability of the LE shear layer is not observed
at the Reynolds number here considered, although it becomes a key feature of the flow
at larger Re, as described by Chiarini et al. (2022a) at Re = 3000 in the turbulent regime.
A further difference between the two flows is that for the blunt flat plate, the 3-D instability
is exactly subharmonic, since the base flow does not satisfy the present spatio-temporal
symmetry.

To sum up, we propose that this almost subharmonic instability is triggered by the
mutual inviscid interaction of the vortices associated with the recirculation regions
coexisting over the cylinder side, separated by a hyperbolic stagnation point before the
vortex splitting occurs.

5. A second 2-D instability

In this section, the onset of a second 2-D instability for the 2-D periodic base flow past a
rectangular cylinder withA = 5 is described.

When the Reynolds number is increased above Re ≈ 555, the 2-D base flow undergoes
a second 2-D instability. This is seen in figure 14, where the time history of the lift
coefficient C� is shown (figure 14a) for a 2-D simulation at Re = 600, together with its
power spectrum (figure 14b). Unlike at lower Re, figure 14(a) reveals that the flow is no
longer periodic, with the time history containing more than one frequency. The power
spectrum has three main peaks, at f = 0.13542, 0.19118 and 0.25092, corresponding to
St = 0.677, 0.9559 and 1.2546. The intermediate one is present also at lower Re and is
associated with the vortex shedding. The other two peaks, instead, are associated with the
onset of the secondary 2-D instability.

The onset of this instability has been studied with a 2-D Floquet analysis. The same
numerical procedure described for the 3-D case is used, but here the spanwise wavenumber
is k = 0.
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Figure 14. Two-dimensional simulation of the flow past a rectangular cylinder withA = 5 at Re = 600.
(a) Time history of the lift coefficient C�. (b) Power spectrum of C�.

5.1. Floquet multipliers
Figure 15 shows the evolution of the dominant Floquet multipliers for Reynolds numbers
in the range 500 ≤ Re ≤ 550. The branch corresponds to a pair of complex conjugate
multipliers with negative real part and relatively large imaginary part. Increasing the
Reynolds number, |μ| nears the unit circle: at Re = 550 it is μ ≈ (−0.336,±0.912)
corresponding to |μ| ≈ 0.973, indicating that Re = 550 is slightly lower than the critical
Reynolds number of this instability. Figure 15(b) shows that by increasing Re, both |μ|
and Im(μ) increase while Re(μ) decreases slightly. The frequency associated with this
complex conjugate pair is fully consistent with the peaks found in the spectrum for
Re = 600 in figure 14. Indeed, with the Floquet analysis, the perturbation field may be
written as

u(x, y, t) = û(x, y, t) eσ t,

p(x, y, t) = p̂(x, y, t) eσ t,

}
(5.1)

where {û, p̂} is the 2-D Floquet mode with period T , and σ is the eigenvalue associated
with μ:

σ = 1
T

log(μ). (5.2)

At Re = 550 (the closest to criticality), the Floquet exponents associated with this mode
are σ = (−0.0053,±0.3682). Therefore, the {u, p} perturbation field is characterised by
a frequency fT ± f2D – where fT = 0.1914 indicates the shedding frequency, and f2D =
Im(σ )/2π – that corresponds to f = 0.1328 and f = 0.2500 (or St = 0.6640 and St =
1.25), which are very close to the values found in the spectrum of C� at Re = 600 (see
figure 14b).

From the values of these Floquet multipliers at different Re, one can extrapolate the
critical Reynolds number of the onset of this instability, i.e. Rec3, as the Re at which μ
crosses the unit circle. By using a second-order extrapolation, we found Rec3 ≈ 555.

5.2. Structural sensitivity
Figure 16 plots the instantaneous sensitivity at four times within half of the shedding
period, i.e. t/T = 0, 0.15, 0.32 and 0.4. As for the 3-D case, the sensitivity indicates
that the wavemaker is localised close to the cylinder, and goes to zero both upstream
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Figure 15. Floquet analysis of the secondary 2-D instability of the flow past a rectangular cylinder withA =
5. (a) Least stable Floquet multipliers at Re = 500, 525 and 550; the continuous line represents the unit circle.
(b) Dependence of |μ|, Re(μ) and Im(μ) on Re.

and downstream. At all times, the largest sensitivity is where the streamlines have large
curvature. For a more detailed description, we focus on the upper side of the cylinder.
In figure 16(a), corresponding to t/T = 0, a large sensitivity is observed near the LE
corner, suggesting a link to the Kelvin–Helmholtz instability of the separated shear layer.
At larger t/T , the largest values are shifted within the separated shear layer and in the
main recirculating region close to the cylinder side, in the reverse boundary layer just
before the separation point (see figure 16b). At even larger t/T , the structural sensitivity
further highlights the second region, indicating its relevance in the onset of the instability,
until the vortex splitting occurs (see the top region of the flow in figures 16c,d). Finally, at
t/T = 0.4, the largest sensitivity is in the upstream part of the newly formed vortex shed
downstream, close to the cylinder vertical side.

6. Conclusions

The 3-D instability of the flow past a rectangular cylinder has been studied with Floquet
analysis and DNS. The aspect ratio of the cylinder is A = 5, a value that defines the
international benchmark of the aerodynamics of a rectangular 5 : 1 cylinder, or BARC.

The Floquet analysis has brought to light a new quasi-subharmonic (QS) unstable mode,
so far undetected for other bluff bodies. A true codimension-one subharmonic mode
cannot exist owing to the symmetries governing the base flow (Blackburn & Lopez 2003;
Marques et al. 2004; Blackburn et al. 2005). However, a very small flow asymmetry is
observed to lead to a generic subharmonic mode. The Reynolds number at which the
QS mode first becomes unstable is Rec,2 ≈ 480, and its wavelength is λ = 2π/k ≈ 3.
Unlike the unstable modes of the flow past circular cylinders (Barkley & Henderson 1996),
short rectangular cylinders (Blackburn & Sheard 2010; Choi & Yang 2014) and elongated
cylinders without vortex shedding from the LE (Ryan et al. 2005), this is not an unstable
mode of the wake; in fact, its perturbation field develops upstream of the TE, over the
cylinder side. This suggests that the scenario for 3-D instabilities valid for short rectangular
and circular cylinders and for elongated cylinders with smooth LEs cannot be generalised
to every time-periodic flow past 2-D bluff bodies, even when the flow possesses a reflection
symmetry with respect to the wake centreline.

The structural sensitivity has shown that the wavemaker of the QS mode is localised over
the cylinder side. A detailed inspection of the instantaneous sensitivity has connected the
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Figure 16. Structural sensitivity of the second 2-D instability at Re = 550. Spectral norm of the tensor field
I and streamlines of the base flow at four times along the shedding cycle. Grey/green diamonds indicate
elliptic/hyperbolic stagnation points.

triggering process to the interaction between the two recirculating regions that coexist over
the cylinder side before the LE vortex shedding. We have also provided an interpretation
of the physical mechanism that triggers this unstable mode: despite some clues, an elliptic
instability would be consistent with neither an almost subharmonic mode, nor its absence
at lowerA, where isolated elliptic-shaped streamlines over the cylinder side still exist. Our
conclusion therefore is that this instability is triggered by the mutual inviscid interaction
of the two recirculating regions present simultaneously over the cylinder side at a given
time. This mechanism, first proposed by Pierrehumbert & Widnall (1982) and Robinson
& Saffman (1982), leads to an unstable, almost subharmonic 3-D mode, and is fully
consistent with the present results. The same triggering mechanism is responsible for
the transition to three-dimensionality in the flow over a blunt flat plate. In this case,
however, the 3-D instability of the Kelvin–Helmholtz vortices shed from the LE is exactly
subharmonic (Chaurasia & Thompson 2011; Huang et al. 2017), since the base flow does
not satisfy the spatio-temporal symmetry.
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Appendix. Sensitivity of the results to domain size and grid resolution

In this appendix, the dependence of the results on the domain size and grid resolution
is addressed. The complete Floquet analysis for Re = 500 and k = 2.1 is repeated, by
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varying the extent of the computational domain and the spatial resolution. In the first case,
the size of the domain is increased in the streamwise and cross-stream directions from
(Lx, Ly) = (75D, 40D) up to (Lx, Ly) = (100D, 80D), while the same grid resolution is
adopted. In the second case, the size of the domain is kept constant, but the number of
elements is increased by approximately 60 %, increasing mainly the resolution near the
cylinder and in the wake region. The simulation with increased grid resolution predicts a
shedding period within 0.19 % of the value predicted by the coarser grid, while the pair of
complex conjugate Floquet multipliers associated with the detected unstable mode varies
from (−1.087,±0.000816) to (−1.024,±0.000398), corresponding to a variation of |μ|
within 5.5 %. The simulation with the larger computational domain, instead, predicts a
shedding period within 0.26 % of the value predicted with the smaller domain, while the
unstable Floquet multipliers are (−1.047,±0.000522), corresponding to a variation of
|μ| within 3.7 %. However, the almost subharmonic nature of the unstable mode and the
physical mechanism responsible for its onset are well described by all the considered grids.

To consider further the influence of the blockage on the unstable mode, two additional
simulations are also carried out by decreasing and increasing the size of the domain in
the cross-stream direction from Ly = 40D to Ly = 30D and Ly = 120; they correspond to
a blockage of 3.5 % and 0.8 %, respectively. For both cases, the same spatial resolution
adopted in the regular grid is used near the cylinder. For the larger and smaller blockages,
the predicted shedding period is respectively within 0.51 % and 0.08 % of the value
predicted by the regular grid. The Floquet multipliers associated with the unstable mode,
instead, are μ = (−1.035,±0.00050) for Ly = 40D, and μ = (−1.009,±0.000375) for
Ly = 120D, corresponding to a variation of |μ| that is within 4.7 % and 7.1 % the value
predicted by the regular grid.

The dependence of the 3-D simulation on the the grid resolution is addressed by running
an additional simulation on a coarser grid with Nx = 674, Ny = 489 and Nz = 150.
In this case, the frequency associated with the vortex shedding is St ≈ 0.965, while
that associated with the 3-D instability is St ≈ 0.482. Compared to the finer grid, this
corresponds to a variation of approximately 0.4 % and 0.53 %.
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