Proceedings of the Royal Society of Edinburgh, 149, 353-385, 2019
DOI:10.1017/prm.2018.31

Singular limits and properties of solutions of some
degenerate elliptic and parabolic equations

Kin Ming Hui
Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan,
Republic of Korea (kmhui@gate.sinica.edu.tw)

Sunghoon Kim*

Department of Mathematics, School of Natural Sciences, The Catholic
University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do
14662, Republic of Korea (math.s.kim@catholic.ac.kr)

(MS received 21 July 2016; accepted 5 January 2017)

Let n >3, 0<m<n—2/n,p1 >0,0> ﬁém) = ((mp1)/(n — 2 — nm)),

am = ((26+ p1)/(1 —m)) and oo = 26 + p1. For any X\ > 0, we prove the uniqueness
of radially symmetric solution v("™) of A(v™/m) 4+ amv + Bz - Vo =0, v > 0, in
R™\{0} which satisfies lim ;o |z|am/ﬁv(m)(x) = A= ((p1)/((1=m)B)) and obtain
higher order estimates of v(m) near the blow-up point x = 0. We prove that as

m — 01, v(™) converges uniformly in C2(K) for any compact subset K of R™\{0}
to the solution v of Alogv + av + Bz - Vo =0, v > 0, in R™\{0}, which satisfies
lim, o ||/ Bu(x) = A\=P1/B. We also prove that if the solution u("™) of

ug = A(u™/m), u > 0, in (R™\{0}) x (0,7) which blows up near {0} x (0,T") at the
rate ||~ @m /B satisfies some mild growth condition on (R™\{0}) x (0,T), then as

m — 01, u(™) converges uniformly in C2+¢:140/2(K) for some constant 6 € (0,1)
and any compact subset K of (R™\{0}) x (0,T) to the solution of uy = Alogu,

u >0, in (R™\{0}) x (0,T). As a consequence of the proof, we obtain existence of a
unique radially symmetric solution v(®) of Alogv + av + Bz - Vo =0, v > 0, in
R™\{0}, which satisfies lim|,|_q ||/ By(x) = X—P1/B,
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1. Introduction
Recently there is a lot of study on the equation [4,7-13,18, 25,31, 32],
up = AN (u), u >0, (1.1)

where

u™/m it m#£0
Omlu) = logu if m=20 (1-2)
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and the associated elliptic equation [6,17,19, 23],

Adm(v) + apmv+ Bz - Vo =0, v >0, (1.3)

where a,,, and § are some constants. Recently, P. Daskalopoulos, M. del Pino, M.
Fila, S. Y. Hsu, K. M. Hui, S. Kim, J. King, Ki-Ahm Lee, N. Sesum, M. Séez, J. L.
Vazquez, M. Winkler, E. Yanagida, E. Di Benedetto, U. Gianazza and N. Liao, etc.
have many results on (1.1) and (1.3). The equation (1.1) appears in many physical
models [1,3,29] and in the study of Ricci and Yamabe flow on manifolds [5,14,
28,33]. When m > 1, it appears in modelling the evolution of various diffusion
processes such as the flow of a gas through a porous medium [1]. When m =1,
(1.1) is the heat equation. When 0 < m < 1, (1.1) is the fast diffusion equation.
When n >3 and g = v*/"+2dz? is a metric on R” which evolves by the Yamabe

flow
% =—Rg on (0,T)
where R(-,t) is the scalar curvature of the metric g(-,t), then u satisfies [5,7, 34],
-1 -2
ut:n Au™ in R™ x (0,7, m="
m n+2

which after rescaling is equivalent to (1.1). Note that if n >3, 0 <m <n —2/n,
B >0, am = ((28+ p1)/(1 —m)) and v(™ is a solution of (1.3) in R™ (or R™\{0}),
then with p; = 1 and T > 0 the rescaled function

V) (z,t) = (T — ) o™ (T — t)°x) (1.4)

is a self-similar solution of (1.1) in R™ x (0,7) ((R™\{0}) x (0,T), respectively)
which vanishes at time 7. Since solutions of (1.1) which vanishes at a finite time
usually behaves like self-similar solutions of the form (1.4), in order to understand
the behaviour of the solutions of (1.1), it is important to study the properties of
solutions of (1.3).

For m > (n — 2)4/n, there are lots of studies on the solutions of (1.1) ([3,29]).
However, there are not many studies on the equations (1.1) and (1.3) for the case
n > 3 and 0 < m < n — 2/n until recently. This is because there is a big difference
in the behaviour of solutions of (1.1) for the case (n —2)4/n <m <1 and the
case n >3, 0 <m <n—2/n [3,15,27]. For example for any 0 < ug € L{, (R"),
ug Z 0, when (n — 2)4 /n < m < 1, there exists [15] a unique global positive smooth
solution of (1.1) in R™ x (0, c0) with initial data ug on R™. However, for n > 3 and
0 < m < n —2/n the Barenblatt solutions [4]

)

o 1/1—-m
B . _ \n/n—2—nm
Bele) = <k (T t)<<2>/<"—2—"m>>lwl2) e

2(n —2—mn)
1-—m

C, = , k>0,

satisfy (1.1) in R™ x (0,7) and vanishes identically at time 7.
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For the subcritical case m < (n—2)y/n, M. Fila and M. Winkler [9-12]
have obtained a lot of subtle phenomena for the solutions of (1.1). In [9,10]
they proved the sharp rate of convergence of solutions of (1.1) in R"™ with
n>4 and 0 <m <n-—4/n—2 to the Barenblatt solutions as the extinction
time is approached. In [11] they also proved the rate of convergence of solu-
tions of (1.1) in R™ to separable solutions of (1.1) when n > 10 and 0 <
m < (((n—2)(n—10))/((n —2)? — 4n + 8/n — 1)). In [12] they found an explicit
dependence of the slow temporal growth rate of solutions of (1.1) in R™ on the
initial spatial growth rate.

Properties of singular solutions of (1.1) are studied by E. Chasseige, J. L. Vazquez
and M. Winkler in the papers [2,30-32]. The existence of a singular solution of
(1.1) for the case n —2/n < m < 1 with initial value a nonnegative Borel mea-
sure on R™ which blows up at a singular set of R" is proved by E. Chasseige and
J. L. Vazquez in [2]. Finite blow-down or delay regularization behaviour for the
solutions of the 2-dimensional logarithmic diffusion equation (1.1) (with m = 0)
was studied in [30]. The asymptotic oscillating behaviour of singular solutions of
(1.1) in bounded domains of R™ with 0 < m <n —2/n and n > 3 was studied in
[31] and the evolution of singularities of solutions of (1.1) in bounded domains of
R™ with 0 < m < 1 and n > 3 was studied in [32].

Another way to study the solutions of (1.1) and (1.3) is to study the singular
limit of the solutions of (1.1) and (1.3) as m — 0. Singular limit of solutions of
(1.1) in R? x (0,7) as m — 0" and in Q x (0, 00) for any bounded domain 2 C R",
n > 2, as m — 0 are proved by K. M. Hui in [20,22]. Singular limit of solutions
of (1.1) in R™ x (0,00), m > 2, as m — 0~ is also proved by K. M. Hui in [22].
Singular limit of weak local solutions of (1.1) in O x (0,00) as m — 0 for any open
set O C R™ is proved by E. Di Benedetto, U. Gianazza and N. Liao in [8]. For
n>3,0<m<n—2/nand either § > 0 or o = 0, singular limit of solutions of

A" /m)+av+ Px-Vo=0, v>0, inR"

as m — 07 is proved by S. Y. Hsu in [17].
In [23] K. M. Hui proved foranyn > 3,0 <m <n—2/n,p; >0,A > 0,5 > (()m)

and
286+
m = 1.
a I—m (1.5)
where
(m) mp
= — 1.6
Bol = —5 . — (1.6)
there exists a radially symmetric solution v := v of (1.3) in R™\{0} which
satisfies
lim [0 /Po(z) = A=(e0/(=m)B). (1.7)
|z[—0

In this paper, we will prove that as m — 07, the radially symmetric solution v(")
of (1.3) in R™\{0} with 8 > 0 and «,, given by (1.5) converges uniformly in C?(K)
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for any compact subset K of R™\{0} to the solution v = v(®) of

Alogv+av+ fz-Vo=0, v>0, inR"\{0}, (1.8)
which satisfies
‘l}m ||/ By ©) (1) = \=P1/B (1.9)
z|—0

where a = ag = 23 + p1. We will also prove that if u(™ is the solution of (1.1) in
(R™\{0}) x (0,7) with 8 > 0 and «,, given by (1.5) which blows up near {0} x
(0,T) at the rate |z|~*/#, then as m — 0%, u(™) converges uniformly in C%!(K)
for any compact subset K of (R™\{0}) x (0,7) to the solution u of

up = Alogu, w>0, in (R™\{0})x (0,T). (1.10)

Foranyn>3,0<m<n—2/n,p1 >0,5> ﬂém), am = ((28+ p1)/(1 —m)) and
A > 0, we also prove the uniqueness of radially symmetric solution v("™) of (1.3)
in R™\{0} which satisfies (1.7) and obtain higher order estimates of v("™) near the
blow-up point z = 0.

Unless stated otherwise, we will now assume that n >3, 0 < m <n —2/n, p; >
0,A>0,8> ﬁém) and @y, Cm, ﬁém), are given by (1.2), (1.5) and (1.6) respectively
and v = v(™) is a radially symmetric solution of (1.3) in R™\{0} which satisfies (1.7)
for the rest of the paper. We now recall a result of [23].

THEOREM 1.1 (Theorem 1.1 of [23]). Let n >3, 0<m <n—2/n, p1 >0, A >0

and B > ém). Then there exists a radially symmetric solution v = v(™ of (1.3) in
R™\{0} which satisfies (1.7) and

(W™)(r) <0 Vr=|z|>0. (1.11)
In this paper, we will prove the following main results.

THEOREM 1.2. Letn >3,0<m<n—2/n,p1 >0, >0, 3> ﬁém) and ¢p,, O,
ﬁém), be given by (1.2), (1.5) and (1.6) respectively and let v =v""") be a radially
symmetric solution of (1.3) in R"\{0} which satisfies (1.7). Let w(r) = r*m/Bv(r),
p =178 andwW(p) = w(r). Then@ can be extended to a function in C%([0,00)) by
setting

W(0) = A~ (P)/(1=m)3).

@, (0) = A\~ (me0)/(A=m)B))  4nq W, (0) = A\~ (@m=1)p1)/(1-m)5)) (1.12)

where
dm T gy o e =)
as as
and
—2)8 — 2mau, 2 mBn —2) —ma?
ay = (n )ﬁ mo +P17 ag = 677 az = « ﬁ(n 2) mam. (113)
1 P1 P1
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Hence

B(p) = A-(D/(=mB) 4 4 3= ((mp)/(1=m)B) ,
n %Af(((2m71)p1)/((lfm)ﬁ))p2 Fo(p?) asp—0t

W, (p) = AN~ (o) /(A=m)B)) o g \=(Cm=Dp1)/(1=m)B) 4 6 (p)  as p — OF
or equivalently
o™ (r) = pmom/B [)\—((pl)/((l—mw)) + A\~ (mp1)/(A=m)B)) 1 /B

A

M

A ((@m=1)p0)/(1=m)B)) 201 /8 4 (szl/ﬁ)] R

(1.14)
(WY (1) = p(@n/6)-1 [_O‘ﬁm/\((m)/((lm)ﬁ))

_ (2(f - m),o[;) A A~ (o (=) g1 /5 . (rpl/ﬁ)] as o 0F
—m

THEOREM 1.3. Let n >3, 0<m<n—2/n, py >0, A>0, > ﬁém) and a,, be
given by (1.5). Let v1,vy be radially symmetric solutions of (1.3) in R™\{0} which
satisfies (1.7). Then

vi(r) =wva(r) Vr>0. (1.15)

THEOREM 1.4. Letn >3, p1 >0, >0 and o = 20 + p1. Suppose that v = v is
a radially symmetric solution of (1.8) in R™\By. Then

lim r2v(r) = 72(11 —2)

Tim. ——TE (1.16)

THEOREM 1.5. Let n >3, p1 >0, A>0, >0 and o =208+ p1. Let Ty €
(0,n —2/n) satisfy 5 > émo). For any 0 < m < my, let a,, be given by (1.5) and
let v(™) be the unique radially symmetric solution of (1.3) in R™\{0} which satisfies
(1.7) given by theorems 1.1 and 1.3. Then as m — 0%, v("™) converges uniformly
in C?(K) for any compact subset K of R™"\{0} to the unique radially symmetric
solution v of (1.8) which satisfies (1.9).

THEOREM 1.6. Let n >3, B3>0, A1 2 Ao >0 and a =203+ 1. Suppose that 0 <
uo,1 < Up,2 € Lee (Rn) [f Uy, U € O((Rn\{()}) X (O,T)) N L ((Rn\{O}) X [O,T))

loc loc
are subsolution and supersolution of

u = Alogu, u>0, in (R"\{0}) x (0,T) (1.17)
which satisfies
ui(2,0) = ug;(z) inR" Vi=1,2
and

Va, (2,1) < wi(a,t) < Vi, (z,8) in (R™\{0}) x (0,T) Vi=1,2 (1.18)
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where
Vi, (@, t) = (T = t)%vx, (T = t)°|z])  Vi=1,2

and vy, 1s the radially symmetric solution of (1.8) which satisfies (1.9) with A = A1,
Ao, respectively, then

up <ug in (R™\{0}) x (0,T). (1.19)
Hence if ug1 = ug,2, then uy = ug in (R™\{0}) x (0,7).

THEOREM 1.7. Letn >3, 0 <o <n—2/n, A\t > X >0, 3= 8™, a=28+1
and T > 0. For any 0 < m < My, let a,, be given by (1.5) with p1 =1 and

V™ (,t) = (T — )™ (T —t)Pz) Vi=1,2 (1.20)

where vf\@) is the radially symmetric solution of (1.3) in R™\{0} which satisfies

(1.7) with X\ = A1, Ao, respectively. Let {wo,m Yocmem, C LS. (R™\{0}), uo,m =0
for all 0 < m <y, be a family of functions satisfying

V™ (2,0) < g () < VI (2,0) in R™\{0} (1.21)

and

Ugm — up  in LE (R™\{0}) as m — 0%,

For any 0 < m < g, let u'™ be a solution of

u =A™ /m), w>0, in (R™\{0})x (0,7) Lo
u(z,0) = ugm in R™\{0} (122)

given by theorem 1.7 of [23] which satisfies
Vi (2, 8) < al™ (2,8) < VI (@,t) in (R™\{0}) x (0, 7). (1.23)

Then u™ converges uniformly in C*>T91+9/2(K) for some constant 6 € (0,1) and
any compact subset K of (R"\{0}) x (0,T) to the solution u of

up = Alogu,u >0, in (R™\{0}) x (0,7
{u(;v,O) = ug inR™\{0} (1.24)
as m — 0% and u satisfies
Vi(z,t) < u(z,t) < Va(z,t) in (R™\{0}) x (0,T) (1.25)

where
_ (T _ _ B _ (m) P
Vilz,t) = (T —t)" vy, ((T t) |£C|> = hmo vy (xt) Vi=1,2

and vy, 1s the radially symmetric solution of (1.8) given by theorem 1.1 which
satisfies (1.9) with X = \;, i = 1,2, respectively.
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REMARK 1.8. By lemma 5.1 of [23] forany n > 3,0 < m <n —2/n,and Ay > Ag >
0, 7>0,0>p8", amn=(26+1)/(1=m)), 0< ug € L2 (R"\{0}), if u; and us
are two solutions of

{ut =AW™/m),u >0, in (R™\{0}) x (0,T)
u(z,0) = up in R™\{0}

which satisfies (1.23), then u; = ug in (R™\{0}) x (0,T).

The plan of the paper is as follows. We will prove theorems 1.2 and 1.3 in §2.
We will prove theorem 1.4 in §3 and theorems 1.5, 1.6, and 1.7 in §4.

We start with some definitions. We say that u is a solution of (1.1) in
(RM\{0}) x (0.7) if u € C2L(R™{0}) x (0,1)) N LiZ, (R"\{0}) x (0,T)) is pos-
itive in (R™\{0}) x (0,T") and satisfies (1.1) in the classical sense in (R™\{0}) x
(0,T7). We say that w is a subsolution (supersolution, respectively) of (1.1) in
(R™\{0}) x (0,T) if u € C((R™\{0}) x (0,T)) N LX,((R™\{0}) x (0,T)) is positive
in (R™\{0}) x (0,7T") and satisfies

/ u(x, to)n(z,ta)d / / (une + ¢ (w)An) da dt
n tl n

—|—/ u(z, t1)n(x,t1)de VT >ty >t >0 (1.26)

(>, respectively) for any ne CP'((R™\{0}) x (0,T)). For any 0<uge
L2 (R™\{0}), we say that a solution (or subsolution or supersolution) w of (1.1) in
(R™\{0}) x (0,T) has initial value uq if u(-,t) — ug in L{, (R™\{0}) as t — 0.
We say that v is a solution of (1.3) in R™\{0} if u € C*1(R™\{0}) is positive
in R™\{0} and satisfies (1.3) in the classical sense in R™\{0}. For any R > 0, let
Br ={z € R": |z| < R}.

2. Uniqueness of radially symmetric solutions and higher order
estimates at the origin

In this section, we will prove the uniqueness of radially symmetric solution v(™) of
(1.3) in R™\{0} which satisfies (1.7) and obtain higher order estimates of v("™) near
the blow-up point z = 0.

Let w(r) = rom/By(m)(r), p=rP1/8 and w(p) = w(r). Then by the proof of
Theorem 1.1 of [23], w satisfies

(m)ﬁn—l—((zmam)/(ﬂ» , zZ) <7I)r)2+ﬁ7“1”1/5u7r

r

w

n—2— ((mam)/(5))

_ Om
g ”

. 2 . .
(w> ( ”) + 2.0 20 By, (2.1)
w p w  pr W p

Vr >0
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where a1, ay and a3 are constants given by (1.13). Note that by (1.7),

lim w(p) = A~ ((p1)/((A=m)B)) (2.2)

p—0+

Hence w(p) can be extended to a continuous function on [0, 00) by letting w(0) =
A= ((p)/(1=m)8))

LEMMA 2.1. Letn>3,0<m<n—2/n, pr >0, A\>0 and 5 > ﬁom). Then

Wy(p) >0 Yp>0 (2.3)
or equivalently,
o™ (r) + air(v(m))’(r) >0 Vr>0.
Hence
v(m)(r) > A~ ((p)/(A=m)B)) p=am /B gy — 2| > 0. (2.4)

Proof. Suppose that (2.3) does not hold. Then there exists a constant ps > 0 such
that

Wp(p2) < 0. (2.5)
Since > ﬁ(()m)7 az > 0. Then by (2.1) and (2.5),

(ﬂ”l UL wp) (p2) = —azps' 2w, (pa) + asps' ~“W(p2)™ > azps' ~*w(p2)™ > 0.
’ (2.6)
Hence by (2.5) and (2.6) there exists a constant b € (0, p3) such that
Wy(p) <0 in (p2 — b, p2).
Let (p3, p2), p3 € [0, p2), be the maximal interval such that
wy(p) <0 Vp € (p3,p2)- (2.7)

If ay > 0, by (2.1) and (2.7),

- I —— 220"
@) = (752 ) ()2 057
> 6T 50 e (puipa) (28)
= Gonl@))p(p2) > (D)) + a5T™ (p2) (; - pl) Vp € (3, p2)
= o (W(P)) = m(W(p2)) + (Gm (W), (p2) + azpy W™ (p2)) (p — p2)
+ azw™ (p2) log (i}z) Vps < p < pa. (2.9)
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If a; < 0, then by (2.1) and (2.7),

w

" Gn@)y = (517 Z2) () > anp ()"

> agw(pa)"p™ 2 >0 Vp € (ps,p2) (2.10)

= 05" (¢m (W) ,p(p2) = p* (P (W)),(p)

asw(p2 m - ar—
+ . ( ) (pa 1_p21 1)
—a

= 03" (om (W), (p2)p~ " = (¢m (W), (p)

+ azw(p2)™ (p—l o pglfl —al)

Vps < p < p2

1 p Vp3 < p < p2
o

= ¢ (W(p)) = ¢m (W(p2)) + Ca(p' ™" — py~ ™)

asw m
+ % log(pa/p) Vps < p < p2. (2.11)

where

C, = ! 91 (¢ () )JFM

! 1-— [¢5] P2 m p\P2 1-— ai ’

If p3 = 0, then by (2.9) and (2.11),
w(p) — oo asp— 0T
which contradicts (2.2). Hence p3 > 0 and
w,(p3) = 0. (2.12)
By (2.8), (2.10) and (2.12),

Wy(p) >0 Yp € (p3,p2)

which contradicts (2.7). Hence no such ps > 0 exists and (2.3) follows. By (2.2) and
(2.3), (2.4) follows. O

LEMMA 2.2. Letn >3,0<m<n—2/n, pp >0, A\>0 and > ﬁém). Then

2
AmB(n = 2) =mai, | ((mpn)/((1-m)8))

. _ ag . _ _
| — B\~ ((mp1)/(1-m)B)) _
pi%l* @n(p) az B2 p1
(2.13)
and
lim 7/ B+ ()Y () = 70%x<<p1>/(<17m>m> (2.14)
r—0+

where ay, az and az are constants given by (1.13). Hence W can be extended
to a function in C([0,00)) by letting w(0) = \~(p1)/(A=mIB) and ,(0) =
a3/a2)\7((mpl)/((17m)ﬂ))'
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Proof. Let
1
ale) = w,(p)
By (2.1) q(p) satisfies
I (1 — m) M a m as “

ap(p) = () + { 1+ p (w(p)m 3q(p))] Vp >0 (2.15)

By lemma 2.1,
q(p) >0 Vp>D0. (2.16)

By (2.2) and (2.3) there exists a constant pa > 0 such that
A=)/ (A=m)B)) < 75(p) < 2A~ )/ (A=m)B) g 0 < p < ps. (2.17)

We now claim that there exists a constant pg > 0 such that

1+m
22 \tmen)/ (A=) ¢ g(p) < 2702\ ((mpa)/(1-m)B) vy < p<po. (2.18)
8&3 as

To prove the inequality on the right-hand side of (2.18), we first suppose that
the inequality on the right-hand side of (2.18) does not hold for any py > 0. Then
there exists a constant

a2)\_p1/ﬁ }

—_ 2.1
Slar] + 1 (2.19)

0 < p3 < min {pg,

such that
21+ an

a3

q(p3) > 2 T2\ mp)/(A=m)B))

Then by continuity of ¢(p) on (0,00), there exists a maximal interval (pq4, ps3), (0 <
pa < ps3) such that

24 as | ((mpn)/(1—m)B)
a(p) > T}\ V p € (pa, p3)- (2:20)

By (2.15), (2.16), (2.17), (2.19) and (2.20), q(p) satisfies

() < B0 (= S ) 4 T () ) - )|

A—P1/B il
< 1) [(al _ e ) N w;P) (amon/=mo) _ 935))

L

p 4p
2=/ (1=m)3))
] (2.21)
aaA—((p1)/(A=m)B)
<= o q(p)* <0 (2.22)
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in (p4, p3). Dividing (2.21) by ¢(p)? and integrating over (p, p3), ps < p < p3,
7,(p) 1 ( 1 ag)\—((pl)/((l—M)B)))
w,(p) = <
g a(p) a(ps) 4p3
aa )\~ ((p1)/((1=m)B))
o ™ Yp € (pa, p3)
1 a3)\—((p1)/((1—m)ﬁ))>
= w(p) 2 w(ps) + ( + p=p
(6) > (ps) q(ps) 4ps )
az\—((p0)/(1=m)B)
1 log(ps/p) Vp € (pa, pa)- (2.23)
If py = 0, then by (2.23),
lim w(p) =
i, w(p) = oo
which contradicts (2.2). Hence py > 0 and
14+m
g(pa) = 292 N (mp) /((1=m)B)). (2.24)
as
By (2.21) and (2.24),
21+m
a(p) < a(pa) = Ao/ (=mB) vy, < p < py
as
which contradicts (2.20). Hence no such ps > 0 exists and
21+ma2 az)\,pl/ﬁ
< 222 \(me)/((A=m)B)) i =22 ). 2.95
a(p) o <p<min{pe g (2.25)

Now suppose the first inequality of (2.18) does not hold for any py > 0. Then there

exists a constant

A—PL/B
0 < ps < min {pg, ZTG:LH‘l} (2.26)
such that
a(ps) < 572,\<<mp1>/<<1—m>6>>, (2.27)
as
By (2.17) and (2.27),
a A*Pl/ﬁ
w(ps)q(ps) < ZT- (2.28)

Then by (2.28) and continuity of @W(p)g(p) on (0, 00) there exists a maximal interval

(s, ps) (0 < pg < ps) such that

a2/\—P1/l3

w(p)q(p) <

4(13
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By (2.15), (2.16), (2.17), (2.26) and (2.29),

(@ (p)a(p)), = W(p)gp(p) +1

E a2w 1 m o _ —
PLQ(P ( > + 3 (a2@(p)' ™™ — 2a3q(p)w(p))

o —;01/5 —Pl/ﬁ
. @p)alp) Km . aﬂp) . % (a2 /8 W) N a?’w(p)q(p)}

— (@(p)a(p))” on (pe, ps)- (2.30)

Wy(p) 1 Wp(ps) as )
— N T = >\ = Ry Vp € (ps; ps)
w(p)  wlp)a(p) wlps)  2ps)  2p
_ _ wo(ps)  as as P
= logw < logw +<p —> — + —lo <> Vp € ,P5)-
gw(p) < logw(ps) () 3ps (p=ps)+ 5 log { p € (6, ps)
(2.31)
If pg = 0, then by (2.31),
lim w(p) =0
i, w(p)
which contradicts (2.2). Hence pg > 0 and
o a2)\—P1/ﬁ
= — 2.32
w(ps)q(pe) 1o (2.32)
By (2.30) and (2.32),
a A*Pl/ﬁ
w(p)g(p) > 247 Vps < p < ps
as
which contradicts (2.29). Hence no such p; > 0 exists and
as B ) az/\—ﬂl/ﬂ
> 2 \(me)/(A=m)B)) vy <« p < - 3. 2.33
alp) > g p<minqp2 g (2.33)

By (2.25) and (2.33), (2.18) holds for

a2)\_p1/6 }

= min ,
Lo {p2 8|a1| T1

Let {p;} C RT be a sequence such that p; — 0 as i — oo. Then, by (2.18), the
sequence {p;} has a subsequence which we may assume without loss of generality
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to be the sequence {p;} itself such that
(oo = lim q(p;) exists
71— 00

and

21+m
o € [85‘2)\((mp1)/((1—m)6))7 @2y ((mp1)/(1=m)B)) | (2.34)
as as

By (2.15),

(prevees s d‘“q(p))p = —p~ [(1 = m)w(p) ! + asp~2w(p)g(p)?]

« %2 fpl sT2w(s) T ™ ds Vp >0

aD) + [1 s~ [(1 = m)w(s) ! + azs~2(s)g(s)er 2 T o g

= alp) = p—a1e%2 [, s72w(s)t-m ds

Vp > 0. (2.35)

Since lim,_o+ s'e'/* = oo for any I € R, by (2.2) and (2.18),

1
/ s~ [(1 = m)w(s) ™" + azs*w(s)q(s)’]

Pi

1 _—2—— \1-m X
x g2 [s o w(o) d7ds >0 asi—

and
—ay a2 fpll s 2w(s) ™ ds
[

Hence by (2.2), (2.34), (2.35) and 'Hospital rule,

e — 00 as it — 00.
Goo = lim q(p;)
1— 00

fpl sT2w(s) T ds
k2

—pr [(1 —m)w(p;) "t + azp; Zw(pi)alpi)?| e

= lim

i— 00 7a1p;(a1+1)ea2 f,,ll sT2w(s)t—mds agp;(alJrz)E(Pi)l_meaz fﬂll s—2w(s)l—m ds
. (1 —m)p?w(p;) " + asw(pi)a(p;)? 93 )~ ((mp)/(1=m))) 2 (2.36)
i—00 a1pi + agw(p;)t—m az

Hence by (2.34) and (2.36),

@2 3 (mp1)/(1-m)B))
as

Qoo =

Since the sequence {p;} is arbitrary,

lim g(p) = 2 A(me)/((1=m)B))
p—0+ as

and (2.13) follows. Since

rom /P (M) (r) = %Pﬁp(p) - %mram/ﬁv(’") (r) Yp=r"/f>0, (237
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by (1.7) and (2.13),

lim ro‘m/[”l(v(m))’(r) =2 tim pw,(p) — I fim ro‘m/ﬁv(m)(r)

r—0+ ﬂ p—0+ ,3 r—0+
a
— B = ((p)/((1=m)B))
B
and (2.14) follows. O

LEMMA 23. Letn >3,0<m<n—2/n, pr >0, A>0 and B> 8™ . Then

lim ,y(p) = L9 = 0 y—((@m-1)p0)/(1-m)B)) (2.38)
p—>0+ CL2
where a1, ag and az are constants given by (1.13). Hence W can be extended to a
function in C*([0,00)) by defining W,(0), w,(0) and w,,(0) by (1.12).
Proof. Let ©(p) = w,(p). Then by (2.1),

~2
v ay . A2_q_,~  G3_

V=01-m)———0— —w "0+ —w
( i P v (2.39)
~2 —1-m :
—(1-m)= - 85 2T <v—a3w’”"> Vp > 0.
woop p as
Let v1(p) be given by
o(p) =vo + vi(p)p (2.40)

where

as__
= —=w™(0).
0 a2w (0)

Then by (2.39) for any p > 0,

/ ey (L=m) (1o
o+ 0rlp) = 70) = S ) — arn() -

axw(p)t=™ [az . .

- % @) o)+ (ol - 241
P az
By the mean value theorem, for any p > 0 there exists a constant £ = £(p) € (0, p)
such that

T (p) — W™ (0) = (&)1, (E)p. (2.42)

By (2.41) and (2.42),

%w—lv“”%ﬂm—u+mmw]

p L w(p)
axw(p)t=™ [maz__ . 1 a1
e { p w(§)™ W, (&) —vip) — ()™
~aguw(p)tm 1—-m 52(p) — fi(p)
S sz(p)“” )= } 24
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where
fp =1 :Zal)pvl(p)@(p)m‘l +o1(p) = fa(p) (2.44)
and
Falp) = SR WER)™ 1 wy(6(p)) = =) AT (e (D,
Let
0y = Blmas —a)

az

Without loss of generality, we may assume that a4 > 0. Then by (2.2) and (2.13),

lim fo(p) = ag )~ (@m=1)p1)/((1=m)B5)) (2.45)
p—07t
and
plir(r)lJr pv1(p) = 0. (2.46)

Let 0 < e < 1/5. By (2.45) and (2.46) there exists a constant pa > 0 such that
(1-— 6)(14/\*(((277%1)01)/((1fm)ﬁ)) < falp) <1+ €)a4)\*(((2m71)p1)/((lfm)ﬁ))
Y0 < p < po (2.47)
and

(1+a1)

as plor(p)[w(p)™ ™" < eagh ™ (Em=De/=mO) 0 < p <y (2.48)

and (2.17) hold. Let

caga )\~ (@m=1p)/(A=m)B)) w(p)Q—m)

= 1 ’ f T (p)2
Pe = MIN <p27 16(1 _ m) Oérfkl @p(p)2

We claim that
(1- 35)(14)\*(((2771*1)ﬂ1)/((17m)ﬁ))
<wv(p) <1+ 35)a4)\*(((2m*1)ﬂl)/((1*m)5)) Y0 < p < pe. (2.49)

Suppose that the second inequality in (2.49) does not hold. Then there exists a
constant p} € (0, pc) such that

v1(p)) > (14 3¢)agr~(Gm=De)/((1=m)B)

By continuity of v1(p) on (0, 00), there exists a maximal interval (ps, p4) containing
P, 0 < p3 < p) < psa < pe, such that

v1(p) > (14 3e)ag A~ (Cm=De0/(A=m)B) v e (pg. py). (2.50)
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Then by (2.44), (2.47), (2.48) and (2.50),

fi(p) > cas )\~ (Em=1)p1)/(1-m)B)) Vp € (ps3, pa). (2.51)

Hence by (2.17), (2.43) and (2.51),

T(p)1—m _ ~((2m=1)p1)/((1-m)B))
< ST [y s
p axw(p)?—m P
5
< —p% <0 Vpe&(ps,pa) (2:52)

for some constant g > 0. Integrating (2.52) over (p, pa),

vmw—m@<%(1—b Vo € (p3, pa)

- 6
= W,(p) = 0(p) = vo + pv1(p) = vo + pv1(pa) + o — p%p Vp € (p3,pa). (2.53)

If p3 = 0, then by (2.53) and lemma 2.2,

v = lim Ep(p) > vg + g > vy
p—0F

and contradiction arises. Hence ps > 0. Thus
vi(ps) = (1+ 3€)a4>\7(((2m71)p1)/((lfm)ﬁ)).
Then by (2.52),
v1(p) < v1(p3) = (1 + 3€)a4)f(((2m71)m)/((17m)ﬁ)) Vp € (ps, pa)
which contradicts (2.50). Hence no such p} > 0 exists and the second inequality in
(2.49) follows. By a similar argument the first inequality in (2.49) also holds. Hence

(2.49) holds. Since ¢ € (0,1/5) is arbitrary, by (2.49),

v(p) — v

N PR () L _ as(maz —a1) \ _((@m—1)p1)/(1-m)B))
Wpp(0) = Jim, P i, vi(p) = 22 A
and the lemma follows. O

By lemmas 2.2, 2.3, (2.37) and Taylor’s expansions for @w and w,, theorem 1.2
follows.

COROLLARY 24. Let n >3, 0<m <n—2/n, py >0, A>0, 3> 8 and ¢,

Qs ﬂ(()m), be given by (1.2), (1.5) and (1.6) respectively and v = v\"™) is a radially
symmetric solution of (1.3) in R™\{0} which satisfies (1.7). Then

(™Y (r) <0 Vr>0. (2.54)
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Proof. By (1.3) and lemma 2.1,

(" to(r)™ W (1) = —am (v(r) + ﬂrv’(r)) <0 Vr>0 (2.55)
Om
By theorem 1.2 there exists £ > 0 such that
V'(r) <0 V0 <r<&. (2.56)

By (2.55) and (2.56),

()R (r) < €0 (&)™ (60) < 0 Vr > &
=0'(r) <0 Vr>&. (2.57)

By (2.56) and (2.57), we get (2.54) the lemma follows. O
We are now ready for the proof of Theorem 1.3.

Proof of Theorem 1.3. Note that the case 0 <m<n—2/n and £ = ((p1)/
(n —2 —mnm)) is already proved in [23]. We will give a new proof which includes
all cases of the theorem. By (1.3), (1.7) and integration by parts,

" o ()T g () = va ()™ T e () + B (v (r) — va(r))

-
D (g lmamd B (gom By, (e))m =t gom/FH Ly (€)

i=1
(O — 0a(O) + (18~ an) [ (0p) = valp)p" o, V> >0
3
(2.58)
By theorem 1.2, there exist constants &y > 0 and Cy > 0 such that
[P temm () < Co WO <g<go, i=12  (259)
Since § > ﬁém), n—2— ((may,)/(8)) > 0. Hence by (2.59),
2
lim > [gn e tman [ g By ()T ui(€) | = 0. (2:60)
U=
By (1.14) of theorem 1.2 there exist constants C' > 0 and 79 > 0 such that
rom /By (1) — vy (r)| < Or?P/P Y0 < r < 1. (2.61)

Hence
1€ (01 (&) — v2(€))| < Cgn—am)/ (BN+((201)/(8))

— Cen=2=nm))/(1=m)BNB=85") . ¢r1/B _, ) a5 € — 0.
(2.62)
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Letting ¢ — 0 in (2.58), by (2.60) and (2.62),

" o ()™ T () = va ()™ TR () + Bt (v () — va(r)

=06~ ) [ (05) = walo)" Mg w0, (2.63)

By corollary 2.4,
vi(r) <0 Vr>0, i=12. (2.64)
Since 1+ (201 — @m)/(8)) = (((n — 2 —nm)) /(1 — m)B))(B — B™) + p1/B > 0,

by (2.61),

(08— an) [ (01 = 02)(p)" " dp
0
< C/T = BH(@e)/()=1 4y = O o= /() o < p <y (2.65)
0

for some constant C' > 0. Hence by (2.63) and (2.65),

" oy (r)™ M (1) = wa (1) () 4 Br” (01 (r) — va(r))

< Ot (Crimam)/(B) w0 < < . (2.66)

Let
D={0<r<ry:vi(r)=uvs(r)}.
By (2.64) and (2.66) for any r € D,
o1 ()™ My (r) 4 Broa(r)

va (1) 1’0'2(1") + Brog(r) + Ol ((2e1—am)/(8))
< vy ()™ Wb (1) + Brog(r) + Crit((Zei=am)/(5)

= (v1 — 02)'(r) + Bro (1) 7 (vy — vo)(r) < CriH(@ermam)/ By, (py1=m,

)
)

Hence

((Ul - v2)+(7")eﬁ f:l poi(p)t ™ dp)/

< CT1+((2p17am)/(ﬁ))v1(T)lfmeﬁf:l pv1(p) =™ dp VO <1 <7 <710

= (Ul B 7}2)+(T2) < (Ul B v2)+(rl)e*ﬁf:12 pvi(p)t =™ dp

frz p1+((201 am)/(ﬁ))vl( )1 m<e,3f,r‘,’1 svl(s)l—mds)dp

GBI por(p)im dp

VO <ry <rg <rg.
(2.67)

Since 7y (1)~ a2 pl-(=m)em/B — p=1=p1/B pear r = 0, both the numerator and

denominator of the last term of (2.67) goes to infinity as r; — 0. Hence by the
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I’'Hospital rule,

f?"z p1+((2l)1—(xm)/(ﬂ))vl (p)l—m(eﬁffl svl(s)l—‘m ds) dp

r1—0 P I poa(p)t=m dp
r{@e1=am)/(8))

o r1—0 665 f:f pui(p)t—mdp”

371

(2.68)

Since
T2 1—-m
. rUl dp 1—-m
hm frl P _(p)ﬁ = hm % = ﬁ)\_pl/ﬂ VO < ) < To,
r1—0 Tl Pl/ r1—0 pl/ﬂrl P1 P1

for any 0 < ro < 1o there exists a constant r3 € (0,72) such that

T2
/ pui(p)t =" dp > %)\_pl/ﬁr;mm 0<ri<rs
1
0 0

=

< —
B2 v (p) dp = eB2/2p1(Ary)P1/8

astm — 07 V0 <ry <rp,0cR.
By (1.7) and corollary 2.4
vi(r) < A~ ((p1)/(A=m)B))p=am /B vy 0, i=12.
Hence by (2.68), (2.69) and (2.70),

limO % =0 and

r—=0 B pUY P

) I pIH(@oi=am) /(D) (p)L=m (P J5y ()7 ds) g Y
Tllgo eﬁf:f pui(p)t—mdp o

By (2.67) and (2.71),
(v —v2)4(r) <0 VO 7 <.
Similarly
(v —v2)_(r) <0 YO <r<r.
By (2.72) and (2.73),
v1(r) =wva(r) YO <r <.

Then by (2.74) and standard O.D.E. theory, (1.15) holds.
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3. Decay estimates of solutions of the elliptic logarithmic equation

In this section, we will prove the decay rate of solutions of the elliptic logarithmic
equation (1.8).

LEMMA 3.1. Letn >3, B€R, p1 >0 and a =23+ p1. Let v =0 be a radially
symmetric solution of (1.8) in R™\By and w(r) = r?v(r). Suppose that there exists
a constant Cy > 0 such that

w(r) < Cy Vr>=1. (3.1)
Then, any sequence {w(r;)};o,, 15 — 00 as i — 0o, has a subsequence {w(r})};-,
such that
0 or wy ifvé LY(R™\By)
lim w(r})) =<0 or w; ifvel}(R"\B;) and B>0 (3.2)
e 0 if ve LY(R™\B;) and B<0
where
_2(n—2) 2
Woo = 0_725 and w1 = E

Proof. We will use a modification of the proof of Lemma 2.1 of [19] to prove the
lemma. Let {r;};-, be a sequence such that r; — oo asi — co. By (3.1) the sequence
{w(r;)};=, has a subsequence which we may assume without loss of generality
to be the sequence itself that converges to some constant ag € [0,Co] as i — cc.
Multiplying (1.8) by 7"~! and integrating over (1,7),

V'(r) =as :(i)l — Bro*(r) + (nfn%la)v(r) /1 p"ru(p)dp Vr=1. (3.3)
where
as = v(1)" "' (1) + pu(1). (3.4)

Integrating (3.3) over (r,00), by (3.1), we have

v(r) = —as /°° s "(s)ds + ﬁ/oo sv?(s)ds

—|—(a—nﬂ)/roosl_"v(s) (/1 p"_lv(p)dp> ds Vr>1.  (3.5)
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By (3.1), (3.5) and I"'Hospital rule,

ap = lim r?v(r;)
11— 00

sy (s) ds *° sv2(s) ds
= —as lim —f” 72( ) + 3 lim 7f” 72 )
i—00 T i—00 ri
o0 1 ny n— 1 ds
+ (a —np) lim f“ fl — ) dp)
i—00 T
1 v(r;) riv2(r;)
_2<—a lim % 4—&—6100 Ti_3
1-n . i n—1 d
+ (@ —nB) lim ri ol fl-? o) ,0>
—00 T
]. 2 ] i pn—l d
1 (M () tim UL N0() p>
2 i—00 7’?
1 "o l(p)d
_1 (mz + (o= nf)ap Tim HW) | (3.6
2 i—00 ri”
If v ¢ LY(R™\By), then by (3.6) and the ’'Hospital rule,
( —nﬁ) . 2 _a=28 ,
(/8 O 2 Qo z]il/lgo riv(TZ) - 2(” _ 2) aO
2(n —2
=ap=0 or aozo(é_i2ﬂ)=woo. (3.7)
If v € L*(R™\By), then by (3.6),
B, ap=0 or aoz%zwl if >0
W =35%=14,=0 if 3<0 (3.8)
By (3.7) and (3.8), the lemma follows. O

COROLLARY 3.2. Letn >3, € R, p1 >0 anda =28+ p1 Let v =0 be a radi-
ally symmetric solution of (1.8) in R™\B; and w(r) = r?v(r). Suppose that there
exist constants Cy > C1 > 0 such that

Ci<w(r)<Cy Vr=1
Then (1.16) holds.

LEMMA 3.3. Letn > 3, p; > 0, ﬁ>ﬁ(0) = p1/n —2 anda—2ﬁ—|—p1 Letv =0
be a radially symmetric solution of (1.8) in R™\B; and w(r) = r?v(r). Then there
exists a constant C7 > 0 such that

w(r) > Cy Vr>1. (3.9)
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Proof. By (3.3),

V' (r) + Bro*(r) + las|r' "u(r) 2 0 Wr>1 (3.10)
where as is given by (3.4). Let H(r) = e~ ((125D/(n=2))7*"" 4,3} Then by (3.10),

H'(r) > 756((|a5|)/(n72))r2—nTH(T)2 > BellasD/=2) ()2 w1 (3.11)
= —H(r)"2H'(r) < BelllasD/(n=2),. vr> 1

-1

((las])/(n—2))
pet T 2y H(1)1) Vr>1. (3.12)

:>’U(1")>H(T)2< 5

By (3.12) there exists a constant C; > 0 such that (3.9) holds and the lemma
follows. 0

LEMMA 3.4. Letn >3, p1 >0, 0 < ﬁ%o) =p1/n—2anda = 26+p1 Let v =0
be a radially symmetric solution of (1.8) in R™\B; and w(r) = r?v(r). Then there
exists a constant Cy > 0 such that (3.9) holds.

Proof. As observed in [16], w satisfies

AN _ / _ _ —
(“’ ) oot W By @z2Bw 2D g gny 33
T w T r

w

Multiplying (3.13) by r"~! and integrating over (1,7), r > 1 > 0,

M ’I‘n_Qw r
w(r) +8 (r)
_w'(1) ro .
= (D) +ﬂ“’(1)+(”5—a)/1 P Pw(p)dp +2( 2 — 1) V> 1
rw'r) _ g w(r nf—a) [ n-3,, ag .
) =2 - puw(r) + e /OP (,O)dp—i—rn_2 vr>1 (3.14)

where ag = w(1)7tw'(1) + Bw(1) — 2. Let
1
Bz{r>1:w(r)<}.
Pt
If there is a constant Ry > 1 such that BN [Ry,00) = ), then
1
w(r) > — Vr>= Ry
P1

and (3.9) follows. Hence we may assume that

BN [Rl,OO) 7’5 0 VR > 1. (315)
If fl p) dp = oo holds, then by (3.14) and the ’'Hospital rule,
! — 1 1
hmmfrw(r)>2_ﬁ_a nﬁ~——2—7>0
rex w(r) P n—2 -2
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If [ p"~3w(p)dp < oo holds, then by (3.14),

/
timint ") o By > 0.
reE w(r) 01 n—2

Hence in both cases there exists a constant Ry € B such that
w'(r) >0 VreBN[Rs,00). (3.16)
Suppose that there exists a constant R3 > Rs such that Rs ¢ B. Let

1
R4:sup{r1>R3:w(r)> VR3<T<T1}.

P1
By (3.15),
1
Ry <00 = w(Ry) = P RyeB and w'(R4) <0
1
which contradicts (3.16). Thus no such point Rj exists. Hence
[Ra,00) C B. (3.17)

By (3.16) and (3.17),
w(r) =2 w(Ry) Vr = R

and the lemma follows. O

LEMMA 3.5. Letn >3, p1 >0, 8 < §O) =p1/n—2and o = 26+ p;. Let v = v
be a radially symmetric solution of (1.8) in R™\B; and w(r) = r?v(r). Then there
exists a constant Coy > 0 such that (3.1) holds.

Proof. By corollary 2.4 v satisfies (2.54). Since a > ng, by (1.8), (1.9), (2.54) and
lemma 3.4,

AN Briv(r) = AU Bu(1) — (e — np) /1 p"lulp)dp V> 1

v(r) v(1)
< 1;/((11)) +6v(1) = (@ = nf) /1 Pl dp > 1
S ° _nnﬁ) ru(r) Vr>1
= r”—”;/((:)) + %r"v(r) <as Vr>1
vir) | o |as| Co

Y < < <Cy, Vr>1 (3.8
v(r)? + nr rr—ly(r) = =3 2 ( )

for some constant Co > 0 where a5 is given by (3.4). Integrating (3.18) over (1,7),
1 ar? a 1 ar? 4nCy

—— > — —Cy(r—1)— — >—+C5 V 1, 3.19

o(r) T 2n 2(r=1) 2n + v(l) 7 4n Gy Ve max ( ) (3.19)

where C3 = Cy — o/2n + 1/v(1). Then by (2.54) and (3.19), (3.1) holds for some
constant Cy > 0 and the lemma, follows. O
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LEMMA 3.6 (cf. lemma 2.6 of [19]). Let n >3, p1 >0, 5> [350) =p1/n—2 and
a =28+ pi. Let v =0 be a radially symmetric solution of (1.8) in R™\B; and
w(r) = r®v(r). Then there exists a constant Cy > 0 such that (3.1) holds.

Proof. The proof of the lemma is similar to the proof of Lemma 2.6 of [19].
For the sake of completeness, we will give a sketch of the proof here. Let A =
{r € [1,00) : w'(r) = 0}. If there exists a constant Ry > 1 such that AN [Ry,00) =
(). Then w'(r) < 0 for all r > Ry and (3.1) holds with Cy = maxi>,> g, w(r).

We next suppose that AN [Ry,o0) # ) for any Ry > 1. By lemma 3.3 and the
I’Hospital rule,

. [i 2" tu(z) dz . [i 2" t(z) dz
limsup =—————— = limsup ——————"—
reA, r—oo 7‘”1}(7“) reA, r—oo - U)(?“)
n—1 1
< limsup r” v(r)

rcA, r—oo (TL - 2)7'”73'10(7") + 7"”72’(11/(7') = n—2"

Hence there exists a constant R; > 1 such that

" n—1 1 P1 n
/12 U(z)d2<<n2+2(n2)(nﬂa)>r o(r) ¥Vr > Ri,re A (3.20)

By (3.3) and (3.20) for any r > Ry, r € A,

rzzj;i:) < TZEQ — Brio(r) + (nfB — a) <n i 5+ T 25(1715 - a)) 2 (r)
2= (). (3.21)

<
R 2(n-2)

where as is given by (3.4). Hence by (3.21),
/
0<w(r) = 2w(r) (1 N lro (r)>

r 2 v(r)
< 2u(r) R R— w(r) Vr>Ry,reA
r ORI 2 A(n—2) ’
=w(r)<Cs VYr=Ry,reA (3.22)

for some constant C's > 0. Since w'(r) < 0 for any r € [R1,00)\ 4, by (3.22) and the
same argument as the proof of Lemma 2.6 of [19] (3.1) follows. O

Proof of Theorem 1.4. If nf > «, by corollary 3.2, lemmas 3.3 and 3.6, (1.16)
follows. If & > nf3, by lemmas 3.4, 3.5 and corollary 3.2, (1.16) follows. a

4. Singular limits of solutions

In this section, we will prove the singular limits of solutions of (1.1) and (1.3) as
m — 0. We first start with a lemma.
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LEMMA 4.1. Let n >3, 0<mmpy<n—2/n, p1 >0, A>0, 8> ém") and Qy, =
(28 + p1)/(1 —m)). For any 0 < m < g, let v™ be the radially symmetric solu-
tion of (1.3) in R™\{0} which satisfies (1.7) given by theorem 1.1. Then there exists
a constant mg € (0,7g) such that

A0/ (=m)B)) < /By, (m) () < A=)/ (=mIB) aypy(Cu AP/ By /B)

Viz|=7>0,0 <m < myg (4.1)
holds where
Cm:j:;<n—2—mgm). (4.2)
Proof. We will use a modification of the technique of [23] to prove the theorem.
Note that
6> _me V0 < m < my.

n—2—nm
By the proof of Theorem 1.1 of [23], for any i € ZT, 0 < m < My, there exists a
radially symmetric solution v; of
Apm(v) +amv +Br-Vo=0, v>0, inR"\B,
vi(1/i) = A= (e0)/(A=m)B) joun /B,

vl(1/i) = _%ﬂA—((m)/((l—mm»iam/ﬁﬂ

which satisfies

vi(r) <0 Vr>1 and o(r) > AT (D/AmmIB)man/B g 5 1 (4.3)

2

Moreover the sequence v; has a subsequence which we may assume without loss
of generality to be the sequence v; itself that converges uniformly in C?(K) for
any compact subset K of R™\{0} to v = v(™ as i — oo. Let w;(r) = rom/Pv,(r),
s =logr and z;(s) = w; ' ((Ow;)/(0s)). Then by the proof of Theorem 1.1 of [23]
(cf. [17]) and (4.3),

t— =5 2 Yr>l/hieN
2mauy,
izi,s+<”2 mﬁa >zi+mz7;2+ﬂepl/ﬁswil_mzi
=pCy Vs> —logi,i e N. (4.4)

We now choose mg € (0,7) such that

>0 Y0<m<mg.
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Since by the proof of Theorem 1.1. of [23] z;(s) = w; '((w;)/(ds)) = 0 for all
s> —logi, by (4.3) and (4.4),

Zis —|—ﬂ)f"1/ﬁe*p1/ﬁszi <p1Cy Vs> —logi,i € ZT,0 <m < mg (4.5)

By (4.5) and an argument similar to the proof of Theorem 1.1 in [23],

C
zi(s) < PrZm \pr/Bepr/Bs Vs > —logi, i € ZT,0 < m < my

B
= w;(r) < ATPD/(A=mIB) oxpn tC N/Brer/BY e > 1/i i€ Z7T,0 < m < mg
= v;(r) < AT D)/(A=m)B)p=am /B oy 10 NP1/ Bprr/BY
Vr>1/i,i€ ZT,0 <m < myg. (4.6)
Letting ¢ — oo in (4.3) and (4.6), we get (4.1) and the lemma follows O

Proof of Theorem 1.5. Let mg € (0,79) be given by lemma 4.1. Let {m;}°,, 0 <
m; < mg for all i € ZT, be a sequence such that m; — 0asi — co. Let Ry > Ry > 0.
By (4.1),

M;(Ry) < o' (2) < My(R1,Ry) VR < |2 < Ry (4.7)
where
M (Ry) = min(}\fnpl/Zﬁ, /\7p1/ﬁ) min(R;"/2(2+”1/5), RQ—(2+p1/B))
Ms(Ry, Ry) = max(/\_"pl/w, )\_pl/ﬁ) maX(an/z(%pl/B),Rf(%pl/ﬁ))
exp (n(n —-2)(26+m) )\pl/ﬁRSI/B> .

2p1
By (4.7) and the mean value theorem, for any 0 < m < myg there exists r,, € (1,2)
such that
(W) ()| = [0 (2) = 0™ (1)] < 2M3(1,2). (4.8)

Multiplying (1.3) by 7"~! and integrating over (r,,,7), Ry <r < Ry,
U () (Y ()

_ TZz_l (,U(m) (Tm))m—l (U(m))/(rm)
+ ) = B0 () + (08— a) [ o () (09)

By (4.7), (4.8) and (4.9), for any Ry > R; > 0 there exists a constant Ms(R1, R2) >

0 such that
|(U(m))’(7«)| < M3(Ry1,R2) VR <7r < Ry, 0<m<mg (4.10)
= |’U(m)(7"1) — U(m)(T2)| g Mg(Rl,R2)|r1 - T2| VT1,T‘2 € [RhRQLO <m < mg.

(4.11)
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By (1.3), (4.7) and (4.10), for any Ry < r < Ry and 0 < mg < Mg,

@) (r) = (1 = m) ("™ ()~ (™) (r)? = av™ (r)>7™
= Bro™ () @™) (1) — (0 = Ve (@) () (1.12)
= ‘(U(m))//( )l M4(R1,R2) VR <r R2,O<m<m0
= (™) (r1) = (0™ (r2)| < Ma(Ra, Ro)lr1 — 72|
VT17T‘2 S [Rl,RQLO <m < mg. (413)
for some constant My (R, R2) > 0. By differentiating (1.3) with respect to r > 0
and repeating the above argument, there exists a constant Ms(Ry, Re) > 0 such
that
< Ms(Ri,R) and  |(0™)"(r1) = (01™)" (r2)]
< M5(Ry, Ry)lry — 12| Vr,ri,m2 € [Ry, Ry (4.14)
holds for any 0 < m < mg. By (4.7), (4.10), (4.11), (4.13) and (4.14), the sequence
{v(mi1e s equi-Holder continuous in C?(K) for any compact subset K of R™\{0}.
By the Ascoli Theorem and a diagonalization argument the sequence {v(mi)}ﬁl has
a subsequence which we may assume without loss of generality to be the sequence
itself that converges uniformly in C?(K) for any compact subset K of R™\{0} to

some positive function v € C?(R™\{0}) as i — oc.
Putting m = m; in (4.12) and letting i — oo,

v (r) = (1}(7‘))711/(7’)2 - om(r)271 — Bu(r)v'(r), v >0, inR™\{0}
and hence v satisfies (1.8). Letting m = m; — 0 in (4.1),

AP/B g |x\°‘/ﬁv(x) <AP/B exp(CO)\Pl/B|x|Pl/5) v € R™\{0}

= lim |z|a/ﬁ (z )*)fpl/ﬁ

|z[—0

where Cy = (((26 + p1)(n —2))/(p15)). Then by theorem 1.3 v is the unique solu-
tion of (1.8) which satisfies (1.9). Since the sequence {m;}32, is arbitrary, v(™)
converges uniformly in C?(K) for any compact subset of R"\{O} to the unique
solution v of (1.8) which satisfies (1.9) as m — 0% and the theorem follows. O

Proof of Theorem 1.6. We will use a modification of the proof of Lemma 2.5 of
[21] to prove the theorem. Let h € C°(R™), 0 < h <1, h(x) =1 for |z| <1 and
h(z) = 0 for |z| > 2. Let n(x) = h(z)* and nr(z) = n(z/R) for any R > 0. For any
R> 3¢ >0, let

Ne,r(z) = (1 —n(z/€))nr ().
Then

Ne,r =0 V|z| <eor|z| > 2R
ner(r) =1 V2e<|z|<R

https://doi.org/10.1017/prm.2018.31 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2018.31

380 K. M. Hui and S. Kim

and

Bner(@) < B Ve<lal <2 |Anon()| < b VR<[p|<2R  (415)

for some constant C7 > 0. By Kato’s inequality [24],

0

2 [ = bt

< / (loguy — logua)y (z, t) Ane r(x) dz

C
< —21 (loguy — logug) 4 (z,t) dx
€7 Jeg|w|<2e
+ / (log 1 — log s (x, £) | An ()] dz (4.16)
R<|2|<2R

By (1.9) and lemma 2.1 there exists a constant €; > 0 such that
)\;Pl/ﬁ < |$|a/ﬁv/\i (z) < 2)\;p1/ﬁ7 V|z| <e,i=1,2. (4.17)
Then by (1.18) and (4.17),

(logur — logus) 4 (1) < log(22y "/ (T — t)|z[)~/%)
~log(\ P(T — 1)) ~/")

A
< %log (/\1> +log2 Viz|<e/TP0<t<T
2

=

1
—2/ (loguy — logus)(x,t) de
€ Jeg|z|<2e

n (Pl ﬁ n—2 €1
<2 (Blog(A2)+log2)wne V0<6<—2Tﬁ,0<t<T

-0 YO<t<T ase—0 (4.18)

where w,, is the surface area of the unit sphere S*~1 in R". Letting ¢ — 0 in (4.16),
by (4.18) we get

0

ot Jan (u1 — u2)+(z, t)nr(z) do

< / (loguy —logug)4(z,t) |Ang(x)| dz VO <t <T. (4.19)

By theorem 1.4 there exists a constant C3 > 0 such that

vy, (r) = Cslz| ™2 V|z| > 1,i=1,2. (4.20)
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By (1.18) and (4.20),

wi(w,t) = (T — )% - C3((T — t)°[|) 7% = C3(T — T1) || >
Vig| > (T -T)?0<t<Th < T. (4.21)

By (4.19), (4.21) and the same argument as the proof of Lemma 2.5 of [21] for any
Ty € (0,T) we get ug < ug in (R™\{0}) x (0,77). Hence (1.19) holds.

If up1 = up,2 and both uq, us are solutions of (1.17) in (R™\{0}) x (0,T) which
satisfy (1.18), then we also have us < up in (R™\{0}) x (0,7). Hence u; = ug in
(R™\{0}) x (0,T) and the theorem follows. O

Proof of Theorem 1.7. Let mg € (0,7y) by given by lemma 4.1. Then by (1.20)
and lemma 4.1, for any © € R"\{0}, 0 <t < T, 0<m < mg, i=1,2,

AT (W/((A=m)B)) |x|fam/,3

< V(_m)(x,t) < )\i—((l)/((l—m)ﬁ))wram/ﬁ eXp(Cm/\;/ﬂT‘xP/ﬁ) (4'22)

i

= Az P < VI (@, 1) < M| 708 exp(Co} P T x|/ P) (4.23)
where C, is given by (4.2) and

i = max()\i_"/m,)\i_l/ﬁ), A= min()\i_"/w,)\i_l/ﬁ) and
Co = ((n(n—2)(26 +1))/(28)).

By (1.23) and (4.23),

A min(‘x|fn/2(2+1/ﬁ)7 ‘x|7(2+1/ﬁ)) < u(m)(a:,t)

< X max(|z| 2B |5~ (2+1/8))

x exp(CoAy T|z|'/7) (4.24)

holds for any « € R"\{0}, 0 <t < T and 0 < m < mg. Let {m;}32, C (0,mq) be a
sequence of positive numbers such that m; — 0 as ¢ — co. By (4.24) the equation
(1.1) for the sequence {u(™)}%°, is uniformly parabolic on every compact subset
of (R™\{0}) x (0,T). By the Schauder estimates for parabolic equations [26], the
sequence u(™)(z,t) is equi-bounded in C?+%1*+9/2(K) for some 6 € (0,1) for any
compact subset K of (R™\{0}) x (0,7). Hence by the Ascoli theorem and a diag-
onalization argument the sequence u(m'i)(ac,t) has a subsequence which we may
assume without loss of generality to be the sequence itself that converges uniformly
in C?+0140/2(K) for any compact subset K of (R"\{0}) x (0,T) as i — oo to a
positive function u(z,t) € C?(R™\{0}) which by (1.23) and Theorem 1.5 satisfies
(1.25).
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Putting m = m; in (4.22) and letting ¢ — oo, by theorem 1.5,
APl 7 < Vi, t)
<Pl exp(CoN; Tl V)
Ve e R"\{0},0 <t <T,i=1,2. (4.25)

By (4.24) and the mean value theorem for any (x,t) € (R™\{0}) x (0,T') there exists
&i(z,t) € (0,m;] such that

ulm™d) (z, )™ — 1

m;

—log u(x, t)‘

— ‘egi(m’t) tog ™0 10g (™) (2, £) — log u(z, t)‘

i (2,t) log ul™) (2t
< i@t logu™ (1)

log u'™) (,t) — log u(, t)‘
+ ‘e&(””’t) logu(™) (1) _ 1’ - Nog u(z, )|
— 0 uniformly on every compact subset of (R™\{0}) x (0,7") as i — oo. (4.26)
Hence putting m = m, in (1.1) and letting ¢ — oo, by (4.26) u satisfies (1.10). It

remains to prove that v has initial value ug. For any ¢ € C§° (R™\{0}), we choose
constants Re > Ry > 0 such that supp ¢ C Bgr,\Bg,. Then

[ e s@ e [ () da
R\ (0} oy

t
/ / ugmi) (z, ) (x) dzds
0 JR™\{0}

f )" = (O e
NVAN dxd
/0 /n\{o} ( - ¥(x) dads

t
<||A1/)||Lm/0/3 y (Ey + Bp)dzds YO<t<T (4.27)
Ry \DBRy

where

Ve (1 =

m;

B =

Yk =1,2.

Since

(T - 8)P )™ — 1

my;

By = [(T — s)™mi]|

— [log vy, (T — s)ﬁx)‘ uniformly on(Br,\Bg,) % (0,T7)

https://doi.org/10.1017/prm.2018.31 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2018.31

Singular limits and Properties of Degenerate equations 383

for any 0 < Ty < T as i — o0, letting i — oo in (4.27),

/ u(x, t)(x)de — / uo () (x) dz
R™\{0} R™\{0}

t
SHMHL“/O/B y ([log v, (T — $)°2)| + [logur, (T — 8)%2)|) deds
Ry \BR;

SCL|AY] et VO<tLT)2 (4.28)
where
= 1 1 .
L= ot Eiarom, BT s I o, 1B )
Letting ¢t — 0 in (4.28),
lim u(z, t)(z)de = / uo(z)yY(z)de Vi € C3°(R™\{0}). (4.29)
t—0 R"\{O} R"\{O}

By (4.29), any sequence {tj},-, converging to 0 as k — oo will have a subsequence
{tx, }72, such that u(z,tx,) converges to ug(z) for a.e. z € R"\{0} as | — oco. Then
by the Lebesgue Dominated Convergence Theorem,

lim lu(z, tr,) —uo(xz)] de =0 VRy > Ry > 0.

=00 Ri<|z|<R2

Since the sequence {tj},-, is arbitrary, u(-,t) converges to ug in L, .(R™) as t — 0.
Hence u has initial value ug. Thus by theorem 1.6 « is the unique solution of (1.24).
Hence u(™ converges uniformly in C2+%1+0/2(K) for some constant 6 € (0,1) and
any compact subset K of (R™\ {0}) x (0,7) to the solution u of (1.24) as m — 0

and the theorem follows. O
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