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Abstract We define a growing model of random graphs. Given a sequence of non-negative integers
{dn}∞n=0 with the property that di ≤ i, we construct a random graph on countably infinitely many
vertices v0, v1 . . . by the following process: vertex vi is connected to a subset of {v0, . . . , vi−1} of cardi-
nality di chosen uniformly at random. We study the resulting probability space. In particular, we give a
new characterization of random graphs, and we also give probabilistic methods for constructing infinite
random trees.
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1. Introduction

Consider the vertex set N. Let 0 < p < 1 be fixed. For each pair of distinct integers
n,m ∈ N, put an edge between n and m with probability p. Let G be the resulting graph
on N. A classical 1963 Erdős–Rényi theorem [10] states that with probability one, any
two such graphs are isomorphic, i.e., there is essentially one random graph on N.

In 1964, Rado [15] gave an explicit construction of a graph R which is universal for
the collection of all countable graphs. More precisely, he showed that if G and H are any
countable graphs and φ : G→ H a graph homomorphism, then there are embeddings eG :
G→ R, eH : H → R and a graph homomorphism ψ : R→ R such that e−1

H ◦ ψ ◦ eG = φ,
i.e., R contains a copy of every countable graph, and every graph homomorphism between
countable graphs can be lifted to a graph homomorphism of R.

The constructions of Erdős–Rényi and Rado seem very different, but they result in
the same graph. The reason for this is that both graphs satisfy the following property: if
(A,B) are disjoint, finite sets of vertices, then there are infinitely many vertices v such
that there is an edge between v and every element of A and there are no edges between
v and any element of B. It can be shown by the back and forth method that any two
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graphs with the above property are isomorphic to each other. A graph with this property
is often called the Erdős–Rényi graph, the Rado graph or simply the random graph.

Although the Rado graph is unique and the above definition is very simple, the Rado
graph has a rich structure and enjoys attention from mathematicians working in various
camps. For example, Cameron [7] gave a number theoretic description of this graph
similar to that of the Paley graph. This graph also enjoys attention from model theorists
as it is an example of an ℵ0-categorical Fräıssé limit of finite structures. Truss [17]
initiated the group theoretic study of the group of automorphisms of the Rado graph.
We refer the reader to the survey paper of Cameron [7] for further interesting properties
of the random graph along this direction. Connections between percolation theory and
the random graphs can be found in the survey paper of van der Hofstad [18]. That the
Rado graph can be topologically 2-generated with a great deal of flexibility was shown
by the second author and Mitchell [8].

Inspired by the construction of Erdős and Rényi, we introduced a procedure that is
flexible enough to generate a large class of infinite graphs, and essentially generalizes
the Erdős–Rényi process. We add only finitely many incident vertices to each vertex,
determined by a given sequence.

More rigorously, suppose a sequence of integers {di}∞i=0 is given, with the property
0 ≤ di ≤ i for all i. Let V = {v0, v1, . . .} be a set of vertices. For i = 0, 1, . . . , in round i,
we first choose A ⊆ {v0, . . . , vi−1} of cardinality di, with the uniform distribution on the
set of subsets of {v0, . . . , vi−1} that are of size di. Then, we add edges viu for all u ∈ A.
The result is a random graph on countably many vertices. We strive to understand the
resulting probability space, in particular, we would like to determine the atoms (graphs
with positive probability), and cases when there is only one atom with probability 1.
In this latter case, we say that the probability space is concentrated.

1.1. Related literature

1.1.1. Preferential attachment models

In the preferential attachment models, the new vertex is adjacent to an earlier vertex
or vertices with a probability that depends on the current degree of an existing vertex.
One of the first examples of empirical study of this model is by Barabási and Albert [1],
and a rigorous mathematical framework was defined by Bollobás and Riordan [2]. These,
and subsequent works, study large finite graphs as opposed to the limiting behaviour.

An infinite version of the preferential attachment model (for multigraphs) was studied
by Kleinberg and Kleinberg [12]. In their paper, the sequence di is constant. Since the
preferential attachment model is substantially different from ours, they get very different
results, but some of the techniques they use are similar to ours.

1.1.2. Copying models

This model was first introduced by Kumar et al. [13], and later, a slightly modified and
generalized version was defined by Bonato and Janssen [4]. In their construction, besides
the sequence di, an initial finite graph H and a probability p ∈ [0, 1] are given.
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• Let G0 = H.

• To construct Gi, add a new vertex v to Gi−1 and choose its neighbours as follows.
– Choose a vertex u ∈ V (Gi−1) uniformly at random (called the copy vertex ).

Connect v to each neighbour of u with probability p.

– Choose a set of di vertices from V (Gi−1) uniformly at random, and connect v to
each vertex in this set.

– Delete multiple edges if necessary.

Clearly, our process is a special case of this, when p = 0.
In [4], the authors only study the case when di = Θ(is) for some s ∈ [0, 1). Although

we study very similar models, the common special case of our theorems is quite narrow:
we imposed the extra condition that p = 0, and they imposed strong extra conditions
on di. Nevertheless, it is interesting to note that for the narrow special case when our
assumptions coincide, our Theorem 2.3 implies the conclusions of their main theorems
(Theorems 2.2 and 2.3 in [4]), and more.

1.1.3. The Janson–Severini process

Janson and Severini [11] introduced a process that also includes ours. Their construc-
tion is the following. For all i = 1, . . . , let νi be a probability distribution on {0, 1, . . . , i}.
Construct the random graph Gi as follows.

• Let G0 = K1, the graph on a single vertex.

• Let Di be a random variable with distribution νi, and construct Gi by adding a new
vertex to Gi−1 and connecting it to a uniformly random subset of size Di of V (Gi−1).

Of course our model is the special case of theirs when νi is a point mass at di. In
fact, as an application of our theorems, we venture to prove certain limiting behaviour
in their general model (which we call the ‘double random process’) in Corollary 4.4, and
Theorem 6.12. However, unlike us, they study the graphons, as limits of their sequence.
(Graphons were introduced by Lovász and Szegedy [14] and Borgs et al. [5].) In their
main theorem, they determine the limit graphon when Dn/n

p→ ν for some probability
measure ν on [0, 1].

2. Summary and outline

In § 3 we discuss some minor results. We quickly show how different this model is from
the Erdős–Rényi model in that it can easily result in non-concentrated spaces.

The main discussion starts in § 4. The paper contains two major results. In § 4, we
prove the first one (stated in this section as Theorem 2.3), which was motivated by the
effort of characterizing the sequences that will almost surely result in the Rado graph.
We did more than that; we defined a degree of similarity of a graph to the Rado graph,
and we can determine from the sequence how similar the resulting graph will be to the
Rado graph.
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Definition 2.1. Let G be a graph and A,B ⊆ V (G). We say that a vertex v is a
witness for the ordered pair (A,B) if v is adjacent to every vertex in A, and v is not
adjacent to any vertex in B.

Definition 2.2. Let G be a graph. For a non-negative integer k, we say that G is
k-Rado if every pair of disjoint sets of vertices (A,B) with |A| ≤ k, |B| ≤ k has infinitely
many witnesses.

The number rado(G) = sup{k : G is k-Rado} is the radocity of G.

Clearly, every graph is 0-Rado, and if a graph is k-Rado, it is also k′-Rado for all
k′ < k. Also, by the Erdős–Rényi Theorem, G is isomorphic to the Rado graph if and
only if rado(G) = ∞.

We note that the definition of a witness is not new. Clearly, Erdős and Rényi knew
about the property, and the same language is used by Spencer in the book [16]. Similar
properties for a graph to be k-Rado also appeared in the literature. Still, in Spencer’s
book, the property Ar,s is defined as follows: a graph satisfies the property Ar,s if every
pair of disjoint sets of vertices (A,B) with |A| = r, |B| = s has a witness. Note the major
difference that Ar,s requires only one witness, while k-Rado requires infinitely many
witnesses, so, e.g., a double ray has A1,1, but it is not 1-Rado.

Another similar property is called n-e.c. (n-existentially closed; see, e.g., [3]). A graph
has this property if every pair of disjoint sets of vertices (A,B) with |A ∪B| = n has a
witness. So a graph has n-e.c. if and only if it has Ar,s for all r + s = n.

Finally, Winkler used the colourful term Alice’s Restaurant property for a graph that
is k-Rado for all k ≥ 0, in other words, the radocity of the graph is ∞. As mentioned
above, this happens if and only if the graph is the Rado graph.

In § 4 we will prove the following theorem. It shows that the radocity of the graph is
determined by the sequence, not by the random process. In the statement, and throughout
this paper, we will use the standard notation n(k) = n(n− 1) . . . (n− k + 1) with n(0) = 1
(even if n = 0). In addition, we define 00 = 1 if this power appears as a term of a series.

Theorem 2.3. As before, let {di} be such that 0 ≤ di ≤ i. Let

k1 = sup
{
t ∈ N :

∞∑
n=1

(
dn

n

)t(
n− dn

n

)t

= ∞
}
,

k2 = sup
{
t ∈ N :

∞∑
n=1

(dn)(t)(n− dn)(t)
(n)(2t)

= ∞
}
.

Then k1 = k2, and the process almost surely generates a graph of radocity k1 (and k2).

As a corollary, we achieve our original motivation.

Corollary 2.4. Let an = min{dn/n, n− dn/n}.
(i) If

∑∞
n=1 a

k
n diverges for all positive integers k, then the process almost surely

generates the Rado graph.
(ii) If there is a positive integer k for which

∑∞
n=1 a

k
n converges, then the process

almost surely does not generate the Rado graph.
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This also shows that our result is essentially a generalization of the result of Erdős and
Rényi. See § 4 for more details.

2.1. Examples

In the following examples, to avoid clutter, we will omit floor and ceiling signs.

• If dn = n/2, then rado(G) = ∞.

• If 0 < c < 1, and dn = cn, then rado(G) = ∞.

• If dn =
√
n, then rado(G) = 2.

• If dn > 0 is constant, then rado(G) = 1.

• If k ≥ 1 integer, and dn = n(k−1)/k, then rado(G) = k.

• If dn = log n, then rado(G) = 1.

In § 6 we focus on 0–1 sequences. From the discussion above, it is clear that the resulting
graphs will almost surely have radocity 0 or 1, but we aim to describe the random graph
in more detail.

Recall that a probability space is concentrated if there exists a graph G such that the
process generates a graph isomorphic to G with probability 1. A graph G is an atom of
the space if the process generates a graph isomorphic to G with positive probability.

To state a compact theorem, we introduce some elaborate notation to denote certain
infinite graphs. Let T be a finite tree. Let FT be the forest that consists of infinitely many
copies of T , as components. Let Fn =

⋃{FT : T is a tree of size n}. Note that F1 is the
countably infinite set with no edges, and F2 is the countably infinite matching.

We will also use the term ω-tree for the unique countably infinite tree in which every
vertex is of infinite degree.

Theorem 2.5. Suppose dn ∈ {0, 1} for all n ∈ N.

(i) If
∑∞

i=1 di/i = ∞, then the space is concentrated, the atom is a graph whose
components are ω-trees, and the number of components is equal to the number of
zeroes in the sequence.

(ii) Suppose
∑∞

i=1 di/i <∞. Let tn =
∑∞

i=n di/i, and k = min{κ ≥ 2 :
∑

l dlt
κ−2
l+1 <

∞}. (We set k = ∞ if the set in question is empty.) The space has infinitely
many atoms, and all of them are of the form F ∪ [

⋃
i<k Fi] where F is some finite

forest.

Even though this theorem is not a complete description of the probability space, it
describes completely what the atoms are. The distinction of the sequences in part (ii) is
extremely subtle, and the proof is very elaborate. Nevertheless, we strived for clarity, and
we divided the whole proof into small lemmas, so by the time we are ready to prove the
theorem, we can use the machinery that will have been built up.

This theorem is the other major result of the paper, and arguably the more difficult one.

https://doi.org/10.1017/S0013091517000487 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091517000487
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3. Non-concentrated spaces

It would perhaps be not completely näıve to think that something similar happens here
as in the Erdős–Rényi model. In this section, we demonstrate that this is far from being
correct. Therefore, we will show examples of non-concentrated spaces.

The following proposition is actually about a very simple example of concentration,
but we will use it as a tool to show non-concentration in some other cases.

Proposition 3.1. The sequence 0, 1, 1, 1, . . . almost surely generates the ω-tree.

Proof. We will prove a more general statement later, see Theorem 2.5. �

Corollary 3.2. Consider a sequence of the form d0, d1, . . . , dk, 1, 1, 1, . . . . Let
G1, . . . , Gl be the set of finite non-isomorphic graphs on v0, . . . , vk that can be gener-
ated by the process using d1, . . . , dk. For each i, let G′

i be the graph constructed from Gi

by attaching an ω-tree to every vertex. Then the graphs G′
1, . . . , G

′
l are the atoms of the

space, with probabilities inherited from the finite part of the process.

The corollary above shows that it is easy to construct a sequence whose associated
probability space is not concentrated, e.g., 0, 1, 2, 1, 2, 1, 1, 1, . . . . However, these
examples are very special in the sense that they are eventually all 0s and 1s, so after that
point no more cycles are generated. Nevertheless, the following proposition shows that
non-concentrated probability spaces can be found for other kind of sequences.

Proposition 3.3. There exists a sequence {di} with a non-concentrated probability
space such that for all positive integersN there exists n > N such that an �= 0 and an �= 1.

Proof. We will construct a sequence consisting mostly of 1s, but with infinitely many
2s inserted. The sequence starts with 0, 1, 1, 2. We set p0 = 2/3, and we note that p0

is the probability that the first four vertices include a triangle. Then let k be the least
integer such that k/

(
k
2

)
< 3/4 − p0. Set d4 = · · · = dk−1 = 1, and dk = 2. Note that the

probability that a triangle is generated by vk is p1 := k/
(
k
2

)
. In general, after the lth 2 in

the sequence, let k be a sufficiently large integer for which dk is not yet defined and

k + l − 1(
k
2

) <
3
4
−

l−1∑
i=0

pi.

Set dk = 2 and set all the elements before dk that are not yet defined to be 1. Note that
the probability that a triangle is generated at vk equals pl = k + l − 1/

(
k
2

)
. Let X be the

random variable that denotes the number of triangles eventually generated in G. Owing
to the linearity of expectation,

μ = E[X] =
∞∑

i=0

pi.

Clearly, from the definition of the sequence, 2/3 ≤ μ ≤ 3/4. That means that

Pr[X = 0] > 0 and Pr[X > 0] > 0.
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The sets [X = 0] and [X > 0] partition the probability space, and neither of them are of
measure 0, so the space can not be concentrated. �

4. The Rado graph

This section contains the proof of Theorem 2.3, and Corollary 2.4, with additional discus-
sion of some consequences. We will make frequent use of the following basic fact relating
infinite products to infinite sums.

Proposition 4.1. Let {bi}∞i=0 be a sequence of real numbers such that 0 < bi < 1 and
{di} be a sequence of non-negative integers. Then,

0 <
∞∏

i=1

(1 − bi)di ⇐⇒
∞∑

i=1

dibi <∞.

We start with a simple technical lemma.

Lemma 4.2. Fix a non-negative integer k. The infinite series

∞∑
n

(
dn

n

)k(
n− dn

n

)k

and
∞∑
n

(dn)(k)(n− dn)(k)

(n)(2k)

either both converge or both diverge.

Proof. If k ≤ 1, then the statement is trivial. If k ≥ 2, then partition the terms into
three parts: A = {i : di < k}, B = {i : n− di < k}, and C = N \ (A ∪B). It is clear that
over the terms indexed by A and B, both series converge, so the behaviour is decided by
the terms over C. For those, we use a generalized limit comparison test and show that
the lim inf and lim sup of the ratio of the terms are positive and finite.

To see this last statement, notice that

1 ≤ dn

dn
,
dn

dn−1
, . . . ,

dn

dn − k + 1
≤ k

so

1 ≤ (dn)k

(dn)(k)
≤ kk.

A similar statement can be made about (n− dn)k/(n− dn)(k), so we see that the lim inf
of the ratio of the terms is at least 1, and the lim sup is at most k2k. �

4.1. Proof of Theorem 2.3

Note that k1 = k2 is a consequence of Lemma 4.2. We will denote this number by k,
and we will go back and forth between its two equivalent definitions at our convenience.

Now we prove that the graph generated is almost surely k-Rado.
The statement is trivial for k = 0. Let A,B be two finite disjoint vertex sets with

|A| = |B| = k ≥ 1, and let N be a positive integer. It is sufficient to show that the pair
(A,B) has a witness with probability 1 among the vertices vN , vN+1, . . . .
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For a given vertex vn, let pn be the probability that vn is a witness for (A,B). Now
pick a vertex vn such that n > max{i : vi ∈ A ∪B} and n ≥ N . Then

pn =

(
n−2k
dn−k

)
(

n
dn

) =
(dn)(k)(n− dn)(k)

(n)(2k)
.

Note that this holds whether dn ≥ k or dn < k; in the latter case, pn = 0. Hence
∑∞

n=N pn

diverges, and then
∏∞

n=N (1 − pn) = 0, which is the probability that the pair (A,B) has
no witness beyond (including) vN .

It remains to be proven that if k <∞, then the graph is almost surely not k + 1-
Rado. It suffices to prove that there is a pair (A,B) of finite disjoint vertex sets with
|A| = |B| = k + 1 such that (A,B) almost surely has finitely many witnesses. Indeed,
we prove that this is the case for every such pair of vertex sets (A,B). To obtain a
contradiction, suppose that this is not true: that is, there are disjoint sets A,B of vertices
with |A| = |B| = k + 1, and the probability that (A,B) has finitely many witnesses is
p < 1. Let qN be the probability that (A,B) has no witness beyond (including) vN . We
note that

qN ≤ p for all N. (1)

On the other hand, similarly, the probability that a given vertex vn is a witness for
(A,B) (if n is large enough) is

pn =
(dn)(k+1)(n− dn)(k+1)

(n)(2(k+1))
.

This time, we know that
∑
pn <∞, so

∏
(1 − pn) > 0. Hence there exists N such that

qN =
∞∏

n=N

(1 − pn) > p.

But this contradicts (1).

4.2. Proof of Corollary 2.4

Suppose that
∑∞

n=1 a
k
n diverges for all k. Since

∞∑
n=1

(
dn

n

)k(
n− dn

n

)k

≥
∞∑

n=1

a2k
n ,

we get that

∑ (
dn

n

)k(
n− dn

n

)k

diverges for all k, and therefore we get that almost surely rado(G) = ∞.
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Now suppose that there is a positive integer k for which
∑∞

n=1 a
k
n converges. Since

ak
n ≥

(
dn

n

)k(
n− dn

n

)k

≥
k−1∏
i=0

dn − i

n
· n− dn − i

n
,

we have that for large enough n0,

∞∑
n=n0

ak
n · 22k ≥

∞∑
n=n0

( k−1∏
i=0

dn − i

n
· n− dn − i

n

2k−1∏
i=0

n

n− i

)
=

∞∑
n=n0

(dn)(k)(n− dn)(k)

(n)(2k)
,

and therefore the last sum converges. Thus the graph almost surely has finite radocity.

Corollary 4.3. Let an = min{dn/n, n− dn/n}. If lim sup an > 0, then the process
almost surely generates the Rado graph.

Proof. Direct consequence of Corollary 2.4. �

The double random process is when we choose even the sequence at random, choosing
di with some distribution from the interval [0, i]. Note that Janson and Severini [11] study
the double random process from a different point of view. The following corollary states
that, in some sense, almost all double random processes will result in the Rado graph.

Corollary 4.4. If there exist ε > 0, p0 > 0, and M integer such that for n > M ,
Pr[εn ≤ dn ≤ (1 − ε)n] ≥ p0, then the double random process almost surely generates
the Rado graph.

Proof. It is easy to see that Corollary 4.3 is almost surely satisfied. �

5. Density, sparsity, degrees and stars

The main goal of this section is to analyse how certain ‘density’ conditions on the sequence
will affect the resulting graph. One important result from this section (Theorem 5.3) will
also be used in § 6 to analyse zero–one sequences.

For the rest of the section, we will use the notation sn =
∑n

i=0 di, the partial sum of
the sequence {di}.

It will be useful to distinguish sequences based on convergence of certain partial sums.
When

∑
di/i = ∞, we will refer to this situation as the ‘dense’ case. The opposite case,

when
∑
di/i <∞, will be called the ‘sparse’ case. A subcase of the sparse case, when

even
∑
sidi/i <∞, will be called the ‘very sparse case’.

We begin with a simple proposition on binomial coefficients.

Proposition 5.1. Let n, d,m ≥ 0 integers with m/n− d ≤ 1. Then

(
1 − m

n− d

)d

≤
(
n−m

d

)
(
n
d

) ≤
(

1 − m

n

)d

.
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Proof. We note that
(
n−m

d

)
(
n
d

) =
(n−m)(d)

(n)(d)
=

d−1∏
i=0

(
1 − m

n− i

)
.

Then bound the product by replacing all factors with the largest factor, and then with
the smallest factor to obtain the desired inequality. �

Lemma 5.2. Let vk be a vertex.

(i) If
∑
di/i = ∞, then for all N > k, vk almost surely has a neighbour beyond vN .

(ii) If
∑
di/i <∞, then there exists M such that with positive probability vk has no

neighbour beyond vM ; furthermore, for all ε > 0 there exists an M ′ ≥M such that
Pr(vk has a neighbour beyond vM ′) < ε.

Proof. Let El be the event that vk has no neighbour beyond vl. We will estimate the
probability of El. For any i > k, we have

Pr(vi �∼ vk) =
(
i− 1
di

) /(
i

di

)
so Pr(El) =

∞∏
i=l

(
i− 1
di

)/(
i

di

)
.

Using Proposition 5.1, we have

Pr(El) ≤
∞∏
i=l

(
1 − 1

i

)di

.

If
∑
di/i = ∞, then the product on the right-hand side is zero. Thus, we have that

Pr(El) = 0 for all l > ik, which proves the first part.
If

∑
di/i <∞, then there exists an M such that for all i ≥M , di/i ≤ 1/2 and 1/(i−

di) ≤ 1. Then we may use the other part of Proposition 5.1 to get

Pr(EM ) ≥
∞∏

i=M

(
1 − 1

i− di

)di

. (2)

Also, in this case,

∞∑
i=M

di

i− di
=

∞∑
i=M

1
1 − di/i

· di

i
≤

∞∑
i=M

2 · di

i
<∞,

so Pr(EM ) > 0.
The last statement follows from the fact that the right-hand side in (2) is positive,

therefore its tail end converges to 1, so for all ε > 0 there exists M ′ for which Pr(EM ′) >
1 − ε. �

Theorem 5.3 (density and degrees). The following statements hold.

(i) If
∑
di/i = ∞, then the process almost surely generates a graph in which each

vertex is of infinite degree.
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(ii) If
∑
di/i <∞, then the process almost surely generates a graph in which each

vertex is of finite degree.

Proof. Both parts follow from Lemma 5.2. Let vk be a vertex and let N > k be an
integer. In case (i), Lemma 5.2 implies that almost surely vk has a neighbour beyond
vN . This being true for arbitrary N > k, we conclude that almost surely vk has infinitely
many neighbours.

In case (ii), the lemma provides that the probability that vk is of infinite degree is less
than ε for all ε > 0, and therefore that probability is 0. �

Recall that the bipartite graphsK1,l for l = 0, 1, 2, . . . are called stars. (For convenience,
we allow l = 0. In this case, K1,l is simply a singleton set.) To emphasize the size of the
star, K1,l will often be called an l-star. We say that a vertex in a graph is in a star,
respectively in an l-star, if the connected component of the vertex is a star, respectively
an l-star.

Lemma 5.4. Suppose
∑
sidi/i <∞. Then the process almost surely generates a graph

G which has the property that there exists an N1 = N1(G) such that for all n ≥ N1

with dn > 0, the vertex vn will attach back to vertices with current degree 0. More
rigorously, the vertex vn has the property that if vj ∼ vn, and j < n, then vj has no
neighbour before vn.

Proof. Note that
∑
sidi/i <∞ implies sndn/n→ 0 as n→ ∞, so there exists N

such that for all n > N , sndn/n < 1/3. Consider such an n. Below we will compute the
probability that at stage n, the vertex vn attaches only to the vertices that are currently
of degree 0, i.e., singletons.

Observe that during the process, for every i with di = 0 one singleton is created, and if
di > 0, then at most di singletons are destroyed. One can view this as always creating a
singleton and then destroying no more than 2di. So at step i, the number of singletons is at
least i− ∑i

j=0 2dj = i− 2si, and then, by Proposition 5.1 and the fact that dn/n < 1/3,
the probability that vn attaches to only singletons is at least(

n−2sn

dn

)
(

n
dn

) ≥
(

1 − 2sn

n− dn

)dn

≥
(

1 − 2sn/n

1 − dn/n

)dn

≥
(

1 − 2sn/n

2/3

)dn

=
(

1 − 3sn

n

)dn

.

Hence, the probability that this happens to all vertices beyond N is at least
∞∏

n=N

(
1 − 3sn

n

)dn

.

The last product is positive as
∑
sidi/i <∞. Hence, we have that for all ε > 0 there

exists M such that
∏∞

n=M (1 − (3sndn/n)) > 1 − ε. That means that with probability
greater than 1 − ε, every vertex beyond M attaches to singletons.

To complete the proof, suppose that the existence of an N1 as in the statement has
probability p < 1. Choose ε < 1 − p. According to the argument above, there exists an
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M such that the probability that every vertex beyond M attaches to singletons is greater
than 1 − ε > p, and since M is a suitable choice for N1, this is a contradiction. �

Theorem 5.5 (very sparse case). Suppose
∑
sidi/i <∞. Then the process almost

surely generates a graph G for which there is N = N(G) such that for all n > N , vn is
in a star. Moreover, if dn > 0, then vn is in a dn-star.

Proof. By Lemma 5.4, the process almost surely generates a graph G for which there
is N = N(G) such that for all n > N , at stage n, either dn = 0 or vn attaches to dn many
current degree 0 vertices which precede vn. Note that vk, k > n, leaves untouched the
star generated by vn. Therefore, we obtain that vn is in a dn-star. If n > N and dn = 0,
then the component of vn in G is either a singleton or a star generated by some vm,
m > n. �

6. Zero-one sequences

As the title suggests, the standing assumption for the section is that 0 ≤
dn ≤ 1 for all n ≥ 0. We will also assume that there are infinitely many 1s in the sequence,
as otherwise we really have a finite sequence and an essentially finite graph (plus isolated
vertices), and we get a problem of a very different flavour. It is clear that the number
of connected components of the generated graph is equal to the number of 0s in the
sequence, and each component is a tree.

6.1. Notation

For this section, it will be convenient to introduce some notation to denote certain
tuples of indices and sums and products. First, we introduce notation on products and
tuples.

We let N
<N denote the set of all finite strings of N including the empty string. We

define f : N
<N → [0,∞) by

f(σ) =
n∏

i=1

dσi

σi
,

where σ = (σ1, . . . , σn). (By convention, f(σ) = 1 when σ is the empty string.) The
definition of f(σ) depends on the fixed sequence {dn}.

Suppose i, j, l ≥ 1 with i ≤ j. Then,

Al
i = {(σ1, . . . , σl) ∈ N

l|min{σ1, . . . , σl} = i},
Bl

i = {σ ∈ Al
i|σ is strictly increasing},

Bl
i,j = {(σ1, . . . , σl) ∈ Bl

i|max{σ1, . . . , σl} ≤ j},
Cl

i = {σ ∈ Al
i|σ is injective},

Dl
i = {i, i+ 1, . . .}l = {(σ1, . . . , σl) ∈ N

l|min{σ1, . . . , σl} ≥ i}.
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The following notation is about sums and series:

sm,n =
n∑

i=m

di, sn = s0,n =
n∑

i=0

di, tn,m =
m∑

i=n

di

i
, tn = tn,∞ =

∞∑
i=n

di

i
.

6.2. The sparse case for zero–one sequences

What we proved in § 5 essentially gives us the behaviour of the probability space in
the dense case, when

∑
di/i = ∞, and the very sparse case, when

∑
sidi/i <∞. We

will summarize these findings (and much more) in Theorem 2.5. This subsection will be
devoted entirely to the sparse case. Accordingly, throughout the subsection we will assume
that

∑
di/i <∞. Our findings will apply for the very sparse case, giving an alternative

proof of the characterization of the space in that case. However, note that the findings
of § 5 apply in the general setting (not only zero–one), so those theorems still have their
importance.

Proposition 6.1. limi→∞ si/i = 0.

Proof. Let ε > 0 small. Then,

sn

n
=

∑n
i=0 di

n
≤

∑�εn/2�
i=0 di

n
+

n∑
i=�εn/2�+1

di

i
≤ ε

2
+

∞∑
i=�εn/2�+1

di

i
.

As
∑
di/i <∞, the second term converges to zero as n→ ∞, so eventually it will be less

than ε/2. �

Let a(k)i denote the expected number of trees of size k spanned by the vertex set
{v0, . . . , vi}. We will prove a sequence of technical lemmas about the sequences a(k).

Proposition 6.2. For i ≥ 1 and k ≥ 2,

a(k)i = a(k)i−1 +
(k − 1)a(k − 1)i−1

i
di − ka(k)i−1

i
di.

Proof. Suppose di = 1. Consider the process just before we add the edge from vi.
Let p+ be the probability that we increase the number of trees of size k, and let p−
be the probability that we decrease that number. In either case, the change is ±1. Let
p0 = 1 − (p+ − p−). On the one hand, p+ = (k − 1)a(k − 1)i−1/i, and p− = ka(k)i−1/i.
On the other hand,

a(k)i = p+(a(k)i−1 + 1) + p−(a(k)i−1 − 1) + p0a(k)i−1 = a(k)i−1 + (p+ − p−).

In the other case, if di = 0, then a(k)i = a(k)i−1. �

Lemma 6.3. Let k ≥ 2. Then there exist positive constants C1, C2 such that, for all
i ≥ 1,

C1

i∑
j=k

a(k − 1)j−1

j
dj ≤ a(k)i ≤ C2

i∑
j=1

a(k − 1)j−1

j
dj .
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Proof. The upper bound is a straightforward consequence of Proposition 6.2. Indeed,
a(k)i ≤ a(k)i−1 + (ka(k − 1)i−1/i)di, so a(k)i ≤ k

∑i
j=1(a(k − 1)j−1/j)dj .

For the lower bound, notice that

a(k)i ≥ a(k)i−1

(
1 − kdi

i

)
+
a(k − 1)i−1

i
di.

This implies

a(k)i ≥
i∑

j=1

[
a(k − 1)j−1

j
dj

i∏
l=j+1

(
1 − kdl

l

)]

≥
i∑

j=k

[
a(k − 1)j−1

j
dj

i∏
l=j+1

(
1 − kdl

l

)]
≥

i∑
j=k

[
a(k − 1)j−1

j
dj

∞∏
l=k+1

(
1 − kdl

l

)]

≥ Q

i∑
j=k

a(k − 1)j−1

j
dj ,

where Q =
∏∞

l=k+1 (1 − (kdl/l)). Note that the second inequality is correct, because for
j = 1, . . . , k − 2, we have a(k − 1)j−1 = 0 (so the omitted terms are zero), and for j =
k − 1 the omitted term is non-negative. Also note that

∑
di/i <∞ implies Q > 0. �

Lemma 6.4. Let k ≥ 2. Then there exists positive constant K such that for all i,

a(k)i ≤ K

i∑
j=1

djt
k−2
j+1 .

Proof. We proceed by induction on k. Let k = 2. By Lemma 6.3, there exists C2 such
that a(2)i ≤ C2

∑i
j=1(a(1)j−1/j)dj ≤ C2

∑i
j=1 dj .

Now suppose that k ≥ 3. By Lemma 6.3 and the induction hypothesis, there exist
positive constants C2 and C such that

a(k)i ≤ C2

i∑
j=1

a(k − 1)j−1

j
dj ≤ C

i∑
j=2

j−1∑
l=1

dlt
k−3
l+1

dj

j
≤ C

i−1∑
l=1

i∑
j=l+1

dlt
k−3
l+1

dj

j

≤ C

i−1∑
l=1

dlt
k−3
l+1

i∑
j=l+1

dj

j
≤ C

i−1∑
l=1

dlt
k−2
l+1 . �

Lemma 6.5. Let l ≥ 1. Then,

∞∑
i=1

∑
σ∈Al

i

f(σ) <∞.
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Proof. For l = 1 the above statement is equivalent to the sparsity condition∑
di/i <∞. For l > 1, we note that

∑
σ∈Al

i

f(σ) ≤
l∑

j=1

∑
σ∈Al

i
σj=i

di

i

l∏
k=1
k 	=j

dσk

σk
=

l∑
j=1

di

i

∑
σ∈Dl−1

i

f(σ) =
l∑

j=1

di

i
tl−1
i = l

di

i
tl−1
i

Then,
∞∑

i=1

∑
σ∈Al

i

f(σ) ≤ l

∞∑
i=1

di

i
tl−1
i .

As limi→∞ ti = 0, we have that {ti}∞i=1 is bounded and hence the desired series
converges. �

Lemma 6.6. Suppose that l ≥ 1. Then,

∞∑
i=1

dit
l
i = ∞ =⇒

∞∑
i=1

si

∑
σ∈Bl

i

f(σ) = ∞.

Proof. By rearranging and switching the order of summation, we have that

∞ =
∞∑

i=1

dit
l
i =

∞∑
i=1

di

∞∑
j=i

∑
σ∈Al

j

f(σ) =
∞∑

j=1

j∑
i=1

di

( ∑
σ∈Al

j

f(σ)
)

=
∞∑

j=1

sj

∑
σ∈Al

j

f(σ). (3)

We next observe that if l = 1, then Al
i = Bl

i and the proof is complete. Hence, let us
assume that l ≥ 2. We will next show that

∞∑
i=1

si

∑
σ∈Al

i\Cl
i

f(σ) <∞. (4)

∞∑
i=1

si

∑
σ∈Al

i\Cl
i

f(σ) ≤
∞∑

i=1

si

∑
1≤j<k≤l

∑
σ∈Al

i
σj=σk

f(σ)

=
∞∑

i=1

si

∑
1≤j<k≤l

( ∑
σ∈Al

i
σj=σk=i

f(σ) +
∞∑

m=i+1

∑
σ∈Al

i
σj=σk=m

f(σ)
)

≤
∞∑

i=1

si

∑
1≤j<k≤l

((
di

i

)2 ∑
σ∈Dl−2

i

f(σ) +
∞∑

m=i+1

∑
1≤p≤l
p/∈{j,k}

∑
σ∈Al

i
σj=σk=m

σp=i

f(σ)
)

https://doi.org/10.1017/S0013091517000487 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091517000487
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=
∞∑

i=1

si

∑
1≤j<k≤l

((
di

i

)2 ∑
σ∈Dl−2

i

f(σ) +
∞∑

m=i+1

∑
1≤p≤l
p/∈{j,k}

di

i

dm

m

dm

m

∑
σ∈Dl−3

i

f(σ)
)

≤
∞∑

i=1

si

∑
1≤j<k≤l

((
di

i

)2 ∑
σ∈Dl−2

i

f(σ) + (l − 2)
(
di

i

)2 ∞∑
m=i+1

dm

m

∑
σ∈Dl−3

i

f(σ)
)

≤
∞∑

i=1

si

∑
1≤j<k≤l

((
di

i

)2 ∑
σ∈Dl−2

i

f(σ) + (l − 2)
(
di

i

)2 ∑
σ∈Dl−2

i

f(σ)
)

≤ (l − 1)
(
l

2

) ∞∑
i=1

si

(
di

i

)2 ∑
σ∈Dl−2

i

f(σ) = (l − 1)
(
l

2

) ∞∑
i=1

si

i

di

i
tl−2
i <∞.

As before, the last inequality follows as {si/i}∞i=1 and {ti}∞i=1 are bounded sequences.
Putting (3) and (4) together, we have that

∞∑
i=1

si

∑
σ∈Cl

i

f(σ) = ∞.

Noting

∞∑
i=1

si

∑
σ∈Cl

i

f(σ) = l!
∞∑

i=1

si

∑
σ∈Bl

i

f(σ),

the proof is complete. �

Lemma 6.7. Let k ≥ 2. Then, there exist C and N such that for all i ∈ N

a(2)i ≥ CsN,i and

a(k)i ≥ C

i+3−k∑
j=3

sN,j−1

∑
σ∈Bk−2

j,i

f(σ) for k ≥ 3.

Proof. Let N ≥ 2. Since sn/n→ 0, there exists N such that, for all n > N , 2sn/n ≤
1/2,

First consider k = 2. From Lemma 6.3, there exists a constant C such that, for all
i ≥ 2,

a(2)i ≥ C

i∑
j=2

a(1)j−1

j
dj .
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So, for all i ≥ N ,

a(2)i ≥ C

i∑
j=N

j − 2sj−1

j
dj ≥ C

i∑
j=N

j − 2sj

j
dj

= C
i∑

j=N

(
1 − 2sj

j

)
dj ≥ C

2

i∑
j=N

dj =
C

2
sN,i.

Now assume k ≥ 3. We will proceed by induction, so we consider k = 3 first. There
exist C and C ′ such that, for all i ≥ 3,

a(3)i ≥ C
i∑

j=3

a(2)j−1

j
dj ≥ C ′

i∑
j=3

sN,j−1
dj

j
= C ′

i∑
j=3

sN,j−1

∑
σ∈B1

j,i

f(σ).

Now assume that k ≥ 4. There exists a C such that, for all i,

a(k)i ≥ C

i∑
j=k

a(k − 1)j−1

j
dj ≥ C

i∑
j=k

j−k+3∑
l=3

sN,l−1

∑
σ∈Bk−3

l,j−1

f(σ)
dj

j

≥ C

i−k+3∑
l=3

sN,l−1

i∑
j=l−3+k

dj

j

∑
σ∈Bk−3

l,j−1

f(σ) = C

i−k+3∑
l=3

sN,l−1

∑
σ∈Bk−2

l,i

f(σ). �

Lemma 6.8. Let k ≥ 2. Then,

[ ∞∑
j=1

djt
k−2
j = ∞

]
=⇒

[
lim

i→∞
a(k)i = ∞

]
.

Proof. The case k = 2 follows directly from the previous Lemma 6.7. Hence, assume
k ≥ 3. By Lemma 6.6 and the hypothesis we have that

∞∑
j=1

sj

∑
σ∈Bk−2

j

f(σ) = ∞.

Let N be the constant from Lemma 6.7. Lemma 6.5 and the fact that 0 ≤ sj − sN,j−1 ≤
N + 1 imply that

0 ≤
∞∑

j=1

sj

∑
σ∈Bk−2

j

f(σ) −
∞∑

j=1

sN,j−1

∑
σ∈Bk−2

j

f(σ) ≤ (N + 1)
∞∑

j=1

∑
σ∈Bk−2

j

f(σ)

≤ (N + 1)
∞∑

j=1

∑
σ∈Ak−2

j

f(σ) <∞.

Hence we have that
∑∞

j=1 sN,j−1

∑
σ∈Bk−2

j
f(σ) = ∞.
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To complete the proof, we choose M > 0. Then there is i0 such that

i0+3−k∑
j=3

sN,j−1

∑
σ∈Bk−2

j

f(σ) >
M + 1
C

,

where C is the constant from Lemma 6.7. Now for each 1 ≤ j ≤ i0 + 3 − k, there exists
ij such that ∑

σ∈Bk−2
j,ij

f(σ) ≥ −1
C(i0 + 3)(si0+3)

+
∑

σ∈Bk−2
j

f(σ).

Now for all i ≥ max{i0, i1, . . . ii0+3−k} we have that

a(k)i ≥ C

i+3−k∑
j=3

sN,j−1

∑
σ∈Bk−2

j,i

f(σ) ≥ C

i0+3−k∑
j=3

sN,j−1

∑
σ∈Bk−2

j,ij

f(σ)

≥ C

i0+3−k∑
j=3

sN,j−1

( −1
C(i0 + 3)(si0+3)

+
∑

σ∈Bk−2
j

f(σ)
)

≥ −1 + C

i0+3−k∑
j=3

sN,j−1

∑
σ∈Bk−2

j

f(σ) > −1 + C
M + 1
C

= M,

completing the proof. �

Recall that a ray is a one-way infinite path, i.e., a sequence of vertices u1, u2, . . . in a
graph such that ui ∼ ui+1 for all i.

Theorem 6.9. Suppose
∑
di/i <∞. Then the process almost surely generates a graph

with no ray.

Proof. The hypothesis implies that tn → 0, so there exists a positive integer N such
that for all i ≥ N , ti < 1. Fix i ≥ N . For k ≥ 2, let Ek denote the event that the graph
will contain a path of length k that starts at the vertex vi and for every vertex vj on the
path we have j ≥ i:

Pr(Ek) =
∑

σ∈Bk+1
i

Pr(vσl+1 ∼ vσl
for all 1 ≤ l ≤ k)

=
∑

σ∈Bk+1
i

dσ2

σ2
· · · dσk+1

σk+1
≤

∑
σ∈Dk

i

f(σ) = tki .

Hence limk→∞ Pr(Ek) = 0. We conclude that the probability that a ray emanates from
the vertex vi such that every vertex of the ray is beyond vi is 0. Then almost surely, for
all i ≥ N , such a ray does not exist.
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It is easy to see that if the graph had a ray, it would also have a ray vi0vi1 . . . such
that i0 ≥ N , and for all j ∈ N, ij ≥ i0. But we have just seen that the probability of that
is 0. �

6.3. Proof of Theorem 2.5

Part (i) is an immediate consequence of Theorem 5.3 in the special case of zero-one
sequences.

For part (ii), let m < k; Lemma 6.8 implies that a(m)i → ∞, that is, the expected
number of components of size m is infinity. But we will prove a stronger statement,
namely that almost surely there are infinitely many components of size m. We will do
this in two steps. First, we will show that almost surely infinitely many components of
size m are created. Then, using this fact, we will show that almost surely the final graph
has infinitely many components of size m.

Let us proceed to show that infinitely many components of size m are created. If m = 1,
then this follows from the fact that the sequence {di} contains infinitely many zeros. Let
m ≥ 2. Let Nj be the random variable that counts the number of components of size
m− 1 spanned by vertices {v0, . . . , vj}. Let Ej be the event that a component of size m
is created at step j from vertex vj . Then,

Pr(Ej) =
∞∑

�=0

Pr(Nj−1 = 	)
	(m− 1)dj

j

= (m− 1)
dj

j

∞∑
�=0

	Pr(Nj−1 = 	) = (m− 1)
dj

j
a(m− 1)j−1.

By Lemma 6.3, there exists a constant C, such that for all i ≥ 1,

a(m)i ≤ C

i∑
j=1

a(m− 1)j−1

j
dj .

Since a(m)i → ∞, we conclude that

∞∑
j=1

Pr(Ej) = (m− 1)
∞∑

j=1

dj

j
a(m− 1)j−1 = ∞.

To show that almost surely infinitely many components of size m are created, it suffices to
show that for all i0 ∈ N, Pr(

⋃∞
j=i0

Ej) = 1. We will do this using the following theorem,
sometimes referred to as the counterpart of the Borel–Cantelli lemma [6].

Lemma 6.10. Let A1, A2, . . . be a sequence of events such that Ai ⊆ Ai+1. Then,

Pr
( ∞⋃

j=1

Aj

)
= 1 ⇐⇒

∞∑
j=1

Pr(Aj+1|Ac
j) = ∞.
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We apply the above lemma to the situation where Aj =
⋃i0+j−1

i=i0
Ei. We note that for

all j ≥ 1, we have that

Pr(Aj+1|Ac
j) ≥ Pr(Ej+i0),

implying that
∞∑

j=i0

Pr(Aj+1|Ac
j) = ∞.

By Lemma 6.10 and the fact that
⋃∞

i=1Ai =
⋃∞

i=i0
Ei, we have that Pr(

⋃∞
j=i0

Ei) = 1.
We next show that the final graph almost surely has infinitely many components of

size m. It suffices to show that for every i ∈ N and ε > 0, the probability that the final
graph contains a component of size m containing a vertex vj , j ≥ i, is greater than 1 − ε.
Indeed, this is the case as it implies that for all i, with probability one, a component of
size m with a vertex vj , j ≥ i will exist. Then, taking intersection over all is, we obtain
the desired result with probability one.

If a component of size m is created at vertex vj , the probability that it will not be
destroyed is

qj =
∞∏

�=j+1

(
1 − d�m

	

)
.

As by hypothesis
∑
d�/	 = ∞, we have that qj → 1 as j → ∞. Since almost surely Ej

occurs for infinitely many js, we have that for sufficiently large j we create a component
of size m without later destroying it with probability at least 1 − ε.

For any m′ ≥ k, Lemma 6.4 shows that the expected number of components of size m′

is finite, therefore almost surely there are finitely many components of size m′.
There are two things that remain to be proven to finish the proof of the theorem.

First, that if m < k, and T is a tree with |T | = m, then almost surely there are infinitely
many components of the graph isomorphic to T . From the argument above, we have
that almost surely there are infinitely many components of size m, and also, if C is a
component, Pr(C ∼= T | |C| = m) > 0, so the statement follows.

The second thing is that almost surely there is no infinite component of the graph.
From Theorem 5.3, we know that almost surely each vertex is of finite degree (i.e., the
graph is locally finite). Every locally finite connected infinite graph contains a ray (see,
e.g., Proposition 8.2.1. in [9]). So Theorem 6.9 finishes the proof.

Corollary 6.11. If
∑∞

i=1 disi/i <∞, then the space has infinitely many atoms, and
all of them are of the form F ∪ F1 ∪ F2, where F is a finite forest.

Proof.

∞∑
j=1

djtj+1 ≤
∞∑

j=1

djtj =
∞∑

j=1

dj

∞∑
i=j

di

i
=

∞∑
i=1

di

i

i∑
j=1

dj =
∞∑

i=1

disi

i
<∞,

so Theorem 2.5 implies the statement. �

The following theorem is a natural analogue of Corollary 4.4.
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Theorem 6.12. Fix 0 < p < 1, and consider the double random process with
di = 1 with probability p, otherwise di = 0 for i > 0. The process almost surely generates
infinitely many copies of ω-trees.

Proof. We will prove that the hypotheses of Theorem 2.5(i) are satisfied almost surely.
Let Xn =

∑n
i=1 di/i. On the one hand, μn := E[Xn] ≥ p lnn. On the other hand,

σ2
n := Var[Xn] =

n∑
i=1

Var
[
di

i

]
≤

n∑
i=1

p− p2

i2
≤ 2.

Fix M > 0. Using Chebyshev’s inequality, if μn > M ,

Pr[Xn ≤M ] ≤ Pr[|Xn − μn| ≥ μn −M ] ≤ σ2
n

(μn −M)2
≤ 2

(p lnn−M)2
→ 0.

Hence, almost surely Xn → ∞. �
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