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The role of streamline curvature-driven favourable pressure gradients in modifying the
turbulence structure of a Mach 4.9, high-Reynolds-number (Reθ = 43 000) boundary
layer is examined. Three pressure gradient cases (β = (dp/dx)(δ∗/τw)= 0.07,−0.3 and
−1.0) are characterized via particle image velocimetry. The expected stabilizing trends
in the Reynolds stresses are observed, with a sign reversal in the Reynolds shear
stress in the outer part of the boundary layer for the strongest favourable pressure
gradient considered. The increased transverse normal strain rate and reduced principal
strain rate are the primary factors. Reynolds stress quadrant events are redistributed,
such that the relative differences between the quadrant magnitudes decreases. Very
little preferential quadrant mode selection is observed for the strongest pressure
gradient considered. Two-point correlations suggest that the turbulent structures are
reoriented to lean farther away from the wall, accompanied by a slight reduction
in their characteristic size, consistent with previous flow visualization studies. This
reorientation is more pronounced in the outer, dilatation-dominated region of the
boundary layer, whereas the alteration in structure size is more pronounced nearer the
wall, where the principal strain rates are larger. In addition, integration of a simplified
form of a Reynolds stress transport closure model provided a framework to assess the
role of the strain-rate field on the observed Reynolds shear stresses. Given the simple
geometry, the present data provide a suitable test bed for Reynolds stress transport and
large-eddy model development and validation.
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1. Introduction
Over the past few decades, considerable theoretical and experimental studies have

been carried out to characterize boundary layers experiencing global mechanical
distortions. The effects of convex curvature have attracted significant interest in
particular, due to their often unexpected and spectacular stabilizing influence on
flow properties across the boundary layer (see e.g. Bradshaw 1969, 1973). It is now
fairly well known that such curvature inhibits turbulence, with the turbulence levels
and wall friction decreasing relative to their canonical flat-plate values. Whereas for
laminar flows, these effects have been shown to be first order, for turbulent flows
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the effects of wall curvature have been shown to be significantly larger; an order of
magnitude larger than expected (see Bradshaw 1973). Spina, Smits & Robinson (1994)
even postulated that relaminarization of part of the boundary layer is possible if the
favourable pressure gradient is strong enough.

Although it has been known for some time that streamline curvature greatly
affects the turbulence organization, few studies have carried out detailed whole-
field measurements of this reorganization, and even fewer in the compressible flow
regime. Under compressible flow conditions, there are additional complicating factors
that must be considered. In addition to a favourable streamwise pressure gradient
(∂p/∂x< 0), a surface-normal pressure gradient (∂p/∂y> 0), and streamwise curvature
effects, where p is the static pressure and x and y are the wall-parallel and wall-
normal directions, respectively; there is also bulk dilatation (Uk,k > 0), which has
been shown to be a dominant strain rate in supersonic turbulent boundary layers
(see e.g. Spina et al. 1994). Unsurprisingly, many authors have developed parameters
to characterize these effects. The ratio of the extra strain rates (i.e. ∂U/∂x, ∂V/∂y,
∂V/∂x, where U and V are the corresponding streamwise and transverse velocity
components, respectively) to the principal strain rate ∂U/∂y, called the distortion
parameter dmax , was defined by Bradshaw (1974) as a means to classify a pressure
gradient. A distortion is generally considered mild if dmax < 0.01 and strong for
dmax > 0.1. If the distortion is applied for a time that is comparable to an eddy lifetime,
Smits et al. (1989) suggested that an impulse parameter, which is a time-integrated
strain rate, may be a better choice. Spina et al. (1994) defined two impulse parameters
to characterize the distortion strength. For bulk dilatation, Ip = γ −1 ln(p2/p1) was
defined, where the subscripts 1 and 2 correspond to the pressure before and after the
imposed pressure gradient, respectively, and γ is the ratio of specific heats (=1.4 for
air). For streamline curvature, Iφ = 1φ was defined as the change in the wall angle,
where φ is the local wall angle (in radians). Although these parameters have found
utility in the characterization of high-speed turbulent boundary layers, it is generally
acknowledged that their simple addition is unlikely to hold in any quantitative sense
(Smits & Dussauge 2006).

A number of authors have experimentally investigated the influence of convex
curvature-driven pressure gradients on high-speed turbulent boundary layers. Arnette,
Samimy & Elliott (1995, 1998), experimentally tested four favourable pressure
gradient cases at Mach 3 (centred and gradual expansions of 7 and 14◦) using a
combination of flow visualization and laser Doppler velocimetry (LDV). Similarly,
Luker, Bowersox & Buter (2000) carried out detailed experiments on the mean and
turbulent flow properties of a favourable pressure gradient boundary layer at Mach 2.9
using LDV. In related work, Ekoto et al. (2009) characterized two favourable pressure
gradients at Mach 2.9, also incorporating the effects of surface roughness, by means
of particle image velocimetry (PIV). Collectively, these studies showed that the axial
turbulence intensities can decrease up to 70–90 % depending on the strength of the
favourable pressure gradient.

One interesting observation to arise from this work was the sensitivity of the
Reynolds shear stress to favourable pressure gradient. For example, Luker et al.
(2000) observed an approximately 25 % reduction of Reynolds shear stress in the
near-wall region, compared with the equivalent zero-pressure-gradient (ZPG) value.
Yet the Reynolds shear stress response throughout the boundary layer was not the
same. In the outer region (say y/δ > 0.5, where δ is the boundary layer thickness),
the kinematic Reynolds shear stress was typically negative, whereas the principal strain
rates remained positive. A similar trend had been observed by Arnette et al. (1998).
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The strain rate and associated extra production measurements of Luker et al. (2000)
indicated that the overall turbulence production was negative in the outer half of the
boundary layer, implying that energy was being fed from the fluctuating flow field
back into the mean flow.

Conclusions have also been drawn regarding the effects of convex curvature on the
coherent motions within the compressible turbulent boundary layer. The data obtained
by Luker et al. (2000) indicated that the favourable pressure gradient resulted in
lower turbulence levels with increased intermittency, which was interpreted to indicate
that the large-scale structures were disintegrating into smaller ones. Using Rayleigh
condensate scattering under the same flow conditions as the present study, Humble,
Peltier & Bowersox (2012) also observed an increase in intermittency with favourable
pressure gradient, with a movement of the onset of intermittency towards the edge of
the boundary layer. Together with an overall decrease in intermittent flow region, they
interpreted this to be associated with the less frequent penetration of irrotational fluid
deep into the boundary layer, consistent with the idea that the boundary layer loses its
ability to entrain free stream fluid as it negotiates the expansion.

Others have invoked arguments based on the conservation of angular momentum to
explain the response of the flow structures, suggesting that when fluid elements pass
through a supersonic expansion, their volume increases, resulting in reduced turbulence
properties (see e.g. Dussauge & Gaviglio 1987; Arnette et al. 1998). Although the
precise response(s) of the coherent motions to convex curvature remains an open
question, the shear stress is mainly associated with the large-scale structures, and
since the shear stress has been shown to reduce and/or change sign, it is reasonable
to surmise that the structures are less coherent and that there is a redistribution of
energy, despite their survival. However, since most of the available supersonic data
that include both mean flow and turbulence measurements have been acquired between
Mach 2–3, the effects of compressibility on the above trends remain unclear.

The aim of the present study is to experimentally examine the role of streamline
curvature driven favourable pressure gradients in modifying the turbulence structure
in a Mach 4.9, high-Reynolds-number (Reθ = 43 000) boundary layer. Two favourable
pressure gradients are compared with a canonical ZPG boundary layer, as well as with
several lower-Mach-number studies in the literature. The steps in the study are to: (i)
characterize the influence of the pressure gradients on the mean velocity and strain-rate
field; (ii) quantify the role of the strain-rate field on the Reynolds stress turbulence
statistics; and (iii) analyse the effect of the strain rates on the underlying turbulence
structure via statistical analyses.

2. Experimental facility and flow conditions
2.1. Flow facility

The experiments were performed in the high-speed blow-down wind tunnel located
at the National Aerothermochemistry Laboratory (NAL) at Texas A&M University.
The two-dimensional wind tunnel nozzle was fabricated from stainless steel with
exit dimensions of 7.62 cm × 7.62 cm. A schematic of the facility is shown in
figure 1(a). The upstream (location 1) and downstream (location 2) measurement
locations were 15.9 cm (±0.05 cm) and 29.8 cm (±0.05 cm) downstream from the
nozzle exit, respectively. The half-nozzle arrangement produced a nominally Mach
4.9 turbulent boundary layer flow along the test section floor. The total pressure in
the settling chamber was P0 = 2345 kPa (±20 kPa) and the stagnation temperature
was T0 = 380 K (±5 K). These were monitored using an Endevco Model 8540
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Flow
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FIGURE 1. Schematic of the experimental arrangement. (a) Schematic of the experimental
set-up (flow direction is to the right, whereas the laser light sheet entered from the top). (b)
Wall geometry of the favourable pressure gradient models (ZPG, WPG, SPG). Locations 1
and 2 depict measurement locations, 15.9 and 29.8 cm downstream of the nozzle exit plane,
respectively. Note the exaggerated ordinate for clarity.

Model M∞ δ (mm) Taw (K) Uτ (m s−1) Ip Iφ β Reθ Reδ2

ZPGa 4.9 7.8 342c 39 0.0d 0.0 0.07d 43 000 9000
WPGb 4.9 10.0 320 37 −0.08 0.03 −0.3 55 000 11 000
SPGb 4.9 13.4 317 39 −0.49 0.18 −1.0 74 000 13 000

TABLE 1. Flow conditions: ameasurement location 1; bmeasurement location 2 (see
the text for details); crecent temperature-sensitive-paint measurements have shown the
wall temperature to be slightly below adiabatic (∼321 K) (see Humble et al. 2012);
destimated from boundary layer growth within the test section.

0–3048 kPa high-temperature pressure transducer (±0.75 % manufacturer’s quoted
uncertainty) and an Omega JQSS thermocouple, amplified by an OMNI AMP-
IV thermocouple amplifier, respectively. Static pressure within the test section
was measured with an MKS Series 902 0–101 kPa pressure transducer (±1 %
manufacturer’s quoted uncertainty), and was located on the sidewall approximately
5 cm downstream of the nozzle exit. Signals from the thermocouple and pressure
transducers were transmitted to a National Instruments SC-2345 signal conditioner
block, and collected by a National Instruments 6036E data acquisition board.

Three pressure gradient models were considered in the present study: ZPG, weak
pressure gradient (WPG) and strong pressure gradient (SPG). The flow conditions
are listed in table 1. Here M∞ is the upstream (pre-expansion) free stream Mach
number. The boundary layer thicknesses were estimated from the measured velocity
profiles based on a 99 % free stream velocity U∞ criterion. Because of the relatively
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X1 (cm) X2 (cm) A B

WPG 24.54 63.54 6.42× 10−5 −3.757×10−3

SPG 24.54 39.64 1.107× 10−3 −2.507×10−2

TABLE 2. Model geometry and pressure gradient parameters.

small field of view and boundary layer growth, it was relatively straightforward to
calculate the boundary layer thickness. The wall shear-stress values were estimated by
considering the slope of the logarithmic layer within the boundary layer via the van
Driest II transformation. The Clauser (1956) equilibrium pressure gradient parameter,
β = (dp/dx)(δ∗/τw), was deduced, where δ∗ is the (incompressible) displacement
thickness and τw is the wall shear stress. The pressure gradients within the field of
views were determined from measured wall pressures obtained from multiple wall
pressure taps along each model. The incompressible momentum thickness Reynolds
numbers are given by Reθ = ρeUeθ/µe and Reδ2 = ρeUeθ/µw, respectively, where ρ
is the density, θ is the (incompressible) momentum thickness and µ is the dynamic
viscosity.

2.2. Curvature-driven favourable pressure gradients
The streamline curvature-driven pressure gradient wind-tunnel models, sketched in
figure 1(b), were designed to produce significant extra strain rates on boundary layers
of interest to an ongoing campaign to study the response of compressible turbulent
boundary layers to global mechanical distortions (see Ekoto et al. (2009) for further
details). The curved walls were machined to match the following polynomial profile:
y = A (X − X1)

3+B (X − X1)
2, where A and B are the polynomial coefficients, X = 0

indicates the location of the nozzle exit and X1 is the axial location where the
curvature begins. Table 2 lists the geometric parameters, as well as X2, the axial
location where the wall curvature ends.

2.3. Particle image velocimetry
Two-component planar PIV was utilized to obtain the velocity vector fields. The flow
was seeded with dioctyl phthalate (DOP) using a TSI, Inc. (2003) model 9306 six-jet
atomizer, which created particles with an average diameter of approximately 250 nm
(manufacturer’s specification). The atomizer was housed inside a seeder box and was
pressurized above the tunnel settling chamber pressure. The seeder box was then
connected to a strut between the wind tunnel settling chamber and nozzle contraction
using 1.27 cm (0.5 in) aluminum tubing. The strut was located along the centreline
near the nozzle floor to concentrate the seeding within the region of interest.

The ability of the particles to faithfully track the flow is an important issue in high-
speed flow. The Stokes number, St = τp/τflow, may be used to characterize the fidelity
of the tracer particles, where τp is the particle response time and τflow is a characteristic
flow time scale. For accurate flow tracking at the time scale of τflow, it is a necessary
condition that St � 1. The temporal response of the present particles was estimated
assuming Stokes’ flow by τp = (d2

pρp/18µ)(1 + 2.76Knp), where the subscript p
represents the seed particle’s properties and Knp =M/Rep

√
γπ/2≈ 0.54 is the particle

Knudsen number, based on the free stream conditions and the manufacturer’s specified
particle diameter, assuming monodispersion (see Raffel et al. 2007). Assuming a
characteristic flow time scale, τflow = δ/U∞, then St ∼ 0.07. The particles are therefore
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Model Measurement
location

Resolution
(pixels mm−1)

Field of
view

(mm×mm)

Final
window

size (%δ)

Camera rotation
(clockwise, deg.)

ZPG 1 78.5 20.4× 15.3 10.5×10.5 0.0
WPG 2 65.1 24.6× 18.4 9.8× 9.8 1.6
SPG 2 65.2 24.6× 18.4 7.3× 7.3 10.3

TABLE 3. PIV measurement parameters.

considered to accurately track the flow, at least at the time scale of τflow. However,
because the above Stokes formula is valid only for solid spheres, it must be modified
for the present droplets due to the different boundary condition. This results in a
drag coefficient, Cd, that is 2/3 the Stokes flow value for solid spheres (see Mei
1996), meaning that the time constant is 3/2 longer, giving St ∼ 0.11. Naturally, to
track at smaller time scales, typically associated with smaller-scale structures, then this
condition will no longer hold. Hence, the present observations may be biased toward
larger scales. As such, the present study focuses primarily on the large-scale processes
away from the near-wall region (see § 2.4). The agreement between the present data
and the literature in figure 2(a,b) indicate that the particle tracking is acceptable
down to at least y/δ = 0.2 before significant issues are encountered. In addition, it
should be noted that the particles may not be monodispersed, and their response time
was not independently verified. Recently, however, Ecker et al. (2012) experimentally
investigated the particle step response of DOP in a Mach 2 facility and demonstrated
acceptable particle response for DOP seed up to 0.65 µm agglomeration. Therefore,
the theoretical estimate of the present study appears acceptable.

The flow was illuminated by a dual port/dual head variable frequency New-Wave
Solo 120 XT PIV laser system. The system provided a stable, high-energy light pulse
at 532 nm with a maximum energy output of 120 mJ per head with a pulse width of
4 ns (±1 ns). Beam splitting optics were placed at the outlets of the two lasers, in
order to align the beams into a single path. A cylindrical lens was positioned in the
beam path to create a uniform laser sheet that was approximately 50 mm wide and
0.5 mm thick. Knife-edge filters were used to remove the low-energy fringes and to
provide a near top-hat light intensity distribution within the test section. The acrylic
tunnel floor models also helped reduce laser light reflections at the wall.

The particle images were recorded with a 14-bit Cooke Corporation PCO 1600
charge-coupled device (CCD) camera, with a 1600×1200 pixel resolution. The camera
was equipped with a Nikon AF Micro-NIKKOR 60 mm f /2.8D lens. The f -number
was set to 5.6 to optimize the diffraction spot size and avoid peak-locking. The camera
was rotated 1.6 and 10.3◦ for the WPG and SPG models, respectively, to keep the field
of view parallel to the local model surface. Image acquisition was carried out using
Cooke CamWare software (v. 2.19, build 0141). The timing of each laser pulse and the
camera was driven by a Quantum Composers, Inc. Model 9618 Digital Delay-Pulse
Generator. A summary of the PIV measurement parameters for each pressure gradient
model is given in table 3.

Velocity vector fields were obtained using the dPIV 32-bit analysis code version
2.1 from Innovative Scientific Solutions, Inc. (2005). A two-step adaptive correlation
calculation was carried out using successive square interrogation window sizes
of 128 × 128 and 64 × 64 pixels with a 50 % overlap factor. The final interrogation
window sizes, as a percentage of the respective boundary layer heights are shown in
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FIGURE 2. Incoming boundary layer properties (location 1). (a) Mean velocity with inner
scaling. The solid line shows the composite formula of Spalding (1961), the dashed line
shows the log law. (b) Turbulence intensities using Morkovin’s scaling. (c) Reynolds shear
stress distribution. The dashed line shows the incompressible results of Klebanoff (1955).

table 3. In addition, correlation multiplication (50 % overlap) and consistency filtering
was activated on all four maps adjacent to the centre map to minimize spurious
correlation peaks. Statistical quantities and all subsequent analyses were computed
using in-house computer codes written in FORTRAN and MATLAB. Spurious
vectors determined by the filters were removed. At least 90 % of the vectors were
determined to be valid throughout most of the boundary layer, although closer to the
wall (y/δ < 0.3), the number of valid vectors decreased to 70–80 %. An ensemble-
average filter of three standard deviations was utilized for the time-averaged statistics.
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Variable Uncertainty (%)

εx/LZPG, εy/LZPG 3.7
εδ/δZPG 3.5
εU/U∞ 0.3
εu′u′/u

′u′r.m.s., εv′v′/v
′v′r.m.s. 5.5

εu′v′/u
′v′r.m.s. 9.9

εdu/dx/ (du/dx)r.m.s., εdu/dy/ (du/dy)r.m.s. 2.0

TABLE 4. Estimated measurement uncertainties.

In the present study, 3000 vector fields were acquired at each measurement location.
The measurement grid consisted of 49 × 34 data points, with a (final) vector spacing
of 0.40, 0.49 and 0.49 mm for the ZPG, WPG and SPG models, respectively. In
addition, the free stream pixel displacements as a fraction of the final interrogation
window sizes were approximately 0.5, 0.4 and 0.4 for the ZPG, WPG and SPG cases,
respectively. Finally, profile data were streamwise-averaged over approximately the
centre 20 % (4–5 mm) of the field of view to aid statistical convergence, although this
did not change the conclusions drawn. For example, the axial averaging accounted for
a maximum normalized difference of only 4× 10−6 for the most sensitive statistic, u′v′
(SPG).

2.4. Measurement uncertainties
Measurement uncertainties for the present study are summarized in table 4 and were
accumulated with a Euclidean (L2) norm. The axial and transverse position uncertainty
within the camera field of view were estimated to be within 2 pixels (∼0.03 mm) on
the camera array, and were normalized using the ZPG final interrogation window
size (LZPG ∼ 0.82 mm). Boundary layer thickness uncertainty accounted for the
uncertainties in position and velocity, where the sensitivity to the velocity uncertainty
was estimated with a 1/7th power law. To estimate the uncertainty in the statistical
quantities, a 95 % confidence interval was used, determined assuming a distribution
of 3000 samples (see Benedict & Gould (1996) for further details). Because the
magnitude of the transverse velocity was comparatively small, the magnitude of the
transverse velocity uncertainty was taken to be the same as the axial velocity. Note
that the tabulated fluctuating velocity correlation uncertainty is only for y/δ > 0.1;
nearer the wall, the uncertainties were considered unreliable due to low seeding
density and appreciable laser light reflections. The velocity gradient uncertainty was
calculated using a combination of the uncertainties in spatial position and mean
velocity measurements. The spatial difference uncertainty only accounted for the
conversion error from the physical length scale to the PIV image pixels. The mean
velocity uncertainty included the value listed in table 4. Owing to the limitations of
PIV to capture small-scale effects in these flows, the present observations may be
biased toward larger scales.

2.5. Flow-field two-dimensionality
In order to assess the flow two-dimensionality of the incoming boundary layer, PIV
measurements were acquired at three spanwise locations (z/δ =+1.6, 0.0,−1.6, where
z/δ = 0 is the centreline) at the upstream measurement location (location 1). The PIV
data were limited to this spanwise range due to the finite size of the seeding volume
that could be achieved. The spanwise velocity profiles showed that the flow was
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uniform across the measured region to within approximately 0.5 % Ue, where Ue is the
edge boundary layer velocity. These data indicate that the flow is symmetric about the
centreline, with minimal change within the spanwise region considered. Accordingly, it
is reasonable to assume that the flow statistics are nominally homogeneous along the
centreline. Efforts currently are underway to assess the spanwise organization of the
expansion region.

3. Results
3.1. Incoming boundary layer

As the prelude to the main results, the incoming boundary layer is characterized
in detail. Van Driest II scaling has proven effective in collapsing supersonic mean
boundary layer velocity profiles (Van Driest 1956). The ZPG mean velocity profiles,
utilizing this van Driest II scaling, are plotted with inner variables in figure 2(a).
Included are the Mach 2.9, Reδ2 = 9000 results of Luker et al. (2000). The density
variation was determined using the Crocco–Busemann relation, with a constant
recovery factor, r = 0.89. The solid line is Spalding’s (1961) composite law of the
wall, in combination with Coles’s (1956) wake function with the wake parameter (Π )
set to 0.55. The dashed line shows the logarithmic layer equation, u+ = κ−1 ln y+ + B,
where κ is the von Kármán constant and B is the intercept. The wall shear stress
in each case was determined using a slope in the logarithmic region as κ = 0.4 and
B= 5.5 as described in the next paragraph.

The estimation procedures for the friction velocity are similar to those of Lewis,
Gran & Kubota (1973), where here the fits were limited to the log region. The
resulting friction velocities are summarized in table 1. Referring to figure 2(a), it
is clear that only a few points are within the logarithmic region. Hence, the ZPG
data were compared with the van Driest II theory (Van Driest 1956) described in
Hopkins (1972), where the incompressible skin friction relation, Cf ,inc = 0.456Reδ−1/4,
of Schultz-Grunow (1940) as shown in Schetz (1993) was used. Specifically, Cf =
Cf ,inc(FthReδ)/Fc, where Fth = µe/µw, Fc = (Taw − 1)/ (sin−1A+ sin−1B)

2
, A = B2

1/B3,
B= B2/B3, B1 =√(Taw − Te)/Tw, B2 = Taw/Tw− 1 and B3 =

√
4B2

1 + B2
2. The resulting

friction velocity was within 2 % of that in table 1. This agreement is considered
fortuitous as the van Driest II theory is generally accepted to be accurate to within
10 % (see Bradshaw 1977). It has also been reported that B and κ depend on pressure
gradient (McDonald 1968; Nagib & Chauhan 2008). Following McDonald, the relevant
parameter is α0 = (ν/ρu3

τ )(∂p/∂x), which is equal to ν/(uτδ)β. For the present SPG
flow, α0 peaks at −0.0016, which suggests a negligible effect on the law-of-the-wall
constants.

Morkovin (1961) scaling removes, to a certain extent, compressibility effects from
wall-bounded turbulence data, whereby the mean density variation across the boundary
layer is taken into account. The present ZPG velocity fluctuation data are compared
with previous experimental studies ranging from M = 0 to 2.9 in figure 2(b,c), where
the friction velocity follows from the previous paragraph. Also shown are the M = 4.9
direct numerical simulation (DNS) data of Duan & Martin (2011). The present
turbulence intensity data, in figure 2(b), agree with expected trends to within the
scatter of the data. For the Reynolds shear stress comparison in figure 2(c), the
scatter among the studies is considerably larger, and the present data tend toward
under prediction. A primary difficulty with this comparison is the lack of a direct
measurement of the wall shear stress for the present study. However, it appears
that both the van Driest II and Morkovin’s scaling, derived based on the weak
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FIGURE 3. Mean velocity distributions. Arrows indicate appropriate axes: (a) axial velocity
(inner and outer scaling); (b) transverse velocity.

compressibility hypothesis, remain valid for the present hypersonic boundary layer,
consistent with the finding of Duan & Martin (2011). The present ZPG data, which
were acquired ∼20δ downstream of the nozzle exit, are considered representative of
a ZPG flat plate boundary layer, and consequently provide a suitable basis for the
following favourable pressure gradient comparisons.

3.2. Mean velocity and strain rates

Velocity profile data, with both inner and outer scaling, for the three pressure gradients
are summarized in figure 3(a). The inner variable scaling is plotted on the left and
bottom axes, whereas the defect law scaling is plotted on the upper and right axes.
Density scaling was not employed as the data were all acquired at nominally the same
Mach number. For all three test cases, the results show a linear collapse for y+ < 200.
For y+ > 200, the profiles show the expected reduction in the wake function as the
favourable pressure gradient strength increases (see, e.g., White 2006). With defect
scaling, the ZPG and WPG boundary layer profiles are similar, although the WPG has
a slightly lower defect in the outer half of the boundary layer. As anticipated, the SPG
boundary layer profile has a smaller defect over most of the boundary layer, indicating
a fuller velocity profile. This was also observed by Luker et al. (2000). The scaling
of Zagarola & Smits (1998) showed the same qualitative behaviour as the classical
scaling shown in figure 3(a). For completeness, the transverse velocity profiles are
plotted in figure 3(b); these data show a near linear increase in transverse velocity with
distance from the wall.

The mean strain rates were computed using central differencing and are summarized
in figure 4. The principal strain rate [Sxy = (∂U/∂y + ∂V/∂x)/2] and (in plane) bulk
dilatation (∂U/∂x+∂V/∂y) for the ZPG and SPG are compared in figure 4(a). Notably,
in the outer 75 % of the boundary layer, the principal strain rate for the SPG flow is
substantially reduced, by ∼0.05 in the units plotted. For the WPG data, however, the
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FIGURE 4. Mean strain rate profiles: (a) Sxy and ∇ ·V ; (b) axial strain rates.

reduction is more subtle, yet systematic, at ∼0.01. For y/δ < 0.25, the principal strain
rates are similar for all three cases.

A second important feature, shown in figure 4(a), is the magnitude of the SPG
bulk dilatation, which exceeds the principal strain rate in the outer 60 % of the
boundary layer by approximately 0.04 on average. This suggests that bulk dilatation
is a dominant extra strain in the outer part of the boundary layer, consistent with
the work of others (see, e.g., Dussauge & Gaviglio 1987). The WPG results are
qualitatively similar to the SPG in the outer region, where the dilatation is nominally
0.04. The axial gradients, dU/dx and dV/dx, are shown in figure 4(b), and are
significantly smaller than the transverse gradients. The only substantial gradient is
dV/dx for the SPG flow, which increases in magnitude across the boundary layer to
−0.03 (in the units plotted). Luker et al. (2000) found that the production associated
with this gradient was significant enough to change the sign in the overall production.

Examination of the individual strain rates reveals that dV/dy accounts for most of
the SPG bulk dilation, where the magnitude of (dU/dx)/(dV/dy) is nominally 5–10 %.
A similar ratio was also reported by Ekoto et al. (2009). The contributions for the
WPG case are more balanced, where the magnitude of (dU/dx)/(dV/dy) is nominally
10–50 %. Because dU/dx remains quite similar for both the WPG and SPG cases
(cf. Figure 4b), then it can be deduced that it is the dV/dy term that is sensitive
to the pressure gradient. Furthermore, because the transverse velocity varies almost
linearly with distance from the wall; then dV/dy is constant and explains why the bulk
dilatation is practically constant throughout almost all of the boundary layer that can
be resolved. We shall see the significance of this term in the Reynolds stress transport
mechanisms in § 4.

3.3. Reynolds stresses
The Reynolds stresses for the ZPG, WPG and SPG cases are presented in
figure 5(a–c). These data summarize the response of the turbulence within the
boundary layer to the streamline curvature-driven pressure gradients. Although the
results are presented in a wall-normal coordinate system, the role of the coordinate
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FIGURE 5. Reynolds stress profiles: (a) axial component; (b) transverse component;
(c) shear component.

system on the results was examined by transforming the ZPG data from the upstream
coordinate system to the downstream SPG body intrinsic system. For the WPG, the
rotation was only 1.6◦, and negligible. Even though for the SPG the rotation was
10.3◦, the axial and transverse stresses showed only a modest dependency, with a peak
non-dimensional change of approximately 3×10−4 (in the units plotted). The Reynolds
shear stress, however, showed a relatively large reduction of approximately 85 %.

The distribution of the axial turbulence stress within the boundary is given in
figure 5(a) for the various test cases considered. A systematic reduction in the
axial stress with increasing favourable pressure gradient strength can be observed
in the lower half of the boundary layer. For the SPG case in particular, there is a
significant reduction in axial stress for y/δ < 0.5. A slight increase in the outer region
is observed for the pressure gradient cases, which may be a result of increased velocity
fluctuation scales due to bulk dilatation (see § 4). Nevertheless, the general trends are
in qualitative agreement with the Mach 2.9 data of Luker et al. (2000) and Ekoto et al.
(2009).

The transverse turbulence stresses are presented in figure 5(b). They show a
systematic increase across the boundary layer as the pressure gradient strength
increases, but they remain substantially lower than the axial turbulent stresses. Again,
the present SPG trends are similar to those of Ekoto et al. (2009) and Luker et al.
(2000).

The Reynolds shear stress profiles are depicted in figure 5(c). The expected
systematic decrease with increasing pressure gradient strength is observed, with the
SPG turbulent shear stress showing a dramatic reduction. For y/δ > 0.4, the SPG
Reynolds shear stress is practically zero, and even slightly negative. These slightly
negative values are an important result: they indicate that there may be decaying
turbulent motions in this region of the boundary layer, and that the mean flow may be
extracting energy from the turbulent flow (see also Arnette et al. (1998)). This is also
consistent with the fuller velocity profile in figure 3(a). Similar profiles were obtained
at Mach 2.9 by Arnette et al. (1998) and Luker et al. (2000), although Ekoto et al.
(2009) did not observe a sign change. Referring back to figure 4(a), it is interesting
to note that the Reynolds stress is practically zero in the same region of the boundary
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layer where bulk dilation (in this case essentially dV/dy) exceeds the principal strain
rate (dU/dy).

3.4. Turbulence structure
3.4.1. Reynolds stress quadrant decomposition

The effects of the favourable pressure gradients on the preferred orientation of
turbulent events within the boundary layer may be examined using the quadrant
decomposition technique of Lu & Willmarth (1973). This method has been widely
implemented to study the degree of reoccurrence and strength of dynamic boundary
layer events, such as eddy ejections and sweeps (see e.g. Herrin & Dutton 1997;
Adrian, Meinhart & Tomkins 2000; Panigrahi, Schroeder & Kompenhans 2008; Nolan,
Walsh & McEligot 2010). The velocity fluctuations measured from the PIV data
are used for the quadrant decomposition technique by separating the data into four
possible quadrants: Q1 ‘outward interaction’ events, u′ > 0, v′ > 0; Q2 ‘ejection’
events, u′ < 0, v′ > 0; Q3 ‘inward interaction’ events, u′ < 0, v′ < 0; and Q4 ‘sweep’
events, u′ > 0, v′ < 0, where u′ and v′ are instantaneous velocity fluctuations about the
mean velocity.

In addition, to characterize the orientation of the velocity fluctuations, an
instantaneous shear angle, Ψ = tan−1(v′/u′), is defined. The quadrant decomposition
was carried out at various wall-normal locations for each test case. From these
results, discrete probability density functions (p.d.f.s) may be generated, which indicate
the relative probably of Ψi falling within a certain range of angles. The average
contribution to the velocity correlation for each quadrant was calculated from

(u′v′)i =
1
N

N∑
n=1

[(u′v′)i]n, i= 1 . . . 4, (3.1)

where

4∑
i=1

(u′v′)i = u′v′. (3.2)

Here, N is the number of samples, n is the current sample number and i indexes
the quadrant number. Following Nolan et al. (2010), the quadrant contribution may
be partitioned further, based on the strength of the respective motion within the flow.
For this analysis, a contribution to a quadrant motion is included if |u′v′| > HS|u′v′|ref ,
where HS is the so-called hole-size parameter and |u′v′|ref is a constant reference
shear stress value. The basic idea behind the method is that regions greater than the
reference shear stress may be isolated (see figure 6). When HS = 0, all contributions
to the shear stress are included, and the sum of the four quadrant contributions is the
total turbulent shear stress. As HS is increased, only larger fluctuations are considered.
|u′v′|ref was taken as the average across the ZPG boundary layer of u′rmsv

′
rms, which has

a value of 272 m2 s−2.
Example quadrant decomposition results for the ZPG boundary layer at y/δ = 0.3

are given in figure 6. The scatter plot shows that the Reynolds stress is predominantly
a balance between Q2 and Q4 events. The shear angle p.d.f. shows a well-defined peak
for the shear angle of approximately −10◦, which indicates a consistent orientation
of the velocity fluctuations about the mean flow. This organization is consistent with
previous observations of large-scale turbulent structures within compressible shear
layers (see e.g. Herrin & Dutton 1997). These fluctuations yield negative shear angles

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

89
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.89


200 N. R. Tichenor, R. A. Humble and R. D. W. Bowersox

5

0

–5

50–5 –50 50010–10

10

–10

14

12

10

8

6

4

2

16

0
–100 100

(a) (b)

FIGURE 6. Reynolds stress quadrant decomposition results. (a) Scatter plot showing HS
boundary. When HS = 0, all contributions to the shear stress are included, and the sum of the
four quadrant contributions is the total turbulent shear stress. As HS is increased, only larger
fluctuations are considered. (b) Shear angle. ZPG boundary layer, y/δ = 0.3.

which correspond to Q2 and Q4 events. Similar plots were acquired for locations
across the boundary layer, and it was found that the magnitude of the velocity
fluctuations decreases significantly with distance from the wall, with a significant
grouping near the origin. Yet the instantaneous shear angle appears to be relatively
insensitive to wall-normal location.

The corresponding analyses for the WPG case yield velocity fluctuations of the
same order as the ZPG; however, the structures are less clearly aligned along the ZPG
preferential direction. It is likely that the WPG begins to reorient some of the coherent
flow structures within the boundary layer. The dominant shear angle, however, is still
approximately −10◦ because the WPG has only a modest wall curvature.

In contrast, the Reynolds stress quadrant decomposition analyses for the SPG exhibit
slightly smaller velocity fluctuations compared with the ZPG and WPG, accompanied
by a less-defined dominant shear angle at approximately 0◦. This shift in preferred
shear-angle orientation appears to correspond directly to the rotation of the local wall
normal coordinates relative to the wind tunnel axes (10.6◦). The velocity fluctuations
from the present data, when plotted in this representation, show less organization along
any particular angle, suggesting that they become less correlated with each other. This
is consistent with a decrease in Reynolds shear stress, and the notion that the turbulent
structures are reorganized with favourable pressure gradient.

Wall-normal profiles of the quadrant averaged Reynolds shear stresses were
extracted from the quadrant analysis for each test case to further characterize the
turbulence structure. The normalized Reynolds stress components, as well as the
contribution of quadrant events to the Reynolds shear stress are presented in figure 7.
Considering first the ZPG boundary layer, we can see in figure 7(a) that the Q2
and Q4 events typically have the largest normalized values. These are associated with
ejection and sweep events, respectively, which are known to be dominant processes
in incompressible turbulent boundary layers (see, e.g., Adrian et al. 2000). The
overall observed trends are consistent with low-speed data reported by Lu & Willmarth
(1973), Raupach (1981) and Krogstad & Skare (1995). For example, the present ZPG
data are compared with the results of Krogstad & Skare (1995) (Ue = 24.9 m s−1,
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FIGURE 7. Quadrant decomposition analysis. (a–c) Reynolds stresses normalized by Ue
2: (a)

ZPG; (b) WPG; (c) SPG. (d–f ) Reynolds stress contributions (Hs = 0).
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FIGURE 8. Contributions to u′v′ from Reynolds stress quadrants. Lines are the ZPG results
of Krogstad & Skare (1995) (Ue = 24.9 m s−1, Reθ = 12 600). Symbols for present study as
shown in figure 7(a).

Reθ = 12 600) in figure 8, where the trends of the four quadrant components
are similar. It therefore appears that the present ZPG boundary layer shares
the Q2- and Q4-dominated turbulence dynamics of its incompressible counterpart.
One notable difference for reasons presently unknown is that, in the present study,
the relative contribution of the Q2 ejection events is significantly higher than for the
incompressible data.

The effect of pressure gradient on the quadrant data are presented in figure 7(b,c).
Most notable is an observed reduction in the Q2 and Q4 events throughout the
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boundary layer. The decrease in Q2 is particularly apparent closer to the wall
for the SPG. Normalizing the quadrant events by the total number of events,
N (u′v′)i /N (u′v′)total, is more revealing. Since the physical interpretation of Q4 events
is that they are associated with fluid entrainment into the boundary layer, whereas
Q2 events represent ejections of relatively low-velocity fluid into higher regions of
the boundary layer, figure 7(d) is consistent with the idea that turbulence production
mainly takes place nearer the wall, whereas entrainment processes occur in the outer
part of the boundary layer, much like in incompressible boundary layers.

The data in figure 7(e,f ) show that as the favourable pressure gradient strength
increases, the relative differences between the quadrant contributions decreases. In
particular, very little preferential quadrant mode selection is observed for the SPG
case throughout most of the boundary layer. The number of Q2 and Q4 events
is reduced, and essentially redistributed to Q1 and Q3 events. This suggests that
the quadrant mechanisms associated with fluid entrainment from the free stream, as
well as the ejection of low-velocity fluid near the wall, are no longer dominant, as
presently observed in the PIV plane. This is consistent with the idea that favourable
pressure gradients have a stabilizing influence on the boundary layer, in the sense
that the boundary layer is losing its ability to entrain free stream fluid and transport
it towards the wall. This is also consistent with the observations that the onset of
intermittency moves closer to the boundary layer edge and decreases in extent with
increasing favourable pressure gradient (see Humble et al. 2012). Luker et al. (2000)
also observed that the favourable pressure gradient resulted in increased intermittency,
which was interpreted to indicate that the large-scale structures were disintegrating
into smaller ones. Additional quadrant events involving the out-of-plane motions are
presently unknown.

It is also instructive to consider contributions from only relatively high-intensity
quadrant events within the boundary layer, as shown in figure 9. The relative
significance of the large-scale motions can be seen by comparing the cases when
Hs = 0 in figure 7(d–f ) to figure 9 when Hs > 0. For non-zero values of Hs, the
remaining probability of the Reynolds stress components are significantly lower, as
one would expect. For the ZPG and WPG, the Q2 and Q4 components are only
slightly reduced within the lower region of the boundary layer. This implies that
larger Reynolds stress fluctuations are more prevalent in this region, compared with
the outer portion of the boundary layer. For the SPG, the Reynolds stress components
exhibit reduced contributions, which suggests reduced fluctuations, again consistent
with others (Arnette et al. 1995; Luker et al. 2000), who maintained a weakening of
the large-scale turbulence organization throughout the expansion process.

3.4.2. Two-point spatial correlations
To make statements regarding the response of the large-scale coherent motions

to the imposed pressure gradients, two-point correlations of the fluctuating velocity
components were estimated using

Ruiuj(1x, y, yref )= ui(x, yref )uj(x+1x, y)

σui(yref )σuj(y)
, (3.3)

where yref is the reference wall-normal location at which the correlation is computed,
1x is the in-plane streamwise separation, σu(yref ) is the root mean square (r.m.s.) of u
at yref and σu(y) is the r.m.s. of u at location y. The over-bar represents an ensemble
average over multiple realizations. Note that the present data enable the estimation
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FIGURE 9. Reynolds stress component profiles from quadrant decomposition for various
hole sizes: (a–c) Hs = 1; (d–f ) Hs = 3. The pressure gradients are: (a,d) ZPG; (b,e) WPG;
(c,f ) SPG.

of the true two-dimensional spatial correlation function without the use of Taylor’s
hypothesis.

Two-point correlation maps for the axial velocity at reference locations y/δ =
0.3, 0.5 and 0.8 for the ZPG, WPG and SPG are presented in figure 10. The
isocontours can be seen to possess a forward-leaning elliptical distribution, consistent
with numerous other previous studies of compressible boundary layers (see, e.g.,
Spina et al. 1994; Arnette et al. 1995; Ganapathisubramani 2007; Humble et al.
2012) using a variety of experimental techniques ranging from hotwire anemometry,
flow visualization, to PIV. In addition, the isocorrelation values appear to exhibit a
slightly greater non-dimensional spatial extent with increasing distance from the wall,
suggesting larger, higher-correlated turbulent structures are present in the outer region
of the boundary layer (cf. Ganapathisubramani 2007).

The effects of favourable pressure gradient on the non-dimensional spatial extent of
the axial velocity two-point correlations can be seen in figure 10, where a systematic
reduction is observed at all three boundary layer heights. This may be compared
with the two-point spatial correlations based on flow visualization by Arnette et al.
(1995) and Humble et al. (2012), who also found that the non-dimensional extent
of their isocorrelations decreased somewhat with favourable gradient. As shown in
figure 11 is a comparison of autocorrelations from the present study to results
extracted from Arnette et al. (1995), who performed similar two-point correlation
analyses for a Mach 3 boundary layer over a 7◦ expansion. As indicated, the present
ZPG and SPG flow are in qualitative agreement with those of Arnette et al. (1995),
although Arnette et al. (1995) interpreted their results as being consistent with the
idea that the flow structures could nominally scale with the (increasing) boundary layer
thickness. However, as noted by Humble et al. (2012), it should be stressed that the
flow visualization results represent spatial correlations of light intensity (essentially
representing a temperature/vorticity field) and not velocity, and so direct comparisons
should be made with caution. The transverse velocity two-point correlations (Rvv) (not
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FIGURE 10. Streamwise two-point spatial maps, Ruu(1x, y). Outer (minimum) correlation
value = 0.4, increase in 0.1 increments: (a–c) yref /δ = 0.8; (d–f ) yref /δ = 0.5; (g–i)
yref /δ = 0.3. The pressure gradients are: (a,d,g) ZPG; (b,e,h) WPG; (c,f,i) SPG.
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FIGURE 11. Comparison of streamwise autocorrelation Ruu(1x, y) function at y/δ = 0.5 for
present Mach 5 cases and Mach 3 cases of Arnette et al. (1995).

shown here for brevity) did not show the same elliptic trends as the u-component,
and they extended over a much smaller non-dimensional range compared with the
streamwise component.

In addition, it appears that the isocorrelations are rotated relative to the ZPG case,
suggesting that the flow structures lean farther away from the wall as they negotiate
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FIGURE 12. Ellipse-fitting analysis: (a) ellipse major axes (open) and minor axes (solid);
(b) structure angles based on Ruu = 0.5.

the expansion. This flow structure reorientation is consistent with previous lines
of inquiry. Turbulent structure reorientation through supersonic expansions was first
speculated by Arnette et al. (1995) and recently quantified by Humble et al. (2012),
who attributed it to the inclination and diverging nature of the expansion fan, whereby
the bottom of an eddy structure is accelerated throughout the expansion fan before the
top.

To quantify the change in size and orientation of the turbulent structures, an ellipse-
fitting technique was performed on the isocorrelations (see Ringuette et al. 2009).
Briefly, an ellipse is fit to the data points for a specified isocontour, and the major
and minor axes lengths are recorded, as well as the inclination angle of the major
axis from the wall. The results from the ellipse fitting are presented in figure 12 for
Ruu = 0.5. This correlation value was chosen because the correlation sizes were small
for the SPG and an elliptical contour was required in order to extract major and
minor axes. Considering alternative isocorrelation values yielded similar trends for the
favourable pressure gradients.

For the ZPG, the nominal rotation angle of approximately 5–8◦ throughout the
boundary layer is in line with the results by Ringuette, Wu & Martin (2008) and
Ganapathisubramani (2007), who each showed an approximate rotation angle near
10◦ in the lower part of their boundary layer.

The non-dimensional (major-axis) extent of the two-point correlations can be seen to
decrease with increasing pressure gradient strength (see figure 12a), substantiating the
observation of non-dimensional reduction in flow-structure size. The ellipse rotation
angles presented in figure 12(b), confirm that the coherent structures rotate relative
to the local wall direction as they negotiate the expansion. As noted by Humble
et al. (2012), the simple rotation of the camera axis does not fully account for this
flow-structure rotation, suggesting that the expansion process is partly responsible for
the reorientation. The rotation angle for the WPG ranges from 8◦ near the wall, up
to a maximum of 12◦ at y/δ = 0.6. The structure angles for the SPG significantly
increase above y/δ = 0.4, which corresponds to the region of the boundary layer in
which the dilatation influence is larger than the principal strain rates. It is believed
that a less-elliptical correlation shape in combination with an increased dV/dy strain
rate, distorts the turbulence structures away from the wall, increasing the observed

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

89
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.89


206 N. R. Tichenor, R. A. Humble and R. D. W. Bowersox

correlation angle (figure 12b). It therefore appears that the expansion process modifies
the orientation of the turbulent structures in different ways depending upon their
location within the boundary layer: less reorientation typically occurs nearer the wall
than in the (dilatation-dominated) outer part of the boundary layer.

4. Discussion: physical and Reynolds shear stress modelling
4.1. Physical processes

The above results, as well as the previous studies listed in § 1, show that as the flow
experiences a favourable pressure gradient, the turbulence and turbulence production
are reduced. With this in mind, it is expected that the large-scale flow structures
are somewhat benign and begin to dissipate as they advect through the expansion.
It is also expected that the turbulence being produced locally is altered due to
the favourable pressure gradient, where the induced strain rate dV/dy stretches the
turbulent structures in the transverse direction leading to enhanced dissipation and
perhaps eventually disintegration. The fuller velocity profiles (figure 3), reduced
turbulence (figure 5), reduced correlation lengths (figure 11), redistribution of the
Reynolds stresses across the quadrants (figure 7) and scales (figure 9), all support this
model. Hence, given enough time (and appropriate geometry), the turbulent structures
across the boundary layer may break down and eventually lead to relaminarization.
These processes would be a combination of linear and nonlinear effects, and the
relative time scales for the SPG flow are associated with the advection time t∗ given
by tUe/δ ∼ 6.2, the principal strain time scale 1/(dU/dy), which ranges from ∼0.02
at the wall to essentially infinity in the free stream and the dilatation time scale
1/(dV/dy) ∼ 10. As indicated in figure 4(a), the principal and dilatational strain rates
cross at y/δ ∼ 0.4. Thus, as the turbulence negotiates the expansion, two types of
boundary layer responses are observed, dominated by different processes. The inner
portion of the boundary layer (y/δ < 0.4) is dominated by the principal strain rate,
whereas the outer portion (y/δ > 0.4) is dominated by dilatation. This delineation
in the dominant mechanisms significantly contributes to the restructuring of the
turbulence within the boundary layer. Specifically, the Reynolds shear stress is positive
within the principal strain-rate-dominated lower region, whereas it is near zero in the
in the dilatation-dominated outer region (see figure 5c). Capturing this non-equilibrium
behaviour represents a challenge from a modelling perspective.

4.2. Reynolds stress modelling
The above discussion motivates a study on whether or not Reynolds stress transport
modelling can capture the redistributed stresses for this class of flow. Most algebraic
and two-equation models use the Boussinesq approximation to compute the Reynolds
stresses (see, e.g., Wilcox 2000). For this relation to hold for the present SPG
case, the eddy viscosity µT would have be negative for y/δ > 0.4. Current models
do not routinely allow for negative eddy viscosities and the corresponding physical
interpretation is unclear. Thus, it is expected that a Reynolds stress transport equation
based closure is required to describe the turbulence response to the present pressure
gradient driven strain-rate field.

To test this hypothesis, a simplified integration of the Reynolds shear stress transport
equation was performed. The Launder, Reece & Rodi (1975) Reynolds stress transport
model was selected, as it has been shown to be representative for this class of flow
(Dussauge & Gaviglio 1987). It is emphasized here that this analysis is not intended
to validate or calibrate the Launder et al. (1975) model. Instead, the goal is to
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C1 C2 C3 C3 − 1 C4 C5 C6 C7 −τxx/ρk −τyy/ρk

LRR 1.50 0.40 0.76 −0.24 0.22 0.53 0.13 0.02 0.93 0.46
ZPG 1.03 0.56 0.78 −0.22 0.78 0.78 0.13 0.02 1.10 0.24
SPG 1.44 0.56 0.78 −0.22 0.22 0.53 0.13 0.02a 0.98 0.36

TABLE 5. Model constant summary. a This constant was adjusted to 0.06 for improved
agreement for the SPG case.

qualitatively assess the applicability of this class of model to capture the Reynolds
shear stress trends. Hence, a series of simplifications, relevant to the present flows,
were performed to facilitate integration of the Launder et al. (1975) model.

First, the SPG strain-rate data in figure 4 demonstrated that the axial gradients were
negligible compared with transverse gradients. Thus, neglecting the axial strain rates,
diffusion and Reynolds stress gradients yields the following reduced formulation for
the Launder et al. (1975) model:

∂τxy

∂t
+ τxy

∂V

∂y
≈−C1

ε

k
τxy + (C3 − 1)

(
τxy
∂V

∂y
+ τyy

∂U

∂y

)
+ C4

(
τxy
∂V

∂y
+ τxx

∂U

∂y

)
+ 1

2
C5ρk

∂U

∂y
−
[

C6
ε

k
τxy − C7

(
τyy − τxx

) ∂U

∂y

]
k3/2

εy
. (4.1)

On the left-hand side are the local time derivative and the convective term,
resulting from dilatation. The first term on the right-hand side represents the slow-
pressure strain term. Terms 2–4 are a combination of the production and the
rapid pressure strain redistribution. The last term is a near-wall correction to the
pressure redistribution. Launder et al. (1975) demonstrated that the model constants
C1 and C2 are free parameters and that C3 = (8 + C2)/11, C4 = (8C2 − 2)/11 and
C5 = (60C2 − 4)/55. Launder et al. (1975) set C1 and C2 to reproduce equilibrium
homogeneous shear layer normal stresses, which are given by

−τxx/ρk − 2/3= (8+ 12C2)/33C1 (4.2a)
−τyy/ρk − 2/3= (2− 30C2)/33C1. (4.2b)

The constants C6 and C7 were set to reconcile the model with increased anisoptropy
(τyy/τxx) and reduced values of −τxy/ρk associated with near-wall boundary effects,
as compared with homogeneous shear flow. The Launder et al. (1975) constants are
summarized in the first row of table 5.

Second, the terms in (4.1) were re-organized into the following form

dτxy/dt + axy
1 τxy = axy

2 , (4.3)

where the coefficients are given by

axy
1 (y)= (2− C3 − C4)

dV

dy
+
(

C1 + C6
k3/2

εy

)
ε

k
(4.4a)

axy
2 (y)=

[
(C3 − 1)τyy + C4τxx

1
2 C5ρk − C7

(
τxx − τyy

) k3/2

εy

](
dU

dy

)
. (4.4b)

Reduction of (4.1) to the ordinary differential form in (4.3) resulted from assuming
that the coefficients in (4.4) are time invariant, and the numerical values were
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Transverse

Axial

ZPG

WPG

SPG

0.4

0.8

–0.5 0.5 1.5
0

1.2

FIGURE 13. Model constant calibration. Open symbols show the data, whereas the lines
show the fits to the data from which the model constants are extracted.

evaluated with the upstream ZPG Reynolds stresses from the data shown in figure 5,
as well as the corresponding ZPG, WPG and SPG strain rates, as shown in
figure 4. To evaluate the wall-correction terms, the turbulence time and length scales
were estimated using the Boussinesq approximation for a standard k − ε model
(see Wilcox 2000). Specifically, for the ZPG flow, ε/k ∼ Cµ/a1∂U/∂y (Bowersox
2009), where Cµ = 0.09 and the Townsend (1961) constant, a1, was set to 0.3,
following Bradshaw, Ferris & Atwell (1967).

Third, (4.3) was integrated via an integrating factor to give

τxy(y, t)≈ axy
2

axy
1

(1− e−axy
1 t∗)+ τ ZPG

xy (y)e−axy
1 t∗ . (4.5)

With the normalizations in figures 4 and 5, the integration time, t∗, is given by tUe/δ
and was set to 6.2, corresponding to a convection length (L= t∗δ) of 5.3 cm, which is
the distance between where the curvature started and the measurement location. Once
(4.5) was evaluated with the ZPG turbulence data, the resulting Reynolds stresses were
transformed to the WPG and SPG coordinate systems using the rotations listed in
table 3. Thus, (4.5), although severely reduced, represents a convenient theoretical test
bed for model assessment.

For the present study, C1 and C2 were determined by evaluating the normal stresses
on the left-hand sides of (4.2) with the average measured values for y/δ = 0.4–0.8
(see figure 13). To estimate the turbulent kinetic energy, the spanwise normal stress
was assumed to be the average of the axial and transverse components, which is
consistent with reported trends (see e.g. Wilcox 2000). Thus, ρk = −3(τxx + τyy)/4.
The resulting model constants for the ZPG and SPG cases are listed in the second
and third rows of table 5. The WPG values were essentially the same as those
for the ZPG flow (see figure 14). The last two columns summarize the axial and
transverse normal stresses. The ZPG model constants correspond to −τxx/ρk = 1.1
and −τyy/ρk = 0.24, where for the original Launder et al. (1975) constants, −τxx/ρk =
0.93 and −τyy/ρk = 0.46. These differences reflect the increased anisotropy shown
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(× 10–4)(× 10–4)

ZPG
WPG
SPG
ZPG constants
SPG constants
LRR constants
Mod. C7

0 2–4 0 4 8 12

0.4

0.8

0

0.4
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1.2
ZPG, SPG-WNA
SPG

0

1.2

–2 4

(a) (b)

FIGURE 14. Reynolds shear stress model predictions using (4.3): (a) Reynolds shear stress
predictions (t∗ = 6.2); (b) predicted SPG evolutions on an exploded scale. ZPG, SPG-WNA:
ZPG data transformed to the SPG wall normal axes. See the text for definitions of model
constants.

in figure 2(b) for the supersonic studies as compared to their low-speed counterpart.
Additional compressibility and/or Reynolds number corrections were not included, as
those effects were inherently accounted for when setting the constants to match the
present normal stresses. For the SPG flow, the axial and transverse stresses were both
reduced (see figure 5). The corresponding values of C1 and C2, computed from these
stresses, following procedure used for the ZPG case, are listed in table 5.

Comparisons, with constants set to the values listed in table 5, are shown in
figure 14(a). The model predictions with the ZPG constants are given by the short
dashed lines. The model predictions and experimental data are in good quantitative
agreement, to within the expected measurement uncertainties, across the boundary
layer. The original Launder et al. (1975) constants also produced reasonable agreement
for the ZPG case (long dashes) except near the wall, where the shear stresses are over-
predicted. For the SPG case, the model was evaluated with both the SPG (solid line)
and ZPG constants (short dashes). The model, with both sets of constants, predicted
the large SPG reduction in the Reynolds shear stress. The agreement with the data
in the outer 50–60 % of the boundary layer appears to have been qualitatively correct.
However, the reduction was over predicted in the lower 40 %. Because the departures
were near the wall, an ad hoc adjustment of the near-wall correction was investigated.
This seems to be a reasonable line of inquiry, given that the present simplified form
of the model did not attempt to capture the effects of the distortion on the time
and length scales associated with the near-wall term. Reducing C6 and/or increasing
C7 was found to provide a means to control model output. For simplicity, C7 was
increased to 0.06 to achieve the agreement shown in figure 14(a) (solid line). Although
this correction is not rigourous, the results in figure 14(a) suggest that the Launder
et al. (1975) stress transport model, with modest recalibration, naturally captures the
Reynolds stresses shown in figure 5(c), including the SPG case. This assessment was
the primary purpose of the analysis.
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The predicted time evolution of the Reynolds stresses for the SPG case, with the
modified SPG model constants, is shown in figure 14(b). The results are plotted on
an exploded scale in the SPG wall normal coordinate system for clarity. As indicated,
the initial condition for the calculations was the predicted ZPG flow, which compares
favourably with the ZPG measurements (open diamonds on figure 14(b)). As the
integration time is increased, the model results monotonically decrease. The prediction
reaches an asymptotic value for t∗ > 20. The t∗ = 1 × 106 line shows this asymptote.
This asymptote is important, as it indicates a limiting value for the Reynolds shear
stress reduction for the present distortion. The present data lying close to this limit
suggests that the turbulence responds rapidly to the distortion.

The limiting behaviour for large t∗ also provides insight into the modelled flow
dynamics. In this limit, τxy(y, t) ≈ axy

2 /a
xy
1 . Focusing first on axy

1 in the denominator,
it is apparent that given the constants listed in table 5, the coefficient premultiplying
dV/dy is O(1) (see (4.4)). Thus, the overall magnitude of the additional strain-rate
term is comparable with the second term in axy

1 in (4.4), as C1 is in the range
of 1–1.5 and ε/k was modelled as Cµ/a1∂U/∂y, where Cµ/a1 ≈ 0.3. Hence, the
favourable dV/dy strain rates have a significant stabilizing (decreasing) effect on the
Reynolds stress as compared to the ZPG flow, where dV/dy = 0. This effect was
most pronounced in the outer region of the boundary layer, where dV/dy > dU/dy.
This is consistent with the general conclusion from Dussauge & Gaviglio (1987) that
dilatation is a driving stabilizing mechanism in favourable pressure gradient supersonic
flows. Importantly, because it was shown earlier that dV/dy is effectively constant
throughout the boundary layer, it can be surmised that the decreasing main strain rate
dU/dy is primarily responsible for this effect.

The model also reveals that increasing the dissipation will have a stabilizing effect
on the Reynolds shear stress. It is expected, although not shown, that the increased
kinematic viscosity associated with the reduced temperature will result in increased
dissipation in the favourable pressure gradient region of the flow. Focusing now on
axy

2 , it is apparent that the numerator in the above limiting Reynolds shear stress
has the form of a production term associated with the principal strain rate, ∂U/∂y.
Thus, the predicted magnitude and sign of the Reynolds shear stress result from an
intricate balance between the axial and transverse normal stresses associated with
the production and the rapid pressure redistribution, where the coefficients listed in
table 5 provide the relative weighting. This balance is the net result of the underlying
turbulence structure.

5. Summary and conclusions
An experimental study has been carried out to investigate the influence of streamline

curvature-driven pressure gradients on the turbulence structure of a Mach 4.9, high-
Reynolds-number (Reθ = 43 000) boundary layer. The steps in the study were to: (i)
characterize the influence of the pressure gradients on the mean velocity and strain-rate
field; (ii) quantify the role of the strain-rate field on the Reynolds stress turbulence
statistics; and (iii) analyse the effect of the strain rates on the underlying turbulence
structure.

The results suggest that the favourable pressure gradient had an overall stabilizing
effect on the boundary layer, while preferentially affecting the turbulent flow structures
based on their distance from the wall. More pronounced reorientation occurred in
the outer part of the boundary layer, whereas a reduction in structure size was more
pronounced nearer the wall. The principal strain rates responsible for the turbulence
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modifications were dU/dy and dV/dy, although it was essentially the decrease in
dU/dy that was responsible for the observed trends; dV/dy remained essentially
constant throughout most of the boundary layer. The Reynolds-averaged normal and
shear stresses followed the expected stabilizing trends, where the Reynolds shear
stress for the strongest favourable pressure gradient considered was observed to be
practically zero and perhaps slightly negative. These results indicate that there could
be decaying turbulent motions within this region of the boundary layer and that the
mean flow was possibly extracting energy from the turbulent flow structures. When
viewed within the context of previous studies, this energy shift appeared to be a
function of pressure gradient strength parameters, rather than the pressure gradient
geometry.

Quadrant decomposition results demonstrated significant redistribution in the
boundary layer turbulence, where the transverse and normal stresses became more
balanced and the cross-correlation (i.e. Reynolds shear stress) decomposition was
modified from the ZPG Q2–Q4 event-dominated ellipse, to become a significantly
more balanced distribution. Little preferential quadrant mode selection was observed
for the strongest pressure gradient case considered and the Reynolds stress components
exhibited reduced contributions, which suggests reduced fluctuations. Consistent with
earlier work, this stabilizing effect implies a weakening of the turbulent structure
organization. The structural results, when taken with the overall turbulence levels,
suggest that large-scale processes (i.e. convection, production and redistribution)
control the basic changes. Large-eddy methods should therefore be able to adequately
capture the streamline curvature driven pressure gradient effects described in this
study.

Integration of a simplified form of the Launder et al. (1975) Reynolds stress
transport closure model provided a framework to assess the role of the strain-rate field
on the observed Reynolds shear stresses. The analysis helped to explain the observed
sign change in the shear stress and demonstrated that Reynolds stress transport closure
has the potential to adequately capture the salient features associated with this class
of flow given proper knowledge of the evolution of the underlying model parameters,
which are determined by the basic structure of the evolving turbulence itself.
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