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In this paper we propose a strategy, entirely relying on available experimental data,
to estimate the effect of a small control rod on the frequency of vortex shedding in
the wake past a thick perforated plate. The considered values of the flow Reynolds
number range between Re ' 6.6 × 103 and Re = 5.3 × 104. By means of particle
image velocimetry, an experimental database consisting of instantaneous flow fields
is collected for different values of suction through the body surface. The strategy
proposed here is based on classical stability and sensitivity analysis applied to mean
flow fields and on the formulation of an original ad hoc model for the mean flow.
The mean flow model is obtained by calibrating the closure of the Reynolds averaged
Navier–Stokes equations on the basis of the available experimental data through
an optimisation algorithm. As a result, it is shown that the predicted control map
agrees reasonably well with the equivalent one measured experimentally. Moreover,
it is shown that even when turbulence effects are neglected, the stability analysis
applied to the mean flow fields provides a reasonable estimation of the vortex
shedding frequency, confirming what is known in the literature and extending it up
to Re = 5.3 × 104. It is also shown that, when turbulence is taken into account in
the stability analysis using the same closure that is calibrated for the corresponding
mean flow model, the prediction of the vortex shedding frequency is systematically
improved.

Key words: instability, instability control, wakes

1. Introduction
Stability and sensitivity analysis can be rigorously applied to a baseflow which is

at incipient instability. As the baseflow departs from that condition the predictions
provided by stability analysis become progressively less accurate. This is shown for
instance in Sipp & Lebedev (2007) for the flow past a circular cylinder. However,
there are classes of oscillators characterised by the peculiarity that, if the stability
analysis is applied to the mean flow field, even if the contribution of the Reynolds
stresses is neglected in the stability equations, the analysis predicts a nearly marginally
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stable mode with a frequency which is similar to that of the nonlinearly saturated
instability.

Conditions for this behaviour to hold are investigated by Sipp & Lebedev
(2007) and, more recently, by Turton, Tuckerman & Barkley (2015). In this last
work it is shown that when a flow is characterised by energetically dominant
quasi-monochromatic oscillations, thus leading to peaked temporal power spectra,
the characteristics of the global mode leading to the oscillations can be predicted
by the stability analysis of the mean flow. For instance, this behaviour is typical
for a bluff-body wake. This was first noticed for wake flows in Hammond &
Redekopp (1997), Pier (2002), where the local linear criterion for weakly non-parallel
flows (Monkewitz, Huerre & Chomaz 1993), applied to the mean flow field, is shown
to yield the correct prediction of the saturated wake instability. The same behaviour
was observed, by global stability analysis, for the flow past a circular cylinder up
to Re = 180 by Barkley (2006), Sipp & Lebedev (2007), Mittal (2008), and it
was confirmed up to Re = 600 in Leontini, Thompson & Hourigan (2010). In the
referenced papers the mean flow field was computed by direct numerical simulation
(DNS) and stability analysis was carried out on the mean (i.e. time-averaged) flow
field. In Khor et al. (2008) local spatio-temporal analysis is applied to mean wake
profiles fitting experimental measurements in the wake past a circular cylinder in
the range 600 6 Re 6 4600, showing good agreement between the predicted and the
measured vortex shedding frequency. In Emerson, Lieuwen & Juniper (2016) stability
and sensitivity analysis is applied to the experimental mean velocity and density
fields in reacting bluff-body wakes, showing good agreement in the prediction of
the vortex shedding frequency and of the associated flow fluctuations. In Camarri,
Fallenius & Fransson (2013) global stability analysis is performed on experimental
particle image velocimetry (PIV) mean flow fields past a porous circular cylinder
at Re = 3.5 × 103 for different transpiration velocities through the cylinder surface,
showing discrepancies between predicted and measured vortex shedding frequencies
which are less than 15 %. In Camarri et al. (2013) it is also shown that the inclusion
of a very crude eddy-viscosity model in the stability analysis of the mean flow leads
to an improved prediction of the vortex shedding frequency. The same conclusion
concerning the use of an eddy-viscosity model in the global stability analysis has
been recently confirmed for instance in Tammisola & Juniper (2016) for a swirling
injector and in Rukes, Paschereit & Oberleithner (2016) for strongly swirling flows.

To the authors knowledge, the first work conjecturing the property of marginal
stability of a mean flow field is documented in Malkus (1956). In the specific context
of bluff-body wakes, an interpretation of the above behaviour was reported in Noack
et al. (2003), suggesting that the amplitude of the oscillating wake saturates precisely
when the mean flow becomes nearly marginally stable. The same conjecture has
been recently used in Mantič-Lugo, Arratia & Gallaire (2014) in order to formulate
a self-consistent model for the vortex shedding in the laminar flow past a circular
cylinder.

When the considered wakes are turbulent, a formally consistent approach to justify
the stability analysis of mean flow fields was originally proposed in Reynolds &
Hussain (1972) (see also Reau & Tumin 2002), where a triple decomposition is used
for the flow variables, separating the following contributions: (i) the time-averaged
flow field, (ii) the large-scale coherent part and (iii) the fluctuating part. This
decomposition is well suited for wakes, as they show self-sustained oscillations which
are strongly periodic and related to large-scale flow structures. The occurrence of
this kind of instability can be detected in the framework of the triple decomposition
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Stability analysis and passive control of the wake past a thick plate 755

by applying stability analysis to the linearised equations for the coherent velocity
fluctuations evolving on the mean flow field.

Provided that the stability analysis of mean flow fields in a bluff-body wake
leads to a realistic prediction of the vortex shedding frequency, techniques based on
sensitivity analysis (see e.g. the review in Camarri 2015) can be applied for its control.
Conversely, no information is directly provided on the action of the control on the
saturated amplitude of the periodic motion. As shown in Marquet, Sipp & Jacquin
(2008), in order to estimate the effect on vortex shedding of a passive control that
might be obtained by introducing a small control cylinder in the wake, it is necessary
to have a model for the simulation of the mean flow. This is done for instance in
Meliga, Pujals & Serre (2012) for reproducing the experimental results documented
in Parezanović & Cadot (2012, 2009). In the experiments the sensitivity of the global
characteristics of the turbulent wake past a plane D-shaped cylinder at Re = 13 000
was investigated by placing a small control cylinder in generic positions of the wake.
In Meliga et al. (2012) the sensitivity map of the vortex shedding to a generic
placement of the control cylinder is estimated on the basis of a sensitivity analysis of
the Reynolds averaged Navier–Stokes (RANS) equations governing the problem. The
RANS equations are closed using the Spalart–Allmaras (SA) one equation closure (see
Spalart & Allmaras 1994) and they are used in order to compute an approximation of
the same mean flow field of the experiments in Parezanović & Cadot (2009, 2012).
The linearisation of the RANS equations (including the additional equation for the
SA model) around the mean flow field is used to carry out a global stability and
sensitivity analysis. The control cylinder is modelled as a pure drag force estimated
on the basis of a constant drag coefficient, of the size of the cylinder and of the local
velocity. The resulting sensitivity map shows a good agreement with the experiments,
thus demonstrating the potential of the described strategy to predict control of
large-scale instability in the turbulent wake past a bluff body.

The main objective of the present work is to derive and validate experimentally
the sensitivity map of the vortex shedding frequency in a bluff-body wake similarly
to what is done in Meliga et al. (2012), but basing the analysis solely on available
PIV flow fields of the uncontrolled flow. Thus, we renounce using the mean flow
field obtained numerically by a set of a priori closed RANS equations, and instead
derive a numerical model of the mean flow which incorporates the PIV measurements
available from the experiments, and in particular the mean flow field itself and the
phase-averaged Reynolds stresses. The objective of the proposed model is to provide
the (linearised) variation of the mean flow as a small control cylinder. This is done
for a generic position of the cylinder using the same adjoint methods as described
in Meliga et al. (2012). The mean flow model is built starting from the triple
decomposition of the flow and closing the equations for the mean flow field by an
eddy-viscosity closure. The eddy viscosity is successively found by an optimisation
algorithm, thus minimising the discrepancies between the mean flow field given by
the model and the reference mean flow field available from the experiments.

Following the modelling documented in Viola et al. (2014), the same eddy viscosity,
tuned so as to build the mean flow model, is included in a physically consistent way
in the stability analysis of the mean flow field. As a second objective of this paper
we show that the inclusion of this turbulence model in the stability equations, derived
by the calibration of the mean flow model, leads to a significant improvement in the
accuracy of the predicted vortex shedding frequency and of the associated eigenmode.
As a final output, this paper also confirms that, when turbulence is not included in the
analysis, the predictions of the vortex shedding frequency based on the PIV mean flow
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fields is acceptable for Reynolds numbers up to 5.3×104. Lastly, the mean flow model
and the stability analysis are used here to derive a control map for the vortex shedding
frequency in the considered wake flow, and results are compared to the corresponding
map derived experimentally similarly to what has been done in Meliga et al. (2012)
and in Parezanović & Cadot (2012, 2009).

As a prototype flow for the analysis described above we have considered the flow
past a rectangular forebody with a smooth leading edge and a blunt trailing edge,
which offers the possibility to modify the boundary layer on the upper and lower
sides of the body through wall suction from the perforated surfaces. A modification of
the boundary layers prior to separation results in an altered near-wake topology and,
consequently, a change of the vortex shedding frequency (Fallenius, Trip & Fransson
2014; Trip & Fransson 2014; Trip & Fransson 2016). The range of considered
Reynolds numbers, Re' 6.6× 103–5.3× 104, is chosen so as to include both laminar
and turbulent boundary layers detaching from the body and impinging onto the
wake. For each considered value of the flow Reynolds number, the flow at issue
is investigated for different levels of suction from the body surface, which implies
different values of the vortex shedding frequencies and different mean flow fields. The
available experimental database permits one to test the robustness of the proposed
method and its performance for a wide range of wakes.

The experimental set-up employed to obtain mean and phase-averaged velocity
fields will be introduced first, followed by a detailed description of the theoretical
tools, i.e. the ad hoc tuned model for the mean flow and the sensitivity analysis for
predicting the effect of a small control rod on the vortex shedding frequency. The
results obtained by the application of these tools are successively presented in § 5.

2. Experimental set-up
The experiments were carried out in the Boundary Layer (BL) wind tunnel at the

Odqvist Laboratory, located at the Royal Institute of Technology (KTH). The BL
tunnel has a background turbulence intensity of 0.04 % and 0.06 % in the streamwise
and cross-flow directions, respectively, at a free-stream velocity of 25 m s−1.

The perforated, thick, plate is best described as a 2.3 m long rectangular forebody
with a smooth leading edge and a blunt trailing edge. The plate is mounted
horizontally in the 4 m long test section, with a cross-sectional area of 0.5 m in
width and 0.75 m in height, see figure 1. The body is h = 4 cm thick and spans
the entire width of the test section. Boundary layer modification by means of wall
suction and/or blowing is possible through perforations in the top and bottom titanium
surfaces with a porosity of 0.5 %. The perforations constitute of laser-drilled discrete
holes of 60 µm in diameter. A detailed description of the test section and of the
rectangular forebody is given by Fallenius et al. (2014).

In the present study, we limit ourselves to cases of wall suction, and a pressure
drop over the surface of at most 500 Pa. A measure of the wall-normal velocity V0,
which was found to be in the range −3.3 cm s−1–0 cm s−1, was obtained. Different
experimental cases are referred to ‘UXDpY’, where X and Y correspond to the free-
stream velocity (m s−1) and the pressure difference (Pa) over the perforated surface.

2.1. Vortex shedding frequency
To obtain the frequency of vortex shedding, a hot-wire probe was mounted 6h
downstream of the body, 3h above the wake centreline. The hot-wire probe, with a
wire that is 0.5 mm long and 2.5 µm in diameter, is built in-house. It was operated
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FIGURE 1. A schematic drawing of the experimental set-up, with: (1) the perforated
surface of the rectangular forebody, (2) the hot-wire probe, and (3) and (4) the cameras
and laser of the PIV system, respectively, aligned as to capture the field of view delineated
with dash-dotted lines.
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FIGURE 2. Frequency-premultiplied power spectral energy estimated via the Welch method
for two hot-wire signals measured at (a) 2.5 m s−1 (case U2.5Dp0) and (b) 20.0 m s−1

(case U20Dp0) without suction from the body wall.

in combination with a Dantec Dynamics StreamLine 90N10 system, equipped with a
Constant Temperature Anemometer (CTA) module. A total of 91 250 samples were
recorded at a sampling frequency of 1 × 104 Hz. The time signal was converted to
the frequency spectrum employing a Welch algorithm. A bin size of 215 was used,
which corresponds to a frequency resolution of 0.3 Hz.

Two examples of frequency-premultiplied power energy spectra obtained from hot-
wire signals at the lowest (2.5 m s−1, case U2.5Dp0) and highest (20.0 m s−1, case
U20Dp0) speed, without suction from the wall, are shown in figure 2. As can be seen
from the spectra in figure 2, vortex shedding is strongly periodic, the power spectra
are narrow-banded around the vortex shedding frequency, and the related energy peak
in the spectra are by far dominant over all other frequency components. Note that in
figure 2(b) there are other peaks distributed at 150 Hz, 250 Hz, 350 Hz and so on.
These peaks are due to the PIV system which was activated at a frequency of 150 Hz
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FIGURE 3. (Colour online) Flow case U2.5Dp0: phase-averaged velocity (a) and vorticity
(b) fields at a generic phase angle; black line indicates the wake vortices identified by the
λ2 criterion (see Jeong & Hussain 1995).

while the hot-wire signal was measuring, and the higher frequencies are caused by the
interaction between the PIV frequency at 150 Hz and the vortex shedding frequency,
which is close to 100 Hz, and thus they are not related to flow structures. More details
on the spectral characteristics of hot-wire signals for this flow case, even when suction
is applied from the wall, can be found in Trip & Fransson (2014).

2.2. Phase-averaged flow
The time-resolved hot-wire signal was recorded simultaneously to the PIV experiment,
and can therefore be conveniently used as a phase indicator to sort the PIV images.
The PIV snapshots of a complete ensemble are subdivided into 16 discrete phase
bins, based on their phase angle in the shedding cycle. The mean of the snapshots
in each bin is approximately equal to the phase average of the velocity field. The
independence of the phase average from the number of phase bins was checked by
increasing the number of phase bins up to 128. An example of the phase-averaged
flow field, at a generic phase, obtained for the flow case U2.5Dp0 is given in
figure 3, where the velocity vectors and the vorticity fields are reported, together
with the identification of the wake vortices through the λ2 criterion (see Jeong &
Hussain 1995) plotted with a black line on the figures. As highlighted by figure 3,
the phase-averaged flow field is smooth enough for the application of differential
operators (i.e. so as to derive the vorticity field) and the vortices which dominates
the wake dynamics are clearly visible.

As additional information on the unsteadiness of the flow field, the components
of the Reynolds stresses resolved by PIV for case U2.5Dp0 have been reported in
figure 4(a), together with the contribution given solely by the phase-averaged velocity
field (b) and that given by the residual velocity fluctuations (c), in the spirit of the
triple decomposition of the flow variables (see the following for more details).

2.3. Maps for passive control
To study the effect of a small body on the vortex shedding frequency, a control
cylinder is introduced into the wake of the body. The control cylinder, with a
diameter equal to d∗ = 3 mm, is rigid such that it can be clamped between the
wind tunnel walls. The minimum diameter of the cylinder, which is the one adopted
here, is dictated by technological realisability of the experiment. However, from
an aerodynamic viewpoint this cylinder is rather intrusive. Indeed, the maximum
Reynolds number, based on its diameter, ranges between 5 × 102 and 4 × 103

depending on the flow case. An experimental sensitivity map for the considered
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FIGURE 4. (Colour online) Flow case U2.5Dp0: experimentally resolved Reynolds stresses
in column (a), contribution given by the phase-averaged velocity field in column (b) and
by the residual velocity fluctuations in column (c).

passive control is obtained by recording the vortex shedding frequency with the
control cylinder placed on a 15 × 11 rectangular grid extending 1h from the wake
centreline in the wall-normal direction and 2h downstream of the trailing edge of the
plate in the streamwise direction. The resulting map is reported later in figure 10(b)
for case U2.5Dp0 and commented in § 5.4.

3. Theoretical tools

In this section we describe the theoretical tools proposed in order to predict the
control map providing the variation of the vortex shedding frequency consequent to
the local introduction of a small control rod. The proposed tools are based on the
triple decomposition of the flow variables. In particular, given the velocity flow field
U(x, t), we decompose it into a mean part U(x), a time-periodic part ũ(x, t)= ũ(x, t+
T) (T being the period), and a residual part, u′(x, t):

U=U(x)+ ũ(x, t)+ u′(x, t), (3.1)

where · and ·̃ indicate the operators of time and phase averages, respectively. The
same decomposition applies for all the other flow variables. The basic assumption
for using the triple decomposition consists in assuming that the considered flow
has a nearly periodic energetically dominant component, so that we can isolate
that component through a phase average. For the flow at issue this characteristic is
demonstrated by the energy spectra reported in figure 2. Moreover, for the objectives
of the present work, the requirements on the flow for using the triple decomposition
are even milder. Indeed, here we use the equations governing the linearised dynamics
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of a time-periodic flow component only to inspect the stability properties of the mean
flow field and to check the possible existence of a periodic-in-time flow component
on top of the mean flow field.

Following the derivation in Viola et al. (2014), manipulating the Navier–Stokes
equations for incompressible Newtonian flows and using the triple decomposition,
it is possible to derive the equations for both the mean velocity field and the
time-periodic velocity. In particular, the mean flow field is governed by the following
set of equations in normalised form:

∇ ·U= 0, (3.2)

U · ∇U+∇ ·

 ũ ũ︸︷︷︸
(a)

+ u′ u′︸︷︷︸
(b)

+∇p−
1

Re
∇

2U= 0. (3.3)

The terms (a) and (b) in (3.3) need to be measured or modelled in order to close the
set of equations, as discussed below. All quantities are scaled using the plate thickness
h and the velocity U∞ on which the flow Reynolds number is based (Re= U∞ h /ν,
ν being the kinematic viscosity of the fluid).

The equations governing the dynamics of the time-periodic component of the flow
in non-dimensional form are given by:

∇ · ũ= 0, (3.4)
∂ũ
∂t
+U · ∇ũ+ ũ · ∇U=−∇p̃+

1
Re
∇

2ũ−∇ ·
(

ũ ũ− ũ ũ
)
−∇ ·

(
ũ′ u′ − u′ u′

)
︸ ︷︷ ︸

(c)

.

(3.5)

As for the mean flow, terms (c) in (3.5) need to be modelled so as to close the set
of equations.

In the present work we have chosen to close the above equations following the
Boussinesq approximation via an eddy-viscosity model. Following the derivation
detailed in Viola et al. (2014), which is based on the properties of the time-average
and phase-average operators, it is possible to model term (b) in (3.3) as follows:

− u′u′ + 2
3 qtI ' νt(x)

(
∇U+∇T U

)
, (3.6)

where qt is the turbulent kinetic energy, I is the 3× 3 identity matrix and νt(x) is the
non-dimensional distribution of turbulent eddy viscosity, which is a scalar field that
needs to be assigned for the closure of the equations. If the term (2/3)qtI is included
in the mean pressure p, as is standard in this type of turbulence closure, we arrive at
the following set of equations for the mean flow:

∇ ·U= 0, (3.7)

U · ∇U+∇p−
1

Re
∇

2U−∇ ·
[
νt(x)

(
∇U+∇T U

)]
+∇ · (ũ ũ)= 0. (3.8)

Following the derivation in Viola et al. (2014) it is possible to show that the linearised
dynamics of the time-periodic flow field can be closed with the same distribution of
eddy viscosity used for the mean flow field, νt(x), and the resulting equations can be
written as follows (see also Rukes et al. 2016):

∇ · ũ= 0, (3.9)
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∂ũ
∂t
+U · ∇ũ+ ũ · ∇U=−∇p̃+∇ ·


(

1
Re
+ νt(x)

)
︸ ︷︷ ︸

1
Reeq

(
∇ũ+∇Tũ

)
 . (3.10)

In deriving equations (3.9) and (3.10) it is assumed that the eddy viscosity is
independent of the mean flow field.

In Viola et al. (2014) an eddy-viscosity model and a mixing length model, both
assumed to vary only in the streamwise direction, are used to close the equations,
leading in this last case to a set of equations slightly different from (3.9) and (3.10). In
the present work the more general case of an eddy viscosity which varies generically
in space is considered. This closure, which is more general than the one proposed in
Viola et al. (2014), also leads to a more complex optimisation problem when tuning
the eddy viscosity, as shown in the following. Lastly, the presence of the field νt
permits one to define a variable local Reynolds number, Reeq(x)= Re/(1+ Re νt(x))
which takes into account both the molecular (Re) and the turbulent (νt) contributions
in (3.10).

3.1. A model for the mean flow field
In the present work the mean flow field and its phase average (with respect to
vortex shedding) is always available from the experiments through dedicated PIV
measurements. Relying on the available experimental information we want to derive
a mathematical model for the mean flow field. The model proposed here is based on
the governing equations (3.7)–(3.8) and makes use of all the information available
from experiments.

In particular the only unknown term in (3.7)–(3.8) is the eddy-viscosity field
νt(x), which cannot be obtained experimentally since the time resolution of the
PIV measurements inevitably acts as a filter on the flow variables which prevents
obtaining fully resolved Reynolds stresses. For this reason νt(x) is a free field on
which it is possible to act so as to change the output of (3.7)–(3.8). Consequently,
νt(x) is estimated so as to minimise the differences between the target mean flow
field coming from the experiments, U(T)

, and the simulated flow field, U. The target
flow U(T)

can be the raw experimental mean field, U(E)
, or a regularised field, U(R)

,
as explained later. The considered objective function to be minimised in the resulting
optimisation problem is the following one:

I =
1
2

∫
Ω

(
U(T)
−U

)2
dΩ. (3.11)

The cost function I must be minimised considering that U is the solution of (3.7)–
(3.8), and this constraint is taken into account by a classical Lagrangian approach, i.e.
defining an augmented functional as follows:

J = I −
∫
Ω

(
q∇ ·U

)
dΩ

−

∫
Ω

V ·
[

U · ∇U+∇p−
1

Re
∇

2U−∇ ·
[
νt(x)

(
∇U+∇T U

)]
+∇ · (ũ ũ)

]
dΩ,

(3.12)

where V and q are Lagrangian multipliers.
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By applying standard variational methods to (3.12) it is possible to derive the
adjoint equations for the Lagrange multipliers (V, q) and the associated boundary
conditions. In particular, the equations for (V, q) are written as follows:

∇ ·V = 0, (3.13)

∇U ·V −U · ∇V −∇q

−∇ ·

[
2
(

1
Re
+ νt

)(
∇V +∇TV

2

)]
−

(
U(T)
−U

)
= 0. (3.14)

As we will see in the following sections, two types of boundary conditions are used
for the mean flow equations. One type is a Dirichlet type (boundary ΓD), such that
the mean velocity U is forced to assume a prescribed value. The other type, on Γo, is
a stress-free condition, and it can be written as follows: pn− ((1/Re)+ νt) [n · (∇U+
∇

TU)] = 0. On the boundary ΓD it can be shown that the natural boundary conditions
for V are homogeneous Dirichlet conditions, i.e. V= 0. On Γo we have the following
conditions: qn− ((1/Re)+ νt) [n · (∇V +∇TV)] =−

(
U · n

)
V.

Once the Lagrangian multipliers (V, q) are found, the variation δI of the cost
function I in (3.11) with respect to a generic variation in the spatial distribution of
νt(x), δνt(x), is given as follows:

δI =−
∫
Ω

[
2

(
∇U+∇TU

2

)(
∇V +∇TV

2

)]
δνtdΩ

+

∫
Γo

[
2V ·

((
∇U+∇TU

2

)
· n

)
δνt

]
dΓ. (3.15)

The optimal distribution of νt can thus be obtained using a gradient-based method
based on (3.15). At each step of the gradient method, νt is varied moving towards
the steepest descent for I and the length of the step in the direction of the gradient is
found by searching numerically for the optimality condition in the direction specified
by the gradient, which is computed by (3.15).

It is important to underline that the distribution of νt obtained by the procedure
described above is aimed at modelling the unresolved small-scales Reynolds stresses,
which is the most important contribution needed in (3.8) so as to reproduce accurately
the reference mean flow. However, since the field νt is the result of an optimisation
process, it also compensates for all the elements, which prevents equations (3.7)–(3.8)
from reproducing exactly the experimental mean flow even if the exact unresolved
stresses were introduced directly in the equations. These elements can be, for instance,
the experimental uncertainty or the errors due to the numerical discretisation of the
equations, including domain truncation.

Since the mean experimental flow fields are affected by noise, which may amplify
as they are differentiated in space, they have been usually regularised before
being employed as target flows in the calibration of the mean flow model. The
regularisation applied here is a variational form of the Tikhonov regularisation
smoothing first-order spatial derivatives, as proposed for instance in Wang (2011)
for inverse electrocardiographic applications. If not explicitly stated, regularised
fields are always used here instead of raw experimental data. Moreover, again
if not explicitly commented, we have also imposed that the regularised mean
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velocity fields are divergence-free. In principle, since we are measuring the flow
in the symmetry plane and, moreover, the considered flow should approximate
a nominally plane wake, it is expected that the experimental mean flow will be
two-dimensional and, thus, divergence-free in the measurement plane. This may not
be the case due to measurement and differentiation errors. For this reason, even if
tests reported later prove that this is not an important aspect, we decided to add the
divergence-free constraint to the regularised fields. Lastly, even if the target flow was
not divergence-free, the tuned model flow is so by definition (see equation (3.7))
and, thus, the projection of the reference flow on a divergence-free subspace has no
significant influence on the resulting tuned flow model. This aspect is also investigated
later. Indicating with U(E)

the PIV measurements and with U(R)
the regularised field,

the regularisation problem consists in searching for U(R)
which minimises IG given as

follows:

IG =
1
2

∫
Ω

(
U(R)
−U(E)

)2
dΩ +

λ2
r

2

∫
Ω

(
∇U(R)

: ∇U(R)
)

dΩ

−

∫
Ω

q
(
∇ ·U(R)

)
dΩ, (3.16)

where λr is an arbitrary penalisation constant which regulates the amount of
regularisation of the procedure and q is a Lagrangian multiplier. Here the value
of λr has been selected heuristically.

3.2. Stability analysis of the mean flow field
The stability problem, which is related to the existence of a periodic flow component,
is governed by the linearised equations (3.9) and (3.10).

The associated boundary conditions are of the same type as those imposed on the
base flow equations, but they are homogeneous. Considering the boundary conditions
used in the present work, which are either boundaries where the velocity field is
specified, ΓD (i.e. inflow boundaries or solid walls) or stress-free boundaries, ΓO (i.e.
outflow boundaries), we have the following conditions:

ũ= 0, on ΓD (3.17a)
p̃n− Re−1

eq [n · (∇ũ+∇Tũ)] = 0, on ΓO. (3.17b)

A modal form for the periodic flow component is assumed:

ũ (x, t)= û(x) exp (σ t), (3.18a)
p̃ (x, t)= p̂(x) exp (σ t). (3.18b)

When the modal form for the flow perturbation is introduced in (3.9)–(3.10), the
following stability equations are found:

σ û+U · ∇û+ û · ∇U−∇ ·
[

1
Reeq(x)

(
∇û+∇Tû

)]
= 0, (3.19a)

∇ · û= 0, (3.19b)

with the same homogeneous boundary conditions specified for (ũ, p̃) in (3.17).
Equations (3.19), together with the boundary conditions, form an eigenvalue problem.
Any solution (û, p̂), associated to the eigenvalue σ = λ+ iω, is a global mode with
time growth rate equal to λ (λ> 0 indicates an unstable mode) and angular frequency
ω. Note that the associated frequency is given by f = ω/(2π), and is given directly
in non-dimensional form as a Strouhal number based on the same velocity and length
reference quantities used to normalise the Navier–Stokes (NS) equations.
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3.3. Passive control of vortex shedding instability
The objective of this section is to estimate the effect of placing a small control rod
in the flow on the eigenvalue identified by the stability analysis of the mean flow that
is related to the vortex shedding instability. This is carried out using an adjoint-based
sensitivity analysis analogous to that proposed in Marquet et al. (2008).

As a device for passive control we consider a cylinder of diameter d∗ positioned
on a generic point (x0, y0). The cylinder diameter is assumed to be small enough so
that its action on the flow can be described by a linearised approach. Moreover, it is
not directly simulated, but its effect is modelled by introducing the force that it exerts
on the flow explicitly in the NS equations. This force is assumed to be a pure drag
force, which depends on the local flow conditions. Consequently the control cylinder,
when invested by a flow velocity U, is assumed to exert a localised drag force of the
following form:

δF(x0)=−
[

1
2 CDd∗‖U‖U

]
δ(x− x0), (3.20)

where δ(x− x0) is the Dirac function centred on the position of the control cylinder,
x0. The notation δF is used in (3.20) so as to emphasise that this force is a small
perturbation of the uncontrolled configuration. As concerns the drag coefficient,
this can be generally assumed to be a function of the flow Reynolds number, i.e.
CD(Red∗). In this paper we have assumed a constant value equal to CD ' 1.2, which
is representative of the drag of the control cylinder in the considered flow, as will
be illustrated in the following. For quantitative indications on the drag coefficient of
circular cylinders, we refer to the ESDU database (ESDU 1986). Note that (3.20) is
a quasi-static model, in the sense that the unsteady load δF is proportional to the
local time-varying velocity field U through a constant drag coefficient CD, which
in this case is an averaged drag coefficient. The use of a quasi-static model for
similar cases is common in the literature (see e.g. the review in Camarri 2015, and
its bibliography) and is loosely justified by the scale separation existing between the
flow to be controlled and the control cylinder.

In the framework of the triple decomposition of the flow variables, assuming further
that turbulent fluctuations can be neglected in the estimation of the force experienced
by the control cylinder, we consider the drag force given by (3.20) linearised with
respect to ũ (see the decomposition in (3.1)), which is consistent with the assumptions
made for the stability equations (3.19):

δF≈−δα
(
‖U‖U

)
δ(x− x0)︸ ︷︷ ︸

δHM

−δα

[
‖U‖ũ+

(
U
‖U‖
· ũ

)
U

]
δ(x− x0)︸ ︷︷ ︸

δHF

, (3.21)

in which δα = (1/2)d∗CD(Red∗).
By inspecting equation (3.21) it is possible to notice that the force δF is composed

of two contributions: δHM, which depends on U and is independent of ũ, and δHF,
which depends linearly on ũ. Consequently, the term δHM acts as a forcing on
the mean flow equations (3.7)–(3.8) and the term δHF acts directly as a structural
perturbation of the stability equations (3.19). Thus, the control cylinder affects the
stability characteristics of the mean flow in two ways: via a modification of the mean
flow itself caused by the term δHM and via a modification of the stability equations
caused by the term δHF. The resulting global effect on a particular eigenvalue σ can
be estimated in a linear framework by an adjoint-based sensitivity analysis.
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Let us focus on a particular global mode σ , (û, p̂) of the uncontrolled mean flow
field (U, p). As the control is applied, both the mode and the mean flow field are
perturbed, resulting in σ ′′, (û′′, p̂′′) and (U′′, p′′), respectively. The coupled governing
equations for the perturbed mean flow and stability problem can be written as follows:

∇ · (U′′U′′)+∇p′′ −∇ ·
[

1
Reeq

(
∇U′′ +∇TU′′

)]
+∇ ·

(
ũ ũ
)
= δHM, (3.22a)

∇ ·U′′ = 0, (3.22b)

σ ′′û′′ +U′′ · ∇û′′ + û′′ · ∇U′′ −∇ ·
[

1
Reeq(x)

(
∇û′′ +∇Tû′′

)]
+∇p̂′′ = δHF,

(3.22c)
∇ · û′′ = 0. (3.22d)

Here we are interested in estimating the perturbation δσ of the eigenvalue σ induced
by control, i.e. σ ′′ = σ + δσ . Using an adjoint-based sensitivity analysis it is possible
to show that (see Marquet et al. 2008, for details):

δσ = S(x0)=

∫
Ω

[
(U+)∗ · δHM

]
dΩ +

∫
Ω

[
(û+)∗ · δHF

]
dΩ, (3.23)

where U+ and û+ are the adjoint mean flow and eigenmode, respectively, Ω is the
flow domain and ( )∗ stands for complex-conjugate quantities. Equation (3.23) is very
convenient from a computational viewpoint because it is linear with respect to the
parameter δα and provides an answer for a generic position of the control cylinder
(x0) without the need to perform integration, since both δHM and δHF, defined in
(3.21), are proportional to δ(x− x0). Thus, once the diameter of the control cylinder
is fixed, equation (3.23) provides directly a control map S(x) which gives the shift δσ
of the identified eigenvalue versus a generic placement of the control cylinder in the
flow domain. The use of equation (3.23) requires the estimation of the vector fields
U+ and û+. The field U+ is solution of the following system of equations:

∇U ·U+ −U · ∇U+ +∇p+ −∇ ·
[

1
Reeq

(
∇U+ +∇T U+

)]
=∇Uσ , (3.24a)

∇ ·U+ = 0, (3.24b)

where ∇Uσ is given by:

∇Uσ =−û+ · (∇û)H + û∗ · ∇û+, (3.25)

equations (3.24) are supplemented with homogeneous boundary conditions at the inlet
and on the solid wall and the following condition on the outflow boundary:

p+n− Re−1
eq

[
n ·
(
∇U+ +∇T U+

)]
=−(U · n)U+ + (û∗ · n)û+. (3.26)

The adjoint eigenmode {σ ∗, (û+, p̂+)} is the solution of the following eigenvalue
problem:

σ ∗û+ −U · ∇û+ +∇U · û+ −∇ ·
[

1
Reeq(x)

(
∇û+ +∇Tû+

)]
+∇p̂+ = 0,

(3.27a)
∇ · û+ = 0. (3.27b)
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As concerns the boundary conditions, û+ = 0 on the same boundaries on which
û= 0. At the outflow we have: p̂+n−Re−1

eq [n · (∇û++∇Tû+)] = (U · n)û+. Moreover,
the velocity field û+ is normalised such that:∫

Ω

[
(û+)∗ · û

]
dΩ = 1. (3.28)

4. Numerical tools
All the systems of PDEs proposed in this work and solved numerically, i.e.

the mean flow model in (3.7)–(3.8), equations (3.13)–(3.14) for the Lagrangian
multiplier V, the Tikhonov regularisation, the direct and adjoint stability problems
in equations (3.19) and (3.27), and the adjoint mean flow problem in (3.24),
are discretised in space by a second-order finite-element formulation employing
Taylor–Hood triangular Lagrangian elements, in which velocity and pressure are
represented with P2 and P1 elements, respectively. The finite-element formulation have
been developed using FreeFem++ software (see www.freefem.org), which employs
triangular grids and permits mesh adaptivity. Mesh adaptivity is particularly useful
here because it permits a proper discretisation of high-gradient regions of the mean
flow field and of the resulting stability modes at reasonable computational costs.

The computational domain used, which is common for all PDEs, coincides with the
PIV window used in the experiments. Considering the frame of reference in figure 1,
for the case with free-stream velocity equal to 2.5 m s−1 the PIV window extends in
the range 0.03h6 x6 3.4h and −1.3h6 y6 1.3h, while for 20 m s−1 it extends in the
range 0.03h 6 x 6 3.4h and −1.9h 6 y 6 1.9h. Note that the window comprises only
the rear face of the body, and its size is sufficient to include the mean recirculation
region of the wake. Although its size is small if compared to the wake characteristic
evolution length, it can be shown following Camarri et al. (2013) that it includes
the instability core which is confined in the recirculation region, and this grants the
possibility to apply stability analysis to the resulting mean flow field.

The nonlinear problem for the mean flow, equations (3.7)–(3.8), is solved
numerically by a standard Newton method. All the remaining linear PDEs are solved
by a direct sparse LU factorisation method. The eigenvalue problems in (3.19) and
(3.27) are solved using the Implicitly Restarted Arnoldi Method implemented in the
Arpack library, and a shift-invert strategy in the complex plane is used to accelerate
convergence to the desired eigenvalue.

The calibration of the mean flow model implies the identification of the eddy-
viscosity field νt which is optimal in the sense that it minimises the difference in
the norm between the predicted and the experimental mean velocity fields. This
optimum problem is solved numerically using a gradient method, where the gradient
of the cost function I in (3.11) with respect to a generic variation δνt(x) is estimated
by (3.15). The initial guess for νt(x) is computed by minimising, in a least square
sense, the residuals of the model RANS eqs. (3.7)–(3.8) when they are applied
to the experimental mean flow field. The problem of finding νt(x) is ill-posed
and is regularised by applying, at each descent step of the gradient method, a
Tikhonov regularisation to the field νt(x) of the same type as the one applied to the
mean velocity field. That kind of regularisation acts as a smoothing of the spatial
fluctuations of νt. Lastly, the optimal νt is obtained by forcing the simulated mean
flow field to be equal to the experimental one on all boundaries except at the outflow,
where null-stress conditions are applied.
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5. Results
5.1. Tuning of the mean flow model

The mean flow model has been tuned here for two cases without suction from the
wall: a case with laminar boundary layers at the separation point from the body,
U2.5Dp0 (U∞ = 2.5 m s−1), and a case with turbulent boundary layers, U20Dp0
(U∞ = 20 m s−1).

In both cases, the reference experimental mean flow fields have been regularised
by Tikhonov regularisation and by forcing the divergence-free constraint as detailed
in (§ 3.1). The constant λr in (3.16) has been heuristically fixed to λ2

r = 10−3. A
sensitivity analysis by varying this parameter has been carried out showing that results
in terms of distribution of the resulting νt and of the minimum value of the functional
I (see equation (3.11)) are in very good approximation independent of the choice of
λr around the value fixed heuristically. This result is not detailed here for the sake of
brevity.

An example of the effects of the regularisation of the mean flow field for the
case U20Dp0 is shown in figure 5. In particular, figure 5(a,b) shows the velocity
components of the mean flow field derived by the PIV measurements directly.
Figure 5(c,d) shows the equivalent fields when the flow field is regularised using
λ2

r = 10−3 and without imposing the constraint that the resulting regularised flow field
is divergence-free at discrete level. Finally, figure 5(e, f ) shows the result when it is
also forced that the resulting regularised flow field is divergence-free. In this last case,
as evident from the comparison with figure 5(a,b), the regularisation has a stronger
effect on the resulting velocity fields. Nevertheless, differences with respect to the
original velocity field are of limited amount and, in any case, their effects on the
results of the stability analysis have been investigated in the following.

As an example of the calibration of the mean flow model, for case U20Dp0 we
show in figure 6 both the target flow field (a,b) and the simulated flow field (c,d)
through the mean flow model. As can be deduced by their comparison, the mean
flow model leads to flow fields which are difficult to distinguish from the original
ones. The main differences can be evidenced near the outflow boundary of the
computational domain. Such differences, which do not affect stability results since
they are far from the core of the instability (see e.g. Camarri et al. 2013), are related
to the use of stress-free boundary conditions on ΓO. This aspect can be further
improved by including the reference data in the applied boundary conditions for that
boundary, but this option has not been tested here. From a quantitative viewpoint, the
difference in norm between the experimental and the simulated mean velocity fields
for this case is equal to I ' 2.8× 10−4, which can be considered a very small value.

Similar considerations can be done for the case U2.5Dp0, whose results are reported
in figure 7. In this case the final value of the functional I is I ' 3.1× 10−4, which is
of the same order of magnitude as the previous case.

As concerns the distribution of νt obtained by the calibration of the mean flow
model, we have reported in figure 8 the field of the equivalent Reynolds number
Reeq(x) obtained for the two cases mentioned above. It can be noticed that the level
of turbulent eddy viscosity obtained for the case U2.5Dp0, in which laminar boundary
layers detach from the body, is correctly lower than that of U20Dp0, in which the
boundary layers detaching from the body are already turbulent. In both cases the
turbulent eddy viscosity increases in the streamwise direction, and consequently the
value of Reeq decreases, reaching the minimum values on the outflow boundary. We
think that in that region the obtained value of νt can be affected by domain truncation.
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FIGURE 5. (Colour online) Mean velocity field for the case U20Dp0 (U∞ = 20 m s−1,
no suction from the body): mean horizontal and vertical velocity of the original PIV
measurements (a,b), of the regularised field (λ2

r = 10−3) without imposing the constraint
of being divergence-free at discrete level (c,d) and also imposing the divergence-free
constraint (e, f ).

5.2. Estimation of the vortex shedding frequency from the mean flow field
As a first step we have applied stability analysis to the mean flow fields obtained by
PIV considering only the molecular viscosity in the stability analysis, i.e. neglecting
turbulence effects (Reeq = Re). Concerning grid convergence of the results, all the
reported cases are fully converged and for each one it has been verified that by
doubling the number of degrees of freedom (dofs) the predicted Strouhal number of
the vortex shedding instability changes only at the fourth decimal digit. Concerning
the boundary conditions, in all cases homogeneous Dirichlet boundary conditions are
imposed for the stability modes at the inflow of the domain, and stress-free conditions
are applied at the outlet boundary.

Results of the stability analyses described above are reported in table 1 for the flow
configurations with free-stream velocity equal to 2.5 m s−1. All the identified modes
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FIGURE 6. (Colour online) Mean velocity field for the case U20Dp0 (U∞ = 20 m s−1,
no suction from the body): regularised PIV Ū and V̄ fields (a,b) and equivalent fields
simulated by the calibrated mean flow model (c,d).

are nearly unstable and in all cases only one couple of complex-conjugate unstable
modes has been identified, thus there was no ambiguity in identifying the stability
mode associated with vortex shedding. In case 2 homogeneous Dirichlet boundary
conditions are applied to the stability eigenmodes on the lateral boundaries (i.e. in the
y direction), as suggested in Camarri et al. (2013), and raw PIV flow fields are used.
Comparison with the experiments shows that, except for a peak of approximately 12 %
at Γ = 0.0, the error in the prediction of the Strouhal number of vortex shedding is
less than 2.5 %. The accuracy in the prediction of St of approximately 15 % is in line
with what is known in the literature about this kind of problems, as widely discussed
in the review by Camarri (2015) and in the related references (see also Emerson et al.
2016).

Sensitivity of the results to the boundary conditions applied on the lateral
boundaries can be appreciated by comparing case 2 with case 1, which was obtained
by applying stress-free conditions on the lateral boundaries. Differences in the
predictions between case 1 and case 2 are very limited, and they decrease as suction
is applied from the body, which reduces the size of the recirculation bubble and, thus,
the size of the core of the instability; this, in turn, makes the computational domain
progressively more appropriate, decreasing the sensitivity of the results to domain
truncation in the lateral direction. In all cases it was checked that the computational
domain contains appropriately the instability core as it is defined as in Giannetti &
Luchini (2007).

Concerning the regularisation of the reference PIV flow fields, this is applied
only in case 3, while in cases 1 and 2 raw PIV fields are used. Thus, the effect of
regularisation on the results of the stability analysis can be appreciated by comparing
cases 2 and 3, the maximum relative variation in terms of predicted Strouhal number
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FIGURE 7. (Colour online) Mean velocity field for the case U2.5Dp0 (U∞ = 2.5 m s−1,
no suction from the body): regularised PIV Ū and V̄ fields (a,b) and equivalent fields
simulated by the calibrated mean flow model (c,d).
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FIGURE 8. (Colour online) Fields of Reeq(x) obtained by tuning the mean flow model for
the case U2.5Dp0 (a) and U20Dp0 (b).

being of approximately 4.4 % for the case with the highest suction. Thus, the effect of
regularisation can be considered acceptably small. Moreover, this result indicates that
the regularisation is not required for the stability analysis alone, as already observed
in Camarri et al. (2013).

The same tests documented in table 1 have been repeated for all the flow
configurations that have been considered in the experiments. As an other example,
we report here in table 2 the case with the highest free-stream velocity, 20 m s−1.
As can be deduced from the table, for this case the errors with respect to the
experiments are significantly higher if compared to the case in table 1. In particular
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Case 1 Case 2 Case 3 Case 4
Re Γ StExp St Dev (%) St Dev (%) St Dev (%) St Dev (%)

6.7× 103 0.0 0.231 0.242 4.8 0.259 12.2 0.250 8.3 0.233 1.3
6.7× 103 1.6 0.247 0.242 2.2 0.251 1.6 0.244 1.2 — —
6.7× 103 2.6 0.263 0.260 1.0 0.269 2.4 0.262 0.3 — —
6.7× 103 3.5 0.271 0.269 0.8 0.277 2.3 0.271 0.1 — —
6.7× 103 4.3 0.283 0.277 0.8 0.285 2.1 0.280 0.3 — —
6.7× 103 5.7 0.283 0.283 0.2 0.290 2.4 0.291 2.8 — —
6.7× 103 9.4 0.291 0.291 0 0.297 2.2 0.305 4.9 — —
6.7× 103 13.6 0.288 0.286 0.8 0.291 1.0 0.304 5.5 — —

TABLE 1. Result obtained from the linear stability analysis of the mean flow field of
the wake, compared with experimental values, for cases in which the boundary layers
detaching from the body are laminar. In case 1 stress-free boundary conditions are applied
on the lateral boundaries, while homogeneous Dirichlet conditions are applied on the same
boundary in case 2 and 3. Case 3 differs from case 2 because stability analysis is carried
out on regularised PIV mean flow field. Case 4 is similar to case 3, but the tuned eddy
viscosity νt is included in the stability analysis.

they range between 9 % and 16 %, and this is expected to be an effect of turbulence
which is completely neglected in the analysis. In the case reported in table 2 the
PIV window is larger than that for the case reported in table 1, and the core of
the instability is located at a larger distance from the lateral boundaries of the PIV
window. This explains why the results are more insensitive to the boundary conditions
applied on the lateral boundaries, as can be deduced by comparing cases 1 and 2
in table 2. Concerning the effects of the regularisation of the baseflow, variations of
the predicted Strouhal numbers between cases 2 and 3 are within 1.5 % for Γ 6 5.7,
and they increase to approximately 10 % for Γ > 9.4. However, the same comments
made on this point for the results in table 1 hold for this case as well.

Finally, the performance and characteristics of the stability results for all other free-
stream velocities considered in the experiments, and not reported here for the sake
of brevity, are intermediate between the two cases discussed here and quantified in
table 1 and table 2.

Results obtained including the eddy-viscosity field derived by the mean flow model
in the stability analysis are reported with the label ‘Case 4’ in table 1 and table 2,
and they are obtained imposing homogeneous Dirichlet boundary conditions to the
eigenmodes on the lateral boundaries. As shown by a direct comparison with the
experiments, the inclusion of field νt(x) leads to an impressive improvement in the
prediction of the vortex shedding frequency, both in the cases with laminar and
turbulent boundary layers detaching from the body. In the second configuration the
improvement in the predicted value is particularly significant, leading to an error
lower than 1 %, as shown in table 2. As concerns the growth factors, when νt is
included in the stability analysis the modes associated with vortex shedding are
again unambiguously identified and are slightly stable, conversely to the case without
eddy viscosity in which the modes are slightly unstable. In order to provide a rough
indication of the values of growth factors, despite the fact that these values are
sensitive to the different numerical parameters and are not interesting for the analysis
carried out here, we have λ ' 0.1 without eddy viscosity and λ ' −0.1 when eddy
viscosity is included in the analysis.
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Case 1 Case 2 Case 3 Case 4
Re Γ StExp St Dev (%) St Dev (%) St Dev (%) St Dev (%)

5.3× 104 0 0.183 0.200 9.3 0.202 10.4 0.198 8.2 0.184 0.55
5.3× 104 0.20 0.184 0.202 9.8 0.202 9.8 0.199 8.1 — —
5.3× 104 0.33 0.185 0.204 10.3 0.204 10.3 0.201 8.6 — —
5.3× 104 0.44 0.185 0.210 13.5 0.210 13.5 0.206 11.4 — —
5.3× 104 0.54 0.190 0.210 10.5 0.210 10.5 0.209 10 — —
5.3× 104 0.72 0.190 0.212 11.6 0.212 11.6 0.210 10.5 — —
5.3× 104 1.2 0198 0.226 14.1 0.226 14.1 0.210 6.1 — —
5.3× 104 1.7 0.212 0.245 15.6 0.245 15.6 0.221 4.2 0.218 2.8

TABLE 2. Result obtained from the linear stability analysis of the mean flow field of
the wake, compared with experimental values, for cases in which the boundary layers
detaching from the body are turbulent. In case 1 stress-free boundary conditions are
applied on the lateral boundaries, while homogeneous Dirichlet conditions are applied on
the same boundary in case 2 and 3. Case 3 differs from case 2 because stability analysis
is carried out on regularised PIV mean flow field. Case 4 is similar to case 3, but the
tuned eddy viscosity νt is included in the stability analysis.

Reference
Case 4 Case 4a Case 4b Case 4c Case 4d

St St Dev St Dev St Dev St Dev
(−) (−) (%) (−) (%) (−) (%) (−) (%)

0.1844 0.1843 −0.03 0.1846 0.16 0.1875 1.74 0.1865 1.19

TABLE 3. Predictions of the vortex shedding frequency for case U20Dp0: different cases,
from 4 to 4d, are discussed in details in the text. Reference case, case 4, is also reported
in table 2.

In order to highlight the sensitivity of the stability results to the different parameters
involved in the tuning of the mean flow model, and thus in the derivation of the
field νt(x), we refer to table 3, which is related to the flow configuration U20Dp0.
In particular, case 4a differs from case 4 for the number of degrees of freedom
involved in both the mean flow tuning and in the stability analysis, which passes
from approximately 26 000 for each velocity component in case 4 to 60 000 in case
4a, thus increasing by a factor 2.3. Comparing the results it is possible to note that the
variation in the predicted value of the Strouhal number is negligible, thus indicating
that the calculation can be considered at grid convergence. In case 4b the parameter
λ2

r of the regularisation is decreased by a factor 10, i.e. λ2
r = 10−4. Also in this case

the variation in terms of St is negligible, indicating an independence of the results
with respect to this parameter. In case 4c the constraint that the regularised flow field
is divergence-free is eliminated. As a result, the global effect on the predicted value
of St is still very small, of the order of 1.7 %. Finally, case 4d differs from case 4
in the sense that the stability analysis is carried out on the original PIV flow field
without any regularisation, while regularisation is applied only to tune the mean flow
model and, thus, to derive νt(x). The resulting effect on St is approximately equal to
1.2 %, and thus negligible.
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5.3. Analysis of the stability eigenmodes
Section 5.2 shows that the stability analysis applied to the experimental mean flow
field leads to reasonable predictions of the vortex shedding frequency and, when the
eddy viscosity is included in the analysis, the predictions are systematically improved.
In this section we further validate the results of the stability analysis and the beneficial
effects of introducing an eddy viscosity by inspecting the resulting eigenmodes, which
are related to the vortex shedding process. In order to have reference flow fields for
comparing the stability eigenmodes, in each case proper orthogonal decomposition
(POD) has been applied to the instantaneous snapshots of the database. Since the
flow is strongly dominated by vortex shedding, as also discussed in § 2, in all cases
POD leads to the identification of a couple of energetically dominant modes which
represent two flow snapshots of the mean vortex shedding process which are shifted
in phase by an angle equal to π/2 (once the mean flow has been subtracted). These
two POD modes play the same role as the real and imaginary parts of one of the
two complex-conjugate eigenmodes identified by the stability analysis. Their linear
combination, weighted by the cosine and sine of a generic phase angle, results in an
instantaneous flow field of the phase-averaged vortex shedding process.

As a representative example, we have considered here the flow case U2.5Dp0. As
expected, two strongly dominant eigenmodes are unambiguously identified in the
POD energy spectrum and a combination of the two for a generic phase angle of the
vortex shedding is obtained and plotted in figure 9(a) (x-component of velocity) and
figure 9(d) (y-component). This field will be a reference so as to evaluate how well
the stability eigenmodes represent the features of the mean vortex shedding process.

For comparison with the stability analysis, we have considered cases 2 and 4 of
table 1. In both cases, the two complex-conjugate eigenmodes associated to vortex
shedding have been normalised so that the maximum velocity norm is equal to that of
the POD reference field. Moreover, the phase angles of the stability modes have been
tuned to be equal to that of the POD field. The flow field so obtained is reported
in figure 9(b,e) for case 2. As can be seen by comparison with the POD field, the
y positions of the flow structures in the x-component of the velocity, i.e. figure 9(b),
which are related to the position of the centres of the vortices shed by the body, are
markedly closer to the centreline y= 0 if compared to the POD field (figure 9a). Their
spacing in the streamwise direction is slightly shifted, as can be noticed also from
figure 9(e) for the y-component of the velocity in comparison with figure 9(b). The
fact that the shed vortices in the eigenmode are shifted with respect to the centreline
is in agreement with the error in the predicted vortex shedding frequency for case 2
reported in table 1. Finally, the eigenmode for case 2, especially figure 9(b), shows
regions with very large gradients associated with some minor irregularities in the
isocontours which are due to the fact that the stability analysis is carried out using
the laminar flow Reynolds number, which is quite high and equal to 6.7× 103, and
they result from a lack of dissipation in the equations since turbulence is completely
neglected. When the field νt(x) is introduced in the analysis, the resulting flow field
associated to the stability eigenmodes is reported in figure 9(c, f ). As can be seen, in
this case the eigenmode matches reasonably well with the POD reference field, and
the x and y spacing of the wake vortical structures are now in agreement with the
experiments. As a consequence, the vortex shedding frequency is also well predicted,
as shown in table 1. Finally, isocontours are regular and smooth since now the
equivalent flow Reynolds number Reeq is markedly lower than 6.7 × 103, as also
shown in figure 8(a), and the dissipation due to small-scale turbulence is taken into
account via the eddy-viscosity model.
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FIGURE 9. (Colour online) Flow configuration U2.5Dp0; velocity components x (a–c)
and y (d–f ) at a generic vortex shedding phase angle of: the POD mode (a,d) and, with
reference to table 1, case 2 (b,e) and case 4 (c, f ).

–0.030

–0.040

–0.035

–0.050

–0.045

–0.030

–0.040

–0.035

–0.050

–0.045

 0.5

 0

1.0

 0.5

 0

1.0

0.5 1.0 1.5 0.5 1.0 1.5

(a) (b)

FIGURE 10. (Colour online) Control maps indicating the sensitivity of the vortex shedding
frequency to the introduction of a small control cylinder of diameter equal to 3 mm in
the flow field of configuration U2.5Dp0: (a) theoretical prediction, (b) experimental map
with the same colourmap as in (a).

As a conclusion, the analysis documented in this section demonstrates that the
stability analysis of the mean flow field is able to predict not only the vortex
shedding frequency but also the spatial structure of the phase-averaged flow fields,
and the prediction is markedly improved as the eddy viscosity deriving from the
mean flow model is included in the stability analysis.

5.4. Estimation of the maps for passive control
In this section the mean flow model is used, together with the results of the stability
analysis, in order to derive theoretically the sensitivity of the vortex shedding
frequency to the introduction of a small control cylinder in a generic position of
the flow. The prediction is done following the theoretical method illustrated in § 3.3.
In particular, the imaginary part of S(x) defined in (3.23) indicates the variation in
the vortex shedding frequency with respect to the local introduction of a small control
body in the flow. The map Im[S(x)] is plotted for the flow configuration U2.5Dp0
in figure 10(a). In this derivation we have assumed a constant drag coefficient for
the control body equal to CD = 1.2 and we have assumed that its diameter is equal
to d∗/h = 7.5 × 10−2, in agreement with the reference experiment. As shown in
figure 10(a), sensitivity is concentrated in the shear layers bounding the mean wake.
The values in the legend indicate the direct variation in terms of Strouhal number.

As described in § 2.3, a similar map has been obtained experimentally by using
a control cylinder of the same size as chosen for the numerical estimation, i.e.
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FIGURE 11. (Colour online) Control map indicating the sensitivity of the vortex shedding
frequency to the introduction of a small control cylinder of diameter equal to 3 mm in
the flow field of case U20Dp0.

d∗/h = 7.5 × 10−2. Actually, due to technical constraints in the experiments, the
size of this control cylinder is large for an accurate description of its effects by
using the map in figure 10(a). Indeed, the local Reynolds number is estimated to
be large enough to have vortex shedding also from the control cylinder, at least in
some of the positions that have been tested experimentally, leading to an additional
high-frequency load component that is not taken into account in the theoretical
analysis. Nevertheless, despite the many possible sources of error, the experimental
map, which is reported in figure 10(b), compares reasonably well with the map
estimated theoretically, which is obtained by taking into account only the quasi-steady
drag of the control cylinder. Actually the two maps are fairly similar in shape and they
agree in identifying the region of maximum sensitivity, which leads to a decrease in
the vortex shedding frequency in the controlled case, as indicated by the blue region
extending in the range 0.6 6 y/h 6 0.8 and 0 6 x/h 6 1. In the remaining spatial
regions the experiments predict a slight decrease in the vortex shedding frequency,
by an amount of approximately −0.02, while the theoretical map predicts an increase
of approximately 0.015. From the comparison between figure 10(a) and figure 10(b)
the experimental and the theoretical maps seem to differ mainly by a constant and
low shift value. This aspect could be related to a slight difference in the prediction
of the absolute value of the vortex shedding frequency in the uncontrolled case,
which is subtracted from the value measured in the controlled case in order to derive
the sensitivity map. The important conclusion that we can draw by the previous
analysis is that the high-sensitivity region is well identified and quantified by the
proposed method, and the results shown here indicate that the method proposed has
a good potential in estimating the effect of passive control on the basis of a database
measured for the uncontrolled configuration.

For completeness, we also report in figure 11 the theoretical control map for the
flow configuration U20Dp0. In this specific case there are no experimental results for
validation, thus the only possible analysis is in comparison with case U2.5Dp0. This
comparison shows that the sensitivity of case U20Dp0 has a similar distribution, i.e.
localised on the boundaries of the recirculation bubble of the mean flow, and also
compares quite well from a quantitative viewpoint.

6. Conclusions

In this paper we propose a strategy to estimate the effect of a passive control
on the vortex shedding frequency in turbulent bluff-body wakes. Differently to
previous works in the literature, the methodology proposed here relies entirely on the
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knowledge of the mean and phase-averaged flow fields measured in the uncontrolled
case. The method is based on well-known tools, and its originality consists in the
formulation of an ad hoc model for the mean flow which is tuned on the basis of
the experimental results. The method also suggests a consistent way to introduce
the effects of turbulence in the stability analysis of the mean flow field, even if
this aspect is already known in the literature, and it has been previously applied
for convectively unstable flows (see for instance Viola et al. 2014). The proposed
strategy is applied to the flow past a thick and perforated flat plate. The possibility
to apply suction from the plate surface permits one to have a set of different wakes
for each considered value of the flow Reynolds number. Experiments are available
for laminar as well as turbulent separating boundary layers, thus for a wide range
of flow complexity. It is also shown that the global stability of the mean flow
fields, which are measured in a PIV window which fully includes the wake, predicts
a nearly marginal unstable mode with a frequency that is close to that of vortex
shedding from the body even neglecting the turbulence effects. This result extends
the work in Camarri et al. (2013) up to flow Reynolds numbers equal to 5.3 × 104.
When laminar boundary layers detach from the body the errors in terms of predicted
Strouhal number are generally less than 3 %, while the errors grow with the flow
complexity up to approximately 15 % for cases at Re = 5.3 × 104. When turbulence
is included in the analysis, the ad hoc turbulence closure being a side result obtained
by the tuning of the corresponding mean flow model, the errors in the predicted
value of St are drastically and systematically reduced, especially for the turbulent
case, where they become less than 3 %. Finally, the combination of the mean flow
model and of the stability analysis leads to the prediction of the effects on the
vortex shedding frequency that could be obtained by introducing a small control
cylinder in the wake. The theoretical sensitivity map, which is predicted using the
measurements available for the uncontrolled case, is compared with the equivalent
one derived experimentally. Although the control cylinder used in the experiments
is rather intrusive, the comparison shows that the region of maximum sensitivity
is well predicted, and compares reasonably well also from a quantitative viewpoint.
In the areas of low sensitivity the maps show some discrepancies, but globally the
two maps, i.e. the experimental and the theoretical one, seem to differ mainly by a
constant and low shift value. This aspect could be related to a slight difference in the
prediction of the absolute value of the vortex shedding frequency in the uncontrolled
case, which is subtracted from the value measured in the controlled case so as to
derive the sensitivity map. Nevertheless, results obtained are in our opinion more than
satisfactory, considering that this analysis entirely relies on experimental PIV flow
fields taken in the uncontrolled case at high values of the flow Reynolds number, and
considering the size of the control cylinder used in the experiments.

We remark that the same control map estimated in the present paper might be
obtained by tuning a time-periodic eddy viscosity so as to fit the experimental
phase-averaged flow field and by linearising the resulting RANS equations around
the limit cycle representing the saturated vortex shedding process, following the work
in Luchini, Giannetti & Pralits (2009). This second approach, however, is definitely
more complex than the one proposed here, and leads to cumbersome optimisation
problems, as time is also involved.

Finally, even if not considered in this work, the proposed mean flow model provides
an estimation of the pressure field in the PIV window and on the body surface. This
final output of the model could be used to estimate the pressure on the body when
suction is applied and near the separation points, i.e. where it is very challenging to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

53
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.531


Stability analysis and passive control of the wake past a thick plate 777

measure pressure experimentally. The validation of this additional output of the model
will be the subject of future investigations.
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