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The motion of a rigid particle in an inviscid non-uniformly vibrating ambient liquid is

considered. The vibrations are caused by a dipole changing its strength in time. This model

of a vibrator presents an asymptotic case of vibrations caused by a rigid sphere periodically

changing its position when the radius and amplitude are small and the velocity is large. It is

found that periodic oscillations with zero mean can cause the directed motion of a submerged

particle even if its density equals that of the liquid. The direction of the motion is studied.

It is shown that particles of density not less that of the ambient liquid are attracted by a

vibrator. The direction of motion of lighter particles depends on their initial position.

1 Introduction

The effect of oscillations of a liquid on the motion of submerged bodies has been the

subject of many studies [1–9]. It was established both theoretically and experimentally

that vibrations can cause the upward motion of a body whose density exceeds that of the

liquid as well as the downward motion of a light particle or a bubble [1–4, 6], and also

the directed motion of a particle in the absence of gravity forces [5, 7–9]. These results

suggest the possibility of using vibrations to control the motion of particles, for example

to extract undesirable admixtures from a liquid. The simplest case of vibrational forcing

is that of so-called ‘uniform vibrations’, when, in the absence of any particle, the liquid

moves as a rigid body, driven by the oscillation of the vessel. It is obvious, however, that

such vibrations cannot result in the directed motion of an initially stationary body whose

density equals that of the liquid, while, as far as liquid purification is concerned, the case

of equal or little different densities is of the greatest interest. Thus, it is necessary to

consider non-uniform vibrations. The latter can be provided by a vibrator, i.e. some body

that moves or changes its form periodically. Marmur and Rubin [7] were probably the

first to mention the principal difference between uniform and non-uniform oscillations of

liquid as far as the motion of submerged bodies is concerned.

A problem of this type in which a vibrator is a periodically progressive moving rigid

sphere was considered by Sennitskii [8]. The asymptotics in which the vibrator and particle

radii, and the amplitude of oscillations are small relative to the distance between the body

and the vibrator was studied. It was found that a body of density less than that of the
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Figure 1. Scheme of the process. The dipole of the strength Q(t) is located at the origin of the

laboratory coordinate system (r, θ,Ψ ). The origin of the moving coordinate system (r1, θ1, Ψ1) is in

the centre of the rigid sphere.

liquid moves away from the vibrator, whereas one whose density exceeds that of the liquid

moves towards the vibrator.

The directed motion of a rigid body of the same density as the ambient liquid was

predicted theoretically by Lavrenteva [5]. It was caused by a hydrodynamic source peri-

odically varying its strength. The motion of a liquid and of a sphere was axisymmetrical.

Experimentally such a motion was observed by Stebnovskii [9], the vibrations being

caused by a periodically moving rigid sphere. However, the motion was not axisymmetric.

The model of a vibrator considered in this work leads to non axisymmetric motion and

seems to be more realistic.

All the results of this paper apply only to solid particles. The motion of drops and

bubbles may be quite different. Results on the effect of vibrations on deformable interfaces

can be found in paper by Lyubimov et al. [10].

2 Statement of the problem

The problem of the motion of a rigid sphere in an inviscid liquid in the presence of

a vibrator is considered. Initially the liquid and particle are stationary. The vibrator is

modelled by a doublet periodically changing its strength.

Let (r, θ, ψ) be a spherical coordinate system such that the centre of the vibrator is

located at the point (0, 0, 0) and its axis is directed along the axis θ = 0. We also use a

moving spherical coordinate system (r1, θ1, ψ1) with the origin at the centre of the body

and oriented so that the axis θ1 = 0 is directed from the centre of a body to the doublet

(see Figure 1). Let the radius vector of the free sphere’s centre be X0 = (Y 0, Θ0, 0) at the
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initial time. Since initially the liquid does not move, the flow remains potential, thus

v = ∇Φ, (2.1)

p = −ρ(Φt + 1
2
|∇Φ|2) + a(t), (2.2)

v being the velocity and p pressure of the flow; ρ denotes the density of a liquid; a(t) is

an arbitrary function.

The radius vector of a body’s centre X = (Y (t), Θ(t), Ψ (t)) and the hydrodynamic

potential Φ satisfy the following equations:

∆Φ = 0, t > 0, x ∈ Ωt, (2.3)

∂nΦ = Vn, t > 0, x ∈ Σt, (2.4)

Φ = Q(t)
cos(θ)

r2
+ O(1), t > 0, r → 0, (2.5)

lim
r→∞∇Φ = 0, t > 0, (2.6)

mẌ =

∮
Σt

pnΣtdσ, t > 0, (2.7)

X(0) = X0, Ẋ = (0, 0, 0), (2.8)

where m = 4/3πρsR
3 is a mass of the solid body, ‘˙= d/dt ’; Ωt is the domain occupied

by the liquid, the boundary of the free body is Σt = {x ∈ R3/|X(t)− x| = R}, nΣt
denotes

an inner normal vector to Σt, Vn is the normal velocity of Σt, R denotes the radius of the

particle, and ρs is its density. The doublet strength Q(t) is supposed to be a T−periodic

function with zero mean, Q(0) = 0.

It is easy to see that the potential

Φ =
Q cos θ

r2
− R3Ẏ

2r2
1

cos θ1 − R3Y Θ̇

2r2
1

sin θ1 cosψ1 +
QRr1 cosΘ(Y r1 cos θ − R2)

(Y 2r2
1 − 2Y R2r1 cos θ1 + R4)3/2

+
Q cosψ1 sinΘ

Y
√
Y 2r2

1 − 2Y R2r1 cos θ1 + R4

[
Y r1 − R2 cos θ1

Y sin θ1
+

R4r1 sin θ1

Y 2r2
1 − 2Y R2r1 cos θ1 + R4

]

−Q cosψ1 sinΘ

Y 2 sin θ1
=
Q cos θ

r2
− R3Ẏ

2r2
1

cos θ1 +
QR cosΘ

r1Y 2

∞∑
k=0

k

(
R2

r1Y

)k
Pk(cos θ1)

−R
3Y Θ̇

2r2
1

sin θ1 cosψ1 − QR cosψ1 sinΘ

r1Y 2

∞∑
k=1

k

k + 1

(
R2

r1Y

)k
P 1
k (cos θ1) (2.9)

satisfies the equations (2.3)–(2.6) for every Y , Vn = Ẏ cos θ1 + Y θ̇ sin θ1 cosψ1. Note that

for a stationary particle and radial dipole, Θ = 0, this solution reduces to the classical one,

see for example [11]. After substituting this potential into (2.2) and using the resulting

pressure in (2.7), the problem reduces to the following Cauchy problem for a fourth order
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system of ordinary differential equations (see the Appendix):

(2λ+ 1)(ÿ − yΘ̇2)− d

dt

(
2q cosΘ

y3

)
=

6ẏq

y4
cosΘ +

2qΘ̇

y3
sinΘ

+

(
3 +

4

y2
− 1

y4

)
sin2 Θ − q2

3y7(1− y−2)4

[
12 cos2 Θ

]
, (2.10)

(2λ+ 1)(yΘ̈ + 2ẏΘ̇)− d

dt

(
q sinΘ

y3

)
=

3qẏ

y4
sinΘ

+
5qΘ̇

y3
cosΘ − q2(3− y−2)

3y7(1− y−2)3
sinΘ cosΘ, (2.11)

y(0) = y0, ẏ(0) = 0, Θ(0) = Θ0, Θ̇(0) = 0. (2.12)

The following dimensionless variables and parameters are introduced here:

y(τ) = Y (t)/R, τ = t/T , λ = ρs/ρ,

q(τ) = 3Q(t)T/R3 = 3Q(t)/ωR3, (2.13)

where ω denotes the frequency of the vibrations.

The behaviour of the solutions is investigated analytically for 3 cases: Θ0 = 0,

max |q| → 0 and y0 → 0. For other values of parameters the system (2.10)–(2.12) was

solved numerically.

Note that, if Θ = 0 the last term in the right-hand side of the equation (2.10) is a

well-known [11] expression for the force exerted on a fixed sphere by a radial doublet.

This force is always directed towards a doublet, and one may anticipate that a free particle

moves in the same direction. Yet, as will be shown below, even in the axisymmetric case

the direction of motion can be the opposite.

3 Axisymmetric motion

It follows from (2.10)–(2.12) that if Θ0 = 0 then Θ(τ) = 0 for all τ and the equation of

motion (2.10) can be written in the form

d

dt

(
(2λ+ 1)ẏ − 2q

y3

)
=

6ẏq

y4
− 4q2

y7(1− y−2)4
. (3.1)

The introduction of a new variable η = ẏ − qy−3/(2λ + 1) reduces the problem (2.12),

(3.1) to

ẏ = η +
2q

(2λ+ 1)y3
, (3.2)

η̇ =
6qη

(2λ+ 1)y4
+

2q2

y7(1− y−2)4
Fλ(y), (3.3)

y(0) = y0 > 1, η(0) = 0. (3.4)

Here

Fλ(y) = 3(1− y−2)4 − (2λ+ 1).

https://doi.org/10.1017/S0956792599003745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792599003745


On the motion of particles in non-uniformly vibrating liquid 255

It is easy to see that this function has the following properties:

(1) If λ > 1, then Fλ(y) is negative for every y > 1.

(2) If λ ∈ (0, 1), then Fλ(y) is negative for y > y∗(λ) and it is positive for y > y∗(λ),
where

y∗(λ) =

(
1−

(
2λ+ 1

3

)1/4)−1/2

.

Consider now the problem (3.2)–(3.4). The solution makes physical sense only for y > 1,

as in the opposite case the doublet is inside the body. Therefore consideration is restricted

to the time interval T ∗, y(τ) > 1 ∀τ < T ∗.
First, let the density of the body be not less than that of the liquid (λ > 1). In this case,

Fλ(y) is negative for all y > 1. As (3.3) is linear with respect to η, it implies that

η(τ) = 2e
6

2λ+1

∫ τ
0

q(ξ)
y4(ξ)

dξ
∫ τ

0

e
− 6

2λ+1

∫ ζ
0

q(ξ)
y4(ξ)

dξ q2(ζ)Fλ(y(ζ))

y7(ζ)(1− y−2(ζ))4
dζ (3.5)

if η(0) = 0. It follows from (3.5) that η 6 0, since Fλ(y) is negative for all y > 1.

Equation (3.2) can be rewritten as

d

dt

(
y4 − 2

2λ+ 1

∫ τ

0

q(ξ)dξ

)
= ηy3 6 0. (3.6)

This means that the differentiated function, say h(τ), is monotonically decreasing with

time. Hence y4(τ) is a sum of a 1-periodic and a monotonically decreasing function:

y4 = h(τ) + h1(τ) = h(τ) +
2

2λ+ 1

∫ τ

0

q(ξ)dξ. (3.7)

The last summand h1 is 1-periodic, as q is 1-periodic with zero mean. Hence

y(τ+ 1) 6 y(τ) ∀ τ 6 T ∗ − 1. (3.8)

The equality is valid if and only if q(τ) ≡ 0. The particle is attracted by the vibrator.

Now let the density of the body be less than that of the liquid (λ < 1). The solution

can be represented in the form (3.5) and the following propositions are valid:

(1) If y0 ∈ (1, y∗(0)) and |h1| < min(y4
0−1, y∗4(0)−y4

0) then h(τ) decreases monotonically;

y∗(0) = (1− (1/3)1/4)−1/2 ' 2.05.

(2) If 1 < y4
0 < y∗4 − max

τ∈(0,1)
|h1| then h monotonically decreases.

(3) If y4
0 > y∗4 − max

τ∈(0,1)
|h1| then h monotonically increases.

Let us prove first statement 1. As in the case λ > 1, it is easy to show that η < 0, at

least in some neighbourhood of the point τ = 0. If h does not decrease monotonically

then there exists τ1 such as η(τ1) = 0 and η(τ) < 0 when τ < τ1. It follows from the

representation (3.5) that Fλ(y(τ)) < 0 if τ < τ2 and Fλ(y(τ2)) = 0 for some τ2 < τ1. But

for negative η, (3.6) implies that y4(τ) < y4
0 + h1(τ) < y∗4, and hence Fλ(y(τ)) < 0 for all

τ < τ1. This contradiction proves the statement. Statements 2 and 3 are proved similarly.
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It follows from the above proved statements that (3.8) is valid for the solutions of

(2.12), (3.1) under conditions 1 or 2, and the opposite inequality is valid under condition

3. Thus, it is shown that:

(1) If λ > 1, i.e. the density of the body exceeds or equals that of the liquid, then the

body moves towards the vibrator in the sense of inequality (3.8).

(2) If λ < 1 the body moves towards the vibrator if originally it is sufficiently near it,

and it moves away from the vibrator if it is sufficiently far.

Consider know a fixed particle. The force exerted on it by a dipole with a strength Q

was calculated in [11]. It equals the right-hand part of (2.10) with Θ = 0 and ẏ = 0. One

can see that it is always directed towards a dipole. Yet, as it was shown above, a free

particle can move in the opposite direction. Similar effect takes place for the motion of

a particle in the presence of a pulsating source [5], or in the presence of an oscillating

sphere [8].

4 High frequency vibrator

Let A be the amplitude of the dipole strength, then q = ab(τ), maxτ>1 b(τ) = 1, where

a = A/(ωR3). It is obvious that if the amplitude and radius of the body are fixed, the

value of a decays with the growth of frequency ω.

For the asymptotics a = ε→ 0 it is natural to look for a solution in the form of series

y =

∞∑
k=0

ykε
k, Θ =

∞∑
k=0

Θkε
k.

It is easy to see that y0 = y0, Θ0 = Θ0 are constant,

y1 =
1

2λ+ 1

∫ τ

0

2b(ζ)

y3
0

cosΘ0dζ, Θ1 =
1

2λ+ 1

∫ τ

0

b(ζ)

y4
0

sinΘ0dζ

are periodic and y2 satisfies the following equation:

(2λ+ 1)ÿ2 + 2
d

dt

(
3b cosΘ0

y4
0

y1 +
b sinΘ0

y3
0

Θ1

)
= (2λ+ 1)y0Θ̇

2
1

+
6bẏ1

y4
0

cosΘ0 +
2bΘ̇1

y3
0

sinΘ0 − b2(12 cos2 Θ0 + sin2 Θ0(3 + 4y−2
0 − y−4

0 ))

3y7
0(1− y−2

0 )4
.

After substituting ẏ1, Θ̇1, we have

(2λ+ 1)ÿ2 = −2
d

dt

(
3b cosΘ0

y4
0

y1 +
b sinΘ0

y3
0

Θ1

)
+

b2

3y7
0(1− y−2

0 )4(2λ+ 1)
Hλ(y0, Θ0), (4.1)

where

Hλ(y,Θ) = −(2λ+ 1)(12 cos2 Θ+ sin2 Θ(3 + 4y−2− y−4)) + 9(1− y−2)4(4 cos2 Θ+ sin2 Θ),

and Hλ has the following properties:

(1) If λ > 1 then Hλ(y,Θ) is negative for every Θ, y > 1.

(2) For every λ ∈ (0, 1) the inequality Hλ(y,Θ) < 0 determines a bounded domain

https://doi.org/10.1017/S0956792599003745 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792599003745


On the motion of particles in non-uniformly vibrating liquid 257

Ω−(λ) on the (y0, Θ0) plane. If (y0, Θ0) ^ Ω−(λ), then Hλ(y,Θ) > 0. It is easy to see

that Ω−(λ1) ⊂ Ω−(λ2) if λ1 < λ2. The radius of Ω−(λ) tends to infinity when λ→ 1.

The form of the surface Γλ : Hλ(y,Θ) = 0 for different λ is shown on Figure 2. The

inner surface marked by ‘1’ is Γ0. All the particles initially located inside Ω−(0) are

attracted by the vibrator. The surface 2 is Γ (0.4) and the outer surface 3 is Γ (0.8).

Integrating (4.1) yields

y2 = −2(1 + 5 cos2 Θ0)

(2λ+ 1)2

∫ τ

0

b(ζ)

∫ ζ

0

b(ξ)dξdζ +
Hλ(y0, Θ0)

3(2λ+ 1)y7
0(1− y−2

0 )4

∫ τ

0

∫ ζ

0

b2(ξ)dξdζ.

The first term in this sum is a periodic function and the second is a monotonic one,

which decreases if Hλ is negative and increases if it is positive.

Recalling the properties of Hλ, one can conclude that at least for some period of time

T1 (it is easy to see that T1 is of the order ε−1):

(1) If λ > 1, the body moves towards the vibrator in the sense of inequality (3.8).

(2) If λ < 1, inequality (3.8) is valid for the solutions of (2.10)–(2.12) with (y0, Θ0) ∈ Ω−.

(3) For the solution of (2.10)–(2.12) with initial conditions (y0, Θ0) outside Ω− the

inequality opposite to (3.8) is valid. Ω−(λ) is a domain of attraction of particles

with the densities larger than λρ. For example, among the particles initially located

in a layer between surfaces 2 and 3 on Figure 2, those of density less than 0.4 are

repelled, and those of density larger than 0.8 are attracted.

The first and second prepositions are valid together with the proof if ẏ0 < 0, Θ̇0 = o(ε);

the third is valid for positive ẏ0. More accurate estimates are necessary to consider longer

time intervals.

5 Small particle

Now let the particle’s radius be small compared with the initial distance from the vibrator,

y0 = α−1/2, α→ 0, q being arbitrary, and look for a solution in the form of series

y = y0
∞∑
k=0

ykα
k, Θ =

∞∑
k=0

Θkα
k.

As in the previous case y0 = 1, Θ0 = Θ0, y1 = 0, Θ1 = 0 are constant,

y2 =
1

2λ+ 1

∫ τ

0

2q(ζ) cosΘ0dζ, Θ2 =
1

2λ+ 1

∫ τ

0

q(ζ) sinΘ0dζ

are periodic, y3 = 0, Θ3 = 0, and y4 satisfies the following equation:

(2λ+ 1)ÿ4 = +2
d

dt
(3q cosΘ0y2 + q sinΘ0Θ2) + 2qΘ̇2 sinΘ0

+(2λ+ 1)Θ̇2
2 + 6qẏ2 cosΘ0 − q2(4 cos2 Θ0 + sin2 θ0).

After substituting y2, Θ2, we have

(2λ+ 1)ÿ4 = −2
d

dt
(3qy2 cosΘ0 + qΘ2 cosΘ0) +

2(1− λ)
2λ+ 1

q2(3 cos2 Θ0 + 1). (5.1)
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It is easy to see that integrating (5.1) gives y4 in the form of a sum of periodic and

monotonic functions. The latter increases if λ < 0 and decreases if λ > 0. That means

that particles of density less than that of the liquid move away from the vibrator and a

particle whose density exceeds that of the liquid is attracted to the vibrator.

These results are valid only if the value of |1−λ| is sufficiently large, as if it is of the O(α)

the right-hand side of (5.1) does not include the second term which gives the monotonic

part of y4. In this case, it is necessary to consider the next term of the expansion, y5.

Let (1− λ) = αc; then y0 = 1, Θ0 = Θ0, y1 = 0, Θ1 = 0,

y2 =
2

3

∫ τ

0

q(ζ) cosΘ0dζ, Θ2 =
1

3

∫ τ

0

q(ζ) sinΘ0dζ,

y3 =
4c

9

∫ τ

0

q(ζ) cosΘ0dζ, Θ3 =
2

9

∫ τ

0

q(ζ) sinΘ0dζ.

Also

y4 = − 2
9
(6 cos2 Θ0 + sin2 Θ0)

∫ τ

0

q(ζ)

∫ ζ

0

q(ξ)dξdζ

is periodic; lastly y5 satisfies

ÿ5 = − 8c

27
(sin2 Θ0 + 6 cos2 Θ0)

d

dτ
(q(τ)

∫ τ

0

q(ζ)dζ) +
4q2

9
[4(c− 6) cos2 Θ0 + (c− 8) sin2 Θ0].

Hence y5 decreases in the sense of (3.8) if c > 8 and increases monotonically if c < 6. For

c ∈ (6, 8) it increases if Θ0 ∈ (Θ∗(c), π/2−Θ∗(c)), where Θ∗(c) = arctan 2
√

(6− c)/(8− c).
It is thus shown that at least for some period of time (of order α−1)

(1) Particles of density ρs > ρ1 = ρ(1− 6(R/Y )2) move towards a pulsating doublet.

(2) Particles of density ρs < ρ2 = ρ(1− 8(R/Y )2) move from it.

(3) For particles of density between ρ2 and ρ1, the direction of the motion depends

upon their initial position with respect to the dipole’s axis.

6 General case: Numerical results

For moderate values of y0 and the amplitude of q, and large time intervals, the problem

(2.10)–(2.12) was solved numerically for various initial position of the particle, various

values of the parameters λ and q = a sin 2πτ. The calculations show that for λ > 1 the

particle is always attracted to a vibrator. For the light particle there exists a domain of

attraction Ω−λ and a domain of repulsion Ω+
λ . They are separated by a domain Ω0

λ , which

resembles a layer containing a separation surface Γλ that separates Ω−λ and Ω+
λ in the

asymptotic case of a ‘high frequency vibrator’ (small a) shown in Figure 2. Its thickness is

proportional to the amplitude of vibrations a and decays with λ. The motion of particles

initially located inside it depends not only on λ but on the particular function q(τ).

Some results of calculations are presented in Figures 3 and 4. Figure 3 shows the

dependence on time of the distance between the particle and the vibrator for various

densities and initial locations of the particle. On all the graphs, λ = 0 for curve 1, λ = 0.5

for curve 2, λ = 1 for curve 3 and λ = 2 for curve 4. One can see that light particles

move away from the vibrator and particles of larger densities move towards it. The initial
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Figure 2. Domains of attraction for particles of different densities, meridional section ψ = const.

Abscissa r cos θ, ordinate r sin θ. The vibrator is located in the point (0, 0, 0). (1) attraction of all

particles, (2) λ < 0.4, (3) λ < 0.8.

distance for all examples of Figure 3 equals 4 particle radii, the amplitude of vibrations

is a = 0.4. On the upper graphs the particles were initially located on the line of the

dipole’s axis. On the lower ones, the line between a centre of a particle and dipole forms

initially an angle of 1
4
π with a dipole axis. The directed motion in this case is slower. On

the right-hand side graphs the time of motion T0 is 20 periods of vibration. It is easy to

see the oscillating type of motion. On the left-hand-side graphs T0 is 100 periods. The

oscillations become small compared with the directed motion and are not seen.

Some of the trajectories of the particle motion are shown in Figure 4. In Figure 4 (a)

the particles were initially located in the domain of attraction for λ > 0 and they all

move towards a vibrator. The trajectories of heavy particles (curve 4, λ = 10) are almost

straight lines. Lighter particles have more complicated trajectories with distinct angular

drift. The trajectories of particles of densities λ = 0, λ = 0.5 and λ = 1 are marked by 1,

2 and 3 correspondingly.

Figure 4 (b) shows the trajectories of particles initially located a little further from a

vibrator. Here λ = 0 for the curve 1, λ = 0.1 for the curve 2 and λ = 0.2 for the curve 3.

A light particle moves from a vibrator and heavier one is attracted (curve 4, λ = 0.5). The

initial angle between the axis of the dipole and the line of centres was 3π/8 for all the

graphs in Figure 4. The time of motion equals 100 periods. For sufficiently large time the

trajectories of attracted particles become almost straight lines directed to the vibrator. For

the repelled particles trajectories also become straight lines but their directions depend

strongly upon densities and initial positions.
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Figure 3. Evolution of the distance between particles of different densities and a vibrator. (1)

λ = 0, (2) λ = 0.5, (3) λ = 0.1, (4) λ = 2; Θ0 = 0 for (a) and (b), Θ0 = 1
4
π for (c) and (d).

7 Conclusions

Our results can be summarized as follows

(1) If the density of spherical particle equals or exceeds that of the ambient liquid, the

particle is attracted to a vibrating dipole.

(2) A spherical particle of density less than that of the liquid is attracted to a vibrating

dipole if initially the ratio of the distance between them and the radius of the body

is sufficiently small.

(3) If this ratio is sufficiently large, a spherical body is repelled by a vibrator.

The first proposition means in particular that periodic vibrations with zero mean cause

a directed motion even of particles whose densities are equal or little different from that

of the liquid.

The last two statements demonstrate the complicated behaviour of particles in vibrating

liquid. Even the direction of motion depends strongly on the initial position of the particle

with respect to the vibrator, and on its density and dimensions (here, radius of the body).

Thus, among particles of the same radii but different densities with initial distance not

too small, light enough particles are repelled and heavier ones are attracted. If particles of

equal densities initially located on the same distance from a vibrator are considered, then

those of small enough radii are repelled, and those of large enough radii are attracted.

These results cannot be obtained by calculating the force acting on a fixed particle, since

the latter does not depend on the density of the body. Moreover, in the axisymmmetric
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Figure 4. Trajectories of particles of different densities with the same initial positions. Abscissa

y cosΘ, ordinate y sinΘ. Θ0 = 3/8π. (a) (1) λ = 0, (2) λ = 0.1, (3) λ = 0.2, (4) λ = 10 (b) (1) λ = 0,

(2) λ = 0.1, (3) λ = 0.2, (4) λ = 0.5.

case this force is directed towards a vibrator at any moment, and yet light free particles

move in the opposite direction.

The problem under consideration with a vibrator presented by a pulsating singularity is a

model one, but it is likely to represent an asymptotic approximation to a physical problem

with vibrations caused by an oscillating sphere, radius of this sphere and amplitude of

displacement being small, and amplitude of velocity being large.

Appendix A Derivation of the basic equations

Substituting the representation (2.2) into equation of motion of the body (2.7) we have

mẌ = − d
dt

(∮
Σt

Φndσ

)
+

1

2

∮
Σt

|∇Φ1|2ndσ,

where

Φ1 = Φ− Vx.

It is convenient to use θ1, ψ1 for the parametric representation of the surface Σt. It follows

from representation (2.9) that for r1 = R

Φ =

∞∑
n=o

[a0
nPn(cos θ1) + a1

n cosψ1P
1
n (cos θ1)],
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where

a0
0 =

q

y2
, a0

1 =
3qR

y3
cosΘ − 3

2
VyR, a

1
0 = 0, a1

1 =
3

2

(
qR

y3
sinΘ − VΘR

)
,

a0
n = (2n+ 1)q

Rn

yn+2
cosΘ, a1

n =
2n+ 1

n+ 1

qRn

yn+2
sinΘ, n > 1.

Hence ∮
Σt

Φndσ = −3

2
πR3V +

4πR3

y3
q cosΘny +

2πR3

y3
q sinΘnθ. (A 1)

Since ∂Φ1/∂n = ∂Φ1/∂r1 = 0 on Σt

|∇Φ1|2|r=R =
1

R2

∣∣∣∣∂Φ1

∂θ1

∣∣∣∣2 +
1

R2 sin2 θ1

∣∣∣∣∂Φ1

∂θ1

∣∣∣∣2 +
1

R2

∞∑
m=0

∞∑
n=0

[
a0
na

0
m

∂Pn(cos θ1)

∂θ1

∂Pm(cos θ1)

∂θ1

+2a0
na

1
m cosψ1

∂Pn(cos θ1)

∂θ1

∂P 1
m(cos θ1)

∂θ1

+a1
na

1
m cos2 ψ1

∂P 1
n (cos θ1)

∂θ1

∂P 1
m(cos θ1)

∂θ1
+

sin2 ψ1

sin2 θ1

a1
na

1
mP

1
n (cos θ1)P 1

m(cos θ1)

]
.

Hence∮
Σt

|∇Φ|2nyds = π

∞∑
m=0

∞∑
n=0

∫ π

0

{
2a0

na
0
m sin3 θ cos θ

∂Pn(cos θ)

∂θ

∂Pm(cos θ)

∂θ

+a1
na

1
m

[
sin3 θ cos θ

∂P 1
n (cos θ)

∂θ

∂P 1
m(cos θ)

∂θ
+

cos θ

sin θ
P 1
n (cos θ)P 1

m(cos θ)

]}
dθ; (A 2)

∮
Σt

|∇Φ|2nΘds = 2π

∞∑
m=0

∞∑
n=0

a0
na

1
m

∫ π

0

P 1
n (cos θ)

∂P 1
m(cos θ)

∂θ
sin4 θdθ. (A 3)

Recalling some properties of Legendre polynomials and adjoint Legendre functions, it

is easy to show that∫ π

0

sin4 θ
∂Pn(cos θ)

∂θ

∂P 1
m(cos θ)

∂θ
dθ =

2n(n+ 1)

(2n+ 1)(2m+ 1)
[n2δm−1

n − m2δm+1
n ],

∫ π

0

sin3 θ cos θ
∂Pn(cos θ)

∂θ

∂Pm(cos θ)

∂θ
dθ =

∫ π

0

sin3 θ cos θP 1
n (cos θ)P 1

m(cos θ)dθ

=
2n(n+ 1)

(2n+ 1)(2m+ 1)
[mδm+1

n + nδm−1
n ],

∫ π

0

cos θ

sin θ
P 1
n (cos θ)P 1

m(cos θ)dθ =

{
0 when m = n+ 2k

n(n+ 1) when m = n+ 2k + 1
,

and∫ π

0

[
sin3 θ cos θ

∂P 1
n (cos θ)

∂θ

∂P 1
m(cos θ)

∂θ
+

cos θ

sin θ
P 1
n (cos θ)P 1

m(cos θ)

]
dθ

=
2nm

(2n+ 1)(2m+ 1)
[n(m+ 1)2δm−1

n + m(n+ 1)2δm+1
n ].
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Using these expressions the series in the right-hand sides of (A 2), (A 3) can be summed

explicitly.

Substituting the result into the equation of motion we have in projections on the axes

y and Θ equations (2.10), (2.11).
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