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Complex linear differential equations with entire coefficients are studied in the
situation where one of the coefficients is an exponential polynomial and dominates
the growth of all the other coefficients. If such an equation has an exponential
polynomial solution f , then the order of f and of the dominant coefficient are equal,
and the two functions possess a certain duality property. The results presented in
this paper improve earlier results by some of the present authors, and the paper
adjoins with two open problems.

Keywords: Dual exponential polynomials; exponential sum; finite order; linear
differential equation; Ozawa’s problem; value distribution

2020 Mathematics subject classification: 30D15; 30D35

1. Introduction

Frei [2] has proved that the differential equation

f ′′ + e−zf ′ + αf = 0, α ∈ C \ {0}, (1.1)
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has a subnormal solution f , which is non-trivial and satisfies

lim sup
r→∞

log log M(r, f)
r

= 0,

if and only if α = −m2 for a positive integer m. The subnormal solution f is a
polynomial in ez of degree m, that is, an exponential sum of the form

f(z) = 1 + C1ez + · · · + Cmemz, Cj ∈ C. (1.2)

It was discovered in [18, lemma 1] that in this representation one has Cj �= 0 for
1 � j � m. Substituting the subnormal solution f into (1.1), we get

m∑
j=1

Cjj
2ejz +

m∑
j=1

Cjje( j−1)z − m2
m∑

j=1

Cjejz = m2.

By the Borel–Nevanlinna theorem [3, pp. 70, 108], or simply by an elementary
observation on three polynomials in ez, this gives rise to the recursive formula

C1 = m2, (m2 − j2)Cj = ( j + 1)Cj+1, 1 � j � m,

from which Cj = 1
j!

∏j−1
k=0(m

2 − k2) for 1 � j � m. Due to the presence of the
transcendental coefficient e−z, any solution of (1.1) linearly independent with f
in (1.2) must be of infinite order [7]. For example, when α = −1, the function
g(z) = exp(e−z + z) is an infinite order solution of (1.1) and linearly independent
with f(z) = 1 + ez.

Ozawa [15] showed that if a �= 0, then the non-trivial solutions of

f ′′ + e−zf ′ + (az + b)f = 0

are of infinite order of growth. If P (z) is a non-constant polynomial, the question
whether all non-trivial solutions of

f ′′ + e−zf ′ + P (z)f = 0

are of infinite order of growth has been known as the Ozawa problem. This
problem has been answered affirmatively for particular polynomials P (z) by
Amemiya–Ozawa [1] and by Gundersen [4], while the complete solution is by
Langley [12].

We proceed to state three new examples of Frei–Ozawa type.

Example 1.1. If H is an arbitrary entire function, then f(z) = ez + 1 solves

f ′′ + (H − 1 + He−z)f ′ − Hf = 0.

Of particular interest is the case when H is a polynomial.

Example 1.2. The function f(z) = 1 + (1 − 3c)(ez + (1 − (3/4)c))e2z, c ∈ C \
{1/3, 4/3}, with two exponential terms solves

f ′′ +
(
−5

3
− c +

2
3
e−z

)
f ′ +

(
2c − 2

3

)
f = 0.
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Example 1.3. The function f(z) = 1 + 3e2z +
√

6ie3z with two exponential terms
solves

f ′′ +
(
1 −

√
6ie−z + 2e−2z

)
f ′ − 12f = 0,

where the transcendental coefficient has two exponential terms also. By making a
change of variable z → wz, where w ∈ C \ {0}, we see that

g′′ + w
(
1 −

√
6ie−wz + 2e−2wz

)
g′ − 12w2g = 0

has a solution g(z) = 1 + 3e2wz +
√

6ie3wz = f(wz).

One might wonder about possible examples of solutions f with a single exponen-
tial term and of transcendental coefficients A(z) having at least two exponential
terms. The non-existence of such examples will be confirmed in theorem 3.2 below.
For example, it will be shown that a function f(z) = 1 + bewz for b, w ∈ C is a
solution of

f ′′ +
{
P1(z) + P2(z)e−wz

}
f ′ − P (z)f = 0

for P (z), P1(z), P2(z) ∈ C[z] if and only if P1(z) = (1/w)P (z) and P2(z) =
(1/bw)P (z).

In contrast to Ozawa’s problem and complementing the three examples above, our
primary focus is on exponential polynomial solutions of linear differential equations,
in particular of second-order equations

f ′′ + A(z)f ′ + B(z)f = 0, (1.3)

where A(z) and B(z) are entire. An exponential polynomial is a function of the
form

f(z) = P1(z)eQ1(z) + · · · + Pk(z)eQk(z), (1.4)

where Pj , Qj are polynomials for 1 � j � k. Observe that a polynomial is a special
case of an exponential polynomial. A transcendental exponential polynomial f can
be written in the normalized form

f(z) = F0(z) + F1(z)ew1zq

+ · · · + Fm(z)ewmzq

, (1.5)

where q = max{deg(Qj)} � 1 is the order of f , the frequencies wj are non-zero and
pairwise distinct, the multipliers Fj are exponential polynomials of order � q − 1
such that Fj(z) �≡ 0 for 1 � j � m, and m � k [8, 16].

Definition 1.4 ([18]). Let f be given in the normalized form (1.5). If the non-zero
frequencies w1, . . . , wm of f all lie on a fixed ray arg(w) = θ, then f is called a
simple exponential polynomial. If g is another simple exponential polynomial of
the same order q as f such that the non-zero frequencies of g all lie on the opposite
ray arg(w) = θ + π, then f and g are called dual exponential polynomials.

For example, the functions f(z) = z2e−iz + zez2
+ e2z2+(1−i)z and g(z) =

2e−z2+(1+i)z + z2e−4z2+iz are dual exponential polynomials of order 2.

https://doi.org/10.1017/prm.2021.29 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.29


704 J. Heittokangas et al.

In studying the differential equation (1.3) with entire coefficients A(z) and B(z),
it is fundamental that each of its solutions f is an entire function also. In this
paper, we study cases when f can be an exponential polynomial assuming that
A(z) is an exponential polynomial and that B(z) grows slowly compared to A(z).
Naturally, the set E of entire functions is a ring closed under differentiation, and the
set Expq of exponential polynomials of order � q ∈ N together with constants in C

and ordinary polynomials in C[z] =: Exp0 becomes a differential subring of E . On
the other hand, Expq is not closed under integration in general except for the set
Exp1 of exponential polynomials of order � 1, which plays a role in our discussions.

To identify a primitive of each element in Exp1, it is convenient to use the formula

∫
znewz dz =

(
1
w

zn +
n−1∑
ν=0

(−1)n−νn!
wn−ν+1ν!

zν

)
ewz + constant

for n ∈ N ∪ {0} and w ∈ C \ {0}. Of course, an analogous formula is not in general
available for znewzq

when q � 2. Indeed, recall the error function erf(z) defined
also for complex argument z by

erf(z) =
2√
π

∫ z

0

e−ζ2
dζ.

It is the primitive of (2/
√

π)e−z2 ∈ Exp2, but the function itself is not an expo-
nential polynomial. For this reason one needs the special expression erf(z) for this
function as in the real argument case. This is also the case when q � 3. The value
distribution of the functions

∫ z

0
e−ζq

dζ, q ∈ N, as described in Nevanlinna’s mono-
graph [14, pp. 168–170], is quite different from that of exponential polynomials
[8, 10, 16].

Along with Expq−1, the set Sq(θ) of simple exponential polynomials of order q
with respect to a fixed angle θ ∈ [0, 2π) forms a differential subring of Expq. A unit
element in Sq(θ) is a single exponential term ewzq+p(z) with arg(w) = θ, p(z) ∈ C[z]
and deg(p) � q − 1, whose multiplicative inverse belongs to the set Sq(θ + π) as
its dual exponential polynomial. It should be observed that if f ∈ Sq(θ) and g ∈
Sq(θ + π) are dual exponential polynomials, then fg ∈ Expq−1 might not hold, but
even so, the growth of fg in terms of the characteristic function could be somewhat
reduced from that of f or g.

Example 1.5. If f(z) = ez + e2z and g(z) = e−4z, then T (r, f) = (2/π)r + O(log r)
and T (r, g) = (4/π)r + O(log r), while T (r, fg) = (3/π)r + O(log r), see [10]. Alter-
natively, the choice g(z) = e−z gives T (r, g) = (1/π)r and T (r, fg) = (1/π)r +
O(1).

In our setting, the duality of two exponential polynomials is an interdependence
among them in order to reduce the growth under multiplication, especially when
combined with differentiation. For example, if A and f are dual exponential poly-
nomials of order q, then A and f ′ are also dual, and at times the growth of Af ′ is
reduced to ρ(Af ′) < q.

The motivation for studying exponential polynomial solutions of (1.3) arises from
the following previous result.
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Theorem 1.6 ([18]). Suppose that f is a transcendental exponential polynomial
solution of (1.3), where A(z) and B(z) are exponential polynomials satisfying
ρ(B) < ρ(A). Then the following assertions hold.

(a) f and A(z) are dual exponential polynomials of order q ∈ N, and f has the
normalized representation

f(z) = c + F1(z)ew1zq

+ · · · + Fm(z)ewmzq

, (1.6)

where m ∈ N and c ∈ C \ {0}.
(b) If ρ(Af ′) < q, then q = 1 and

A(z) = ae−wz, B(z) = −w2 and f(z) = c
(
1 +

w

a
ewz
)

, (1.7)

where w = w1 and a ∈ C \ {0}.

If a = c = w = 1, then (1.7) reduces to Frei’s equation (1.1) and Frei’s solution
(1.2) in the case m = 1. The following example illustrates that it is not always
the case that the differential equation (1.3) possesses a non-trivial exponential
polynomial solution when A(z) and B(z) are exponential polynomials satisfying
ρ(B) < ρ(A).

Example 1.7. For a fixed n ∈ Z, let A(z) = −5/3 + n + (2/3)e−z and B(z) =
−8/3 + n. Then (1.3) has a zero-free solution

f(z) = exp
{

2
3
e−z +

(
8
3
− n

)
z

}
. (1.8)

Note that f is an exponential of an exponential polynomial. Another solution of
(1.3), linearly independent with f , is

g(z) = f(z)
∫ z e−ζ

f(ζ)
dζ

= exp
{

2
3
e−z +

(
8
3
− n

)
z

}∫ z

exp
{

2
3
e−ζ +

(
5
3
− n

)
ζ

}
dζ,

where the integral represents an arbitrary primitive function. We may re-write this
as

g(z) exp
{
−2

3
e−z −

(
8
3
− n

)
z

}
=
∫ z

exp
{

2
3
e−ζ +

(
5
3
− n

)
ζ

}
dζ

to see that g solves a first-order equation

g′(z) +
{
−2

3
e−z +

(
8
3
− n

)}
g(z) = exp

{
4
3
e−z +

(
13
3

− 2n

)
z

}
.

This shows that g cannot be any exponential polynomial as a function of infinite
order. Hence it is necessary in theorem 1.6 to assume that (1.3) has a nontrivial
exceptional polynomial solution f .
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One may also observe that a small perturbation in the above coefficients A(z) and
B(z) brings our desired case. In fact, by choosing A(z) = −5/3 − n + (2/3)e−z and
B(z) = −2/3 + 2n for any n ∈ Z, equation (1.3) permits the exponential polynomial
solution

f(z) = 1 + (1 − 3n)ez + (1 − 3n)
(

1 − 3
4
n

)
e2z. (1.9)

A difference between these two cases can also be observed in the logarithmic deriva-
tives: If f is the function in (1.8), then f ′(z)/f(z) = −(2/3)e−z + 8/3 − n, while if
f is the function in (1.9), then f ′(z)/f(z) is not an exponential polynomial but an
irreducible rational function in ez.

After discussing some properties of exponential polynomials in § 2, we will show
in § 3 that the conclusions in theorem 1.6(a) can be made stronger under weaker
assumptions. Complementing the condition ρ(Af ′) < q in theorem 1.6(b), some new
conditions implying the conclusion q = 1 will be discovered. Examples on higher
order duality as well as on the cases where a solution is dual to more than one
coefficient will be discussed in § 4 and 5, respectively. Two open problems are
formulated in the hope that these findings would give raise to further discussions
in the future.

2. Preliminaries on exponential polynomials

We need to introduce several concepts some of which are new.

Definition 2.1 ([11, p. 214]). Let f in (1.5) be a simple exponential polynomial.
If there exists a constant w ∈ C \ {0} such that wj/w is a positive integer for every
j = 1, 2, . . . , m, then the (non-zero) frequencies of f are said to be commensurable,
and w is called a common factor.

For example, f(z) = eπz + 3e2πz + ze3πz and g(z) = e4iz + e6iz are simple expo-
nential polynomials, both of their frequencies are commensurable, and examples for
common factors are π, π/2 for f and i, 2i for g. In particular, a common factor is
not unique.

Note that it is usual to say that non-zero real numbers a and b are commensurable
if their ratio a/b is a rational number. Equivalently, there exist a real number c and
integers m and n such that a = mc and b = nc. In definition 2.1 we are concerned
with a simple exponential polynomial and a fixed θ ∈ [0, 2π), and thus all the non-
zero frequencies are of the form wj = rjeiθ for rj > 0, and the ratio of wj and wi

is

wj

wi
=

rj

ri
=

wj/w

wi/w
.

This is a positive rational number for a common factor w. If we consider the dual
exponential polynomial which are both commensurable with the same common
factor, all those frequencies are commensurable in the usual sense, that is, each
ratio of the frequencies can be an integer not restricted to a positive integer any
more.
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If f is a simple exponential polynomial of order one with constant multipliers, and
if its frequencies are commensurable as in Frei’s case (1.2), then by the fundamental
theorem of algebra, f can be written as

f(z) = A

m∏
j=1

(ewz − αj) ,

where A �= 0, αj ’s are complex constants and m is a positive integer. In particular,
all the zeros of f lie on at most m lines.

We note that if the non-zero frequencies of f are commensurable, then they are
clearly linearly dependent over rationals (see [13] for results in this direction), but
not the other way around. For example, the points w1 = 1, w2 =

√
2, w3 =

√
2 − 1

are linearly dependent over rationals but not commensurable.

Definition 2.2. Suppose that f and g are dual exponential polynomials with com-
mensurable frequencies {wj} ( j > 0) and {λi} (i > 0), respectively, sharing the
same common factor w but with opposite signs. If the points wj + λi are on one ray
including the origin for all i, j > 0, then f and g are called strongly dual exponential
polynomials.

For example, the functions f(z) = 1 + zez + 2e3z and g(z) = 1 − e−z are strongly
dual exponential polynomials, while f(z) and h(z) = g(z) + 2z2e−2z are not. Note
that if arg(wj) = θ, then arg(λj) = θ + π by duality, and moreover, if wj + λi �= 0,
then precisely one of arg(wj + λi) = θ or arg(wj + λi) = θ + π holds for all i, j > 0.
Alternatively, strong duality of f and g of order q can be expressed as follows: there
exists a non-zero constant w such that

f(z) =
m∑

j=0

Fj(z)(ewzq

)j and g(z) =
m∑

i=0

Gi(z)(e−wzq

)i, (2.1)

where Fj , Gi are exponential polynomials of order � q − 1. Hence f is a polynomial
in ewzq

and g is a polynomial in e−wzq

, with smaller exponential polynomials as
multipliers. Using the notation above, f ∈ Expq−1[ewzq

] and g ∈ Expq−1[e−wzq

].
Differing from the situation in (1.5), some of the multipliers Fj , Gi (i, j > 0) in
(2.1) must suitably vanish identically so that either of j − i � 0 or j − i � 0 always
holds for all non-vanishing multipliers Fj , Gi (i, j > 0). This is a consequence of
definition 2.2.

We may think that being strong in our duality means that the product of
f(z) − F0(z) and g(z) − G0(z) becomes again a commensurable exponential poly-
nomial with either w or −w as a common factor. In the case when both F0(z) and
G0(z) are constant, each product of the derivatives f (k)(z) and g(�)(z), k, 	 ∈ N,
is a commensurable exponential polynomial with the same common factor as the
product of f(z) − F0(z) and g(z) − G0(z).

Definition 2.3 ([18]). Denote the set of complex conjugate frequencies of the func-
tion f in (1.5) by Wf = {w0, w1, . . . , wm}, where w0 = 0 is related to the multiplier
F0(z) �≡ 0, and Wf = {w1, . . . , wm} when F0(z) ≡ 0. Denote the convex hull of the
set Wf by co(Wf ), and let C(co(Wf )) denote the circumference of co(Wf ).
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The set co(Wf ) is defined as the intersection of all closed convex sets containing
Wf , and as such it is either a convex polygon or a line segment. The latter occurs
when f is simple, and, in particular, when w1, . . . , wm are commensurable. The
vertices of co(Wf ) are formed by some (possibly all) of the points w0, w1, . . . , wm.
The circumference C(co(Wf )) of co(Wf ) plays an important role in describing the
value distribution of f , see [8, 10, 16].

Let h be a quotient of two transcendental exponential polynomials, say

h(z) = f(z)/g(z),

where f is of the form (1.5) and g is an exponential polynomial of the normalized
form

g(z) = G0(z) + G1(z)ew1zq

+ · · · + Gm(z)ewmzq

.

In these representations of f and g for the quotient h, we allow that some of the
multipliers Fj or Gj may vanish identically, but we suppose that the matching
multipliers Fj and Gj do not both vanish identically for any j.

For the quotient h = f/g, define the set Wh = {w0, w1, . . . , wm}. The proximity
function of h satisfies

m(r, h) =
(
C(co(Wh)) − C(co(Wg))

) rq

2π
+ o(rq), (2.2)

see [17, satz 1]. In particular, if g ≡ 1, then Wg = {0} and C(co(Wg)) = 0. This
yields [16, satz 1] as a special case, namely

T (r, f) = m(r, f) = C(co(W 0
f ))

rq

2π
+ o(rq), (2.3)

where W 0
f = Wf ∪ {0}. The estimates (2.2) and (2.3) are consistent with the

estimate

m

(
r,

f ′

f

)
= o(T (r, f)),

known as the lemma on the logarithmic derivative, since Wf ′/f = Wf holds for any
given exponential polynomial f of the form (1.5). We also point out that Wf/f ′ =
Wf ′ . This fact will be used in proving our main results in § 3.

3. The main results

Motivated by example 1.3, we improve theorem 1.6(a) under weaker assumptions
on B(z).

Theorem 3.1. Suppose that f and A(z) in (1.3) are transcendental exponential
polynomials, and that B(z) is an entire function satisfying T (r,B) = o(T (r,A)).
Then the following assertions hold:

(a) f and A(z) are dual exponential polynomials of order q ∈ N, f has the nor-
malized representation (1.6), and B(z) is an exponential polynomial of order
ρ(B) � q − 1.
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(b) The frequencies of f are commensurable if and only if the frequencies of A(z)
are commensurable. In both cases, f and A(z) are strongly dual exponential
polynomials.

Proof. (a) Suppose that 0 � ρ(f) � ρ(A) − 1. The case ρ(f) = 0 is not possible
because f is transcendental. Hence ρ(f) � 1. But now

|A| � |f ′′/f ′| + |B||f/f ′|
and the assumption T (r,B) = o(T (r,A)) imply

T (r,A) = m(r,A) � m(r,B) + O(rρ(A)−1) = o(T (r,A)),

which is a contradiction. Here we have used (2.2) for h = f/f ′ and g = f ′, as well
as (2.3) for A in place of f . The following two cases are also impossible by the proof
of [9, theorem 3.6]:

(1) ρ(f) = ρ(A) and either F0(z) ≡ 0 or F ′
0(z) �≡ 0.

(2) ρ(f) � ρ(A) + 1.

Thus ρ(f) = ρ(A) = q � 1 and f has the representation (1.6).
We proceed to prove that f and A(z) are dual exponential polynomials. Using

(1.3), we find that

m

(
r,

Af ′

f

)
= O(log r) + m(r,B) = o(T (r,A)) = o (rq) .

Formula (7.3) in [18] should be replaced by this. Thus formula (7.7) in [18] holds,
and the reasoning in [18] shows that f and A(z) are dual exponential polynomials.

To complete the proof of (a), it suffices to prove that B(z) is an exponential
polynomial of order ρ(B) � q − 1. Since the frequencies wj of f are all on one ray,
we may appeal to a rotation, and suppose that w1, . . . , wm ∈ R+. By renaming the
frequencies wj , if necessary, we may further suppose that 0 < w1 < · · · < wm. Thus
the dual coefficient must be of the form

A(z) = A0(z) +
k∑

j=1

Aj(z)e−λjzq

, (3.1)

where Aj(z) �≡ 0 for all j ∈ {1, . . . , k} and λ1, . . . , λk ∈ R+. Renaming the frequen-
cies λj , if necessary, we may suppose that 0 < λ1 < · · · < λk. Write

f ′(z) =
m∑

j=1

Gj(z)ewjzq

and f ′′(z) =
m∑

j=1

Hj(z)ewjzq

,

where Gj(z) = F ′
j(z) + qwjz

q−1Fj(z) �≡ 0 and Hj(z) = G′
j(z) + qwjz

q−1Gj(z) �≡ 0.
Next, write −Af ′ = Bf + f ′′ in the form

−
⎛
⎝ k∑

j=1

Aje−λjzq

⎞
⎠
⎛
⎝ m∑

j=1

Gjewjzq

⎞
⎠ = cB +

m∑
j=1

(A0Gj + BFj + Hj)ewjzq

. (3.2)
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From (3.2) we find that B is an exponential polynomial of order ρ(B) � q. In fact,
from (2.3) and the assumption T (r,B) = o(T (r,A)), it follows that ρ(B) � q − 1.

(b) We begin with some preparations. From [16] and [17], we have

m

⎛
⎝r,

k∑
j=1

Aje−λjzq

⎞
⎠ = T

⎛
⎝r,

k∑
j=1

Aje−λjzq

⎞
⎠ =

λk

π
rq + o(rq),

and

m

⎛
⎝r,

{
cB +

m∑
j=1

(A0Gj + BFj + Hj)ewjzq

}/ m∑
j=1

Gjewjzq

⎞
⎠

=
2wm − 2(wm − w1)

2π
rq + o(rq) =

w1

π
rq + o(rq).

Therefore, we deduce that

0 < λ1 < · · · < λk = w1 < · · · < wm. (3.3)

Thus from (3.2), it follows that

−AkG1 = cB. (3.4)

If A0Gm + BFm + Hm �≡ 0, then from [10, theorem 2.2] and (3.3), we get

N(r, 0, L) =
2(wm − w1) + 2(λk − λ1)

2π
rq + O(rq−1 + log r)

=
wm − λ1

π
rq + O(rq−1 + log r),

N(r, 0, R) =
wm

π
rq + O(rq−1 + log r),

where N(r, 0, L) and N(r, 0, R) are the counting functions of zeros of the exponential
polynomials on the left-hand side and on the right-hand side of (3.2), respectively.
This implies wm = wm − λ1, which is impossible. Thus we have

A0Gm + BFm + Hm ≡ 0. (3.5)

Now (3.2) reduces to

−
⎛
⎝ k∑

j=1

Aje−λjzq

⎞
⎠
⎛
⎝ m∑

j=1

Gjewjzq

⎞
⎠ = cB +

m−1∑
j=1

(A0Gj + BFj + Hj)ewjzq

. (3.6)

From the Borel–Nevanlinna theorem, and from AiGj �≡ 0 for j ∈ {1, 2, . . . ,m} and
i ∈ {1, 2, . . . , k}, it follows that there are only two possibilities:

(I) For some pairs ( j, i), where j ∈ {1, 2, . . . ,m} and i ∈ {1, 2, . . . , k}, there exists
	 ∈ {0, 1, . . . ,m − 1} such that

wj − λi = w�. (3.7)
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(II) For some pairs ( j, i), where j ∈ {1, 2, . . . ,m} and i ∈ {1, 2, . . . , k}, there exist
s ∈ {1, 2, . . . ,m} \ {j} and t ∈ {1, 2, . . . , k} \ {i} such that

wj − λi = ws − λt. (3.8)

After these preparations we proceed to prove that the frequencies of f are com-
mensurable if and only if the frequencies of A(z) are commensurable. By appealing
to (3.3) and to a change of variable as in example 1.3, we may suppose that
w1 = λk ∈ N. Thus we prove that wj ∈ N for j ∈ {1, . . . , m} if and only if λi ∈ N

for i ∈ {1, . . . , k}.
(i) Suppose that wj ∈ N for j ∈ {1, . . . , m}. From (3.3), we see that wm − λ1 =

maxj,i{wj − λi} and wm − λ1 > wj − λi for any j �= m and i �= 1. Hence,
from (3.7) and (3.8), there exists p < m such that wm − λ1 = wp, which
implies that λ1 ∈ N. In addition, from (3.3), we have wm − λ2 > wj − λi for
any j �= m and i > 2. Thus, from (3.7) and (3.8), there are only two possi-
bilities: (1) there exists p < m such that wm − λ2 = wp − λ1 and (2) there
exists p < m such that wm − λ2 = wp. In both cases, it follows that λ2 ∈ N.
Repeating this argument for k times gives us λi ∈ N for i ∈ {1, . . . , k}.

(ii) Suppose that λi ∈ N for i ∈ {1, . . . , k}. From (3.3), we have λk = w1, and con-
sequently w1 ∈ N. Moreover, from (3.3), we have w2 − λk < wj − λi for any
j > 1 and i �= k. Thus, from (3.7) and (3.8), there are only two possibilities:
there exists p < k such that either w2 − λk = w1 − λp or w2 − λk = w1. In
both cases, we have w2 ∈ N. Repeating this argument for m times gives us
wj ∈ N for i ∈ {1, . . . , m}.

If the frequencies are commensurable for one of f,A(z), then they are commen-
surable for both of f,A(z) by the reasoning above. The remaining fact that f and
A(z) are strongly dual exponential polynomials now follows by (3.3). �

The assumption ρ(Af ′) < ρ(f) in theorem 1.6(b) seems to be the only known
sufficient condition for the conclusion q = 1. However, in the case of Frei’s result
(1.1), we have

A(z)f ′(z) = e−z
m∑

j=1

jCjejz =
m−1∑
j=0

( j + 1)Cj+1ejz,

and so ρ(Af ′) = ρ(f) = 1. This shows that q = 1 may happen even if ρ(Af ′) = ρ(f).
Theorem 3.2 shows that f having only one large exponential term is also a sufficient
condition for q = 1. In contrast, if A(z) has only one large exponential term, then
f can have multiple large exponential terms as in (1.1).

Theorem 3.2. Suppose that f(z) = F0(z) + F1(z)ewzq

is a solution of (1.3), where
A(z) is an exponential polynomial and B(z) is an entire function satisfying
T (r,B) = o(T (r,A)). Then q = 1, and there are constants c, b ∈ C \ {0} and a
non-trivial polynomial P (z) such that

f(z) = c + bewz, A(z) =
b

c
P (z) − w + P (z)e−wz and B(z) = −wb

c
P (z).
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Proof. We proceed similarly as in the proof of theorem 3.1 until (3.6), which now
reduces to the form

−
⎛
⎝ k∑

j=1

Aje−λjzq

⎞
⎠G1ewzq

= cB, (3.9)

where F0(z) ≡ c ∈ C \ {0}. Hence k = 1, and consequently A(z) reduces to the form

A(z) = A0(z) + A1(z)e−wzq

.

From (3.9) and (3.5), with k = 1 = m, we find that

−A1G1 = cB and − A0G1 = BF1 + H1.

In other words,

c−1A1G1F1 = A0G1 + H1 = A0G1 + G′
1 + qwzq−1G1. (3.10)

Dividing both sides of (3.10) by G1, we observe that at every zero of G1 the right-
hand side has a pole but the left-hand side does not. Thus G1 has no zeros, and so we
may write it in the form G1 = eg, where g(z) = aq−1z

q−1 + · · · + a0 is a polynomial
of degree � q − 1. Since

G1 = F ′
1 + qwzq−1F1 = eg,

we obtain (F1(z)ewzq

)′ = ewzq+g(z), and consequently

F1(z)ewzq

=
∫ z

ewζq+aq−1ζq−1+···+a0 dζ. (3.11)

Here the right-hand side is an exponential polynomial, which happens only if q = 1.
Since q = 1, we see from (3.11) that F1(z) reduces to a non-zero constant, say

F1(z) ≡ b. Thus f(z) = c + bewz, and we have G1(z) ≡ wb and H1(z) ≡ w2b. A
substitution to (3.10) followed by a simplification gives

b

c
A1 = A0 + w.

There is no restriction for A1 other than the fact that A is an exponential poly-
nomial. Thus we may suppose that A1 is any non-trivial polynomial, say A1 = P .
This gives us A0 = (b/c)P − w, and finally B = −(wb/c)P . �

Example 1.1 shows that the coefficient B(z) in (1.3) can be a polynomial. Next,
we prove that this is equivalent to A0(z) in (3.1) being a polynomial, and reveal
another sufficient condition for the conclusion q = 1.

Proposition 3.3. Under the assumptions of theorem 3.1, the term A0(z) of A(z) in
(3.1) is a polynomial if and only if B(z) is a polynomial. Moreover, if the multipliers
of f and of A(z) are constants, then q = 1 and B(z) is a constant function.
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Proof. From the proof of theorem 3.1 we find that (3.5) holds, that is,

A0Gm + BFm + Hm = 0, (3.12)

where

Gm = F ′
m + wmqzq−1Fm,

Hm = F ′′
m + 2wmqzq−1F ′

m +
(
wmq(q − 1)zq−2 + w2

mq2z2q−2
)
Fm.

Thus Fm solves the second-order differential equation

F ′′
m + P (z)F ′

m + Q(z)Fm = 0, (3.13)

where

P (z) = 2wmqzq−1 + A0,

Q(z) = wmqzq−1A0 + wmq(q − 1)zq−2 + w2
mq2z2(q−1) + B.

Suppose first that A0(z) is a polynomial. If B(z) is transcendental, then it follows
from (3.13) and [5, corollary 1] that ρ(Fm) = ∞, which is a contradiction. Hence
B(z) must be a polynomial. Conversely, suppose that B(z) is a polynomial. Sup-
pose on the contrary to the assertion that A0(z) is a transcendental exponential
polynomial. Then there exists an open sector S such that A0(z) blows up exponen-
tially in S. Using [6, corollary 1] and ρ(Fm) � q − 1 in (3.13), we obtain on almost
every ray in S that

|wmqzq−1||A0(z)| � O
(
|z|max{2q,deg(B)}

)
+ O

(|z|q−2+ε|A0(z)|) .

However, this is obviously a contradiction, and hence A0(z) is a polynomial.
Finally, suppose that the multipliers of f and of A(z) are constants. From (3.4),

we find that B(z) = Czq−1 for some constant C ∈ C \ {0}. Since Fm(z) is a non-zero
constant function, it follows that the coefficient Q(z) in (3.13) vanishes identically.
But this is not possible because A0(z) is a constant function, unless q = 1. �

Remark 3.4. (a) Equation (3.13) implies that every possible zero of Fm is simple.
(b) Assuming that A0(z) is a polynomial, we give an alternative proof for the

fact that B(z) is a polynomial. We already know from theorem 3.1 that B(z) is of
order � q − 1. Since the non-zero frequencies of A(z) are all on one ray by duality,
it follows that the plane divides into 2q sectors of opening π/q such that in every
other sector A(z) either blows up exponentially or is asymptotic to the polynomial
A0(z). In the latter case, if A0(z) ≡ 0, then A(z) decays to zero exponentially. Thus,
from [5, theorem 7], we deduce that B(z) is a polynomial. Note, in particular, that
the constant μ in [5, theorem 7] satisfies μ = π/q.

Open problem 1. Under the assumptions of theorem 3.1, is it always true that
q = 1 and B(z) is a polynomial?
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This problem is fragile in the sense that the desired conclusion is not valid if a
minor modification in the assumptions of theorem 3.1 is performed. For example,
the differential equation

f ′′ − (qwzq−1 + z−1e−wzq)
f ′ − q(q − 1)wzq−2f = 0

possesses an exponential polynomial solution f(z) = ewzq − 1/(q − 1) for any q � 2.
Moreover, the function f(z) = ez2

+ 1 satisfies the differential equations

f ′′ +

(
e−z2 − 1

2z
− 2z

)
f ′ − f = 0,

f ′′ − e−z2
(z − 1) + 4z2 + z + 1

2z
f ′ + (z − 1)f = 0.

(3.14)

The transcendental coefficients in (3.14) are entire exponential polynomials with
rational multipliers because z = 0 is a removable singularity for both.

4. Duality for higher order functions

Next we construct examples of differential equations of order n � 2 having an expo-
nential polynomial solution f of order ρ(f) = n − 1 which is dual with one of the
coefficients.

Example 4.1. If H is an arbitrary entire function, then f(z) = ez2
+ 1 solves

f ′′′ +
(
1 + e−z2

)
Hf ′′ − (6 + 4z2)f ′ − (2 + 4z2)Hf = 0,

f ′′′ − 2zf ′′ + (H − 4 + He−z2
)f ′ − 2zHf = 0.

(4.1)

A particularly interesting case is when H is either a polynomial or an exponential
polynomial of order one. Thus either of the two possible coefficients can be dual
with f . Examples of second-order dual solutions for third-order equations can be
found in [18] but for polynomial coefficients only.

We can use the relation zf ′′(z) = (2z2 + 1)f ′ to see that, in addition to (4.1),
the function f(z) = ez2

+ 1 satisfies the equations

f ′′′(z) − 2zf ′(z) − 4f ′(z) = 0,

(1 + e−z2
)f ′(z) − 2zf(z) = 0,

(1 + e−z2
)f ′′(z) − (2 + 4z2)f(z) = 0.
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Example 4.2. If H is an arbitrary entire function, then f(z) = ez3
+ 1 solves

f (4) +
(
1 + e−z3

)
Hf ′′′ − 9z4f ′′ − 30

(
2 + 3z3

)
f ′ − (6 + 54z3 + 27z6

)
Hf = 0,

f (4) − 3z2f ′′′ +
(
H − 18z + He−z3

)
f ′′ − 18f ′ − H

(
6z + 9z4

)
f = 0,

f (4) − 3z2f ′′′ − 27zf ′′ +
(
H + 27z3 + He−z3

)
f ′ − 3z2Hf = 0.

A particularly interesting case is when H is an exponential polynomial of order at
most two. Thus all three of the possible coefficients can be dual with f . Previous
examples of third-order dual solutions do not seem to be known.

As in the previous example, we can use the relations zf ′′(z) = (3z3 + 2)f ′(z)
and zf ′′′(z) = (3z3 + 1)f ′′(z) + 9z2f ′(z) to see that f(z) = ez3

+ 1 satisfies the
equations

f (4)(z) − 3z2f ′′′(z) − 18zf ′′(z) − 18f ′(z) = 0,

(1 + e−z3
)f ′(z) − 3z2f(z) = 0,

(1 + e−z3
)f ′′(z) − (6z + 9z4)f(z) = 0,

(1 + e−z3
)f ′′′(z) − (6 + 54z3 + 27z6)f(z) = 0.

In light of open problem 1 and the examples just discussed, it is natural to pose
our second open problem.

Open problem 2. If a solution and the dominant coefficient are dual exponential
polynomials of order q, then is the differential equation in question of order at least
q + 1?

For the fragility of this problem, recall equations (3.14) satisfied by f(z) = ez2
+

1. Moreover, the function f(z) = ez3
+ 1 satisfies the third-order equation

f ′′′ +

(
e−z3 − 1

2z

)
f ′′ − 3z(3z3 + 5)f ′ − 3

2
(3z3 + 2)f = 0

with entire coefficients.
As the first initial step to knowing more about open problem 2, we make a

summary of the fundamental ideas in constructing examples 4.1 and 4.2.

Lemma 4.3. The function f(z) = ezq

+ 1, q ∈ N, possesses the following two
properties:

(i) (1 + e−zq

)f ( j+1)(z) =
j∑

k=0

Pj,k(z)f (k)(z), j ∈ N ∪ {0},

(ii) f (q+1)(z) =
q∑

�=1

Q�(z)f (�)(z),

where the Pj,k(z) and Q�(z) are non-zero polynomials satisfying
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(a)

⎧⎪⎪⎨
⎪⎪⎩

Pj+1,j+1(z) = Pj,j(z) − qzq−1, P0,0(z) = qzq−1,
Pj+1,k(z) = P ′

j,k(z) + qzq−1Pj,k(z) + Pj,k−1(z),
Pj,−1(z) ≡ 0, 1 � k � j,
Pj+1,0(z) = P ′

j,0(z) + qzq−1Pj,0(z),

(b) Q�(z) = −
(

q

	 − 1

)
(e−zq

)(q−�+1)ezq

.

Proof. First, let us prove (i) by induction on j. Of course, by taking their logarith-
mic derivatives, we have (1 + e−zq

)f ′(z) = qzq−1f(z) immediately, that is, the case
when j = 0 follows with P0,0(z) = qzq−1. Assume (i) is true for each j = 0, 1, . . . , n.
Then

(1 + e−zq

)f (n+2)(z) = qzq−1e−zq

f (n+1) +
n∑

k=0

{
P ′

n,k(z)f (k)(z) + Pn,k(z)f (k+1)(z)
}

= qzq−1(1 + e−zq

)f (n+1)(z) +
{
Pn,n(z) − qzq−1

}
f (n+1)(z)

+
n∑

k=1

{
P ′

n,k(z)f (k)(z) + Pn,k−1(z)
}
f (k)(z) + P ′

n,0(z)f(z)

= qzq−1
n∑

k=0

Pn,k(z)f (k)(z) +
{
Pn,n(z) − qzq−1

}
f (n+1)(z)

+
n∑

k=1

{
P ′

n,k(z)f (k)(z) + Pn,k−1(z)
}
f (k)(z) + P ′

n,0(z)f(z)

=
{
Pn,n(z) − qzq−1

}
f (n+1)(z)

+
n∑

k=1

{
P ′

n,k(z)f (k)(z) + qzq−1Pn,k(z) + Pn,k−1(z)
}
f (k)(z)

+
{
P ′

n,0(z) + qzq−1Pn,0(z)
}
f(z),

which is the one to be proved.
Second, let us calculate the q-th order derivative of the product f ′(z)e−zq

=
qzq−1. The Leibniz rule gives

q∑
�=0

(
q

	

)
f (�+1)(z)(e−zq

)(q−�) ≡ 0.

Denoting Q�+1(z) = −(q�)(e−zq

)(q−�)ezq

for 0 � 	 � q − 1, we have

f (q+1)(z) =
q−1∑
�=0

Q�+1(z)f (�+1)(z) =
q∑

�=1

Q�(z)f (�)(z),

as desired. �
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Example 4.4. We may apply the two identities in lemma 4.3 to construct
differential equations of arbitrary order. Given any entire function H, we have
the identity

f (q+1)(z) −
q∑

�=1

Q�(z)f (�)(z) = H(z)

(
(1 + e−zq

)f ( j)(z) −
j−1∑
k=0

Pj−1,k(z)f (k)(z)

)
,

that is, f(z) = ezq

+ 1 solves

f (q+1)(z) −
q∑

�=j+1

Q�(z)f (�)(z) −
(
(1 + e−zq

)H(z) + Qj(z)
)

f ( j)(z)

+
j−1∑
�=1

(
Pj−1,�(z)H(z) − Q�(z)

)
f (�)(z) + Pj−1,0(z)H(z)f(z) = 0,

where 1 � j � q, the sum
∑j−1

�=1 is empty if j = 1 and the sum
∑q

�=j+1 is empty if
j = q.

5. Multiple duality

The possibility that a solution f would be dual to more than one coefficient has
not been studied rigorously. In this case there would be at least two equally strong
dominant coefficients, or, in the case of (1.3), both coefficients A(z), B(z) would be
equally strong. For example, f(z) = e−z solves

f ′′ + ezf ′ + (ez − 1)f = 0

and is dual to both coefficients. Obviously the coefficients are not dual to each other.
More examples can be produced from example 1.1. Note that f(z) = ez solves (1.3)
if A(z) = −B(z) − 1. Hence f is not necessarily dual with either of A(z), B(z).

If H is any entire function, then f(z) = ezq

solves

f ′′ +
(
H(z) − qzq−1

)
f ′ − (q(q − 1)zq−2 + qzq−1H(z)

)
f = 0.

This example is from [5]. Note that f(z) = ezq

satisfies both f ′(z) − qzq−1f(z) = 0
and f ′′(z) − qzq−1f ′(z) − q(q − 1)zq−2f(z) = 0.

Recall [9, theorem 2.1], according to which there cannot be even one ray on which
B(z) would be stronger than A(z) in the sense of the Phragmén–Lindelöf indicator,
for otherwise all solutions of (1.3) are of infinite order. This happens, for example,
when A(z) and B(z) are dual to each other.

Example 5.1. One may observe the necessity of the assumption on the duality of
f and A(z) as well as that on the dominance of A(z) over B(z) by the following
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example: the function f(z) =
(
ez + e−z

)
ezq

, q ∈ N, satisfies

f ′′ +
{
Hez + He−z − 2qzq−1

}
f ′

− {(qzq−1 + 1)Hez + (qzq−1 − 1)He−z − q2z2(q−1) + q(q − 1)zq−2 + 1
}
f = 0

for any entire function H. When q = 1, this becomes

f ′′ +
{
Hez + He−z − 2

}
f ′ − 2Hezf = 0

with f(z) = e2z + 1. Thus we may use it in order to observe the duality of A(z)
and B(z) by several choices of H such as H(z) = enz for n ∈ Z or H(z) = eiz.

Here we note that f(z) = F (z)ezq

satisfies f ′/f = F ′/F + qzq−1 and

f ′′

f
=

F ′′

F
+ 2qzq−1 f ′

f
+
(
q(q − 1)zq−2 − q2z2(q−1)

)
so that there is no large freedom to choose the function F . For example, taking an
Airy function as F , we cannot have our desired equation f ′′ + A(z)f ′ + B(z)f = 0
with the exponential polynomial coefficients A(z) and B(z).
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