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Let n � 3, 0 � m < n − 2/n, ρ1 > 0, β > β
(m)
0 = ((mρ1)/(n − 2 − nm)),

αm = ((2β + ρ1)/(1 − m)) and α = 2β + ρ1. For any λ > 0, we prove the uniqueness
of radially symmetric solution v(m) of �(vm/m) + αmv + βx · ∇v = 0, v > 0, in
R

n\{0} which satisfies lim|x|→0 |x|αm/βv(m)(x) = λ−((ρ1)/((1−m)β)) and obtain

higher order estimates of v(m) near the blow-up point x = 0. We prove that as
m → 0+, v(m) converges uniformly in C2(K) for any compact subset K of R

n\{0}
to the solution v of � log v + αv + βx · ∇v = 0, v > 0, in R

n\{0}, which satisfies
lim|x|→0 |x|α/βv(x) = λ−ρ1/β . We also prove that if the solution u(m) of
ut = Δ(um/m), u > 0, in (Rn\{0}) × (0, T ) which blows up near {0} × (0, T ) at the
rate |x|−αm/β satisfies some mild growth condition on (Rn\{0}) × (0, T ), then as
m → 0+, u(m) converges uniformly in C2+θ,1+θ/2(K) for some constant θ ∈ (0, 1)
and any compact subset K of (Rn\{0}) × (0, T ) to the solution of ut = � log u,
u > 0, in (Rn\{0}) × (0, T ). As a consequence of the proof, we obtain existence of a
unique radially symmetric solution v(0) of � log v + αv + βx · ∇v = 0, v > 0, in
R

n\{0}, which satisfies lim|x|→0 |x|α/βv(x) = λ−ρ1/β .
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1. Introduction

Recently there is a lot of study on the equation [4,7–13,18,25,31,32],

ut = �φm(u), u > 0, (1.1)

where

φm(u) =

{
um/m if m �= 0

log u if m = 0
(1.2)
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and the associated elliptic equation [6,17,19,23],

�φm(v) + αmv + βx · ∇v = 0, v > 0, (1.3)

where αm and β are some constants. Recently, P. Daskalopoulos, M. del Pino, M.
Fila, S. Y. Hsu, K. M. Hui, S. Kim, J. King, Ki-Ahm Lee, N. Sesum, M. Sáez, J. L.
Vazquez, M. Winkler, E. Yanagida, E. Di Benedetto, U. Gianazza and N. Liao, etc.
have many results on (1.1) and (1.3). The equation (1.1) appears in many physical
models [1,3,29] and in the study of Ricci and Yamabe flow on manifolds [5,14,
28,33]. When m > 1, it appears in modelling the evolution of various diffusion
processes such as the flow of a gas through a porous medium [1]. When m = 1,
(1.1) is the heat equation. When 0 < m < 1, (1.1) is the fast diffusion equation.
When n � 3 and g = u4/n+2dx2 is a metric on R

n which evolves by the Yamabe
flow

∂g

∂t
= −Rg on (0, T )

where R(·, t) is the scalar curvature of the metric g(·, t), then u satisfies [5,7,34],

ut =
n− 1
m

Δum in R
n × (0, T ), m =

n− 2
n+ 2

which after rescaling is equivalent to (1.1). Note that if n � 3, 0 � m < n− 2/n,
β > 0, αm = ((2β + ρ1)/(1 −m)) and v(m) is a solution of (1.3) in R

n (or R
n\{0}),

then with ρ1 = 1 and T > 0 the rescaled function

V (m)(x, t) = (T − t)αm v(m)
(
(T − t)βx

)
(1.4)

is a self-similar solution of (1.1) in R
n × (0, T ) ((Rn\{0}) × (0, T ), respectively)

which vanishes at time T . Since solutions of (1.1) which vanishes at a finite time
usually behaves like self-similar solutions of the form (1.4), in order to understand
the behaviour of the solutions of (1.1), it is important to study the properties of
solutions of (1.3).

For m > (n− 2)+/n, there are lots of studies on the solutions of (1.1) ([3,29]).
However, there are not many studies on the equations (1.1) and (1.3) for the case
n � 3 and 0 � m < n− 2/n until recently. This is because there is a big difference
in the behaviour of solutions of (1.1) for the case (n− 2)+/n < m < 1 and the
case n � 3, 0 � m < n− 2/n [3,15,27]. For example for any 0 � u0 ∈ L1

loc(R
n),

u0 �≡ 0, when (n− 2)+/n < m < 1, there exists [15] a unique global positive smooth
solution of (1.1) in R

n × (0,∞) with initial data u0 on R
n. However, for n � 3 and

0 � m < n− 2/n the Barenblatt solutions [4]

Bk(x, t) =
(

C∗
k + (T − t)((2)/(n−2−nm))|x|2

)1/1−m

(T − t)n/n−2−nm,

C∗ =
2(n− 2 −mn)

1 −m
, k > 0,

satisfy (1.1) in R
n × (0, T ) and vanishes identically at time T .
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For the subcritical case m < (n− 2)+/n, M. Fila and M. Winkler [9–12]
have obtained a lot of subtle phenomena for the solutions of (1.1). In [9,10]
they proved the sharp rate of convergence of solutions of (1.1) in R

n with
n > 4 and 0 < m � n− 4/n− 2 to the Barenblatt solutions as the extinction
time is approached. In [11] they also proved the rate of convergence of solu-
tions of (1.1) in R

n to separable solutions of (1.1) when n > 10 and 0 <
m < (((n− 2)(n− 10))/((n− 2)2 − 4n+ 8

√
n− 1)). In [12] they found an explicit

dependence of the slow temporal growth rate of solutions of (1.1) in R
n on the

initial spatial growth rate.
Properties of singular solutions of (1.1) are studied by E. Chasseige, J. L. Vazquez

and M. Winkler in the papers [2,30–32]. The existence of a singular solution of
(1.1) for the case n− 2/n < m < 1 with initial value a nonnegative Borel mea-
sure on R

n which blows up at a singular set of R
n is proved by E. Chasseige and

J. L. Vazquez in [2]. Finite blow-down or delay regularization behaviour for the
solutions of the 2-dimensional logarithmic diffusion equation (1.1) (with m = 0)
was studied in [30]. The asymptotic oscillating behaviour of singular solutions of
(1.1) in bounded domains of R

n with 0 < m < n− 2/n and n � 3 was studied in
[31] and the evolution of singularities of solutions of (1.1) in bounded domains of
R

n with 0 < m < 1 and n � 3 was studied in [32].
Another way to study the solutions of (1.1) and (1.3) is to study the singular

limit of the solutions of (1.1) and (1.3) as m→ 0. Singular limit of solutions of
(1.1) in R

2 × (0, T ) as m→ 0+ and in Ω × (0,∞) for any bounded domain Ω ⊂ R
n,

n � 2, as m→ 0 are proved by K. M. Hui in [20,22]. Singular limit of solutions
of (1.1) in R

n × (0,∞), n � 2, as m→ 0− is also proved by K. M. Hui in [22].
Singular limit of weak local solutions of (1.1) in O × (0,∞) as m→ 0 for any open
set O ⊂ R

n is proved by E. Di Benedetto, U. Gianazza and N. Liao in [8]. For
n � 3, 0 < m � n− 2/n and either β > 0 or α = 0, singular limit of solutions of

�(vm/m) + αv + βx · ∇v = 0, v > 0, in R
n

as m→ 0+ is proved by S. Y. Hsu in [17].
In [23] K. M. Hui proved for any n � 3, 0 < m < n− 2/n, ρ1 > 0, λ > 0, β � β

(m)
0

and

αm =
2β + ρ1

1 −m
(1.5)

where

β
(m)
0 =

mρ1

n− 2 − nm
(1.6)

there exists a radially symmetric solution v := v(m) of (1.3) in R
n\{0} which

satisfies

lim
|x|→0

|x|αm/βv(x) = λ−((ρ1)/((1−m)β)). (1.7)

In this paper, we will prove that as m→ 0+, the radially symmetric solution v(m)

of (1.3) in R
n\{0} with β > 0 and αm given by (1.5) converges uniformly in C2(K)
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for any compact subset K of R
n\{0} to the solution v = v(0) of

� log v + αv + βx · ∇v = 0, v > 0, in R
n\{0}, (1.8)

which satisfies

lim
|x|→0

|x|α/βv(0)(x) = λ−ρ1/β (1.9)

where α = α0 = 2β + ρ1. We will also prove that if u(m) is the solution of (1.1) in
(Rn\{0}) × (0, T ) with β > 0 and αm given by (1.5) which blows up near {0} ×
(0, T ) at the rate |x|−αm/β , then as m→ 0+, u(m) converges uniformly in C2,1(K)
for any compact subset K of (Rn\{0}) × (0, T ) to the solution u of

ut = � log u, u > 0, in (Rn\{0}) × (0, T ). (1.10)

For any n � 3, 0 � m < n− 2/n, ρ1 > 0, β > β
(m)
0 , αm = ((2β + ρ1)/(1 −m)) and

λ > 0, we also prove the uniqueness of radially symmetric solution v(m) of (1.3)
in R

n\{0} which satisfies (1.7) and obtain higher order estimates of v(m) near the
blow-up point x = 0.

Unless stated otherwise, we will now assume that n � 3, 0 � m < n− 2/n, ρ1 >

0, λ > 0, β � β
(m)
0 and φm, αm, β(m)

0 , are given by (1.2), (1.5) and (1.6) respectively
and v = v(m) is a radially symmetric solution of(1.3) in R

n\{0} which satisfies (1.7)
for the rest of the paper. We now recall a result of [23].

Theorem 1.1 (Theorem 1.1 of [23]). Let n � 3, 0 < m < n− 2/n, ρ1 > 0, λ > 0
and β � β

(m)
0 . Then there exists a radially symmetric solution v = v(m) of (1.3) in

R
n\{0} which satisfies (1.7) and

(v(m))′(r) � 0 ∀r = |x| > 0. (1.11)

In this paper, we will prove the following main results.

Theorem 1.2. Let n � 3, 0 � m < n− 2/n, ρ1 > 0, λ > 0, β > β
(m)
0 and φm, αm,

β
(m)
0 , be given by (1.2), (1.5) and (1.6) respectively and let v = v(m) be a radially

symmetric solution of (1.3) in R
n\{0} which satisfies (1.7). Let w̃(r) = rαm/βv(r),

ρ = rρ1/β and w(ρ) = w̃(r). Then w can be extended to a function in C2([0,∞)) by
setting

w(0) = λ−((ρ1)/((1−m)β)),

wρ(0) = A1λ
−((mρ1)/((1−m)β)) and wρρ(0) = A2λ

−(((2m−1)ρ1)/((1−m)β)) (1.12)

where

A1 =
a3

a2
, A2 =

a3(ma3 − a1)
a2
2

,

and

a1 =
(n− 2)β − 2mαm + ρ1

ρ1
, a2 =

β2

ρ1
, a3 =

αmβ(n− 2) −mα2
m

ρ2
1

. (1.13)
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Hence⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w(ρ) = λ−((ρ1)/((1−m)β)) +A1λ
−((mρ1)/((1−m)β))ρ

+
A2

2
λ−(((2m−1)ρ1)/((1−m)β))ρ2 + o

(
ρ2
)

as ρ→ 0+

wρ(ρ) = A1λ
−((mρ1)/((1−m)β)) +A2λ

−(((2m−1)ρ1)/((1−m)β))ρ+ o (ρ) as ρ→ 0+

or equivalently⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(m)(r) = r−αm/β
[
λ−((ρ1)/((1−m)β)) +A1λ

−((mρ1)/((1−m)β))rρ1/β

+
A2

2
λ−(((2m−1)ρ1)/((1−m)β))r2ρ1/β + o

(
r2ρ1/β

)]
as r → 0+

(v(m))′(r) = r−(αm/β)−1

[
−αm

β
λ−((ρ1)/((1−m)β))

− (2β +mρ1)
(1 −m)β

A1λ
−((mρ1)/((1−m)β))rρ1/β + o

(
rρ1/β

)]
as r → 0+.

(1.14)

Theorem 1.3. Let n � 3, 0 � m < n− 2/n, ρ1 > 0, λ > 0, β > β
(m)
0 and αm be

given by (1.5). Let v1, v2 be radially symmetric solutions of (1.3) in R
n\{0} which

satisfies (1.7). Then

v1(r) = v2(r) ∀r > 0. (1.15)

Theorem 1.4. Let n � 3, ρ1 > 0, β > 0 and α = 2β + ρ1. Suppose that v = v(0) is
a radially symmetric solution of (1.8) in R

n\B1. Then

lim
r→∞ r2v(r) =

2(n− 2)
α− 2β

. (1.16)

Theorem 1.5. Let n � 3, ρ1 > 0, λ > 0, β > 0 and α = 2β + ρ1. Let m0 ∈
(0, n− 2/n) satisfy β � β

(m0)
0 . For any 0 < m < m0, let αm be given by (1.5) and

let v(m) be the unique radially symmetric solution of (1.3) in R
n\{0} which satisfies

(1.7) given by theorems 1.1 and 1.3. Then as m→ 0+, v(m) converges uniformly
in C2(K) for any compact subset K of R

n\{0} to the unique radially symmetric
solution v of (1.8) which satisfies (1.9).

Theorem 1.6. Let n � 3, β > 0, λ1 � λ2 > 0 and α = 2β + 1. Suppose that 0 �
u0,1 � u0,2 ∈ L∞

loc(R
n). If u1, u2 ∈ C((Rn\{0}) × (0, T )) ∩ L∞

loc((R
n\{0}) × [0, T ))

are subsolution and supersolution of

ut = � log u, u > 0, in (Rn\{0}) × (0, T ) (1.17)

which satisfies

ui(x, 0) = u0,i(x) in R
n ∀i = 1, 2

and

Vλ1(x, t) � ui(x, t) � Vλ2(x, t) in (Rn\ {0}) × (0, T ) ∀i = 1, 2 (1.18)
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where

Vλi
(x, t) = (T − t)αvλi

(
(T − t)β |x|) ∀i = 1, 2

and vλi
is the radially symmetric solution of (1.8) which satisfies (1.9) with λ = λ1,

λ2, respectively, then

u1 � u2 in (Rn\{0}) × (0, T ). (1.19)

Hence if u0,1 = u0,2, then u1 = u2 in (Rn\{0}) × (0, T ).

Theorem 1.7. Let n � 3, 0 < m0 < n− 2/n, λ1 > λ2 > 0, β � β
(m0)
0 , α = 2β + 1

and T > 0. For any 0 < m < m0, let αm be given by (1.5) with ρ1 = 1 and

V
(m)
λi

(x, t) = (T − t)αmv
(m)
λi

(
(T − t)βx

) ∀i = 1, 2 (1.20)

where v
(m)
λi

is the radially symmetric solution of (1.3) in R
n\{0} which satisfies

(1.7) with λ = λ1, λ2, respectively. Let {u0,m}0<m<m0 ⊂ L∞
loc(R

n\{0}), u0,m � 0
for all 0 < m < m0, be a family of functions satisfying

V
(m)
λ1

(x, 0) � u0,m(x) � V
(m)
λ2

(x, 0) in R
n\{0} (1.21)

and

u0,m → u0 in L1
loc(R

n\{0}) as m→ 0+.

For any 0 < m < m0, let u(m) be a solution of{
ut = �(um/m), u > 0, in (Rn\{0}) × (0, T )

u(x, 0) = u0,m in R
n\{0} (1.22)

given by theorem 1.7 of [23] which satisfies

V
(m)
λ1

(x, t) � u(m)(x, t) � V
(m)
λ2

(x, t) in (Rn\{0}) × (0, T ). (1.23)

Then u(m) converges uniformly in C2+θ,1+θ/2(K) for some constant θ ∈ (0, 1) and
any compact subset K of (Rn\{0}) × (0, T ) to the solution u of{

ut = � log u, u > 0, in (Rn\{0}) × (0, T )
u(x, 0) = u0 inR

n\{0} (1.24)

as m→ 0+ and u satisfies

V1(x, t) � u(x, t) � V2(x, t) in (Rn\{0}) × (0, T ) (1.25)

where

Vi(x, t) = (T − t)α
vλi

(
(T − t)β |x|

)
= lim

m→0
V

(m)
λi

(x, t) ∀i = 1, 2

and vλi
is the radially symmetric solution of (1.8) given by theorem 1.1 which

satisfies (1.9) with λ = λi, i = 1, 2, respectively.
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Remark 1.8. By lemma 5.1 of [23] for any n � 3, 0 < m < n− 2/n, and λ1 > λ2 >
0, T > 0, β > βm

0 , αm = ((2β + 1)/(1 −m)), 0 � u0 ∈ L∞
loc(R

n\{0}), if u1 and u2

are two solutions of{
ut = �(um/m), u > 0, in (Rn\{0}) × (0, T )
u(x, 0) = u0 in R

n\{0}

which satisfies (1.23), then u1 = u2 in (Rn\{0}) × (0, T ).

The plan of the paper is as follows. We will prove theorems 1.2 and 1.3 in § 2.
We will prove theorem 1.4 in § 3 and theorems 1.5, 1.6, and 1.7 in § 4.

We start with some definitions. We say that u is a solution of (1.1) in
(Rn\{0}) × (0, T ) if u ∈ C2,1((Rn\{0}) × (0, T )) ∩ L∞

loc((R
n\{0}) × (0, T )) is pos-

itive in (Rn\{0}) × (0, T ) and satisfies (1.1) in the classical sense in (Rn\{0}) ×
(0, T ). We say that u is a subsolution (supersolution, respectively) of (1.1) in
(Rn\{0}) × (0, T ) if u ∈ C((Rn\{0}) × (0, T )) ∩ L∞

loc((R
n\{0}) × (0, T )) is positive

in (Rn\{0}) × (0, T ) and satisfies

∫
Rn

u(x, t2)η(x, t2) dx �
∫ t2

t1

∫
Rn

(uηt + φm(u)Δη) dxdt

+
∫

Rn

u(x, t1)η(x, t1) dx ∀T > t2 > t1 > 0 (1.26)

(�, respectively) for any η ∈ C2,1
0 ((Rn\{0}) × (0, T )). For any 0 � u0 ∈

L∞
loc(R

n\{0}), we say that a solution (or subsolution or supersolution) u of (1.1) in
(Rn\{0}) × (0, T ) has initial value u0 if u(·, t) → u0 in L1

loc(R
n\{0}) as t→ 0.

We say that v is a solution of (1.3) in R
n\{0} if u ∈ C2,1(Rn\{0}) is positive

in R
n\{0} and satisfies (1.3) in the classical sense in Rn\{0}. For any R > 0, let

BR = {x ∈ R
n : |x| < R}.

2. Uniqueness of radially symmetric solutions and higher order
estimates at the origin

In this section, we will prove the uniqueness of radially symmetric solution v(m) of
(1.3) in R

n\{0} which satisfies (1.7) and obtain higher order estimates of v(m) near
the blow-up point x = 0.

Let w̃(r) = rαm/βv(m)(r), ρ = rρ1/β and w(ρ) = w̃(r). Then by the proof of
Theorem 1.1 of [23], w̃ satisfies

(
w̃r

w̃

)
r

+
n− 1 − ((2mαm)/(β))

r
· w̃r

w̃
+m

(
w̃r

w̃

)2

+
βr−1−ρ1/βw̃r

w̃m

=
αm

β
· n− 2 − ((mαm)/(β))

r2
∀r > 0

⇒
(
wρ

w

)
ρ

+m

(
wρ

w

)2

+
a1

ρ
· wρ

w
+
a2

ρ2
· wρ

wm =
a3

ρ2
∀ ρ > 0 (2.1)
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where a1, a2 and a3 are constants given by (1.13). Note that by (1.7),

lim
ρ→0+

w(ρ) = λ−((ρ1)/((1−m)β)). (2.2)

Hence w(ρ) can be extended to a continuous function on [0,∞) by letting w(0) =
λ−((ρ1)/((1−m)β)).

Lemma 2.1. Let n � 3, 0 � m < n− 2/n, ρ1 > 0, λ > 0 and β > β
(m)
0 . Then

wρ(ρ) > 0 ∀ρ > 0 (2.3)

or equivalently,

v(m)(r) +
β

αm
r(v(m))′(r) > 0 ∀r > 0.

Hence

v(m)(r) � λ−((ρ1)/((1−m)β))r−αm/β ∀r = |x| > 0. (2.4)

Proof. Suppose that (2.3) does not hold. Then there exists a constant ρ2 > 0 such
that

wρ(ρ2) � 0. (2.5)

Since β > β
(m)
0 , a3 > 0. Then by (2.1) and (2.5),(

ρa1 · wm · wρ

w

)
ρ

(ρ2) = −a2ρ
a1−2
2 wρ(ρ2) + a3ρ

a1−2
2 w(ρ2)m � a3ρ

a1−2
2 w(ρ2)m > 0.

(2.6)

Hence by (2.5) and (2.6) there exists a constant b ∈ (0, ρ2) such that

wρ(ρ) < 0 in (ρ2 − b, ρ2).

Let (ρ3, ρ2), ρ3 ∈ [0, ρ2), be the maximal interval such that

wρ(ρ) < 0 ∀ρ ∈ (ρ3, ρ2). (2.7)

If a1 � 0, by (2.1) and (2.7),

(φm(w))ρρ(ρ) =
(
wm · wρ

w

)
ρ

(ρ) � a3
w(ρ)m

ρ2

� a3
w(ρ2)m

ρ2
> 0 ∀ρ ∈ (ρ3, ρ2) (2.8)

⇒ (φm(w))ρ(ρ2) � (φm(w))ρ(ρ) + a3w
m(ρ2)

(
1
ρ
− 1
ρ2

)
∀ρ ∈ (ρ3, ρ2)

⇒ φm(w(ρ)) � φm(w(ρ2)) +
(
φm(w)ρ(ρ2) + a3ρ

−1
2 wm(ρ2)

)
(ρ− ρ2)

+ a3w
m(ρ2) log

(
ρ2

ρ

)
∀ρ3 < ρ < ρ2. (2.9)

https://doi.org/10.1017/prm.2018.31 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.31


Singular limits and Properties of Degenerate equations 361

If a1 < 0, then by (2.1) and (2.7),

(ρa1(φm(w))ρ)ρ =
(
ρa1 · wm · wρ

w

)
ρ

(ρ) � a3ρ
a1−2w(ρ)m

� a3w(ρ2)mρa1−2 > 0 ∀ρ ∈ (ρ3, ρ2) (2.10)

⇒ ρa1
2 (φm(w))ρ(ρ2) � ρa1(φm(w))ρ(ρ)

+
a3w(ρ2)m

1 − a1

(
ρa1−1 − ρa1−1

2

) ∀ρ3 < ρ < ρ2

⇒ ρa1
2 (φm(w))ρ(ρ2)ρ−a1 � (φm(w))ρ(ρ)

+
a3w(ρ2)m

1 − a1

(
ρ−1 − ρa1−1

2 ρ−a1
) ∀ρ3 < ρ < ρ2

⇒ φm(w(ρ)) � φm(w(ρ2)) + C1(ρ1−a1 − ρ1−a1
2 )

+
a3w(ρ2)m

1 − a1
log(ρ2/ρ) ∀ρ3 < ρ < ρ2. (2.11)

where

C1 =
1

1 − a1

(
ρa1
2 (φm(w))ρ(ρ2) +

a3ρ
a1−1
2 w(ρ2)m

1 − a1

)
.

If ρ3 = 0, then by (2.9) and (2.11),

w(ρ) → ∞ as ρ→ 0+

which contradicts (2.2). Hence ρ3 > 0 and

wρ(ρ3) = 0. (2.12)

By (2.8), (2.10) and (2.12),

wρ(ρ) > 0 ∀ρ ∈ (ρ3, ρ2)

which contradicts (2.7). Hence no such ρ2 > 0 exists and (2.3) follows. By (2.2) and
(2.3), (2.4) follows. �

Lemma 2.2. Let n � 3, 0 � m < n− 2/n, ρ1 > 0, λ > 0 and β > β
(m)
0 . Then

lim
ρ→0+

wρ(ρ) =
a3

a2
λ−((mρ1)/((1−m)β)) =

αmβ(n− 2) −mα2
m

β2ρ1
· λ−((mρ1)/((1−m)β))

(2.13)
and

lim
r→0+

rαm/β+1(v(m))′(r) = −αm

β
λ−((ρ1)/((1−m)β)) (2.14)

where a1, a2 and a3 are constants given by (1.13). Hence w can be extended
to a function in C1([0,∞)) by letting w(0) = λ−((ρ1)/((1−m)β)) and wρ(0) =
a3/a2λ

−((mρ1)/((1−m)β)).
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Proof. Let

q(ρ) =
1

wρ(ρ)
.

By (2.1) q(ρ) satisfies

qρ(ρ) = − (1 −m)
w(ρ)

+
q(ρ)
ρ

[
a1 +

w(ρ)
ρ

(
a2

w(ρ)m
− a3q(ρ)

)]
∀ρ > 0. (2.15)

By lemma 2.1,

q(ρ) > 0 ∀ρ > 0. (2.16)

By (2.2) and (2.3) there exists a constant ρ2 > 0 such that

λ−((ρ1)/((1−m)β)) < w(ρ) < 2λ−((ρ1)/((1−m)β)) ∀ 0 < ρ < ρ2. (2.17)

We now claim that there exists a constant ρ0 > 0 such that

a2

8a3
λ((mρ1)/((1−m)β)) � q(ρ) � 21+ma2

a3
λ((mρ1)/((1−m)β)) ∀0 < ρ < ρ0. (2.18)

To prove the inequality on the right-hand side of (2.18), we first suppose that
the inequality on the right-hand side of (2.18) does not hold for any ρ0 > 0. Then
there exists a constant

0 < ρ3 < min
{
ρ2,

a2λ
−ρ1/β

8|a1| + 1

}
(2.19)

such that

q(ρ3) >
21+ma2

a3
λ((mρ1)/((1−m)β)).

Then by continuity of q(ρ) on (0,∞), there exists a maximal interval (ρ4, ρ3), (0 �
ρ4 < ρ3) such that

q(ρ) >
21+ma2

a3
λ((mρ1)/((1−m)β)) ∀ ρ ∈ (ρ4, ρ3). (2.20)

By (2.15), (2.16), (2.17), (2.19) and (2.20), q(ρ) satisfies

qρ(ρ) � q(ρ)
ρ

[(
a1 − a3w(ρ)

4ρ
q(ρ)

)
+
w(ρ)
ρ

(
a2

w(ρ)m
− a3

2
q(ρ)

)
− a3w(ρ)

4ρ
q(ρ)

]

� q(ρ)
ρ

[(
a1 − a2λ

−ρ1/β

4ρ

)
+
w(ρ)
ρ

(
a2λ

((mρ1)/((1−m)β)) − a3

2
q(ρ)

)

− a3λ
−((ρ1)/((1−m)β))

4ρ
q(ρ)

]
(2.21)

� −a3λ
−((ρ1)/((1−m)β))

4ρ2
q(ρ)2 < 0 (2.22)
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in (ρ4, ρ3). Dividing (2.21) by q(ρ)2 and integrating over (ρ, ρ3), ρ4 < ρ < ρ3,

wρ(ρ) =
1
q(ρ)

�
(

1
q(ρ3)

+
a3λ

−((ρ1)/((1−m)β))

4ρ3

)

− a3λ
−((ρ1)/((1−m)β))

4ρ
∀ρ ∈ (ρ4, ρ3)

⇒ w(ρ) � w(ρ3) +
(

1
q(ρ3)

+
a3λ

−((ρ1)/((1−m)β))

4ρ3

)
(ρ− ρ3)

+
a3λ

−((ρ1)/((1−m)β))

4
log(ρ3/ρ) ∀ρ ∈ (ρ4, ρ3). (2.23)

If ρ4 = 0, then by (2.23),

lim
ρ→0+

w(ρ) = ∞

which contradicts (2.2). Hence ρ4 > 0 and

q(ρ4) =
21+ma2

a3
λ((mρ1)/((1−m)β)). (2.24)

By (2.21) and (2.24),

q(ρ) < q(ρ4) =
21+ma2

a3
λ((mρ1)/((1−m)β)) ∀ρ4 < ρ < ρ3

which contradicts (2.20). Hence no such ρ3 > 0 exists and

q(ρ) � 21+ma2

a3
λ((mρ1)/((1−m)β)) ∀0 < ρ < min

(
ρ2,

a2λ
−ρ1/β

8|a1| + 1

)
. (2.25)

Now suppose the first inequality of (2.18) does not hold for any ρ0 > 0. Then there
exists a constant

0 < ρ5 < min
{
ρ2,

a2λ
−ρ1/β

8|a1| + 1

}
(2.26)

such that

q(ρ5) <
a2

8a3
λ((mρ1)/((1−m)β)). (2.27)

By (2.17) and (2.27),

w(ρ5)q(ρ5) <
a2λ

−ρ1/β

4a3
. (2.28)

Then by (2.28) and continuity of w(ρ)q(ρ) on (0,∞) there exists a maximal interval
(ρ6, ρ5) (0 � ρ6 < ρ5) such that

w(ρ)q(ρ) <
a2λ

−ρ1/β

4a3
∀ρ ∈ (ρ6, ρ5). (2.29)

https://doi.org/10.1017/prm.2018.31 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.31


364 K. M. Hui and S. Kim

By (2.15), (2.16), (2.17), (2.26) and (2.29),

(w(ρ)q(ρ))ρ = w(ρ)qρ(ρ) + 1

� w(ρ)q(ρ)
ρ

[(
a1 +

a2w(ρ)1−m

4ρ

)
+

3
4ρ
(
a2w(ρ)1−m − 2a3q(ρ)w(ρ)

)

+
a3

2ρ
w(ρ)q(ρ)

]

� w(ρ)q(ρ)
ρ

[(
a1 +

a2λ
−ρ1/β

ρ

)
+

3
4ρ

(
a2λ

−ρ1/β − a2λ
−ρ1/β

2

)
+
a3

2ρ
w(ρ)q(ρ)

]

� a3

2ρ2
(w(ρ)q(ρ))2 on (ρ6, ρ5). (2.30)

Dividing (2.30) by (w(ρ)q(ρ))2 and integrating over (ρ, ρ5), ρ6 < ρ < ρ5, we get

wρ(ρ)
w(ρ)

=
1

w(ρ)q(ρ)
�
(
wρ(ρ5)
w(ρ5)

− a3

2ρ5

)
+
a3

2ρ
∀ρ ∈ (ρ6, ρ5)

⇒ logw(ρ) � logw(ρ5) +
(
wρ(ρ5)
w(ρ5)

− a3

2ρ5

)
(ρ− ρ5) +

a3

2
log
(
ρ

ρ5

)
∀ρ ∈ (ρ6, ρ5).

(2.31)

If ρ6 = 0, then by (2.31),

lim
ρ→0+

w(ρ) = 0

which contradicts (2.2). Hence ρ6 > 0 and

w(ρ6)q(ρ6) =
a2λ

−ρ1/β

4a3
. (2.32)

By (2.30) and (2.32),

w(ρ)q(ρ) >
a2λ

−ρ1/β

4a3
∀ρ6 < ρ < ρ5

which contradicts (2.29). Hence no such ρ5 > 0 exists and

q(ρ) � a2

8a3
λ((mρ1)/((1−m)β)) ∀0 < ρ < min

{
ρ2,

a2λ
−ρ1/β

8|a1| + 1

}
. (2.33)

By (2.25) and (2.33), (2.18) holds for

ρ0 = min
{
ρ2,

a2λ
−ρ1/β

8|a1| + 1

}
.

Let {ρi} ⊂ R
+ be a sequence such that ρi → 0 as i→ ∞. Then, by (2.18), the

sequence {ρi} has a subsequence which we may assume without loss of generality
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to be the sequence {ρi} itself such that

q∞ := lim
i→∞

q(ρi) exists

and

q∞ ∈
[
a2

8a3
λ((mρ1)/((1−m)β)),

21+ma2

a3
λ((mρ1)/((1−m)β))

]
. (2.34)

By (2.15),(
ρ−a1ea2

∫ 1
ρ

s−2w(s)1−m dsq(ρ)
)

ρ
= −ρ−a1

[
(1 −m)w(ρ)−1 + a3ρ

−2w(ρ)q(ρ)2
]

× ea2
∫ 1

ρ
s−2w(s)1−m ds ∀ρ > 0

⇒ q(ρ) =
q(1) +

∫ 1

ρ
s−a1 [(1−m)w(s)−1 + a3s

−2w(s)q(s)2]ea2
∫ 1

s
σ−2w(σ)1−m dσ ds

ρ−a1ea2
∫ 1

ρ
s−2w(s)1−m ds

∀ρ > 0. (2.35)

Since lims→0+ sle1/s = ∞ for any l ∈ R, by (2.2) and (2.18),∫ 1

ρi

s−a1
[
(1 −m)w(s)−1 + a3s

−2w(s)q(s)2
]

× ea2
∫ 1

s
σ−2w(σ)1−m dσ ds→ ∞ as i→ ∞

and

ρ−a1
i e

a2
∫ 1

ρi
s−2w(s)1−m ds → ∞ as i→ ∞.

Hence by (2.2), (2.34), (2.35) and l’Hospital rule,

q∞ = lim
i→∞

q(ρi)

= lim
i→∞

−ρ−a1
i

[
(1 − m)w(ρi)

−1 + a3ρ−2
i w(ρi)q(ρi)

2
]
e
a2
∫ 1

ρi
s−2w(s)1−m ds

−a1ρ
−(a1+1)
i e

a2
∫ 1

ρi
s−2w(s)1−m ds − a2ρ

−(a1+2)
i w(ρi)1−me

a2
∫ 1

ρi
s−2w(s)1−m ds

= lim
i→∞

(1 − m)ρ2
i w(ρi)

−1 + a3w(ρi)q(ρi)
2

a1ρi + a2w(ρi)1−m
=

a3

a2
λ−((mρ1)/((1−m)β))q2∞. (2.36)

Hence by (2.34) and (2.36),

q∞ =
a2

a3
λ((mρ1)/((1−m)β)).

Since the sequence {ρi} is arbitrary,

lim
ρ→0+

q(ρ) =
a2

a3
λ((mρ1)/((1−m)β))

and (2.13) follows. Since

rαm/β+1(v(m))′(r) =
ρ1

β
ρwρ(ρ) − αm

β
rαm/βv(m)(r) ∀ρ = rρ1/β > 0, (2.37)
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by (1.7) and (2.13),

lim
r→0+

rαm/β+1(v(m))′(r) =
ρ1

β
lim

ρ→0+
ρwρ(ρ) − αm

β
lim

r→0+
rαm/βv(m)(r)

= −αm

β
λ−((ρ1)/((1−m)β))

and (2.14) follows. �

Lemma 2.3. Let n � 3, 0 � m < n− 2/n, ρ1 > 0, λ > 0 and β > β
(m)
0 . Then

lim
ρ→0+

wρρ(ρ) =
a3(ma3 − a1)

a2
2

λ−(((2m−1)ρ1)/((1−m)β)) (2.38)

where a1, a2 and a3 are constants given by (1.13). Hence w can be extended to a
function in C2([0,∞)) by defining wρ(0), wρ(0) and wρρ(0) by (1.12).

Proof. Let ṽ(ρ) = wρ(ρ). Then by (2.1),

ṽ′ = (1 −m)
ṽ2

w
− a1

ρ
ṽ − a2

ρ2
w1−mṽ +

a3

ρ2
w

= (1 −m)
ṽ2

w
− a1

ρ
ṽ − a2w

1−m

ρ2

(
ṽ − a3

a2
· wm

)
∀ρ > 0.

(2.39)

Let v1(ρ) be given by

ṽ(ρ) = v0 + v1(ρ)ρ (2.40)

where

v0 =
a3

a2
wm(0).

Then by (2.39) for any ρ > 0,

v′1(ρ)ρ+ v1(ρ) = ṽ′(ρ) =
(1 −m)
w(ρ)

ṽ2(ρ) − a1v1(ρ) − a1v0
ρ

− a2w(ρ)1−m

ρ2

[
a3

a2
(wm(0) − wm(ρ)) + v1(ρ)ρ

]
. (2.41)

By the mean value theorem, for any ρ > 0 there exists a constant ξ = ξ(ρ) ∈ (0, ρ)
such that

wm(ρ) − wm(0) = mw(ξ)m−1wρ(ξ)ρ. (2.42)

By (2.41) and (2.42),

v′1(ρ) =
1
ρ

[
(1 −m)
w(ρ)

ṽ2(ρ) − (1 + a1)v1(ρ)
]

+
a2w(ρ)1−m

ρ2

[
ma3

a2
w(ξ)m−1wρ(ξ) − v1(ρ) − a1v0

a2w(ρ)1−m

]

=
a2w(ρ)1−m

ρ

[
1 −m

a2w(ρ)2−m
ṽ2(ρ) − f1(ρ)

ρ

]
(2.43)
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where

f1(ρ) =
(1 + a1)
a2

ρv1(ρ)w(ρ)m−1 + v1(ρ) − f2(ρ) (2.44)

and

f2(ρ) =
ma3

a2
w(ξ(ρ))m−1wρ(ξ(ρ)) − a1a3

a2
2

w(ρ)m−1λ−((mρ1)/((1−m)β)).

Let

a4 =
a3(ma3 − a1)

a2
2

.

Without loss of generality, we may assume that a4 > 0. Then by (2.2) and (2.13),

lim
ρ→0+

f2(ρ) = a4λ
−(((2m−1)ρ1)/((1−m)β)) (2.45)

and

lim
ρ→0+

ρv1(ρ) = 0. (2.46)

Let 0 < ε < 1/5. By (2.45) and (2.46) there exists a constant ρ2 > 0 such that

(1 − ε)a4λ
−(((2m−1)ρ1)/((1−m)β)) � f2(ρ) � (1 + ε)a4λ

−(((2m−1)ρ1)/((1−m)β))

∀0 < ρ � ρ2 (2.47)

and

(1 + a1)
a2

ρ|v1(ρ)|w(ρ)m−1 � εa4λ
−(((2m−1)ρ1)/((1−m)β)) ∀0 < ρ � ρ2. (2.48)

and (2.17) hold. Let

ρε = min
(
ρ2,

εa2a4λ
−(((2m−1)ρ1)/((1−m)β))

16(1 −m)
· inf
0<ρ�1

w(ρ)2−m

wρ(ρ)2

)

We claim that

(1 − 3ε)a4λ
−(((2m−1)ρ1)/((1−m)β))

� v1(ρ) � (1 + 3ε)a4λ
−(((2m−1)ρ1)/((1−m)β)) ∀0 < ρ < ρε. (2.49)

Suppose that the second inequality in (2.49) does not hold. Then there exists a
constant ρ′1 ∈ (0, ρε) such that

v1(ρ′1) > (1 + 3ε)a4λ
−(((2m−1)ρ1)/((1−m)β)).

By continuity of v1(ρ) on (0,∞), there exists a maximal interval (ρ3, ρ4) containing
ρ′1, 0 � ρ3 < ρ′1 < ρ4 � ρε, such that

v1(ρ) > (1 + 3ε)a4λ
−(((2m−1)ρ1)/((1−m)β)) ∀ρ ∈ (ρ3, ρ4). (2.50)
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Then by (2.44), (2.47), (2.48) and (2.50),

f1(ρ) > εa4λ
−(((2m−1)ρ1)/((1−m)β)) ∀ρ ∈ (ρ3, ρ4). (2.51)

Hence by (2.17), (2.43) and (2.51),

v′1(ρ) � a2w(ρ)1−m

ρ

[
1 −m

a2w(ρ)2−m
ṽ2(ρ) − εa4λ

−(((2m−1)ρ1)/((1−m)β))

ρ

]

� − δ0
ρ2

< 0 ∀ρ ∈ (ρ3, ρ4) (2.52)

for some constant δ0 > 0. Integrating (2.52) over (ρ, ρ4),

v1(ρ4) − v1(ρ) � δ0

(
1
ρ4

− 1
ρ

)
∀ρ ∈ (ρ3, ρ4)

⇒ wρ(ρ) = ṽ(ρ) = v0 + ρv1(ρ) � v0 + ρv1(ρ4) + δ0 − δ0ρ

ρ4
∀ρ ∈ (ρ3, ρ4). (2.53)

If ρ3 = 0, then by (2.53) and lemma 2.2,

v0 = lim
ρ→0+

wρ(ρ) � v0 + δ0 > v0

and contradiction arises. Hence ρ3 > 0. Thus

v1(ρ3) = (1 + 3ε)a4λ
−(((2m−1)ρ1)/((1−m)β)).

Then by (2.52),

v1(ρ) < v1(ρ3) = (1 + 3ε)a4λ
−(((2m−1)ρ1)/((1−m)β)) ∀ρ ∈ (ρ3, ρ4)

which contradicts (2.50). Hence no such ρ′1 > 0 exists and the second inequality in
(2.49) follows. By a similar argument the first inequality in (2.49) also holds. Hence
(2.49) holds. Since ε ∈ (0, 1/5) is arbitrary, by (2.49),

wρρ(0) = lim
ρ→0+

v(ρ) − v0
ρ

= lim
ρ→0+

v1(ρ) =
a3(ma3 − a1)

a2
2

· λ−(((2m−1)ρ1)/((1−m)β))

and the lemma follows. �

By lemmas 2.2, 2.3, (2.37) and Taylor’s expansions for w and wρ, theorem 1.2
follows.

Corollary 2.4. Let n � 3, 0 � m < n− 2/n, ρ1 > 0, λ > 0, β > β
(m)
0 and φm,

αm, β(m)
0 , be given by (1.2), (1.5) and (1.6) respectively and v = v(m) is a radially

symmetric solution of (1.3) in R
n\{0} which satisfies (1.7). Then

(v(m))′(r) < 0 ∀r > 0. (2.54)
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Proof. By (1.3) and lemma 2.1,

(rn−1v(r)m−1v′(r))′ = −αm

(
v(r) +

β

αm
rv′(r)

)
< 0 ∀r > 0 (2.55)

By theorem 1.2 there exists ξ0 > 0 such that

v′(r) < 0 ∀0 < r � ξ0. (2.56)

By (2.55) and (2.56),

rn−1v(r)m−1v′(r) < ξn−1
0 v(ξ0)m−1v′(ξ0) < 0 ∀r > ξ0

⇒ v′(r) < 0 ∀r > ξ0. (2.57)

By (2.56) and (2.57), we get (2.54) the lemma follows. �

We are now ready for the proof of Theorem 1.3.

Proof of Theorem 1.3. Note that the case 0 < m < n− 2/n and β � ((ρ1)/
(n− 2 − nm)) is already proved in [23]. We will give a new proof which includes
all cases of the theorem. By (1.3), (1.7) and integration by parts,

rn−1(v1(r)m−1v′1(r) − v2(r)m−1v′2(r)) + βrn(v1(r) − v2(r))

=
2∑

i=1

(−1)i−1ξn−2−((mαm)/(β))(ξαm/βvi(ξ))m−1ξαm/β+1v′i(ξ)

+ βξn(v1(ξ) − v2(ξ)) + (nβ − αm)
∫ r

ξ

(v1(ρ) − v2(ρ))ρn−1 dρ, ∀r > ξ > 0.

(2.58)

By theorem 1.2, there exist constants ξ0 > 0 and C0 > 0 such that∣∣∣(ξαm/βvi(ξ))m−1ξαm/β+1v′i(ξ)
∣∣∣ � C0 ∀0 < ξ < ξ0, i = 1, 2. (2.59)

Since β > β
(m)
0 , n− 2 − ((mαm)/(β)) > 0. Hence by (2.59),

lim
ξ→0

2∑
i=1

∣∣∣ξn−2−((mαm)/(β))(ξαm/βvi(ξ))m−1ξαm/β+1v′i(ξ)
∣∣∣ = 0. (2.60)

By (1.14) of theorem 1.2 there exist constants C > 0 and r0 > 0 such that

rαm/β |v1(r) − v2(r)| � Cr2ρ1/β ∀0 < r < r0. (2.61)

Hence

|ξn(v1(ξ) − v2(ξ))| � Cξn−((αm)/(β))+((2ρ1)/(β))

= Cξ(((n−2−nm))/((1−m)β))(β−β
(m)
0 ) · ξρ1/β → 0 as ξ → 0.

(2.62)
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Letting ξ → 0 in (2.58), by (2.60) and (2.62),

rn−1(v1(r)m−1v′1(r) − v2(r)m−1v′2(r)) + βrn(v1(r) − v2(r))

= (nβ − αm)
∫ r

0

(v1(ρ) − v2(ρ))ρn−1 dρ ∀r > 0. (2.63)

By corollary 2.4,

v′i(r) < 0 ∀r > 0, i = 1, 2. (2.64)

Since n+ ((2ρ1 − αm)/(β)) = (((n− 2 − nm))/((1 −m)β))(β − β
(m)
0 ) + ρ1/β > 0,

by (2.61),∣∣∣∣(nβ − αm)
∫ r

0

(v1 − v2)(ρ)ρn−1 dρ
∣∣∣∣

� C

∫ r

0

ρn−αm/β+((2ρ1)/(β))−1 dρ = Crn+((2ρ1−αm)/(β)) ∀0 < r < r0 (2.65)

for some constant C > 0. Hence by (2.63) and (2.65),

rn−1(v1(r)m−1v′1(r) − v2(r)m−1v′2(r)) + βrn(v1(r) − v2(r))

� Crn+((2ρ1−αm)/(β)) ∀0 < r < r0. (2.66)

Let

D = {0 < r < r0 : v1(r) � v2(r)}.
By (2.64) and (2.66) for any r ∈ D,

v1(r)m−1v′1(r) + βrv1(r)

� v2(r)m−1v′2(r) + βrv2(r) + Cr1+((2ρ1−αm)/(β))

� v1(r)m−1v′2(r) + βrv2(r) + Cr1+((2ρ1−αm)/(β))

⇒ (v1 − v2)′(r) + βrv1(r)1−m(v1 − v2)(r) � Cr1+((2ρ1−αm)/(β))v1(r)1−m.

Hence

((v1 − v2)+(r)eβ
∫ r

r1
ρv1(ρ)1−m dρ)′

� Cr1+((2ρ1−αm)/(β))v1(r)1−meβ
∫ r

r1
ρv1(ρ)1−m dρ ∀0 < r1 < r < r0

⇒ (v1 − v2)+(r2) � (v1 − v2)+(r1)e
−β

∫ r2
r1

ρv1(ρ)1−m dρ

+ C

∫ r2

r1
ρ1+((2ρ1−αm)/(β))v1(ρ)1−m(eβ

∫ ρ
r1

sv1(s)
1−m ds) dρ

eβ
∫ r2

r1
ρv1(ρ)1−m dρ

∀0 < r1 < r2 < r0.

(2.67)

Since rv1(r)1−m ≈ r1−(1−m)αm/β = r−1−ρ1/β near r = 0, both the numerator and
denominator of the last term of (2.67) goes to infinity as r1 → 0. Hence by the
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l’Hospital rule,

lim
r1→0

∫ r2

r1
ρ1+((2ρ1−αm)/(β))v1(ρ)1−m(eβ

∫ ρ
r1

sv1(s)
1−m ds) dρ

eβ
∫ r2

r1
ρv1(ρ)1−m dρ

= lim
r1→0

r
((2ρ1−αm)/(β))
1

βeβ
∫ r2

r1
ρv1(ρ)1−m dρ

. (2.68)

Since

lim
r1→0

∫ r2

r1
ρ · v1(ρ)1−m dρ

r
−ρ1/β
1

= lim
r1→0

r1v1(r1)1−m

ρ1/β r
−ρ1/β−1
1

=
β

ρ1
λ−ρ1/β ∀0 < r2 < r0,

for any 0 < r2 < r0 there exists a constant r3 ∈ (0, r2) such that

∫ r2

r1

ρv1(ρ)1−m dρ � β

2ρ1
λ−ρ1/βr

−ρ1/β
1 0 < r1 < r3

⇒
∣∣∣∣ rθ

1

eβ
∫ r2

r1
ρv1−m

1 (ρ) dρ

∣∣∣∣ � rθ
1

eβ2/2ρ1(λr1)−ρ1/β
→ 0

as r1 → 0+ ∀0 < r2 < r0, θ ∈ R. (2.69)

By (1.7) and corollary 2.4

vi(r) < λ−((ρ1)/((1−m)β))r−αm/β ∀r > 0, i = 1, 2. (2.70)

Hence by (2.68), (2.69) and (2.70),

lim
r1→0

(v1 − v2)+(r1)

e
β
∫ r2

r1
ρv1−m

1 dρ
= 0 and

lim
r1→0

∫ r2

r1
ρ1+((2ρ1−αm)/(β))v1(ρ)1−m(eβ

∫ ρ
r1

sv1(s)
1−m ds) dρ

eβ
∫ r2

r1
ρv1(ρ)1−m dρ

= 0. (2.71)

By (2.67) and (2.71),

(v1 − v2)+(r) � 0 ∀0 � r < r0. (2.72)

Similarly

(v1 − v2)−(r) � 0 ∀0 � r < r0. (2.73)

By (2.72) and (2.73),

v1(r) = v2(r) ∀0 � r < r0. (2.74)

Then by (2.74) and standard O.D.E. theory, (1.15) holds. �
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3. Decay estimates of solutions of the elliptic logarithmic equation

In this section, we will prove the decay rate of solutions of the elliptic logarithmic
equation (1.8).

Lemma 3.1. Let n � 3, β ∈ R, ρ1 > 0 and α = 2β + ρ1. Let v = v(0) be a radially
symmetric solution of (1.8) in R

n\B1 and w(r) = r2v(r). Suppose that there exists
a constant C0 > 0 such that

w(r) � C0 ∀r � 1. (3.1)

Then, any sequence {w(ri)}∞i=1, ri → ∞ as i→ ∞, has a subsequence {w(r′i)}∞i=1

such that

lim
i→∞

w(r′i) =

⎧⎨
⎩

0 or w∞ if v /∈ L1(Rn\B1)
0 or w1 if v ∈ L1(Rn\B1) and β > 0
0 if v ∈ L1(Rn\B1) and β � 0

(3.2)

where

w∞ =
2(n− 2)
α− 2β

and w1 =
2
β
.

Proof. We will use a modification of the proof of Lemma 2.1 of [19] to prove the
lemma. Let {ri}∞i=1 be a sequence such that ri → ∞ as i→ ∞. By (3.1) the sequence
{w(ri)}∞i=1 has a subsequence which we may assume without loss of generality
to be the sequence itself that converges to some constant a0 ∈ [0, C0] as i→ ∞.
Multiplying (1.8) by rn−1 and integrating over (1, r),

v′(r) = a5
v(r)
rn−1

− βrv2(r) +
(nβ − α)
rn−1

v(r)
∫ r

1

ρn−1v(ρ) dρ ∀r � 1. (3.3)

where

a5 = v(1)−1v′(1) + βv(1). (3.4)

Integrating (3.3) over (r,∞), by (3.1), we have

v(r) = −a5

∫ ∞

r

s1−nv(s) ds+ β

∫ ∞

r

sv2(s) ds

+ (α− nβ)
∫ ∞

r

s1−nv(s)
(∫ s

1

ρn−1v(ρ) dρ
)

ds ∀r > 1. (3.5)
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By (3.1), (3.5) and l’Hospital rule,

a0 = lim
i→∞

r2i v(ri)

= −a5 lim
i→∞

∫∞
ri
s1−nv(s) ds

r−2
i

+ β lim
i→∞

∫∞
ri
sv2(s) ds

r−2
i

+ (α− nβ) lim
i→∞

∫∞
ri
s1−nv(s)(

∫ s

1
ρn−1v(ρ) dρ) ds

r−2
i

=
1
2

(
−a5 lim

i→∞
v(ri)
rn−4
i

+ β lim
i→∞

riv
2(ri)
r−3
i

+ (α− nβ) lim
i→∞

r1−n
i v(ri)

∫ ri

1
ρn−1v(ρ) dρ

r−3
i

)

=
1
2

(
βa2

0 + (α− nβ) lim
i→∞

r2i v(ri)
∫ ri

1
ρn−1v(ρ) dρ

rn−2
i

)

=
1
2

(
βa2

0 + (α− nβ)a0 lim
i→∞

∫ ri

1
ρn−1v(ρ) dρ
rn−2
i

)
. (3.6)

If v �∈ L1(Rn\B1), then by (3.6) and the l’Hospital rule,

a0 =
1
2

(
βa2

0 +
(α− nβ)
n− 2

a0 lim
i→∞

r2i v(ri)
)

=
α− 2β
2(n− 2)

a2
0

⇒ a0 = 0 or a0 =
2(n− 2)
α− 2β

= w∞. (3.7)

If v ∈ L1(Rn\B1), then by (3.6),

a0 =
β

2
a2
0 ⇒

{
a0 = 0 or a0 = 2

β = w1 if β > 0
a0 = 0 if β � 0.

(3.8)

By (3.7) and (3.8), the lemma follows. �

Corollary 3.2. Let n � 3, β ∈ R, ρ1 > 0 and α = 2β + ρ1. Let v = v(0) be a radi-
ally symmetric solution of (1.8) in R

n\B1 and w(r) = r2v(r). Suppose that there
exist constants C0 > C1 > 0 such that

C1 � w(r) � C0 ∀r � 1.

Then (1.16) holds.

Lemma 3.3. Let n � 3, ρ1 > 0, β > β
(0)
1 := ρ1/n− 2 and α = 2β + ρ1. Let v = v(0)

be a radially symmetric solution of (1.8) in R
n\B1 and w(r) = r2v(r). Then there

exists a constant C1 > 0 such that

w(r) � C1 ∀r � 1. (3.9)

https://doi.org/10.1017/prm.2018.31 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.31


374 K. M. Hui and S. Kim

Proof. By (3.3),

v′(r) + βrv2(r) + |a5|r1−nv(r) � 0 ∀r � 1 (3.10)

where a5 is given by (3.4). Let H(r) = e−((|a5|)/(n−2))r2−n

v(r). Then by (3.10),

H ′(r) � −βe((|a5|)/(n−2))r2−n

rH(r)2 � −βe((|a5|)/(n−2))rH(r)2 ∀r � 1 (3.11)

⇒ −H(r)−2H ′(r) � βe((|a5|)/(n−2))r ∀r � 1

⇒ v(r) � H(r) �
(
βe((|a5|)/(n−2))

2
r2 +H(1)−1

)−1

∀r � 1. (3.12)

By (3.12) there exists a constant C1 > 0 such that (3.9) holds and the lemma
follows. �

Lemma 3.4. Let n � 3, ρ1 > 0, β � β
(0)
1 := ρ1/n− 2 and α = 2β + ρ1. Let v = v(0)

be a radially symmetric solution of (1.8) in R
n\B1 and w(r) = r2v(r). Then there

exists a constant C1 > 0 such that (3.9) holds.

Proof. As observed in [16], w satisfies(
w′

w

)′
+
n− 1
r

· w
′

w
+
β

r
w′ +

(α− 2β)w − 2(n− 2)
r2

= 0 ∀r � 1. (3.13)

Multiplying (3.13) by rn−1 and integrating over (1, r), r > 1 > 0,

rn−1w′(r)
w(r)

+ βrn−2w(r)

=
w′(1)
w(1)

+ βw(1) + (nβ − α)
∫ r

1

ρn−3w(ρ) dρ+ 2(rn−2 − 1) ∀r > 1

⇒ rw′(r)
w(r)

= 2 − βw(r) +
(nβ − α)
rn−2

∫ r

0

ρn−3w(ρ) dρ+
a6

rn−2
∀r > 1 (3.14)

where a6 = w(1)−1w′(1) + βw(1) − 2. Let

B =
{
r > 1 : w(r) � 1

ρ1

}
.

If there is a constant R0 > 1 such that B ∩ [R0,∞) = ∅, then

w(r) � 1
ρ1

∀r � R0

and (3.9) follows. Hence we may assume that

B ∩ [R1,∞) �= ∅ ∀R1 > 1. (3.15)

If
∫∞
1
ρn−3w(ρ) dρ = ∞ holds, then by (3.14) and the l’Hospital rule,

lim inf
r→∞
r∈B

rw′(r)
w(r)

� 2 − β

ρ1
− α− nβ

n− 2
· 1
ρ1

= 2 − 1
n− 2

> 0.
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If
∫∞
1
ρn−3w(ρ) dρ <∞ holds, then by (3.14),

lim inf
r→∞
r∈B

rw′(r)
w(r)

� 2 − β

ρ1
> 2 − 1

n− 2
> 0.

Hence in both cases there exists a constant R2 ∈ B such that

w′(r) > 0 ∀r ∈ B ∩ [R2,∞). (3.16)

Suppose that there exists a constant R3 > R2 such that R3 /∈ B. Let

R4 = sup
{
r1 > R3 : w(r) >

1
ρ1

∀R3 � r < r1

}
.

By (3.15),

R4 <∞ ⇒ w(R4) =
1
ρ1
, R4 ∈ B and w′(R4) � 0

which contradicts (3.16). Thus no such point R3 exists. Hence

[R2,∞) ⊂ B. (3.17)

By (3.16) and (3.17),

w(r) � w(R2) ∀r � R2

and the lemma follows. �

Lemma 3.5. Let n � 3, ρ1 > 0, β � β
(0)
1 := ρ1/n− 2 and α = 2β + ρ1. Let v = v(0)

be a radially symmetric solution of (1.8) in R
n\B1 and w(r) = r2v(r). Then there

exists a constant C0 > 0 such that (3.1) holds.

Proof. By corollary 2.4 v satisfies (2.54). Since α � nβ, by (1.8), (1.9), (2.54) and
lemma 3.4,

rn−1 v
′(r)
v(r)

+ βrnv(r) =
v′(1)
v(1)

+ βv(1) − (α− nβ)
∫ r

1

ρn−1v(ρ) dρ ∀r > 1

� v′(1)
v(1)

+ βv(1) − (α− nβ)
∫ r

1

ρn−1v(r) dρ ∀r > 1

� a5 − (α− nβ)
n

rnv(r) ∀r > 1

⇒ rn−1 v
′(r)
v(r)

+
α

n
rnv(r) � a5 ∀r > 1

⇒ v′(r)
v(r)2

+
α

n
r � |a5|

rn−1v(r)
� C2

rn−3
� C2 ∀r > 1 (3.18)

for some constant C2 > 0 where a5 is given by (3.4). Integrating (3.18) over (1, r),

1
v(r)

� αr2

2n
− C2(r − 1) − α

2n
+

1
v(1)

� αr2

4n
+ C3 ∀r > max

(
1,

4nC2

α

)
(3.19)

where C3 = C2 − α/2n+ 1/v(1). Then by (2.54) and (3.19), (3.1) holds for some
constant C0 > 0 and the lemma follows. �
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Lemma 3.6 (cf. lemma 2.6 of [19]). Let n � 3, ρ1 > 0, β > β
(0)
1 = ρ1/n− 2 and

α = 2β + ρ1. Let v = v(0) be a radially symmetric solution of (1.8) in R
n\B1 and

w(r) = r2v(r). Then there exists a constant C0 > 0 such that (3.1) holds.

Proof. The proof of the lemma is similar to the proof of Lemma 2.6 of [19].
For the sake of completeness, we will give a sketch of the proof here. Let A =
{r ∈ [1,∞) : w′(r) � 0}. If there exists a constant R0 > 1 such that A ∩ [R0,∞) =
∅. Then w′(r) < 0 for all r � R0 and (3.1) holds with C0 = max1�r�R0 w(r).

We next suppose that A ∩ [R0,∞) �= ∅ for any R0 > 1. By lemma 3.3 and the
l’Hospital rule,

lim sup
r∈A, r→∞

∫ r

1
zn−1v(z) dz
rnv(r)

= lim sup
r∈A, r→∞

∫ r

1
zn−1v(z) dz
rn−2w(r)

� lim sup
r∈A, r→∞

rn−1v(r)
(n− 2)rn−3w(r) + rn−2w′(r)

� 1
n− 2

.

Hence there exists a constant R1 > 1 such that∫ r

1

zn−1v(z) dz �
(

1
n− 2

+
ρ1

2(n− 2)(nβ − α)

)
rnv(r) ∀r � R1, r ∈ A. (3.20)

By (3.3) and (3.20) for any r � R1, r ∈ A,

rv′(r)
v(r)

� a5

rn−2
− βr2v(r) + (nβ − α)

(
1

n− 2
+

ρ1

2(n− 2)(nβ − α)

)
r2v(r)

� a5

Rn−2
1

− ρ1

2(n− 2)
w(r). (3.21)

where a5 is given by (3.4). Hence by (3.21),

0 � w′(r) =
2w(r)
r

(
1 +

1
2
rv′(r)
v(r)

)

� 2w(r)
r

(
1 +

a5

2Rn−2
1

− ρ1

4(n− 2)
w(r)

)
∀r � R1, r ∈ A

⇒ w(r) � C3 ∀r � R1, r ∈ A (3.22)

for some constant C3 > 0. Since w′(r) < 0 for any r ∈ [R1,∞)\A, by (3.22) and the
same argument as the proof of Lemma 2.6 of [19] (3.1) follows. �

Proof of Theorem 1.4. If nβ > α, by corollary 3.2, lemmas 3.3 and 3.6, (1.16)
follows. If α � nβ, by lemmas 3.4, 3.5 and corollary 3.2, (1.16) follows. �

4. Singular limits of solutions

In this section, we will prove the singular limits of solutions of (1.1) and (1.3) as
m→ 0+. We first start with a lemma.
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Lemma 4.1. Let n � 3, 0 < m0 < n− 2/n, ρ1 > 0, λ > 0, β � β
(m0)
0 and αm =

((2β + ρ1)/(1 −m)). For any 0 < m < m0, let v(m) be the radially symmetric solu-
tion of (1.3) in R

n\{0} which satisfies (1.7) given by theorem 1.1. Then there exists
a constant m0 ∈ (0,m0) such that

λ−((ρ1)/((1−m)β)) � rαm/βv(m)(r) � λ−((ρ1)/((1−m)β)) exp(Cmλ
ρ1/βrρ1/β)

∀|x| = r > 0, 0 < m < m0 (4.1)

holds where

Cm =
αm

ρ1β

(
n− 2 − mαm

β

)
. (4.2)

Proof. We will use a modification of the technique of [23] to prove the theorem.
Note that

β >
mρ1

n− 2 − nm
∀0 < m < m0.

By the proof of Theorem 1.1 of [23], for any i ∈ Z
+, 0 < m < m0, there exists a

radially symmetric solution vi of⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�φm(v) + αmv + βx · ∇v = 0, v > 0, in R
n\B1/i

vi(1/i) = λ−((ρ1)/((1−m)β))iαm/β ,

v′i(1/i) = −αm

β
λ−((ρ1)/((1−m)β))iαm/β+1

which satisfies

v′i(r) < 0 ∀r � 1
i and vi(r) � λ−((ρ1)/((1−m)β))r−αm/β ∀r � 1

i . (4.3)

Moreover the sequence vi has a subsequence which we may assume without loss
of generality to be the sequence vi itself that converges uniformly in C2(K) for
any compact subset K of R

n\{0} to v = v(m) as i→ ∞. Let wi(r) = rαm/βvi(r),
s = log r and zi(s) = w−1

i ((∂wi)/(∂s)). Then by the proof of Theorem 1.1 of [23]
(cf. [17]) and (4.3),

(
wi,r

wi

)
r

+
n− 1 − 2mαm

β

r
· wi,r

wi
+m

(
wi,r

wi

)2

+
βr−1−ρ1/βwi,r

wm
i

=
αm

β
· n− 2 −mαm/β

r2
∀r > 1/i, i ∈ N

⇒ zi,s +
(
n− 2 − 2mαm

β

)
zi +mz2

i + βe−ρ1/βsw1−m
i zi

= ρ1Cm ∀s > − log i, i ∈ N. (4.4)

We now choose m0 ∈ (0,m0) such that

n− 2 − 2mαm

β
> 0 ∀0 < m < m0.

https://doi.org/10.1017/prm.2018.31 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.31


378 K. M. Hui and S. Kim

Since by the proof of Theorem 1.1. of [23] zi(s) = w−1
i ((∂wi)/(∂s)) � 0 for all

s > − log i, by (4.3) and (4.4),

zi,s + βλ−ρ1/βe−ρ1/βszi � ρ1Cm ∀s > − log i, i ∈ Z
+, 0 < m < m0 (4.5)

By (4.5) and an argument similar to the proof of Theorem 1.1 in [23],

zi(s) � ρ1Cm

β
λρ1/βeρ1/βs ∀s > − log i, i ∈ Z

+, 0 < m < m0

⇒ wi(r) � λ−((ρ1)/((1−m)β)) exp{Cmλ
ρ1/βrρ1/β} ∀r > 1/i, i ∈ Z+, 0 < m < m0

⇒ vi(r) � λ−((ρ1)/((1−m)β))r−αm/β exp{Cmλ
ρ1/βrρ1/β}

∀r > 1/i, i ∈ Z+, 0 < m < m0. (4.6)

Letting i→ ∞ in (4.3) and (4.6), we get (4.1) and the lemma follows �

Proof of Theorem 1.5. Let m0 ∈ (0,m0) be given by lemma 4.1. Let {mi}∞i=1, 0 <
mi < m0 for all i ∈ Z

+, be a sequence such thatmi → 0 as i→ ∞. LetR2 > R1 > 0.
By (4.1),

M1(R2) � v(m)(x) � M2(R1, R2) ∀R1 � |x| � R2 (4.7)

where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M1(R2) = min(λ−nρ1/2β , λ−ρ1/β)min(R−n/2(2+ρ1/β)
2 , R

−(2+ρ1/β)
2 )

M2(R1, R2) = max(λ−nρ1/2β , λ−ρ1/β)max(R−n/2(2+ρ1/β)
1 , R

−(2+ρ1/β)
1 )

exp
(
n(n− 2)(2β + ρ1)

2ρ1β
λρ1/βR

ρ1/β
2

)
.

By (4.7) and the mean value theorem, for any 0 < m < m0 there exists rm ∈ (1, 2)
such that

|(v(m))′(rm)| = |v(m)(2) − v(m)(1)| � 2M2(1, 2). (4.8)

Multiplying (1.3) by rn−1 and integrating over (rm, r), R1 � r � R2,

rn−1(v(m)(r))m−1(v(m))′(r)

= rn−1
m (v(m)(rm))m−1(v(m))′(rm)

+ βrn
mv

(m)(rm) − βrnv(m)(r) + (nβ − αm)
∫ r

rm

v(m)(ρ)ρn−1 dρ. (4.9)

By (4.7), (4.8) and (4.9), for any R2 > R1 > 0 there exists a constant M3(R1, R2) >
0 such that

|(v(m))′(r)| � M3(R1, R2) ∀R1 � r � R2, 0 < m < m0 (4.10)

⇒ |v(m)(r1) − v(m)(r2)| � M3(R1, R2)|r1 − r2| ∀r1, r2 ∈ [R1, R2], 0 < m < m0.
(4.11)
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By (1.3), (4.7) and (4.10), for any R1 � r � R2 and 0 < m0 < m0,

(v(m))′′(r) = (1 −m)(v(m)(r))−1(v(m))′(r)2 − αv(m)(r)2−m

− βrv(m)(r)1−m(v(m))′(r) − (n− 1)r−1(v(m))′(r) (4.12)

⇒ |(v(m))′′(r)| � M4(R1, R2) ∀R1 � r � R2, 0 < m < m0

⇒ |(v(m))′(r1) − (v(m))′(r2)| � M4(R1, R2)|r1 − r2|
∀r1, r2 ∈ [R1, R2], 0 < m < m0. (4.13)

for some constant M4(R1, R2) > 0. By differentiating (1.3) with respect to r > 0
and repeating the above argument, there exists a constant M5(R1, R2) > 0 such
that

|(v(m))′′′(r)| � M5(R1, R2) and |(v(m))′′(r1) − (v(m))′′(r2)|
� M5(R1, R2)|r1 − r2| ∀r, r1, r2 ∈ [R1, R2] (4.14)

holds for any 0 < m < m0. By (4.7), (4.10), (4.11), (4.13) and (4.14), the sequence
{v(mi)}∞i=1 is equi-Holder continuous in C2(K) for any compact subsetK of R

n\{0}.
By the Ascoli Theorem and a diagonalization argument the sequence {v(mi)}∞i=1 has
a subsequence which we may assume without loss of generality to be the sequence
itself that converges uniformly in C2(K) for any compact subset K of R

n\{0} to
some positive function v ∈ C2(Rn\{0}) as i→ ∞.

Putting m = mi in (4.12) and letting i→ ∞,

v′′(r) = (v(r))−1v′(r)2 − αv(r)2−1 − βv(r)v′(r), v > 0, inR
n\{0}

and hence v satisfies (1.8). Letting m = mi → 0 in (4.1),

λ−ρ1/β � |x|α/βv(x) � λ−ρ1/β exp(C0λ
ρ1/β |x|ρ1/β) ∀x ∈ R

n\{0}
⇒ lim

|x|→0
|x|α/βv(x) = λ−ρ1/β

where C0 = (((2β + ρ1)(n− 2))/(ρ1β)). Then by theorem 1.3 v is the unique solu-
tion of (1.8) which satisfies (1.9). Since the sequence {mi}∞i=1 is arbitrary, v(m)

converges uniformly in C2(K) for any compact subset of R
n\{0} to the unique

solution v of (1.8) which satisfies (1.9) as m→ 0+ and the theorem follows. �

Proof of Theorem 1.6. We will use a modification of the proof of Lemma 2.5 of
[21] to prove the theorem. Let h ∈ C∞

0 (Rn), 0 � h � 1, h(x) = 1 for |x| � 1 and
h(x) = 0 for |x| � 2. Let η(x) = h(x)4 and ηR(x) = η(x/R) for any R > 0. For any
R > 3ε > 0, let

ηε,R(x) = (1 − η(x/ε))ηR(x).

Then {
ηε,R = 0 ∀ |x| � ε or |x| � 2R
ηε,R(x) = 1 ∀ 2ε � |x| � R
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and

|�ηε,R(x)| � C1

ε2
∀ε � |x| � 2ε, |�ηε,R(x)| � C1

R2
∀R � |x| � 2R (4.15)

for some constant C1 > 0. By Kato’s inequality [24],

∂

∂t

∫
Rn

(u1 − u2)+(x, t)ηε,R(x) dx

�
∫

Rn

(log u1 − log u2)+(x, t)�ηε,R(x) dx

� C1

ε2

∫
ε�|x|�2ε

(log u1 − log u2)+(x, t) dx

+
∫

R�|x|�2R

(log u1 − log u2)+(x, t) |�ηR(x)| dx (4.16)

By (1.9) and lemma 2.1 there exists a constant ε1 > 0 such that

λ
−ρ1/β
i � |x|α/βvλi

(x) � 2λ−ρ1/β
i , ∀|x| � ε1, i = 1, 2. (4.17)

Then by (1.18) and (4.17),

(log u1 − log u2)+(x, t) � log(2λ−ρ1/β
2 ((T − t)|x|)−α/β)

− log(λ−ρ1/β
1 ((T − t)|x|)−α/β)

� ρ1

β
log
(
λ1

λ2

)
+ log 2 ∀|x| � ε1/T

β , 0 < t < T

⇒
∣∣∣∣∣ 1
ε2

∫
ε�|x|�2ε

(log u1 − log u2)+(x, t) dx

∣∣∣∣∣
� 2n

(
ρ1

β
log
(
λ1

λ2

)
+ log 2

)
ωnε

n−2 ∀0 < ε � ε1
2T β

, 0 < t < T

→ 0 ∀0 < t < T as ε→ 0 (4.18)

where ωn is the surface area of the unit sphere Sn−1 in R
n. Letting ε→ 0 in (4.16),

by (4.18) we get

∂

∂t

∫
Rn

(u1 − u2)+(x, t)ηR(x) dx

�
∫

Rn

(log u1 − log u2)+(x, t) |�ηR(x)| dx ∀0 < t < T. (4.19)

By theorem 1.4 there exists a constant C3 > 0 such that

vλi
(x) � C3|x|−2 ∀|x| � 1, i = 1, 2. (4.20)
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By (1.18) and (4.20),

ui(x, t) � (T − t)α · C3((T − t)β |x|)−2 = C3(T − T1)|x|−2

∀|x| � (T − T1)−β , 0 < t � T1 < T. (4.21)

By (4.19), (4.21) and the same argument as the proof of Lemma 2.5 of [21] for any
T1 ∈ (0, T ) we get u1 � u2 in (Rn\{0}) × (0, T1). Hence (1.19) holds.

If u0,1 = u0,2 and both u1, u2 are solutions of (1.17) in (Rn\{0}) × (0, T ) which
satisfy (1.18), then we also have u2 � u1 in (Rn\{0}) × (0, T ). Hence u1 = u2 in
(Rn\{0}) × (0, T ) and the theorem follows. �

Proof of Theorem 1.7. Let m0 ∈ (0,m0) by given by lemma 4.1. Then by (1.20)
and lemma 4.1, for any x ∈ R

n\{0}, 0 < t < T , 0 < m < m0, i = 1, 2,

λ
−((1)/((1−m)β))
i |x|−αm/β

� V
(m)
λi

(x, t) � λ
−((1)/((1−m)β))
i |x|−αm/β exp(Cmλ

1/β
i T |x|1/β) (4.22)

⇒ λi|x|−αm/β � V
(m)
λi

(x, t) � λi|x|−αm/β exp(C0λ
1/β
i T |x|1/β) (4.23)

where Cm is given by (4.2) and

λi = max(λ−n/2β
i , λ

−1/β
i ), λi = min(λ−n/2β

i , λ
−1/β
i ) and

C0 = ((n(n− 2)(2β + 1))/(2β)).

By (1.23) and (4.23),

λ1 min(|x|−n/2(2+1/β), |x|−(2+1/β)) � u(m)(x, t)

� λ2 max(|x|−n/2(2+1/β), |x|−(2+1/β))

× exp(C0λ
1/β
2 T |x|1/β) (4.24)

holds for any x ∈ R
n\{0}, 0 < t < T and 0 < m < m0. Let {mi}∞i=1 ⊂ (0,m0) be a

sequence of positive numbers such that mi → 0 as i→ ∞. By (4.24) the equation
(1.1) for the sequence {u(mi)}∞i=1 is uniformly parabolic on every compact subset
of (Rn\{0}) × (0, T ). By the Schauder estimates for parabolic equations [26], the
sequence u(mi)(x, t) is equi-bounded in C2+θ,1+θ/2(K) for some θ ∈ (0, 1) for any
compact subset K of (Rn\{0}) × (0, T ). Hence by the Ascoli theorem and a diag-
onalization argument the sequence u(mi)(x, t) has a subsequence which we may
assume without loss of generality to be the sequence itself that converges uniformly
in C2+θ,1+θ/2(K) for any compact subset K of (Rn\{0}) × (0, T ) as i→ ∞ to a
positive function u(x, t) ∈ C2(Rn\{0}) which by (1.23) and Theorem 1.5 satisfies
(1.25).
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Putting m = mi in (4.22) and letting i→ ∞, by theorem 1.5,

λ
−1/β
i |x|−α/β � Vi(x, t)

� λ
−1/β
i |x|−α/β exp(C0λ

1/β
i T |x|1/β)

∀x ∈ R
n\{0}, 0 < t < T, i = 1, 2. (4.25)

By (4.24) and the mean value theorem for any (x, t) ∈ (Rn\{0}) × (0, T ) there exists
ξi(x, t) ∈ (0,mi] such that
∣∣∣∣u(mi)(x, t)mi − 1

mi
− log u(x, t)

∣∣∣∣
=
∣∣∣eξi(x,t) log u(mi)(x,t) log u(mi)(x, t) − log u(x, t)

∣∣∣
� eξi(x,t) log u(mi)(x,t)

∣∣∣log u(mi)(x, t) − log u(x, t)
∣∣∣

+
∣∣∣eξi(x,t) log u(mi)(x,t) − 1

∣∣∣ · |log u(x, t)|
→ 0 uniformly on every compact subset of (Rn\{0}) × (0, T ) as i→ ∞. (4.26)

Hence putting m = mi in (1.1) and letting i→ ∞, by (4.26) u satisfies (1.10). It
remains to prove that u has initial value u0. For any ψ ∈ C∞

0 (Rn\{0}), we choose
constants R2 > R1 > 0 such that suppψ ⊂ BR2\BR1 . Then∣∣∣∣∣

∫
Rn\{0}

u(mi)(x, t)ψ(x) dx−
∫

Rn\{0}
u0,m(x)ψ(x) dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

0

∫
Rn\{0}

u
(mi)
t (x, s)ψ(x) dxds

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

0

∫
Rn\{0}

(
u(mi)(x, s)mi − (T − s)miαmi

mi

)
· �ψ(x) dxds

∣∣∣∣∣
� ‖�ψ‖L∞

∫ t

0

∫
BR2\BR1

(E1 + E2) dxds ∀0 < t < T (4.27)

where

Ek =

∣∣∣∣∣V
(m)
λk

(x, s)mi − (T − s)miαmi

mi

∣∣∣∣∣ ∀k = 1, 2.

Since

Ek = |(T − s)miαmi |
∣∣∣∣∣v

(m)
λk

((T − s)β |x|)mi − 1
mi

∣∣∣∣∣
→ ∣∣log vλk

((T − s)βx)
∣∣ uniformly on(BR2\BR1) × (0, T1)
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for any 0 < T1 < T as i→ ∞, letting i→ ∞ in (4.27),∣∣∣∣∣
∫

Rn\{0}
u(x, t)ψ(x) dx−

∫
Rn\{0}

u0(x)ψ(x) dx

∣∣∣∣∣
� ‖�ψ‖L∞

∫ t

0

∫
BR2\BR1

(
∣∣log vλ1((T − s)βx)

∣∣+ ∣∣log vλ2((T − s)βx)
∣∣) dxds

� C1 ‖�ψ‖L∞ t ∀0 < t � T/2 (4.28)

where

C1 = max
(T/2)βR1�|y|�T βR2

|log vλ1(y)| + max
(T/2)βR1�|y|�T βR2

|log vλ2(y)| .

Letting t→ 0 in (4.28),

lim
t→0

∫
Rn\{0}

u(x, t)ψ(x) dx =
∫

Rn\{0}
u0(x)ψ(x) dx ∀ψ ∈ C∞

0 (Rn\{0}). (4.29)

By (4.29), any sequence {tk}∞k=1 converging to 0 as k → ∞ will have a subsequence
{tkl

}∞l=1 such that u(x, tkl
) converges to u0(x) for a.e. x ∈ R

n\{0} as l → ∞. Then
by the Lebesgue Dominated Convergence Theorem,

lim
l→∞

∫
R1�|x|�R2

|u(x, tkl
) − u0(x)| dx = 0 ∀R2 > R1 > 0.

Since the sequence {tk}∞k=1 is arbitrary, u(·, t) converges to u0 in L1
loc(R

n) as t→ 0.
Hence u has initial value u0. Thus by theorem 1.6 u is the unique solution of (1.24).
Hence u(m) converges uniformly in C2+θ,1+θ/2(K) for some constant θ ∈ (0, 1) and
any compact subset K of (Rn\ {0}) × (0, T ) to the solution u of (1.24) as m→ 0+

and the theorem follows. �
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