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ABSTRACT

In this paper we consider an extension to the aggregation of the FGM mixed
Erlang risks, proposed by Cossette et al. (2013 Insurance: Mathematics and
Economics, 52, 560–572), in which we introduce the Sarmanov distribution to
model the dependence structure. For our framework, we demonstrate that the
aggregated risk belongs to the class of Erlang mixtures. Following results from
S. C. K. Lee and X. S. Lin (2010 North American Actuarial Journal, 14(1) 107–
130), G. E. Willmot and X. S. Lin (2011 Applied Stochastic Models in Business
and Industry, 27(1) 8–22), analytical expressions of the contribution of each in-
dividual risk to the economic capital for the entire portfolio are derived under
both the TVaR and the covariance capital allocation principle. By analysing the
commonly used dependence measures, we also show that the dependence struc-
ture is wide and flexible. Numerical examples and simulation studies illustrate
the tractability of our approach.
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1. INTRODUCTION

Analysis of aggregated risk is important for insurance business, it allows the in-
surers to assess and to monitor their risks through the risk management frame-
work. In the classical framework of independent and identically distributed
risks, explicit analytical formulas for quantities of interest including Value-at-
Risk (VaR), Tail Value-at-Risk (TVaR) or Stop-loss premium formula for the
aggregated risk can be derived explicitly for few tractable cases. For instance
Willmot and Lin (2011), Lee and Lin (2010, 2012) and Cossette et al. (2013)
have shown that this is the case if we choose the mixed Erlang distribution as a
model for claim sizes. One reason for the tractability of the mixed Erlang distri-
bution is the fact that the convolution of such risks is again mixed Erlang, see
Klugman et al. (2008).
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Since insurance data clearly shows that insurance risks are commonly depen-
dent, in order to be able to get closed-form formulas for quantities of interest,
an important task is the adequate choice of the dependence structure between
the risks. Even for the simple case of the dependence specified by a log-normal
framework with stochastic volatility, as shown in the recent contributions
(Embrechts et al., 2014; Hashorva and Kortschak, 2014; Hashorva and Li,
2015) only asymptotic results can be derived.

With motivation from Cossette et al. (2013) where the aggregation of FGM
mixed Erlang risks is considered, in this contribution we shall investigate the
Sarmanov mixed Erlang risks. The Sarmanov distribution includes the FGM
distribution as a special case. One key advantage of the Sarmanov distribution
is its flexibility; it also allows tomodel highly dependent risks, see e.g., Bairamov
et al. (2001) and Lee (1996). The aim of this paper is to provide analytical results
and properties of the aggregated dependent risks with mixed Erlang marginals
by using the Sarmanov distribution as a model for the dependence structure.
This model is promising in risk aggregation practice as it satisfies the four desir-
able properties of amultivariate parametricmodelmentioned in Joe (1997) p. 84,
namely the interpretability property, the closure property, the flexibility and the
wideness of the range of dependence, and the representation of the distribution
function (df) and the probability density function (pdf) in analytical form.

The paper is organised as follows. In Section 2, we describe the background
of the Sarmanov mixed Erlang distribution by exploring some definitions and
properties of the Sarmanov distribution as amodel for the dependence structure
and the mixed Erlang distribution with a common scale parameter as a model
for claim size distribution in insurance. In Section 3, we demonstrate that the
distribution of the aggregated risk belongs to the class of Erlang mixtures; nu-
merical illustrations and simulation studies are performed to show the robust-
ness of the results. In Section 4, we derive explicit expressions for the allocated
capital to each individual risk Xi , i = 1, 2 under the TVaR and the covariance
capital allocation rules. We present some useful results and properties of the
mixed Erlang distribution in Section 5. In Section 6, an extension of the results
in the bivariate case to the multivariate framework is presented with numeri-
cal examples. All the proofs are relegated to Section 7. In the Appendix, the
flexibility and the wideness of the dependence range of Sarmanov mixed Erlang
distributions are discussed by calculating commonly used dependencemeasures,
namely Pearson’s correlation coefficient, Sperman’s rho and Kendall’s tau.

2. PRELIMINARIES

2.1. Sarmanov distribution

The Sarmanov distribution introduced in Sarmanov (1966) has proved valu-
able in numerous insurance applications. For instance Hernández-Bastida
and Fernández-Sánchez (2012) used the multivariate Sarmanov distribution
to model the dependence structure between risk profiles for the calculation
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of Bayes premiums in the collective risk model. The contribution (Sarabia
and Gómez-Déniz, 2011) fitted multivariate insurance count data using the
Sarmanov distribution with Poisson-Beta marginals. As shown in Yang and
Hashorva (2013) and Yang andWang (2013), the Sarmanov distribution allows
for tractable asymptotic formulas in the context of ruin probabilities. Referring
to Sarmanov (1966), a bivariate risk (X1, X2) has the Sarmanov distribution
with joint pdf h given by

h(x1, x2) = f1(x1) f2(x2)(1 + α12φ1(x1)φ2(x2)), α12 ∈ R, (2.1)

where fi is the pdf of Xi , i = 1, 2, and φ1, φ2 are two kernel functions, which
are assumed to be bounded and non-constant such that

E (φ1(X1)) = E (φ2(X2)) = 0, 1 + α12φ1(x1)φ2(x2) � 0 (2.2)

is valid. If φi (xi ) = 1 − 2Fi (xi ) with Fi the df of Xi , then h is the joint pdf of
the FGM distribution introduced byMorgenstern (1956) for Cauchy marginals
and developed by Gumbel (1960) for exponential margins and generalized by
Farlie (1960). Lee (1996) proposed some general methods for finding the kernel
function φi (xi ) with different types of marginals. Yang and Hashorva (2013)
considered φi (xi ) = gi (xi ) − E(gi (Xi )). When gi (xi ) = e−xi the correspond-
ing kernel function coincides with the one explored by Lee (1996) for marginal
distributions with support in [0, ∞). We have

φi (xi ) = e−xi − E
(
e−Xi

) = e−xi − Li (1), (2.3)

where Li (t) = E
(
e−tXi ) , t > 0 is the Laplace transform of Xi . In the rest of the

paper, we set
Li := Li (1), L′

i := L′
i (1).

The joint pdf h is thus given by

h(x1, x2) = f1(x1) f2(x2)((1 + γ ) + α12(e−x1−x2 − e−x1L2 − e−x2L1)),

γ = α12L1L2. (2.4)

Remarks 2.1. If (X1, X2) has a Sarmanov distribution with kernel functions given
in (2.3), additionally if Xi , i = 1, 2 follows a mixture of Gamma distributions
where the mixture components share the same scale parameter βi ∈ (0, ∞), then
the joint df of (X1, X2) follows easily from integrating the pdf in (2.4). Specifically,
we have for H the joint df of (X1, X2)

H(x1, x2) = (1 + γ )F1(x1, β1)F2(x2, β2) + γ F1(x1, β1 + 1)F2(x2, β2 + 1)

− γ F1(x1, β1 + 1)F2(x2, β2) − γ F1(x1, β1)F2(x2, β2 + 1), (2.5)

where Fi (xi , βi ) = ∑∞
k=1 qkWk(xi , βi ), i = 1, 2 with Wk(xi , βi ) is the df of the

Gamma distribution with scale parameter βi and shape parameter k ∈ (0, ∞) and
qk is the mixing weight such that

∑∞
k=1 qk = 1.
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Compared to the FGM distribution which has [−1/3, 1/3] as the range of Pear-
son’s correlation coefficient ρ12 the Sarmanov distribution has a wider range of
ρ12, which is useful in the aggregation of strongly dependent insurance risks. For
the Sarmanov case we have the explicit formula for ρ12, namely

ρ12(X1, X2) = α12ν1ν2

σ1σ2
, νi = E (Xiφi (Xi )), σi =

√
Var(Xi ), i = 1, 2. (2.6)

In the particular case that the kernels are given by (2.3), for two positive Sar-
manov risks with finite variances the range of α12 is (see Lee, 1996)

−1
max{L1L2, (1 − L1)(1 − L2)} � α12 � 1

max{L1(1 − L2), (1 − L1)L2} , (2.7)

where νi = −L′
i − Liμi and μi = E (Xi ) , i = 1, 2. Lee (1996) extended the

Sarmanov distribution to the multivariate case by defining the joint pdf h of
(X1, . . . , Xn) as

h(x) =
n∏
i=1

fi (xi )(1 + Rφ1,...,φn ,	n (x)), x := (x1, . . . , xn), (2.8)

where

Rφ1,...,φn ,	n (x) = 1 +
n−1∑
j1<

n∑
j2

α j1, j2φ j1(xj1)φ j2(xj2)

+
n−2∑
j1<

n−1∑
j2<

n∑
j3

α j1, j2, j3φ j1(xj1)φ j2(xj2)φ j3(xj3) + · · · + α1,2,...,n

×
n∏
i=1

φi (xi ),

such that

1 + Rφ1,...,φn ,	n (x) � 0 (2.9)

is fulfilled for all xi ∈ R with 	n = {α j1, j2, α j1, j2, j3, . . . , α1,2,...,n} ∈ R. If the
kernel functions are specified by (2.3), then h is given by (set 
(xi ) := e−xi −Li )

h(x) =
n∏
i=1

fi (xi )
(
1 +

n−1∑
j1<

n∑
j2

α j1, j2
(xj1)
(xj2)

+
n−2∑
j1<

n−1∑
j2<

n∑
j3

α j1, j2, j3
(xj1)
(xj2)
(xj3) + · · · + α1,2,...,n

n∏
i=1


(xi )
)

.

(2.10)

https://doi.org/10.1017/asb.2014.24 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.24


ON SARMANOV MIXED ERLANG RISKS 179

2.2. Mixed Erlang claim sizes

These last decades, modeling claim size in insurance with the mixed Erlang dis-
tribution with a common scale parameter has been well developed. In risk the-
ory, Dickson and Willmot (2005) and Dickson (2008) have explored an analyt-
ical form of the finite time ruin probability, using the mixed Erlang distribution
as a claim size model. Recently, using the EM algorithm Lee and Lin (2010)
have fitted some common parametric distributions and catastrophic loss data
in the United States with the mixed Erlang distribution. Moreover, Lee and Lin
(2012) have developed the multivariate mixed Erlang distribution to overcome
some drawbacks of the copula approach. Furthermore, Cossette et al. (2013)
have introduced a risk aggregation in the multivariate setup with mixed Er-
lang marginals and the FGM copula to capture the dependence structure. As
its name indicates, the mixed Erlang distribution is constructed from the Erlang
distribution which has the pdf

wk(x, β) = βkxk−1e−βx

(k− 1)!
, x > 0, (2.11)

where k ∈ N∗ is the shape parameter and β > 0 is the scale parameter. Hence,
the pdf of the mixed Erlang distribution is defined as

f (x, β, Q˜) =
∞∑
k=1

qkwk(x, β), (2.12)

where Q˜ = (q1, q2, . . .) is a vector of non-negative weights satisfying
∑∞

k=1 qk =
1. In the following we write X ∼ ME(β, Q˜) if X has pdf given by (2.12). By
integrating the pdf in (2.12) the df F corresponding to f is given by

F(x, β, Q˜) = 1 − e−βx
∞∑
k=1

qk
k−1∑
j=0

(βx) j

j !
. (2.13)

As discussed in Lee and Lin (2010, 2012), Willmot and Lin (2011) and Cossette
et al. (2013) one of the important advantages of employing the mixed Erlang
distribution in insurance loss modeling is the fact that many useful risk related
quantities, such as moments and mean excess function can be calculated ex-
plicitly by simple formulas. For instance, the quantile function (or VaR) of the
mixed Erlang distribution can be easily obtained given the tractable form of the
df. From (2.13), at a confidence level p ∈ (0, 1), the VaR of X, denoted by xp,
is the solution of

e−βxp
∞∑
k=1

qk
k−1∑
j=0

(βxp) j

j !
= 1 − p, (2.14)
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which can be solved numerically. Further, since for the mean excess function of
X, we have (see Willmot and Lin (2011), p. 7)

E((X− d)|X > d) =
∑∞

k=0 Q
∗
k

(βd)k

k!

β
∑∞

j=1 Qj
(βd) j−1

( j−1)!

, d > 0, (2.15)

where Q∗
k = ∑∞

j=k+1 Qj with Qj =
∑∞

k= j qk∑∞
k=1 kqk

, then the TVaR of X at a confidence
level p ∈ (0, 1) is given by the following explicit formula

TVaRX(p) =
∑∞

k=0 Q
∗
k

(βxp)k

k!

β
∑∞

j=1 Qj
(βxp) j−1

( j−1)!

+ xp. (2.16)

Remark that above we assume that E(X) = ∑∞
k=1 kqk is finite. Additionally, the

mixed Erlang distribution is a tractable marginal distribution for the Sarmanov
distribution. Next we present a result for the 2-dimensional setup, see Section 6
for the same results in higher dimensions.

3. AGGREGATION OF SARMANOV MIXED ERLANG RISKS

Let (X1, X2) have a bivariate Sarmanov riskwith kernel functionsφi (x) = e−xi−
Li for i = 1, 2. We shall assume that both X1 and X2 follow a mixed Erlang
distribution, i.e.,

Xi ∼ ME(βi , Q˜i ), i = 1, 2,

where βi is the scale parameter, Q˜i = (qi,1, qi,2, . . .) denotes the mixing proba-
bilities. The joint distribution of the random vector (X1, X2) will be referred to
as a bivariate Sarmanov mixed Erlang (SmE) distribution and we shall abbre-
viate this as (X1, X2) ∼ SME2(β, Q˜1, Q˜2) where β = (β1, β2). The dependence
structure of the bivariate random vector (X1, X2) can be analysed by calculating
commonly used dependence measures such as Pearson’s correlation coefficient
or Kendall’s tau, see Appendix A. For given vectors of the mixing probabilities
V˜i = (vi1, vi2, . . .), i = 1, 2 we define in the following π1{V˜1,V˜2} = 0 and for
k > 1

πk{V˜1,V˜2} =
k−1∑
j=1

v1, jv2,k− j

The main result in this section is the derivation of the distribution of the aggre-
gated risk S2 = X1 + X2.

Proposition 3.1. If (X1, X2) ∼ SME2(β, Q˜1, Q˜2) with β1 � β2, then S2 ∼
ME(β2 + 1, P˜) where the mixing weights pk are given by (set γ := α12L1L2,
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TABLE 3.1

CENTRAL MOMENTS OF X1 AND X2.

Mean Variance Skewness Kurtosis

X1 2.33 4.44 1.38 5.49
X2 2.11 3.10 1.49 6.12

βi := βi/(βi + 1))

pk = (1 + γ )πk{�˜1(Q˜1), �˜2(Q˜2)} + γπk{�˜1(˜1), �˜2(˜2)}
− γπk{�˜1(˜1), �˜2(Q˜2)} − γπk{�˜1(Q˜1), �˜2(˜2)}, (3.1)

where for i = 1, 2 the components of ˜i = (θi,1, θi,2, . . .) are defined by

θi,k = qi,kβi
k∑∞

j=1 qi, jβi
j , whereas the components of �˜i (Q˜i ) = (ψi,1, ψi,2, . . .) are

ψi,k = ∑k
j=1 qi, j (

k− 1
j − 1 )(

βi
β2+1 )

j (1 − βi
β2+1 )

k− j .

Example 3.2. As an illustration, let

(X1, X2) ∼ SME2

(
β =

(
0.9
0.95

)
; Q˜1 = (0.4, 0.2, 0.3, 0.1);

Q˜2 = (0.3, 0.5, 0.1, 0.1); α12 = 2.87
)

.

According to (2.12), one can write the pdf of X1 and X2 as follows

f1(x1) = 0.4w1(x1, 0.9) + 0.2w2(x1, 0.9) + 0.3w3(x1, 0.9) + 0.1w4(x1, 0.9)

f2(x2) = 0.3w1(x2, 0.95) + 0.5w2(x2, 0.95) + 0.1w3(x2, 0.95) + 0.1w4(x2, 0.95).

Following (2.4), the joint density of (X1, X2) is given by

h(x1, x2) = f1(x1) f2(x2)(1.22 + 2.87e−x1−x2 − 0.81e−x1 − 0.78e−x2).

Table 3.1 above presents the central moments of the marginals.
It follows that the distribution of S2 is a mixed Erlang distribution with scale

parameter βS2 = 1.95 and mixing probabilities partially shown in 3.2. We notice
that the higher the value of k is, the smaller the value of pk.

In order to validate our results, SmE risks have been simulated (see in Ap-
pendix B the details about the simulation algorithm). In this respect, analytical
and simulated results on the aggregated risk S2 = X1 + X2 are presented and
analysed. As displayed in Table 3.3, based on the VaR and TVaR risk measures
the comparison of the exact and the simulated values shows that our results are
robust for different values of the tolerance level p. Furthermore, it can be seen that
VaR is more sensitive to the change of the tolerance level than TVaR. Similarly, by
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TABLE 3.2

MIXING PROBABILITIES OF THE DISTRIBUTION OF S2 = X1 + X2, WITH SCALE PARAMETER βS2 = 1.95.

k pk k pk k pk k pk k pk

1 0.0000 11 0.0664 21 0.0046 31 8.963E-05 41 9.294E-07
2 0.0675 12 0.0564 22 0.0033 32 5.803E-05 42 5.751E-07
3 0.0839 13 0.0465 23 0.0023 33 3.737E-05 43 3.547E-07
4 0.0645 14 0.0373 24 0.0016 34 2.393E-05 44 2.180E-07
5 0.0700 15 0.0292 25 0.0011 35 1.525E-05 45 1.336E-07
6 0.0740 16 0.0223 26 0.0007 36 9.668E-06 46 8.159E-08
7 0.0811 17 0.0168 27 0.0005 37 6.103E-06 47 4.970E-08
8 0.0840 18 0.0125 28 0.0003 38 3.835E-06 48 3.02E-08
9 0.0816 19 0.0091 29 0.0002 39 2.400E-06 49 1.828E-08
10 0.0753 20 0.0065 30 0.0001 40 1.496E-06 50 1.105E-08

TABLE 3.3

EXACT AND SIMULATED VALUES OF VAR AND TVAR OF S2 = X1 + X2.

Analytical Formula Simulated Percentage Difference (%)

p VaRS2 (p) TVaRS2 (p) VaRS2 (p) TVaRS2 (p) VaRS2 (p) TVaRS2 (p)

90.00 % 8.26 10.24 8.22 10.21 0.49 0.29
92.50 % 8.88 10.80 8.86 10.77 0.23 0.28
95.00 % 9.71 11.56 9.66 11.53 0.52 0.26
97.50 % 11.05 12.82 10.98 12.82 0.64 0.00
99.00 % 12.71 14.41 12.79 14.46 − 0.63 −0.35
99.50 % 13.92 15.56 13.87 15.43 0.36 0.84
99.90 % 16.57 18.13 16.61 17.86 −0.24 1.51
99.99 % 20.15 21.62 19.42 20.79 3.62 3.84

changing the level of the dependence between marginals which is described by α12
and for a tolerance level of 99%, the comparison of the exact and the simulated
values of VaR and TVaR is displayed in Table 3.4. Note in passing that the maxi-
mum attainable value of α12, in our example, is 4.87 while the minimum is −1.91.

4. CAPITAL ALLOCATION

In this section, we derive analytical expressions for the amount of capital al-
located to each individual risk under the TVaR and the covariance principles.
Evaluating the economic capital for the entire portfolio that an insurance com-
pany needs to absorb large unexpected losses is of importance in enterprise
risk management. In this respect, the so-called capital allocation consists in de-
termining the contribution of each individual risk to the aggregate economic
capital. This allows the insurance company to identify and tomonitor efficiently
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TABLE 3.4

DEPENDENCE LEVEL AND SENSITIVENESS OF RISK MEASURES.

Analytical formula Simulated Percentage difference (%)

α12 VaRS2 (0.99) TVaRS2 (0.99) VaRS2 (0.99) TVaRS2 (0.99) VaRS2 (0.99) TVaRS2 (0.99)

−1.91 12.24 13.92 12.26 13.91 − 0.16 0.10
− 0.87 12.35 14.04 12.38 14.03 − 0.25 0.06

0 12.44 14.13 12.48 14.13 − 0.31 0.03
0.87 12.53 14.22 12.57 14.22 − 0.29 0.01
1.87 12.62 14.31 12.66 14.32 − 0.33 − 0.02
2.87 12.71 14.41 12.74 14.41 − 0.24 − 0.05
3.87 12.80 14.49 12.82 14.50 − 0.14 − 0.08
4.87 12.88 14.57 12.90 14.59 − 0.14 − 0.10

their risks. In the literature, many capital allocation techniques have been de-
veloped, see Cummins (2000), Dhaene et al. (2012), McNeil et al. (2005), and
Tasche (2004) and references therein. In practice, the TVaR and the covariance
allocation principle are commonly used, since they take into account the depen-
dence structure between risks. More precisely, if Sn = ∑n

i=1 Xi is the aggregate
risk where Xi is a continuous rv with finite mean that represents the individual
risk, the amount of capital Ti allocated to each risk Xi , for i = 1, . . . , n, is
defined as ( for a tolerance level p ∈ (0, 1), denote Ti = TVaRp(Xi , Sn) under
the TVaR allocation principle, Ti = Kp(Xi , Sn) under the covariance allocation
principle)

TVaRp(Xi , Sn) = E(Xi1{Sn>VaRSn (p)})
1 − p

, (4.1)

Kp(Xi , Sn) = E(Xi ) + Cov(Xi , Sn)
Var(Sn)

(TVaRSn (p) − E(Sn)), (4.2)

where we assume that Sn has finite and positive variance. We have

n∑
i=1

Ti =
n∑
i=1

TVaRp(Xi , Sn) =
n∑
i=1

Kp(Xi , Sn) = TVaRSn (p),

which means that for both allocation principle, based on TVaR as a risk mea-
sure, the capital required for the entire portfolio is equal to the sum of the
allocated capital of each risk within the portfolio. Given some vector V˜ =
(v1, v2, . . .) with non-negative components such that

∑∞
j=1 jv j < ∞ we define

the new vector G˜(V˜) = (g1, g2, . . .) where

gk =
{
0 for k = 1
(k−1)vk−1∑∞

j=1 jv j
for k > 1.
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For notational simplicity we shall also write in the following βi instead of
βi/(βi + 1). Furthermore hereafter the df of the pdf given in (2.11) will be de-
noted byWk(·, β) with survival functionWk(·, β).
We derive next an explicit form of TVaRp(Xi , S2) and Kp(Xi , S2), i = 1, 2, in
the case of SmE type risks.

Proposition 4.1. Let (X1, X2) ∼ SME2(β, Q˜1, Q˜2) with β1 � β2, further let ˜i

and �˜i be defined as in Proposition 3.1. If for i = 1, 2 both μi := 1
βi

∑∞
k=1 kqi,k

and μ̃i := 1
βi+1

∑∞
k=1 kθi,k are finite, then for any p ∈ (0, 1) the amount of capital

allocated to each risk Xi , i = 1, 2, under the TVaR principle is

TVaRp(Xi , S2) = 1
1 − p

∞∑
k=1

zikWk(VaRS2(p), β2 + 1), (4.3)

where γ = α12L1L2,

zi,k = (1 + γ )μiπk{�˜i (G˜i (Q˜i )), �˜ j (Q˜ j )} + γ μ̃iπk{�˜i (G˜i (˜i )), �˜ j (˜ j )}
− γ μ̃iπk{�˜i (G˜i (˜i )), �˜ j (Q˜ j )} − γμiπk{�˜i (G˜i (Q˜i )), �˜ j (˜ j )}, i �= j,

and the contribution of each risk Xi , i = 1, 2 to the economic capital of the entire
portfolio, under the covariance principle, is given by

Kp(Xi , S2) =
∞∑
k=1

Li,k
β2 + 1

,

where

Li,k = kψi,k + εi, j

(
P∗
k ((β2 + 1)VaRS2(p))

k

ϕk!
+ (β2 + 1)VaRS2(p) − kpk

)
, i �= j,

with

εi, j =
∑∞

m=1(m
2 +m)ψim − (

∑∞
m=1mψim)2∑∞

m=1(m2 +m)pm − (
∑∞

m=1mpm)2

+
(

α12(β2 + 1)2∑∞
m=1(m2 +m)pm − (

∑∞
m=1mpm)2

)

×
(

1
βi + 1

∞∑
m=1

mqi,mβi
m − 1

βi

∞∑
m=1

qi,mβi
m

∞∑
m=1

mqi,m

)

×
(

1
β j + 1

∞∑
m=1

mqj,mβ j
m − 1

β j

∞∑
m=1

q j,mβ j
m

∞∑
m=1

mqj,m

)
, (4.4)
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TABLE 4.1

ANALYTICAL FORMULA: DEPENDENCE LEVEL, TVAR AND ALLOCATED CAPITAL TO EACH RISK Xi , i = 1, 2,
UNDER THE TVAR AND THE COVARIANCE CAPITAL ALLOCATION PRINCIPLE.

α12 TVaRS2 (0.99) TVaR0.99(X1, S2) TVaR0.99(X2, S2) K0.99(X1, S2) K0.99(X2, S2)

− 1.91 13.92 7.70 6.22 7.69 6.23
− 0.87 14.04 7.74 6.30 7.73 6.31

0 14.13 7.77 6.36 7.75 6.38
0.87 14.22 7.80 6.42 7.78 6.44
1.87 14.31 7.84 6.47 7.81 6.50
2.87 14.41 7.87 6.54 7.84 6.57
3.87 14.49 7.90 6.59 7.87 6.62
4.87 14.57 7.93 6.64 7.89 6.68

ϕ =
∞∑
j=1

Pj ((β2 + 1)VaRS2(p))
j−1

( j − 1)!
, P∗

k =
∞∑
j=k

Pj ,

Pj =
∑∞

k= j pk∑∞
k=1 kpk

and pk is given in (3.1).

Example 4.2. In this example, we consider the same marginals and dependence
parameters as in Example 3.2. For different level of the dependence between X1
and X2, which is described by α12, TVaRs have been calculated on the aggregated
risk S2 = X1 + X2 at a tolerance level p = 99%. Furthermore, the allocated
capital to each risk Xi , i = 1, 2, under the TVaR and the covariance capital allo-
cation principle are also evaluated. Table 4.1 demonstrates that risk measures on
the aggregated risk are sensitive to the level of dependence between individual risks.
Actually, due to the relationship between dependence level and the diversification
effect, the more X1 and X2 are dependent, the more the portfolio is risky, hence
more capital is needed to cover the risks. In this respect, more capital is allocated
to risk X1 compared to the amount allocated to risk X2 under the TVaR and the
covariance principle.

5. AUXILIARY RESULTS

One of the main features of the mixed Erlang distribution is that its pdf can
be used to derive some results in an analytical way. In this respect, this section
presents some useful properties of the mixed Erlang distribution.

Lemma 5.1. If X is a random variable from the mixed Erlang distribution with pdf

g(x, β, Q˜), then gθ (x, β + 1, ˜) = e−xg(x,β,Q˜)

L , with L = E
(
e−X

)
, is again a pdf

of the mixed Erlang distribution with mixing probabilities ˜ = (θ1, θ2, . . .) and
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scale parameter β + 1 and we have

gθ (x, β + 1, ˜) =
∞∑
k=1

θkwk(x, β + 1),

where θk = qkβ
k∑∞

j=1 q jβ
j with β = β

β+1 .

The result presented in the next two lemmas can be found in Section 2.2 of
Willmot and Woo (2007), and Section 7.2 of Lee and Lin (2010), respectively.

Lemma 5.2. If X ∼ ME(β1, Q˜), then for any positive constant β2 ≥ β1 we have

X ∼ ME(β2, �˜(Q˜)),

where the mixing probabilities �˜(Q˜) = (ψ1, ψ2, . . .) and its individual compo-
nents are given by

ψk =
k∑
i=1

qi

(
k− 1
i − 1

) (
β1

β2

)i (
1 − β1

β2

)k−i
, k ≥ 1.

Lemma 5.3. Let X1, X2 be two independent random variables. If Xi ∼
ME(βi , Q˜i ), i = 1, 2, then S2 = X1 + X2 ∼ ME(β, �˜{Q˜1, Q˜2}), provided that
β1 = β2 = β with

πl{Q˜1, Q˜2} =
{
0 for l = 1∑l−1

j=1 q1, j q2,l− j for l > 1.

Remarks 5.4. According to Cossette et al. (2012) (Remark 2.1), the results in
Lemma 5.3 can be extended to Sn = ∑n

i=1 Xi , as long as Xi , . . . , Xn are in-
dependent, Xi ∼ ME(βi , Q˜i ) and βi = β for i = 1, . . . , n. Specifically,
Sn ∼ ME(β, �˜{Q˜1, . . . , Q˜n}) where the individual mixing probabilities can be
evaluated iteratively as follows

πl{Q˜1, . . . , Q˜n+1} =
{
0 for l = 1, . . . , n∑l−1

j=n π j {Q˜1, . . . , Q˜n}qn+1,l− j for l = n + 1, n + 2, . . . .

6. MULTIVARIATE SME RISKS

In this section, we assume that the joint distribution of the random vec-
tor (X1, . . . , Xn) will be referred to as a multivariate SmE distribution and
we shall abbreviate this as (X1, . . . , Xn) ∼ SMEn(β, Q˜1, . . . , Q˜n) where
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β = (β1, . . . , βn) with Xi ∼ ME(βi , Q˜i ), i = 1, . . . , n. Furthermore, we shall
set

f̃i (xi ) := e−xi fi (xi ).

6.1. Distribution of Sn

By decomposing the joint pdf of (X1, . . . , Xn) in (2.10) and using some rules
of integration, we show in the next proposition that the distribution of Sn =∑n

i=1 Xi belongs to the class of Erlang mixtures.

Proposition 6.1. If (X1, . . . , Xn) ∼ SMEn(β, Q˜1, . . . , Q˜n) with βi � βn, for i =
1, . . . , n− 1, then Sn ∼ ME(βn + 1, P˜). The components of P˜ = (p1, p2, . . .) are
given by

pk =
(
1 +

∑
j1

∑
j2

α j1, j2L j1L j2 −
∑
j1

∑
j2

∑
j3

α j1, j2, j3L j1L j2L j3

+ · · · + (−1)nα1,2,...,n

n∏
i=1

Li

)
π(k) +

∑
j1

(
−

∑
j2

α j1, j2L j2

+
∑
j2

∑
j3

α j1, j2, j3L j2L j3 + · · · + (−1)n+1α1,2,...,n

∏
i∈C\{ j1}

Li

)
π

(k)
j1

+
∑
j1

∑
j2

(
α j1, j2 −

∑
j3

α j1, j2, j3L j3 +
∑
j3

∑
j4

α j1, j2, j3, j4L j3L j4

+ · · · + (−1)nα1,2,...,n

∏
i∈C\{ j1, j2}

Li

)
π

(k)
j1, j2

+
∑
j1

∑
j2

∑
j3

(
α j1, j2, j3 −

∑
j4

α j1, j2, j3, j4L j4 +
∑
j4

∑
j5

α j1, j2, j3, j4, j5L j4L j5

+ · · · + (−1)n+1α1,2,...,n

∏
i∈C\{ j1, j2}

Li

)
π

(k)
j1, j2, j3

+ · · · +
∑
j1

∑
j2

. . .
∑
jn−1

(α j1, j2,..., jn−1 − α1,2,...,nL jn )π
(k)
j1,..., jn−1

+ α1,2,...,nπ
(k)
1,...,n,

(6.1)

where
π(k) = πk{�˜1(Q˜1), . . . , �˜n(Q˜n)},
π

(k)
j1 = L j1πk{�˜ j1(˜ j1), �˜ j2(Q˜ j2), . . . , �˜n(Q˜n)},

π
(k)
j1, j2 = L j1L j2πk{�˜ j1(˜ j1), �˜ j2(˜ j2), �˜ j3(Q˜ j3) . . . , �˜n(Q˜n)},
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π
(k)
j1, j2, j3 = L j1L j2L j3πk{�˜ j1(˜ j1), �˜ j2(˜ j2), �˜ j3(˜ j3) . . . , �˜n(Q˜n)},

π
(k)
j1,..., jn−1

= L j1 · · ·L jn−1πk{�˜ j1(˜ j1), . . . , �˜ jn−1(˜ jn−1), �˜ jn (Q˜ jn )},
π

(k)
1,...,n = L1 · · ·Lnπk{�˜1(˜1), . . . , �˜n(˜n)},

with C = {1, . . . , n}, j1 ∈ C, j2 ∈ C\{ j1}, j3 ∈ C\{ j1, j2}, . . . , jn ∈
C\{ j1, . . . , jn−1}.
Example 6.2. Let (X1, X2, X3) ∼ SME3(β, Q˜1, Q˜2, Q˜3) with βi � β3, i = 1, 2
then S3 ∼ ME(β3 + 1, P˜) where the components of P˜ = (p1, p2, . . .) are given by
(with C = {1, 2, 3})

pk =
⎛⎝1 +

∑
j1

∑
j2

α j1, j2L j1L j2 − α1,2,3

3∏
i=1

Li

⎞⎠ π(k)

+
∑
j1

(
−

∑
j2

α j1, j2L j2 +
∑
j2

∑
j3

α j1, j2, j3L j2L j3 + α1,2,3

∏
i∈C\{ j1}

Li

)
π

(k)
j1

+
∑
j1

∑
j2

(
α j1, j2 − α1,2,3L j3

)
π

(k)
j1, j2 + α1,2,3π

(k)
1,2,3

= (1 + α1,2L1L2 + α1,3L1L3 + α2,3L2L3 − α1,2,3L1L2L3)

× πk{�˜1(Q˜1), �˜2(Q˜2), �˜3(Q˜3)}
+ (−α1,2L2 − α1,3L3 + α1,2,3L2L3)L1πk{�˜1(˜1), �˜2(Q˜2), �˜3(Q˜3)}
+ (−α1,2L1 − α2,3L3 + α1,2,3L1L3)L2πk{�˜1(Q˜1), �˜2(˜2), �˜3(Q˜3)}
+ (−α1,3L1 − α2,3L2 + α1,2,3L1L2)L3πk{�˜1(Q˜1), �˜2(Q˜2), �˜3(˜3)}
+ (α1,3 − α1,2,3L2)L1L3πk{�˜1(˜1), �˜2(Q˜2), �˜3(˜3)}
+ (α2,3 − α1,2,3L1)L2L3πk{�˜1(Q˜1), �˜1(˜1), �˜3(˜3)}
+ (α1,2 − α1,2,3L3)L1L2πk{�˜1(˜1), �˜2(˜2), �˜3(Q˜3)}
+ α1,2,3L1L2L3πk{�˜1(˜1), �˜2(˜2), �˜3(˜3)}.

6.2. Capital allocation

The following propositions provide analytical formulas for the allocated capital
to each individual risk Xm, m = 1, . . . , n, under the TVaR and the covariance
rules.

Proposition 6.3. Let (X1, . . . , Xn) ∼ SMEn(β, Q˜1, . . . , Q˜n) with βm � βn,

for m = 1, . . . , n − 1. Provided that both μm = 1
βm

∑∞
k=1 kqm,k and μ̃m =

1
βm+1

∑∞
k=1 kθmk, m = 1, . . . , n are finite , then for m = 1, . . . , n and p ∈ (0, 1)

the amount of capital allocated to each risk Xm under the TVaR principle is given

https://doi.org/10.1017/asb.2014.24 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.24


ON SARMANOV MIXED ERLANG RISKS 189

by (set C := {1, . . . , n})

TVaRp(Xm, Sn) = 1
1 − p

∞∑
k=1

zm,kWk(VaRSn (p), βn + 1),

where

zm,k =
(
1 +

∑
j1

∑
j2

α j1, j2L j1L j2 −
∑
j1

∑
j2

∑
j3

α j1, j2, j3L j1L j2L j3 + · · ·

+ (−1)nα1,2,...,n

n∏
i=1

Li

)
μmπ̃ (k) +

∑
j1 �=m

(
−

∑
j2

α j1, j2L j2 +
∑
j2

∑
j3

α j1, j2, j3

×L j2L j3 + · · · + (−1)n+1α1,2,...,n

∏
i∈C\{ j1}

Li

)
μmπ̃

(k)
j1 +

(
−

∑
j2 �=m

αm, j2L j2

+
∑
j2 �=m

∑
j3 �=m

αm, j2, j3L j2L j3 + · · · + (−1)n+1α1,2,...,n

∏
i∈C\{m}

Li

)
μ̃mπ̃ (k)

m

+
∑
j1 �=m

∑
j2

(
α j1, j2 −

∑
j3

α j1, j2, j3L j3 +
∑
j3

∑
j4

α j1, j2, j3, j4L j3L j4 + · · ·

+ (−1)nα1,2,...,n

∏
i∈C\{ j1, j2}

Li

)
μmπ̃

(k)
j1, j2 +

∑
j2 �=m

(
αm, j2 −

∑
j3 �=m

αm, j2, j3L j3

+
∑
j3 �=m

∑
j4 �=m

αm, j2, j3, j4L j3L j4 + · · · + (−1)nα1,2,...,n

∏
i∈C\{m, j2}

Li

)
μ̃mπ̃

(k)
m, j2

+ · · · +
∑
j1 �=m

∑
j2

. . .
∑
jn−1

(α j1, j2,..., jn−1 − α1,2,...,nLm)μmπ̃
(k)
j1,..., jn−1

+
∑
j2 �=m

. . .
∑
jn−1 �=m

(αm, j2,..., jn−1 − α1,2,...,nL jn �=m)μ̃mπ̃
(k)
m, j2,..., jn−1

+ α1,2,...,nπ̃
(k)
1,...,n,

(6.2)

where
π̃ (k) = πk{�˜m(G˜m(Q˜m), �˜1(Q˜1), . . . , �˜n(Q˜n)},
π̃

(k)
j1 = L j1πk{�˜m(G˜m(Q˜m), �˜ j1(˜ j1), . . . , �˜n(Q˜n)},

π̃ (k)
m = Lmπk{�˜m(G˜m(˜m), . . . , �˜n(Q˜n)},

π̃
(k)
j1, j2 = L j1L j2πk{�˜m(G˜m(Q˜m), �˜ j1(˜ j1), �˜ j2(˜ j2), . . . , �˜n(Q˜n)},

π̃
(k)
m, j2 = LmL j2πk{�˜m(G˜m(˜m), �˜ j2(˜ j2), . . . , �˜n(Q˜n)},

π̃
(k)
j1,..., jn−1

= L j1 · · ·L jn−1πk{�˜m(G˜m(Q˜m), �˜ j1(˜ j1) . . . , �˜n(˜ jn−1)},
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π̃
(k)
m, j2,..., jn−1

=LmL j2 · · ·L jn−1πk{�˜m(G˜m(˜m), �˜ j2(˜ j2) . . . , �˜ jn−1(˜ jn−1), �˜ jn(Q˜ jn)}
π̃

(k)
1,...,n = LmL1· · ·Lnπk{�˜m(G˜m(˜m), �˜ j2(˜ j2), . . . , �˜n(˜ jn }.

Proposition 6.4. Let βm � βn,m ≤ n − 1, and consider (X1, . . . , Xn) ∼
SMEn(β, Q˜1, . . . , Q˜n). If Sn has a finite and positive variance, then for any index
m ≤ n and p ∈ (0, 1) we have

Kp(Xm, Sn) =
∞∑
k=1

Lm,k

βn + 1
,

where Kp is defined in (4.2),

Lm,k = kψm,k+εm, j

(
P∗
k ((βn + 1)VaRSn (p))

k

ϕk!
+(βn+1)VaRSn (p)−kpk

)
, m �= j,

with

εm, j =
∑∞

s=1(s
2 + s)ψm,s − (

∑∞
s=1 sψ

2
m,s)∑∞

s=1(s2 + s)ps − (
∑∞

s=1 sps)2
+

n∑
j=1

(
αmj (βn + 1)2∑∞

s=1(s2 + s)ps − (
∑∞

s=1 sps)2

)

×
(

1
βm + 1

∞∑
s=1

sqm,sβ
s
m −

∞∑
s=1

qm,sβ
s
m

1
βm

∞∑
s=1

sqm,s

)

×
(

1
β j + 1

∞∑
s=1

sq j,sβ
s
j −

∞∑
s=1

q j,sβ
s
j

1
β j

∞∑
s=1

sq j,s

)
,

ϕ =
∞∑
s=1

Ps((βn + 1)VaRSn (p))
s−1

(s − 1)!
, P∗

k =
∞∑
s=k

Ps,

Ps =
∑∞

k=s ps∑∞
s=1 sps

and ps is given in (6.1).

Proof. The proof is similar to the bivariate case and is therefore omitted.

6.3. Trivariate SmE risks: numerical illustrations

Let (X1, X2, X3) have a trivariate SmE risk, with α12 = 2.03, α13 = 3.62, α23 =
−1.54 and α123 = −1.03 the dependence parameters. The parameters have been
chosen so that the condition in (2.9) is fullfilled. Assume β = (0.75, 0.9, 0.95),
Q˜1 = (0.2, 0.6, 0.2), Q˜2 = (0.4, 0.3, 0.1, 0.2) and Q˜3 = (0.6, 0.1, 0.2, 0.1). In
view of (2.10) the joint pdf of (X1, X2, X3) are given by

h(x) =
3∏
i=1

fi (xi )
(
2.03(e−x1 − 0.21)(e−x2 − 0.28) + 3.62(e−x1 − 0.21)(e−x3 − 0.34)

− 1.54(e−x2 − 0.28)(e−x3 − 0.34) − 1.03(e−x1 − 0.21)(e−x2 − 0.28)(e−x3 − 0.34)
)
.
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TABLE 6.1

MIXING PROBABILITIES OF THE DISTRIBUTION OF S3 = X1 + X2 + X3, WITH SCALE PARAMETER βS3 = 1.95.

k pk k pk k pk k pk k pk k pk

1 0.0000 11 0.0670 21 0.0256 31 0.0022 41 8.729E-05 51 2.150E-06
2 0.0000 12 0.0676 22 0.0211 32 0.0017 42 5.751E-05 52 1.458E-06
3 0.0121 13 0.0662 23 0.0172 33 0.0012 43 4.289E-05 53 9.857E-07
4 0.0295 14 0.0631 24 0.0138 34 0.0009 44 2.988E-05 54 6.648E-07
5 0.0366 15 0.0588 25 0.0109 35 0.0006 45 2.019E-05 55 4.472E-07
6 0.0409 16 0.0536 26 0.0086 36 0.0005 46 9.869E-06 56 3.001E-07
7 0.0466 17 0.0478 27 0.0067 37 0.0003 47 9.612E-06 57 2.010E-07
8 0.0533 18 0.0419 28 0.0051 38 0.0002 48 4.635E-06 58 1.343E-07
9 0.0596 19 0.0361 29 0.0039 39 0.0002 49 4.513E-06 59 8.950E-08
10 0.0643 20 0.0307 30 0.0030 40 0.0001 50 3.161E-06 60 5.795E-08

TABLE 6.2

EXACT VALUES: TVAR OF S3 = X1 + X2 + X3 AND ALLOCATED CAPITAL TO EACH RISK Xi , i = 1, 2, 3,
UNDER THE TVAR AND THE COVARIANCE CAPITAL ALLOCATION PRINCIPLE.

TVaRS3 TVaRp TVaRp TVaRp Kp Kp Kp

p (p) (X1, S3) (X2, S3) (X3, S3) (X1, S3) (X2, S3) (X1, S3)

90.0 % 14.16 5.53 4.73 3.90 5.56 4.70 3.90
92.5 % 14.84 5.79 4.96 4.09 5.84 4.93 4.07
95.0 % 15.77 6.13 5.29 4.35 6.20 5.23 4.34
97.5 % 17.29 6.70 5.82 4.77 6.82 5.72 4.75
99.0 % 19.20 7.45 6.47 5.28 7.58 6.35 5.27
99.5 % 20.58 8.01 6.94 5.63 8.13 6.80 5.65

In light of Proposition 6.1, S3 = X1+X2+X3 follows themixed Erlang distribu-
tion with scale parameter βS3 = 1.95 and mixing probabilities P˜ = (p1, p2, . . .),
the first 60 values of P˜ are given in Table 6.1. For different tolerance level p,
Table 6.2 shows the TVaR of S3 = X1 + X2 + X3 and the allocated capital to
each risk under the covariance and the TVaR capital allocation rules.

7. PROOFS

PROOF OF PROPOSITION 3.1 The pdf f of S2 is given in terms of the joint pdf
of (X1, X2) as follows

fS2(s) =
∫ s

0
h(y, s − y)dy.
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Taking (2.1) into account the pdf of S2 becomes

fS2(s) = (1 + α12L1L2)

∫ s

0
f1(y)f2(s− y)dy+ α12

∫ s

0
e−y f1(y)e−(s−y)f2(s− y)dy

− α12L2

∫ s

0
e−y f1(y) f2(s − y)dy− α12L1

∫ s

0
e−(s−y) f2(s − y) f1(y)dy.

Let A(s), B(s),C(s), D(s) be the four terms of the expression of fS2(s) respec-
tively. According to Lemma 5.2,

A(s) = (1 + α12L1L2)

∫ s

0
f ψ

1 (s, β2 + 1, �˜1(Q˜1)) f
ψ

2 (s − y, β2 + 1, �˜2(Q˜2))dy

and from Lemma 5.3, A(s) can be expressed as a pdf of the mixed Erlang dis-
tribution as follows

A(s) = (1 + α12L1L2)

∞∑
k=1

πk(�˜1(Q˜1), �˜2(Q˜2))wk(s, β2 + 1).

In view of Lemma 5.1 and Lemma 5.2, the expression of B(s) becomes

B(s) = α12

∫ s

0
L1 f θ

1 (s, β1 + 1, ˜1)L2 f θ
2 (s − y, β2 + 1, ˜2)dy

= α12L1L2

∫ s

0
f ψ

1 (s, β2 + 1, �˜1(˜1)) f
ψ

2 (s − y, β2 + 1, �˜2(˜2))dy.

From Lemma 5.3 one can write B(s) as

B(s) = α12L1L2

∞∑
k=1

πk(�˜1(˜1), �˜2(˜2))wk(s, β2 + 1),

which is again a pdf of some mixed Erlang distribution. Similarly to B(s), using
Lemma 5.1, 5.2 and Lemma 5.3 one can expressC(s) and D(s) as pdfs of mixed
Erlang distribution as follows

C(s) = α12L1L2

∞∑
k=1

πk(�˜1(˜1), �˜2(Q˜2))wk(s, β2 + 1),

D(s) = α12L1L2

∞∑
k=1

πk(�˜1(Q˜1), �˜2(˜2)wk(s, β2 + 1),

hence the claim follows. �
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PROOF OF PROPOSITION 4.1 For j �= i , we have

E(Xi1{S2=s}) =
∫ s

0
yh(y, s − y)dy

= (1 + α12LiL j )

∫ s

0
yfi (y) f j (s − y)dy

+ α12

∫ s

0
ye−y fi (y)e−(s−y) f j (s − y)dy− α12L j

∫ s

0
ye−y fi (y)

× f j (s − y)dy− α12Li

∫ s

0
yfi (y)e−(s−y) f j (s − y)dy.

Let A(s), B(s),C(s), D(s) be the four terms of the expression of E(Xi1{S2=s})
respectively. In light of Cossette et al. (2013), Lemma 2.5, if Xi ∼ ME(βi , Q˜i )

then
xi fi (xi ,βi ,Q˜i )

E(Xi )
can be expressed as a pdf of mixed Erlang distribution with

mixing probabilities G˜i (Q˜i ) = (g1, g2, . . .) where the k-th individual mixing
probability is given by

gk =
{
0 for k = 1
(k−1)qi,k−1∑k−1

j=1 jqi, j
for k > 1. (7.1)

If we set μi := E(Xi ) = 1
βi

∑∞
k=1 kqik, γ := α12L1L2, then using (7.1), Lemma

5.1, 5.2 and 5.3, one can write A(s) as

A(s) = (1 + γ )μi

∞∑
k=1

πk{�˜i (G˜i (Q˜i )), �˜ j (Q˜ j )}wk(s, β2 + 1).

Setting μ̃i := 1
βi+1

∑∞
k=1 kθik, in light of (7.1), Lemma 5.1, 5.2 and 5.3, similarly

to A(s), we get the expression of the last three terms of E(Xi1{S2=s}) as follows

B(s) = γ μ̃i

∞∑
k=1

πk{�˜i (G˜i (˜i )), �˜ j (˜ j )}wk(s, β2 + 1),

C(s) = −γ μ̃i

∞∑
k=1

πk{�˜i (G˜i (˜i )), �˜ j (Q˜ j )}wk(s, β2 + 1),

D(s) = −γμi

∞∑
k=1

πk{�˜i (G˜i (Q˜i )), �˜ j (˜ j )}wk(s, β2 + 1).
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Hence, in view of (4.1)

TVaRp(Xi , S2) = 1
1 − p

∞∑
k=1

zi,kWk(VaRS2(p), β2 + 1),

where zik is given in (4.3). Next, by Lemma 5.2, since β1 � β2 we obtain

E(Xi ) = 1
β2 + 1

∞∑
k=1

kψi,k,

Var(Xi ) = 1
(β2 + 1)2

( ∞∑
m=1

(m2 +m)ψi,m −
( ∞∑
m=1

mψi,m

)2)
.

In light of (A.1), we know that for i �= j

Cov(Xi , Xj ) = α12

(
1

βi + 1

∞∑
m=1

mqi,mβi
m −

∞∑
m=1

qi,mβi
m 1

βi

∞∑
m=1

mqi,m

)

×
(

1
β j + 1

∞∑
s=1

sq j,sβ j
s −

∞∑
s=1

q j,sβ j
s 1
β j

∞∑
s=1

sq j,s

)
,

Furthermore, Proposition 3.1 and (2.16) yield

E(S2) = 1
β2 + 1

∞∑
k=1

kpk, Var(S2) = 1
(β2 + 1)2

⎛⎝ ∞∑
m=1

(m2+m)pm−
( ∞∑
m=1

mpm

)2
⎞⎠,

TVaRS2(p) = 1
(β2 + 1)ϕ

∞∑
k=0

P∗
k ((β2 + 1)VaRS2(p))

k

k!
+ VaRS2(p).

where

ϕ =
∞∑
j=1

Pj ((β2 + 1)VaRS2(l))
j−1

( j − 1)!
, P∗

k =
∞∑
j=k

Pj ,

Pj =
∑∞

k= j pk∑∞
k=1 kpk

, and pk is given in (3.1).

Setting Li,k := kψi,k + εi, j (
P∗
k ((β2+1)VaRS2 (p))

k

ϕk! + (β2 + 1)VaRS2(p) − kpk) and
plugging the value of E(Xi ), Var(Xi ), Cov(Xi , Xj ), Var(S2), TVaRS2(p) and
E(S2) in (4.2), we obtain the desired result for Kp(Xi , S2) where εi, j is given in
(4.4). �
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PROOF OF LEMMA 5.1 We have

gθ (x, β + 1, ˜) =
e−xg(x, β, Q˜)

L

=
∞∑
k=1

qk
βkxk−1e−βx

(k− 1)!
e−x

L

=
∞∑
k=1

qk
(

β

β+1

)k
∑∞

j=1 q j
(

β

β+1

) j wk(x, β + 1)

=
∞∑
k=1

θkwk(x, β + 1).

�
PROOF OF PROPOSITION 6.1 By definition

fSn (s) =
∫ s

0

∫ s−x1

0
. . .

∫ s−x1−···−xn−2

0
h(x1, x2, . . . , s − x1 − . . . − xn−1)dxn−1 . . . dx2dx1. (7.2)

For C = {1, . . . , n}, if we decompose the pdf h in (2.10), we obtain

h(x) =
(
1 +

∑
j1

∑
j2

α j1, j2L j1L j2 −
∑
j1

∑
j2

∑
j3

α j1, j2, j3L j1L j2L j3 + · · ·

+ (−1)nα1,2,...,n

n∏
i=1

Li

) n∏
i=1

fi (xi ) +
∑
j1

(
−

∑
j2

α j1, j2L j2+
∑
j2

∑
j3

α j1, j2, j3

×L j2L j3 + · · · + (−1)n+1α1,2,...,n

∏
i∈C\{ j1}

Li

)
f̃ j1(xj1)

∏
i∈C\{ j1}

fi (xi )

+
∑
j1

∑
j2

(
α j1, j2 −

∑
j3

α j1, j2, j3L j3 +
∑
j3

∑
j4

α j1, j2, j3, j4L j3L j4 + · · ·

+ (−1)nα1,2,...,n

∏
i∈C\{ j1, j2}

Li

)
f̃ j1(xj1) f̃ j2(xj2)

∏
i∈C\{ j1, j2}

fi (xi )

+
∑
j1

∑
j2

∑
j3

(
α j1, j2, j3 −

∑
j4

α j1, j2, j3, j4L j4 +
∑
j4

∑
j5

α j1, j2, j3, j4, j5L j4L j5

+ · · · + (−1)n+1α1,2,...,n

∏
i∈C\{ j1, j2}

Li

)
f̃ j1(xj1) f̃ j2(xj2) f̃ j3(xj3)

∏
i∈C\{ j1, j2, j3}

fi (xi )
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+ · · · +
∑
j1

∑
j2

. . .
∑
jn−1

(
α j1, j2,..., jn−1 − α1,2,...,nL jn

)
f̃ j1(xj1) × . . .

× f̃ jn−1(xjn−1) f jn (xjn ) + α1,2,...,n

n∏
i=1

f̃i (xi ), (7.3)

where j1 ∈ C, j2 ∈ C\{ j1}, j3 ∈ C\{ j1, j2}, . . . , jn ∈ C\{ j1, . . . , jn−1}. Hence,
using (7.3), one can express (7.2) as follows

fSn (s) =
(
1 +

∑
j1

∑
j2

α j1, j2L j1L j2 −
∑
j1

∑
j2

∑
j3

α j1, j2, j3L j1L j2L j3 + · · ·

+ (−1)nα1,2,...,n

n∏
i=1

Li

)∫ s

0

∫ s−x1

0
. . .

∫ s−x1−...−xn−2

0

n−1∏
i=1

fi (xi )

× fn(s − x1 − . . . − xn−1)dxn−1 . . . dx2dx1 +
∑
j1

(
−

∑
j2

α j1, j2L j2

+
∑
j2

∑
j3

α j1, j2, j3L j2L j3 + · · · + (−1)n+1α1,2,...,n

∏
i∈C\{ j1}

Li

)

×
∫ s

0

∫ s−x1

0
. . .

∫ s−x1−...−xn−2

0
f̃ j1(xj1)

∏
i∈C\{ j1}

fi (xi ) fn(s − x1 − . . .

− xn−1)dxn−1 . . . dx2dx1 +
∑
j1

∑
j2

(
α j1, j2 −

∑
j3

α j1, j2, j3L j3

+
∑
j3

∑
j4

α j1, j2, j3, j4L j3L j4 + · · · + (−1)nα1,2,...,n

∏
i∈C\{ j1, j2}

Li

)

×
∫ s

0

∫ s−x1

0
. . .

∫ s−x1−...−xn−2

0
f̃ j1(xj1) f̃ j2(xj2)

∏
i∈C\{ j1, j2}

fi (xi )

× fn(s − x1 − . . . − xn−1)dxn−1 . . . dx2dx1 +
∑
j1

∑
j2

∑
j3

(
α j1, j2, j3

−
∑
j4

α j1, j2, j3, j4L j4 +
∑
j4

∑
j5

α j1, j2, j3, j4, j5L j4L j5 + · · · + (−1)n+1α1,2,...,n

×
∏

i∈C\{ j1, j2}
Li

)∫ s

0

∫ s−x1

0
. . .

∫ s−x1−...−xn−2

0
f̃ j1(xj1) f̃ j2(xj2) f̃ j3(xj3)
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×
∏

i∈C\{ j1, j2, j3}
fi (xi ) fn(s − x1 − . . . − xn−1)dxn−1 . . . dx2dx1 + · · ·

+
∑
j1

∑
j2

. . .
∑
jn−1

(
α j1, j2,..., jn−1 − α1,2,...,nL jn

)∫ s

0

∫ s−x1

0
. . .

∫ s−x1−...−xn−2

0

× f̃1(x1) × . . . × f̃ jn−1(xjn−1) f jn(s − x1 − . . . − xn−1)dxn−1 . . . dx2dx1

+ α1,2,...,n

∫ s

0

∫ s−x1

0
. . .

∫ s−x1−...−xn−2

0

n−1∏
i=1

f̃i (xi ) f̃n(s − x1 − . . .

− xn−1)dxn−1 . . . dx2dx1.

It can be seen that the pdf of Sn is a sum of convolutions of mixed Erlang dis-
tributions. Thus, as in the case of S2, Sn follows a mixed Erlang distribution
with scale parameter βn +1 and mixing probabilities P˜ = (p1, p2, . . .), we write
Sn ∼ ME(βn + 1, P˜). For k ∈ N∗, the k-th component pk of P˜ is given in (6.1).
�

PROOF OF PROPOSITION 6.3 In view of (4.1) we need to evaluate

E(Xm1{Sn=s}) =
∫ s

0

∫ s−x1

0
. . .

∫ s−x1−...−xn−2

0

× xmh(x1, x2, . . . , s − x1 − . . . − xn−1)dxn−1 . . . dx2dx1. (7.4)

If we decompose xmh(x), we have

xmh(x) =
(
1 +

∑
j1

∑
j2

α j1, j2L j1L j2 −
∑
j1

∑
j2

∑
j3

α j1, j2, j3L j1L j2L j3 + · · ·

+ (−1)nα1,2,...,n

n∏
i=1

Li

)(
xm fm(xm)

∏
i �=m

fi (xi )
)

+
∑
j1 �=m

(
−

∑
j2

α j1, j2L j2

+
∑
j2

∑
j3

α j1, j2, j3L j2L j3 + · · · + (−1)n+1α1,2,...,n

∏
i∈C\{ j1}

Li

)

×
(
xm fm(xm) f̃ j1(xj1)

∏
i∈C\{m, j1}

fi (xi )
)

+
(

−
∑
j2 �=m

αm, j2L j2

+
∑
j2 �=m

∑
j3 �=m

αm, j2, j3L j2L j3 + · · · + (−1)n+1α1,2,...,n

∏
i∈C\{m}

Li

)

×
(
xm f̃m(xm)

∏
i∈C\{m}

fi (xi )
)

+
∑
j1 �=m

∑
j2

(
α j1, j2 −

∑
j3

α j1, j2, j3L j3
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+
∑
j3

∑
j4

α j1, j2, j3, j4L j3L j4 + · · · + (−1)nα1,2,...,n

∏
i∈C\{ j1, j2}

Li

)

×
(
xm fm(xm) f̃ j1(xj1) f̃ j2(xj2)

∏
i∈C\{ j1, j2,m}

fi (xi )
)

+
∑
j2 �=m

(
αm, j2 −

∑
j3 �=m

αm, j2, j3L j3 +
∑
j3 �=m

∑
j4 �=m

αm, j2, j3, j4L j3L j4 + · · ·

+ (−1)nα1,2,...,n

∏
i∈C\{m, j2}

Li

)(
xm f̃m(xm) f̃ j2(xj2)

∏
i∈C\{m, j2}

fi (xi )
)

+ · · ·

+
∑
j1 �=m

∑
j2

. . .
∑
jn−1

(α j1, j2,..., jn−1 − α1,2,...,nLm)

(
xm fm(xm)

n∏
k=1, jk �=m

f̃ jk(xjk)
)

+
∑
j2 �=m

. . .
∑
jn−1 �=m

(αm, j2,..., jn−1 − α1,2,...,nL jn �=m)

×
(
xm f̃m(xm) f jn (xjn )

n−1∏
k=1, jk �=m

f̃ jk(xjk)
)

+ α1,2,...,nxm f̃m(xm)
∏
i �=m

f̃i (xi ).

(7.5)

Plugging (7.5) in (7.4) and using (7.1), Lemma 5.1, 5.2, and 5.3, similarly to the
bivariate case one may express (7.4) as follows

E(Xm1{Sn=s}) =
∞∑
k=1

zm,kWk(VaRSn (p), βn + 1),

where zm,k is given in (6.2). Hence, the proof follows easily. �
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APPENDIX A

A. DEPENDENCEMEASURES

Pearson’s correlation coefficient has beenwidely used as ameasure of the dependence between
two random variables (rv) X1 and X2. In this respect, the concept of dependence is assumed to
be the linear relationship between the two rv. However, in practice the dependence structure
is not always linear hence is why the concept of concordance has been introduced, see e.g.,
Nelsen (1999), McNeil et al. 2005, or Denuit et al. (2005). By definition, a rv X1 is concor-
dant with a rv X2 if they tend to vary together. The two measures of association of X1 and
X2, namely Spearman’s rho and Kendall’s tau are based on this concept. Probabilistically
speaking, if (Y1,Y2) and (Z1, Z2) are independent copies of the pair of continuous random
variables (X1, X2), then Kendall’s tau is defined as

τ(X1, X2) = P{(X1 − Y1)(X2 − Y2) > 0} − P{(X1 − Y1)(X2 − Y2) < 0},

and Spearman’s rho is defined as

ρS(X1, X2) = 3{P[(X1 − Y1)(X2 − Z2) > 0] − P[(X1 − Y1)(X2 − Z2) < 0]},

where Y1 and Z2 are independent. If (X1, X2) ∼ SME2(β, Q˜1, Q˜2) and further Xi , i = 1, 2
has finite mean, then we have:
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TABLE A.1

MIXTURE PARAMETERS OF MARGINALS.

X1 X2

k q1,k k q2,k

1 0.5270 1 0.5050
40 0.0005 8 0.0150
50 0.0020 30 0.0105
75 0.0010 50 0.0020
150 0.0015 70 0.0015
345 0.0005 95 0.0010
902 0.0050 850 0.0055
970 0.4375 995 0.1050
993 0.0250 1000 0.3545

1. Pearson’s correlation coefficient:
If we set ηik := 1

βi+1

∑∞
k=1 kqi,kβ

k
i and �ik := ∑∞

k=1 qi,kβ
k
i μi for i = 1, 2, then by (2.6)

Pearson’s correlation coefficient of the bivariate SmE risks has an explicit form as

ρ12(X1, X2) = α12(η1,k − �1,k)(η2,k − �2,k)

σ1σ2
, (A.1)

where μi is the expected value of Xi , i = 1, 2 and σi is its standard deviation.

Remarks A.1. According to (2.7), the maximal value of Pearson’s correlation coefficient of
the bivariate SmE risks can be written as follows

ρmax
12 (X1, X2) = (η1,k − �1,k)(η2,k − �2,k)

max{L1(1 − L2), (1 − L1)L2}σ1σ2
(A.2)

and its minimal value can be expressed as

ρmin
12 (X1, X2) = −(η1,k − �1,k)(η2,k − �2,k)

max{L1L2, (1 − L1)(1 − L2)}σ1σ2
. (A.3)

In the following example, we show that the SmE distribution is flexible as a model for
dependent risks.

Example A.2. Extremal dependence
In this example, we analyse the bounds of Pearson’s correlation coefficient of a bivariate
mixed Erlang distribution with marginals which share the same scale parameter and consist
of 9 Erlang components. The mixture parameters are summarized in Table A.1. Figure A.1
presents the lower and the upper bound of Pearson’s correlation coefficient as a function of
the common scale parameter β. We can see that ρmax

12 and ρmin
12 tend to reach the extremal

dependence case which correspond to values of 1 and−1 respectively. The strongest negative
correlation ρmin

12 = −0.87545 is attained for β = 21.5723 while the value of β = 153.0315
yields the maximal positive correlation ρmax

12 = 0.96871. Hence, not only is the range of the
dependence flexible but also wide.Moreover, the simulated values of ρmax

12 and ρmin
12 , presented

in dotted red lines in Figure A.1, correspond well with the exact values, this demonstrates
again the robustness of our results.
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FIGURE A.1: ρmax
12 and ρmin

12 as a function the common scale parameter β. (Color online)

2. Spearman’s Rho: Spearman’s rho of the bivariate SmE risks can be expressed explicitly
as follows

ρS(X1, X2) = 3(1 + γ ) + 6α12[2ζ1ζ2 − L1ζ2 − L2ζ1] − 3, (A.4)

where ζi = ∑∞
k=1 qi,kβi

k ∑∞
m=1

∑k−1
j=0 qi,m(

j +m− 1
m− 1

)
βmi (βi+1) j

(2β+1)m+ j , for i = 1, 2.

3. Kendall’s Tau: Kendall’s tau of the bivariate SmE is given by the following closed
formula

τ(X1, X2) = 4 [(1 + γ )12(ρS(X1, X2) + 3) + α12τ1 − α12L2τ2 − α12L1τ3] − 1, (A.5)

where ρS(X1, X2) is Spearman’s rho,

τ1 = (1 + γ )Z1Z2 + α12T1T2 − α12L1Z1T2 − α12L2Z2T1,

τ2 = 1
2
(1 + γ )Z1 + α12T1ζ2 − α12L1Z1ζ2 − 1

2
α12L2T1,

τ3 = 1
2
(1 + γ )Z2 + α12ζ1T2 − α12L2ζ1Z2 − 1

2
α12L1T2,

with

Zi =
∞∑
k=1

qi,k
∞∑
m=1

k−1∑
j=0

qi,m

(
j +m− 1
m− 1

)(
βi

2βi + 1

)m+ j

, for i = 1, 2,

Ti =
∞∑
k=1

qi,kβi
k

∞∑
m=1

k−1∑
j=0

qi,m

(
j +m− 1
m− 1

)
βm
i (βi + 2) j

(2βi + 2)m+ j
, for i = 1, 2.

https://doi.org/10.1017/asb.2014.24 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.24


ON SARMANOV MIXED ERLANG RISKS 203

B. SIMULATION OF SME RISKS

In simulation, in order to remove the dependence between two risks X1 and X2, the Rosen-
blatt transform introduced by Rosenblatt (1952) is widely used. In fact, to simulate X2 this
approach consists in using the conditional quantile function of X2 given the value of X1.
Hence, the conditional df of X2 is found accordingly. The following lemma yields how this
can be done for the case of the bivariate SmE distribution.

Lemma B.1. Let (X1, X2) ∼ SME2(β, Q˜1, Q˜2), for a given value of X1 the conditional df of
X2 is described as follows

F2|1(x2|x1) = λF2(x2, β2, Q˜2) + α12
1

∞∑
k=1

q2,kβ
k
2Wk(x2, β2 + 1), (A.1)

where

λ = 1 + α12L2(L1 − e−x1), 
1 = (e−x1 − L1).

Proof. For a given value of X1, one can define the conditional distribution function of X2 as

F2|1(x2|x1) =
∫ x2
0 h(x1, s)ds

f1(x1)
.

According to (2.1)

h(x1, s) = (1 + α12L1L2) f1(x1) f2(s) + α12e−x1 f1(x1)e−s f2(s)

− α12L2e−x1 f1(x1) f2(s) − α12L1e−s f2(s) f1(x1)

= (1 + α12L1L2 − α12L2e−x1) f1(x1) f2(s)

+α12(e−x1 − L1) f1(x1)e−s f2(s).

Setting
λ := 1 + α12L2(L1 − e−x1) and 
1 := e−x1 − L1,

the expression of h(x1, s) becomes

h(x1, s) = λ f1(x1) f2(s) + α12
1 f1(x1)e−s f2(s).

Hence

F2|1(x2|x1) =
∫ x2
0 λ f1(x1) f2(s) + α12
1 f1(x1)e−s f2(s)ds

f1(x1)

= λ

∫ x2

0
f2(s)ds + α12
1

∫ x2

0
e−s f2(s)ds

= λF2(x2, β2, Q˜2) + α12
1

∫ x2

0
e−s

∞∑
k=1

q2k
βk
2

(k− 1)!
sk−1e−β2sds

= λF2(x2, β2, Q˜2) + α12
1

∞∑
k=1

q2k

(
β2

β2 + 1

)k

Wk(x2, β2 + 1).
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The inverse of F2|1 can be computed numerically and as a result the Rosenblatt transform can
be implemented efficiently. The simulation algorithm can be summarised as follows:

1. simulate two independent rv u1 and u2 uniformly distributed
2. simulate X1 using the inverse transform: x1 = F−1

1 (u1)
3. simulate X2 using the Rosenblatt transform: x2 = F−1

2|1 (u2|x1)
4. simulate the aggregate rv S2 = X1 + X2.

Remarks B.2. The result in Lemma B.1 can be generalized for the multivariate case. Specifi-
cally, if (X1, . . . , Xn) has a multivariate SmE distribution with Xi ∼ ME(βi , Q˜i ), i = 1, . . . , n,
for given values of X1, . . . , Xn−1 one can express the conditional distribution of Xn as follows
(set C := {1, . . . , n})

Fn|1,...,n−1(xn|x1, . . . , xn−1) = λFn(xn, βn, Q˜n) + 


∞∑
k=1

qn,kβ
k
nWk(xn, βn + 1),

where

λ = 1
D(x1, . . . , xn−1)

{
(1 + γ ) +

∑
j1 �=n

(
−

∑
j2

α j1, j2L j2 +
∑
j2

∑
j3

α j1, j2, j3L j2L j3

+ · · · + (−1)n+1α1,2,...,n

∏
i∈C\{ j1}

Li

)
e−xj1

+
∑
j1 �=n

∑
j2 �=n

(
α j1, j2 −

∑
j3

α j1, j2, j3L j3 +
∑
j3

∑
j4

α j1, j2, j3, j4L j3L j4

+ · · · + (−1)nα1,2,...,n

∏
i∈C\{ j1, j2}

Li

)
e−xj1−xj2

+ · · · + (α1,2,...,n−1 − α1,2,...,nLn)e−x1−...−xn−1

}
,


 = 1
D(x1, . . . , xn−1)

{(
−

∑
j2 �=n

α j2,nL j2 +
∑
j2 �=n

∑
j3 �=n

α j2, j3,nL j2L j3 + · · · + (−1)n+1

× α1,2,...,n

∏
i∈C\{n}

Li

)
+

∑
j2 �=n

(
α j2,n −

∑
j3 �=n

α j2, j3,nL j3 +
∑
j3 �=n

∑
j4 �=n

α j2, j3, j4,nL j3L j4 + · · ·

+ (−1)nα1,2,...,n

∏
i∈C\{ j1,n}

Li

)
e−xj2 + · · · +

∑
j1 �=n

∑
j2 �=n

. . .
∑
jn−1 �=n

(α j1,..., jn−1 − α1,...,n

×Ll,l∈C\{ j1 ..., jn−1})e
−xj1−...−xjn−2 + α1,2,...,ne−x1 − . . . − xn−1

}
,
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with

D(x1, . . . , xn−1) =
(
1 +

∑
j1 �=n

∑
j2 �=n

α j1, j2(e
−xj1 − L j1)(e

−xj2 − L j2) +
∑
j1 �=n

∑
j2 �=n

∑
j3 �=n

α j1, j2, j3

× (e−xj1 − L j1)(e
−xj2 − L j2)(e

−xj3 − L j3) + · · · + α1,2,...,n−1

n−1∏
i=1

(e−xi − Li )

)
,

γ =
∑
j1

∑
j2

α j1, j2L j1L j2 −
∑
j1

∑
j2

∑
j3

α j1, j2, j3L j1L j2L j3 + · · · + (−1)nα1,2,...,n

n∏
i=1

Li ,

j1 ∈ C, j2 ∈ C\{ j1}, j3 ∈ C\{ j1, j2}, . . . , jn ∈ C\{ j1, . . . , jn−1}.
Similarily to the simulation of two dependent SmE risks, one can simulate n dependent SmE
risks iteratively.
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