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We establish that, for n > 3, the elliptic equation
—Au = Mez|PulT %u + |z|¥ [uP%u

on a ball with zero Dirichlet data possesses a pair of nodal radial solutions for all
A > 0 provided that

2
and p= 20tV

2 2 2
BV > =2, max{2,7n+ o }<q<7(n+,u)
n—2 n—2

n—2

When g = 2 and n > 2u + 6, the same result holds for A > 0 small. Canonical
transformations convert the equation into a quasi-linear elliptic equation and an
equation with Hardy term. Then the results correspond to the results for the
transformed equations. For example, the equation

X 3 — _
— 2w — 2w = Ryl + Jyl* [l w,

lyl?

on a ball with zero Dirichlet data, possesses a pair of nodal radial solutions for all
A > 0 provided that a,v > —2 and

= — 92\
max{2,w}<q< m with x = <L>
VX VX 2

When ¢ =2, n>2a+6and 0 < x < X — (a + 2)2, the same result holds for A > 0
small.

1. Introduction

In this paper, we study the existence of solutions for the following elliptic equation
on the unit ball By = {z: |z| <1}, n > 3:
—Au = Mz|[*u|%u + |z|”|ulP~2u  in By,

1.1
u=0 on 0B, (1.1)

where p,v > =2, 2< ¢<2(n+p)/(n—2), p=2(n+v)/(n—2) and X is a real
parameter.
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When v = 0, 2* = 2n/(n — 2) is the critical Sobolev exponent. Namely, for a
bounded domain 2 C R”, n > 3, the embedding Hy*(£2) < L*" (£2) is not compact.
In 1983, Brezis and Nirenberg [3] added a lower-order perturbation as in (1.1) with
u = v = 0 and verified a compactness of local type in a range of g to ensure
the existence of positive solutions. Later, Cerami et al. [6] studied nodal solutions
(changing-sign solutions) of (1.1) with g = v = 0 and ¢ = 2. In [14], Tarantello
obtained the existence of nodal solutions by the convergence of nodal solutions of
subcritical problems with 2* — ¢ as € — 0. There are many papers dealing with
elliptic problems involving the critical Sobolev exponent. For known results and
related topics including the non-existence of nodal solutions, we refer the reader
to [1,2,5,8-12] and the references therein.

In general, subcritical perturbations indicate that p > v and g < p.

In order to state our result in the case of ¢ = 2, we need the number

N S, |21°1V 2
Lau(B1) = i W
0£peHy*(B1)  Jp, ¥

where a > 2 — n. For a = 0, we simply write A; , instead of A1 ,.
The main result of this paper is the following assertion.

THEOREM 1.1.
(i) Let

2(2 2
max{Q,( +,u)}<q<(n+u) and X > 0.
n—2 n—2

Then (1.1) has a positive radial solution. Moreover, if

2 2 2
max{2,n+u+}<q<<n+u>

n—2 n—2"

(1.1) has a pair of nodal radial solutions.

(ii)) Let g =2 and 0 < X < Ay u. If n > p+4, then (1.1) has a positive radial
solution. Moreover, if n > 2u + 6, (1.1) has a pair of nodal radial solutions.

For the cases when p = v = 0 and ¢ < p in theorem 1.1, the existence of both
positive solutions and nodal solutions was established in [3] and [6,14], respectively.
However, the important observation of theorem 1.1 is that the conditions on ¢ are
independent of p but depend only on p. In other words, the class of subcritical
exponents is subcritical for the class of critical exponents in the perturbational
sense.

We now consider two equations which can be transformed to (1.1) by suitable
transformations and state the corresponding results. The first is

=V ([y1Ve) = Ayl + [yl o2 in Bl,} o)

v=0 on 0By,

where fi,7 >a—2>-nand p=2(n+7v)/(a+n—2). Let

n—2 Y/ (04n-2)/(n—2)
u(z) = <o<+n—2> v(y) and [z =yl :
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Then (1.2) is transformed into (1.1) with

- - 2(p—q)/(p—2)
92— 95— - )
(n —2)ji — na L (n—2)0 na’ )\:)\< n ) .

- a+n—2 ' a+n—2 a+n—2

From theorem 1.1, we reach the following conclusion.
THEOREM 1.2.

(i) Let

22+ ji — 2 i -
max J2, 2CHAZL 20k R) 5o,
a+n—2 a+n—2

Then (1.2) has a positive radial solution. Moreover, if

200+ 2 — 2 [l
max{27n+u+a}<q<m+w,

a+n—2 a+n—2

(1.2) has a pair of nodal radial solutions.

(i) Let g =2 and 0 < X < Majp- Ifn >4+ 04— 2q, then (1.2) has a positive
radial solution. Moreover, if n > 2ji+ 6 — 3a, (1.2) has a pair of nodal radial
solutions.

For the existence of a positive solution of (1.2) with ¢ = 2, Egnell [8] showed that
when n > 4+ i—2a;, (1.2) has a positive radial solution if and only if 0 < A < Ay o 5.

Obviously,
2
a+n—2
Ao = (n — ) Al

The second equation is that with Hardy terms:

—Aw — 2w+ Ny|*w]*%w + [y[ |w]P*w  in By,
lyl (1.3)

w=0 on dBi,

where 0 < x < x = 3(n—2)%, a > -2,2< ¢ < 2(n+a)/(n—2) and p =
2(n+v)/(n—2).
Setting v(|y|) = |y|“w(|y|) with 0 = /X — /X — X, We see that v satisfies

n—20—1
]

Letting « = —20 =2 — n + 2y/X — x, we have

—o"(ly|) - V' (lyl) = Myl* =7 @2 o]t 20 4 [y 0 o,

/

=V - (jyl*Vv) = —|y[*v" = (@ +n = 1y|* v
= —|y|“v" — (n — 20 — 1)|y|]*

= Ayl"[ol"2v + [y|” |o]" v,
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with it =a—0(¢—2)+a and o = v—o0(p—2) + a. Hence, (1.3) is also transformed
into (1.1) with

(n—2)24a—0(q—2)]

=pn=-2 > —2, 1.4
p=fi + p— (1.4)
—2)|2 — -2
P S k) ki Gt B (1.5)
a+n—2
and 2(p-0)/ (p-2)
~ _9 p—q)/(p—
A:A(") .
a+n—2
It is easy to see that
2(n+v) 2(n+a)  2(n+f)
= -, 2 < <
n—2 n—2 n—2
and v ) ) )

—Apas
et (B) [ (@) bt

Therefore, theorem 1.1 is translated into the following result.
THEOREM 1.3. Let a,v > —2 and 0 < x < X.

(i) Let

— 2. /5 —~
max{2,n+a 7X x}<q<n+a
VX VX

and X > 0. Then (1.8) has a positive radial solution. Moreover, if

n+a— x—x} n+a
maxq2, —————=—— < ¢ < —,
{ VX VX

(1.8) has a pair of nodal radial solutions.

(i) Letg=2,n>a+4 and0< x < X — 3(a+2)% For0 < A< Ai(x), (1.3) has
a positive radial solution. Moreover, if n > 2a+6 and 0 < x < ¥ — (a + 2)?,
(1.8) has a pair of nodal radial solutions.

Note that
_ a—|—22_(n+a)(n—a—4)
X 2 - 4 ’
_ +2a + 2)(n — 2a — 6)
_ 22:(n .
X—(a+2) 1

Recently, (1.3) has been studied intensively. However, we understand (1.3) through
(1.1) and (1.2) rather than by studying (1.3) directly. Every structure for (1.1)
generates a structure for (1.3). In [10], Jannelli studied the existence of positive
solutions of (1.3) with a = ¥ = 0 and ¢ = 2, and derived the first assertion of theo-
rem 1.3(ii). On the other hand, Cao and Peng [5] considered the existence of nodal
solutions and obtained the second assertion of theorem 1.3(ii). By straightforward
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computations, the second result of theorem 1.3(i) improves a recent result in [11]
where —2 < v <0, a =0, and

max{Z ntp n—ﬁ} <q< n+25
WX +BT VX VX + 5

Under a weak perturbation in the following sense, (1.1) has no sign-changing
radial solution. More precisely, if p,v > —2 and 2 < ¢ < (p— 1) min{1, (2+p)/(2+

v)}, then there exists a constant A* > 0 such that, for A € (0,\*), (1.1) has no
radial solution which changes sign. See [2] for the proof. In the case when ¢ > 2

and
2w+ 2 2 2+ 2
nEAEE ind 1 2 o max dg T2
n—2 n—2

with 8 =+vX — x.

and except for the case when ¢ = 2 and n > 2u + 6, whether or not (1.1) has a
sign-changing radial solution is an open question. The non-existence is transformed
into the following two non-existence results.

THEOREM 1.4. Let fi,0 > a—2> —n. If2<q¢< (p—1)min{l,2+/i—a)/(2+
U —a)}, then there exists a constant \* > 0 such that, for A\ € (0,A*), (1.2) has no
radial solution which changes sign.

THEOREM 1.5. Let 0 < x < x and a,v > —=2. If2 < q < (p—1)min{l,(2 +a +
20)/(2+v+0)} with o = /X — /X — X, then there exists a constant \* > 0 such
that, for A € (0,A*), (1.3) has no radial solution which changes sign.

Proof. 1f2 < ¢ < (p—1) min{1, (2+/)/(2+7)}, then there exists a constant A* > 0
such that, for A € (0, A*), (1.3) has no sign-changing radial solution. The inequality

2+ [ 24+a—o0(qg—2)
<(p—1 =(p-1_ 2
e A Sruy S s
is equivalent to
24a+20
<p-1)———.
(s -D5

O

COROLLARY 1.6. Let 0 <x <X and a+ o0 >
there exists a constant \* > 0 such that, for A
solutions.

v>-=21If2<q<p-—1, then
€ (0,\*), (1.8) has no nodal radial

Furthermore, if ¥ = 0 and a + ¢ > 0, then the result holds for n = 3,4,5,6
because p—1=(n+2)/(n—2) > 2.

This paper is organized as follows. Some preliminaries, including the existence
of positive solutions, are reviewed in §2. In §3 we study the existence of nodal
solutions. In §4 the transformation to conclude theorem 1.3 is presented in detail.
Finally, we make related remarks in § 5.
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2. Preliminaries

In this section, we collect some known facts and consider the existence of positive
solutions of (1.1). Let 0 > v > —2 and let S, be the best constant for the Sobolev—
Hardy embedding D'2(R"™) — LP(R™, |z|¥) with p = 2(n + v)/(n — 2), where the
space DV2(R™) is the completion of C5°(R™) in the norm

||u||%1,2(w)=/]R Vuf? dz.

In the radial context, we may regard S, for v > —2 as the best constant for the

embedding H,.(By) — L?(B1,|z|"), where H,.(Bj) is the class of radial functions in
1,2

Hy“(B1). The constant

\V/ 2
Sl/ - in —f]Rn | U| 5
,Dl’Q(Rn))u;éO (I]Rn |x‘u|u|p) /p

is achieved by the function

e () = [(n 4 v)(n — 2)g](n=2/2(2+v)

(E + |$|2+V)(n72)/(2+1/)

for each € > 0. In fact, these functions are minimizers of S, in the set of radial
functions in the case when v > —2. Moreover, 4. are the only positive radial
solutions of

—Au = |z|"uP~! in R".

See [4,7,13] for details and more general results.

LEMMA 2.1. Let 0 € £2 be a bounded domain and let 1 <1 < 2(n+v)/(n—2). Then
HE () is continuously embedded into L'($2,|z|" dx) if 0 > v > —2 and, moreover,
the embedding is compact if | < 2(n+v)/(n —2). On the radial space

H,(By) = {u € Hy(B1) | u(x) = u(|a])}

in the case when 2 = By, the two results hold even if the condition 0 > v > —2 is
replaced by v > —2.

In a variational approach to obtain a positive solution of (1.1), one looks for
critical points in H{(B1) or H,.(Bj) of an energy functional

2 A 1
e = | ('V” =g - x|”|u|p).
B, 2 q D

Under the assumptions of lemma 2.1, Iy is C!-functional on H{(By) or H,.(B1)0,
respectively. By the method initiated by Brezis and Nirenberg in [3] ) we first observe
that I satisfies (PS)s for each 8 € (—o0, (2+v/(2(n + V))SSH_V) (2+V))).

LEMMA 2.2. Any sequence {um} in H,.(B1) such that

24 v

S(n+u)/(2+y) I ) — 0
2(7'L+I/) v ) /\(u ) )

I)\(um) — ﬂ <

as m — o0, is relatively compact.
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We can prove the compactness of local type by the argument in [3]. To concentrate
on the compactness conditions we consider the energy level

¢ = uneljl\?l Iy (u),

where M7 = {u € H,(B1)\ {0} | I{(u)u = 0}. In order to establish the existence of
positive solutions, we follow a similar argument to that in [3].

THEOREM 2.3.

(i) Let max{2,2(24+u)/(n—2)} < ¢ <2(n+u)/(n—2). Then (1.1) has a positive
radial solution for all A > 0.

(i) Let g =2 and 0 < X < A1 . If n > p+ 4, then (1.1) has a positive radial
solution.

Proof. Fix a radial function ¢ € C3(B1), ¢ > 0 such that ¢(z) =1 for |z| < R for
some 0 < R < 1. Set

¢(x)

us(x) = (e 1 |22 (D@t

for € > 0 and ve(x) = ue(x)/||ucl|Lr(By,|2v) SO that ||ve|lLr(By vy = 1. We claim
that v, satisfies

2+v
sup I (t0.) < —2 Y glntv)/(2+v)
b ) < 5y

for € > 0 sufficiently small. The computations show that

c
lluellLe (B, e)v) = =2/t +o(1) (2.1)
for some C' = C(n,v) and
||V1;8H%2(Bl) =S, + 0(€(n—2)/(2+u)). (2.2)
In fact, we have
C
2 1
/B IVuel” = 7m0, (2.3)
1
2/p C
v 2
(/B || u§> = m+0(5)7 (2.4)

where C1 and Cs denote the positive constants which depend on n and v.
Verification of (2.3): we have

Vo(z) (n = 2)|z["¢(x)x

(e + |@]|2+)(n=2/C+1) (g + |g]2Hv) () /(+0)

Vue(z) =
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Since ¢ = 1 near 0, it follows that

/ |Vu€\2 _ (TL N 2)2/ |517|2 v+1)
Bl B1 (

e+ |$|2+u)2(n+u /(24v) + O(l)

2 |x|2(y+1) 0(1)
(n— ) en (6 + |$|2+u)2 (n+v)/(2+v) +
Ch
= e O
where

T 2(v+1)
Cl = (n - 2)2/ ( | |

1+ |x|2+u)2(n+u)/(2+v) '

Verification of (2.4):

[t [ 267 (2)

B (E + |x‘2+1/)2(n+1/)/(2+11)
_ o[ (¢P(@) 1) 1
= B, E+ a2 /CR) T Lz (e + (a2 )2 )
1
= 0(1) +/ |$|V(€ + ‘x|2+l/)2(n+ll)/(2+l/)

C5
= e T O,
where

Cl _ |‘I‘V
2 = N (1 + ‘x|2+y)2(n+l/)/(2+v) '

Thus, (2.4) follows with Cy = (C4)?/? and C,/Cy = S
Setting X. = [[Vve|72(p,), we have

1 A
L) = 1ex. - Lo - ftq/ ] 1.
p q B
Since I (tve) < %thg — t?/p, we have

tllglo I)(tv.) = —o0

and thus sup; >, Ix(tv.) is achieved at some t. > 0. Therefore, we have
te X, — 07t - et / |z|*ve|? =0
By

te < XYY, (2.6)
Obviously, t.v. € M;. Set

(2.5)

and

Y. = sup I/\(tvs) = I)\(tEUE)'
>0

https://doi.org/10.1017/50308210505000727 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210505000727

Ezistence of nodal solutions of nonlinear elliptic equations 1143

Since the function t — (%thE — tP/p) is increasing on the interval [O,Xal/(p_z)},
by (2.6) we have

1 A
Y. = %ths — —tf — —tg/ || |ve |7
p q By

N

pP— 2X5/(p72) _ étg/ || vz |9
2p q B

_ _2HY /) étq/ ) [oe |
2(7’L+V) € q : By
By (2.2), we obtain
< 2V g /@) | -2/ 240)) _ iltq/ o *- 27
TCFIR a°Jg
To get
v < 2+v G(ntv)/(2+v)

2(n+v) "

for € > 0 sufficiently small, it suffices to show that

lig%gf(nfz)/(zw)/ |z |ve]? = 0.
£ B

In fact, if ¢ > max{2,2(2+ u)/(n — 2)}, then

L —nm2)/(a) £(n=2)a/ 2(24)) | g |1
E1_>I%E B (€+ |$|2+u)(n72)q/(2+lj)

e—1/(2+v)

ptn—1
— T (2(2+1)—(n—2)q)/ (2(2+)) s
lim wne /0 (1 + s2tv)(n—2)a/(2 ) ds
= Q.
Therefore,
o < 2TV gntv)/(4n),
2(n+v) "

Combining a variational principle and lemma 2.2, we see that (1.1) has a positive
solution attaining ¢; (see [3,9]).
For ¢ = 2, by (2.1) and

ia o}
ot = |, e + 00

Kie@Wrn=m)/Ct0) 4 O(1), n>p+4,
K1|10g€|+0(1)a n:M+47
0(1)7 n < H+47
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we have the following estimates:

0(5(2+u)/(2+u))7 n>p+4,
lvellZo s, oy = § O/ G loge]), n=p+4,
O(en=2)/+v)), n < p+4.

When ¢ = 2, we impose the extra condition A € (0,A;,). Then, for any u €
HL($2)\ {0}, there exists ¢, > 0 satisfying (2.5). Let 2(2+ u)/(n —2) < 2,ie.n >
w1+ 4. From (2.7), we have

< 2tV gty

T 2n+v)”
O(e(=2)/C+v)y _ O(+m)/(24v)), n>u+4,
+{ O(e@Hm/ @)y — O(e@+m/ ) |logel), n=p+4,
O(en=2)/(+v)), n < p+4.
Therefore, (1.1) possesses a positive solution if n > u + 4. O

Note that ug obtained in theorem 2.3 is a weak solution of (1.1). Moreover, it is
well known that ug is bounded. See [2, proposition 2.2 and lemma 2.3] or [7].

Brezis and Nirenberg [3] established that (1.1) with y =v=0,¢=2and n =3
has a positive solution if and only if A € (%)\1, A1). For the case when n < p+ 4
and 2 < ¢ < 2(2+ p)/(n — 2), we refer the reader to [12].

3. Nodal solution

In this section we consider the existence of nodal solutions. We denote the pos-
itive solution of (1.1) by wg. Let ¢ = Ix(ug) = In(—up). Note that ¢; can be
characterized by

- i In(u):u >0, =1},
= g zo{ A(u) 1u falu) =1}

where fy(u) is the functional in H,(B;) defined by fy(u) = 0 for v = 0 and, for

w0,
z|Yul? + M x|#|ul? 9
fBl(|f|||vu|2|||) if2<q<%,)\>0,
f)\(U): o v p
I, Jet ifg=2 MA,>A>0
fBl(|vu|2*)\|l““|u‘2) q=42, M, .
Set

M, = {’LL € M : f)\(’u,i) = 1}

Then, for any v = ut — u~ € H,(B;) with u™ # 0, we may choose o and 3 in R
such that
@ =au" — fu” € My,

and thus My # (). We give its proof for the convenience of the reader (see the proof
of lemma 3.2 in [6]).
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LEMMA 3.1. Let uy and us be two non-negative linearly independent functions in
H,(By). Then there exist r,s € R such that ruj + sus € Ms.

Proof. Let vs = (1 — s)ug — sug for 0 < s < 1. Then it follows that

lim inf fy(yvs) = 0.
Y—o0 s€[0,1]

Hence, we may choose a vy > 0 such that, for all s € [0,1], fa(yovs) = 2. Define
K = (K1, K2) : [0,1] x [0,1] — R by

Ki(s,t) = fa(rotvy) = fr(rotvd),
Ka(s,t) = frlyotvy) + falrotv)) — 2.
Then for (s,t) € 9([0,1] x [0, 1]), we have K(s,t)-v(s,t) > 0, where v(s,t) denotes

the unit outward normal. Hence, from Miranda’s theorem, there exists (sg,tg) €
(0,1) x (0,1) such that K(sg,t9) = 0. Therefore, yotgvs, € Mo. O

Let
N={ue H(By):|fH(uF) -1 < i}
Then we have

weN= [ |[Vur?>6>0
B

since

P > L[ VUt = Az ut))
2
Bl Bl
> c/ |Vut[?
By

2/p
> s, ([ labtur)
B1
for a constant ¢ > 0.

By the similar arguments as in [6, lemma 3.1], I satisfies a Palais—-Smale condi-
tion in
I oo+ 2TV gn/ean)) A N,
A ’ 2(n+v) "
LEMMA 3.2. If a sequence {u,} C N satisfies

24+ v S(n+y)/(2+l/)’ I;\(’U,m) =0

IA(Um)%ﬂ<C1+m v

as m — oo, then {u,,} is relatively compact in H,.(By).

See the proof of [6, theorem A] to discover a Palais—Smale sequence in N. We
consider the energy level

= min I)(u).
=

In the case when ¢ > 2, cp is less than the critical level in lemma 3.2 when
g>n+2n+2)/(n—2).
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THEOREM 3.3. Let

2
= % and X € (0,00).

If max{2,q* — 1} < q < q*, then (1.1) has a pair of nodal solutions attaining co.
Proof. We claim that

24 v
_2 7 glndr)/2+v)
co < c+ 2(71—&—1/) v
It suffices to show that

2
sup Iy(aug + ) < e1 + iSﬁ"*‘”)/(H”), (3.1)

a,BeR 2(” + V)
where 1. = ¢t with a radial function ¢ € C§°(By/2), ¢ > 0, # = 1 on By 4. By
lemma 3.1, there exist some «, 3 € R such that aug + S, € M. Since I)(aug +
B1.) < 0 for large o + 3%, we may assume that o and 3 are bounded. Since ug is

a positive radial solution of (1.1) obtained in theorem 2.3, we get

2 1

[ 9t + g = [ v+ [ wienr

+a@[A / 2l ool ™o + / 2l o [P0 |.
Bl Bl

1 u
f/ |u|p:/ (/ |s|p_2sds),
P JB, B 0
we obtain
1 v P v P v p
- |2]”|auo + Bel? — [ [2|7[Bve]" — [ [2|"[auo
pPlL/B, B B

1
= / [/ 2| (|B0e + sauo P2 (B + saug) — |saug|P~2 (saug))aug | ds
o LJ/B

Using the equality

1
—(p—1) / [ [ Jaligus+ sauop-zaﬁuowa} s,

where § = 6(z) is a measurable function such that 0 < § < 1. From the above
equality, it follows that

1
[ tetowo+ v = [ a1l = [ fol o
p B4 B B,

1
S C/O [/131 |z]” (|8 |P~2 + |aug [P )ugtpe | ds.
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Hence,

I < 672 2_)\'6‘11 n q_‘ﬁ|p v P
alaug + B) < e + 9 | Ve | |z ]te| |z["[3)e |
B q B, p B,
2 Ciluolts? [ ol + Caluolts? [ ol
B, B,

+ A CS|u0|oo/

By

ol 11 + Caluolo [ ol 1w
We claim that, as € — 0, we have
@) [ [F6 = S 4 o)
By

0) [ fal el = S{r/@ 4 o),
B

—(n— _ +
(c) / |zH[ipe|? = KGO —(=20)/C@+) 4 o(c(n=Da/22+0)y q>Z g
Bl -

(@) / o] e < Ky en=2)/2(2H0)
By

@ [l < sy e,
By

O [ Jelloulrt < Kacl 2,
B,

®) /B |1

Kse(m=2)(a=1)/2(2+v) q< n +/; i1
n —

— { Kyemtm/2240) | 1og g| 4 O(e(mtm/2240)) g = PEE

n—2
Kel2(ntm—(n=2)(g=1)]/2(2+v) 0> Zir/; ey
Verification of (a): let
Cy = [(n+v)(n —2)]|(n"2/2C+)
and
Che = [(n+v)(n — 2)e](n=2)/2C+),
Since
Vo(x) (n— 2)¢(z)|z|"z

Vipe(z) = C) .

(e + |x|2+y)(n—2)/(2+y) - (e + ‘x|2+1/)(n+y)/(2+l/)
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and ¢(z) = 1 near 0, it follows that

2 _ 2 02 |37|2V+2 (n—2)/(2+v)
/B1 |vw8| B CV7E(n 2) /31/4 (5 + |37|2+V)2("+”)/(2+V) + O(E )

|2V+2

) 2 |z n—2)/(24v)
=C; . (n—2) /Rn (e 1 a2 E @) +O(g( )/( )

B C2?(n — 2)?|x|?*2 O(e(n=2/(2+v))
= Jan (L1 222000 /@) +0le

S/ @40) | O ((n=2)/(24+0))

Verification of (b):

x| ¢ (z)
v P — (P
/131 x| [ve” = CFc /B (€ 1 [2]2t7)(—2p/CF)

— Cpe(ntv)/(2+40) 2" [¢" (x) — 1]
S (& + [a[2+) 2+ /@)

By /o

p_(n+v)/(2+v) |$‘u
—i—C,,E /31/2 (E—l— |x|2+u)2(n+y)/(2+l/)

_ p () ) (240) |z]” (ntv)/(2+v)
= (P /31/2 T REr R E) +0(e )

. n+v)/(24+v “/E|V n+v)/(2+v)
— Cpent)/( >/n (5+|x\2+”)2("+”)/(2+”)+O(6( )/(240))

O(E(n+u)/(2+u))

_ Chlz|”

 Jre (1 |z|2Hv)2(n4)/(240) +

= [ Jatlap + o)
RTL

_ S’En+u)/(2+u) +O(€(n+l/)/(2+u))'

Verification of (c):

2] ¢9(z)
M q — q
/B1 ol el” = G /B1 (€ + |2]|2Hv)(n=2)a/(2+v)

e || (x) — 1]
v, By (5+ |x‘2+1/)(n72)q/(2+1,)

||
q
+CV,E /31/2 (5+ |w|2+l/)(n—2)q/(2+l/)

|| (n—2)
_ n—2)q/2(2+v)
= Cve /Bl/z (4 o) Dty T O )

https://doi.org/10.1017/50308210505000727 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210505000727

Ezistence of nodal solutions of nonlinear elliptic equations 1149

. G
VE Jon (€ + |z 2HY)(n=2)a/24v)
+ O(gln=2)a/2(2+v))

_ (a2t~ (n=2)g)/2(2+0) / |z
v - (1 + ‘x|2+u)(n—2)q/(2+1/)
+ O(e=29/2+v))
_ Kyel2mtm—(n=2)dl/20+0) L g(n=2)a/224v)y g THH
’ n—2

Verification of (d):

vl |z|" ¢ ()
/Bl |2]” 1| = Che . (e 1 Ja]7+7) (=27 0)
(n—2)/2(2+1) |z|”
< CUE /;1/2 (€+ ‘m|2+1/)(n72)/(2+11)

_ Kye(n=2/22+)

Verification of (e):

|z p(x)
n _
/B1 |z |[Ye| = Cue /131 (e + |z[2T7)(n=2)/(2+v)

(n—2)/2(241) |z |*
< Cue /31/2 (€+ |x\2+”)("_2)/(2+”)

— KQE("_2)/2(2+V).
Verification of (f):
v p—1
v p—1 _ rp—1 |$| ¢p (.T)
/B1 ] [e | *Cu,s /31 (8_|_|I|2+u)(n—2)(p—1)/(2+u)

p—1_(n4+2+2v)/2(2+v) |z|”
<Ch e / (e + [z2Hv)(nF2F)/ (@)

By s

_ Cpl(n2)/224) / Gl
’ jal<e-1/0 g2 (1 [2[2H) (42420 /4]

< K46(n72)/2(2+1/).

Verification of (g): since

/ o = / o e
Bl Bl

/ el a7t < / el e < / e[|,
By B, B2

and
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we have to calculate

lz[*a. |77, 0< R< 1.
Br

(i) Let ¢ < (n+ p)/(n — 2) + 1. Then,

m
e q_lch_l/ ||
/BR | ‘ s| v,e B (E-‘r ‘$|2+V)(’ﬂ*2)(Q*l)/(2+IJ)

— Kyen=D(a=1)/2(2+v)

(ii) Let ¢ = (n 4 p)/(n — 2) + 1. Then,

/ a]#]e[o?
Br

— Cq—l |x|#
"€ Iy (4 |z2HV)(n=2(a-1)/(2+v)
- Cq—lg(n+u)/2(2+u)/ ||~
Y o< Re-1/ 4wy (1 4 |z[2H7)(n=2)(a=1)/(2+v)
o1/ (24) o
— o1l (ntm/2@40) | oy R prtp—l 4
Y : (1 + r2v) (=) (a-1)/(@+v)

= 09 1g(ntp)/2(2+v) o) +
v 24+v

|1oge]
= Kye+m/2240) | Jog e| 4 O(eHm)/2C2+v)y

(iii) Let ¢ > (n+ p)/(n — 2) + 1. Then,

/ e
Br

— e ="
=00 B (€ + ‘x|2+v)(n—2)(q—1)/(2+u)

_ (01 )~ (n=2) (g—1)) /2(2+) / |z ]
! el<Rret/ vy (14 [z[2HY) (=2 (a=1)/(2+v)

Re~1/(2+») n+pu—1
— 0110t~ (n=2)(a-1))/2(2+v) " dr
v o (1 4 r2+v)(n=2)(¢=1)/(2+v)

— Kyl —(n=2)(a-D1/2(2+)

Note
g 1 1 24w

2 p 2 p 2n+v)
From the above estimates, we have

I (aug + Bye)

24v
< (n+v)/(2+v) (n=2)/2+v)y _ o(gntv)/(2+v)
\c1+2(n+y)sy +O(e ) (e )
— O\ Kgelntn—(n=2))/224v) _ ((n=2)a/2(2+0))
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+ K7[A"U/O|gg1 + ‘u0|€o_1 + |u0|oo]€(n_2)/2(2+l/)

ng(n—Q)(q—l)/2(2+u) g< n 4 W 1
’ n—2 ’
+ Nto|oo { Kget#)/22+0) | og e| 4 O(e(t1)/2(241)) q::;tg_%L
Kgel2tntu)—(n=2)(a=1)]/2(2+v) g> " +/; 41
n—

To show (3.1), we consider the following three cases on ¢ separately.
CaSE 1. Let ¢ < (n+ p)/(n —2) + 1. We consider the inequalities
(n—-2)(¢g-1)  n-2 _ (n+u—(n-2)q
22+v) 22+v) 22+v)
The second inequality shows that

n+2+2u
—<q
n—2

Note that
n+2+42u < n—+u

n—2 n—2

n>p+4+— + 1.

Hence, if

242
w<q<n+ﬂ+l and n > pu+4,
n—2 n—2

then we have (3.1).

CASE 2. Let ¢ = (n+p)/(n —2) + 1. Then

2nt+p) —(n—=2)q 2+p
22+ v) n—2

Note that
n—2 2+ p

22+v)  22+0)
Hence, if ¢ = (n+p)/(n —2) + 1 and n > p + 4, then we have (3.1).

—n>pu+4.

CASE 3. Let ¢ > (n+ p)/(n —2) + 1. Observe that
2n+p)—(n—=2)q _ n-2

<
22+v) 2(2+v)
and, equivalently,
n+2+4+2u
—<
n—2
Then
242
DEETU S g,
n+24+2u n+p n—2
q > max , +15 =
n—2 n—2 n+‘u
+1, n<p+4
n—2

https://doi.org/10.1017/50308210505000727 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210505000727

1152 S. Bae, H. O. Choi and D. H. Pahk

Therefore, if g > (n+p)/(n—2)+1andn > pu+4,0orif ¢ > (n+2+2u)/(n—2)
and n < p + 4, then we have (3.1).

Then from lemma 3.2, there exists u € My such that I (u) = ¢, and I} (u2) =0
(see [6] for details). O

In the case when ¢ = 2, we add the condition A € (0, A1,,,).

THEOREM 3.4. Let g =2 and A € (0, A\1,,). If n > 2+ 6, then (1.1) has a pair of
nodal solutions attaining ca.

Proof. Similarly, we get

2
B+ i <ent iy [ 9w -a [t - B [ oy

+Ciluols? [ ol 4 X Caluole [ ol
B1 B

Since
Kie + O(en=2/C+v)) if n >4+ p,
/ 2|2 = { Kyelloge| + Oe@H/@+0)) it = 4 4 p,
B Ke(n=2)/(2+v) ifn <4+ p,
we have

I(aug + BYe) < e1 + S/ 2] 4 O(en=2/ )y _ Ot/ (2+0))

m
n [K1|U0|go_1 + Kg\uo\oo]f("_2)/2(2+u)
Ke@tm/@+v) 4 0(5(n72)/(2+1/)) n>4+pu,
— A Q Kyt loge| + O(eHm/ ) = 4 4y,
K e(n=2)/@+v) n <4+ pu.

By considering the inequality

n—2 24+ p
f 4
22+y) 24y OFMTETM

we have (3.1). Then from lemma 3.2, there exists u € My such that I(u) = ¢z and
I;\(UQ) =0. O
4. Proof of theorem 1.3

(i) Let (n4+2+24)/(n—2) < q. By

(n=2)a—0o(q—2)+a] —na

= = ,
2VX — X
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we see that

(n—=2)a—0o(q—2)+a] — na

A+20 =4+

VX=X
4\/74—( —2)a—(n—2)oqg — na
X—X
_(n=2)(n+a)—2(n—2)/Xx —x — (n—2)oq
; X — X
and
44201 n+a—2/X—XxX—0q
n—2 X — X
Hence,

4420 n+a—2\/X—x—o0q

n—2 X — X
nta-2/T—x

> — .

VX

q>

On the other hand,

— Nlag — —
P Bt U R B

VX=X
_ n+2)/X—x+ (n—2)a—(n—2)oq— na
X~ X
_=2)(n+a)—(n—-2)yX—x—(n—2)aq
X — X ’

Hence, we have
n+2+424  (n+a)—/X—X—0g
n—2 B X — X

and
Jnt2+425  (nta) - VX - x—o0g
n—2 X — X
L PTeTVXTX
VX
(ii) Let ¢ < (2(n + f1))/(n — 2). Since

(n=2)a—o0(qg—2)+a] —na

2n + 20 =2n+
2nyX —x+ (n—2)a—
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we have
2n+24 n+a-—oq
n—-2  JX—X
n-+a

i

(iii) Let ¢ = 2. By
. (n=2)(a+a)—n«a
i = e
X—X
(n—2)a— 2«
2VX - x
(n—2)(a+2)—4y/X— X
2VX =X ’

we have

(n72)(a+2)74\/>‘<—x+4
2VX — X

S (n=2)(a+2)+4/X —x

- 2VX — X

nzp+4=

and

On the other hand,

(n—2)(a+2)—4,/>2—x+6

n>20+6= =
X — X
o (n—=2)(a+2)+2/x—x

X—X
and
VX=X >a+2,
X <X — (a+2)2
Therefore, the conditions in theorem 1.1 are transformed into the conditions in
theorem 1.3.

5. Final remarks

Under the same hypotheses of theorem 1.1, Tarantello’s approach in [14] also leads
to the existence of nodal solutions +u of (1.1). Similarly, there is a pair of sign-
changing solutions +w of (1.3) satisfying

/(wme”+XMﬂM“%MMw:&

B
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where v(w) is the first eigenfunction of the weighted eigenvalue problem

X N — v — :
_(A+|y|2>v:7(AyI w72 + [y["[w["~ ")y in By,

v=0 on dBj.

For ¢ = 2, we have

[ 1ol wl 2oy =0,
By

where v(w) is the first eigenfunction of the weighted eigenvalue problem

‘(A tet X)” =yl [wl’ 20 in Bi, v =0on 9B,
Y

In the case 0 > p > —2 and 0 > v > —2 in theorem 1.1, we may consider the

problem in HS 2(£2) in a bounded domain 2 containing 0, and proceed to obtain
nodal solutions of (1.1) in a similar way.
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