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Abstract

The user’s gaze can provide important information for human–machine interaction, but the
analysis of manual gaze data is extremely time-consuming, inhibiting wide adoption in usabil-
ity studies. Existing methods for automated areas of interest (AOI) analysis cannot be applied
to tangible products with a screen-based user interface (UI), which have become ubiquitous in
everyday life. The objective of this paper is to present and evaluate a method to automatically
map the user’s gaze to dynamic AOIs on tangible screen-based UIs based on computer vision
and deep learning. This paper presents an algorithm for automated Dynamic AOI Mapping
(aDAM), which allows the automated mapping of gaze data recorded with mobile eye tracking
to the predefined AOIs on tangible screen-based UIs. The evaluation of the algorithm is per-
formed using two medical devices, which represent two extreme examples of tangible screen-
based UIs. The different elements of aDAM are examined for accuracy and robustness, as well
as the time saved compared to manual mapping. The break-even point for an analyst’s effort
for aDAM compared to manual analysis is found to be 8.9 min gaze data time. The accuracy
and robustness of both the automated gaze mapping and the screen matching indicate that
aDAM can be applied to a wide range of products. aDAM allows, for the first time, automated
AOI analysis of tangible screen-based UIs with AOIs that dynamically change over time. The
algorithm requires some additional initial input for the setup and training, but analyzed gaze
data duration and effort is only determined by computation time and does not require any
additional manual work thereafter. The efficiency of the approach has the potential for a
broader adoption of mobile eye tracking in usability testing for the development of new pro-
ducts and may contribute to a more data-driven usability engineering process in the future.

Introduction

The user’s gaze can provide important information for human–machine interaction, but the
analysis of gaze data is very time-consuming (Kurzhals et al., 2017), inhibiting wide adoption
in usability studies (Essig et al., 2010). Mobile eye trackers are wearable head-mounted systems
that track the user’s gaze and record their field of vision (Duchowski, 2007) and are also used
for usability analysis (Mussgnug et al., 2017). Important metrics for usability analysis can be
established using areas of interest (AOI) analysis (Holmqvist and Andersson, 2017), where the
user’s gaze is mapped onto predefined AOIs. Lohmeyer et al. (2019) showed that mobile eye-
tracking data can bring more insights into the usability engineering process, and usability indi-
cators derived from eye-tracking data allow the assessment of the evolution of not only a pro-
duct’s effectiveness and efficiency but also of its ease of use. However, the standard
contemporary process of mapping gaze fixations from an eye-tracking video to AOIs on a sta-
tic user interface (UI) representation typically has to be done manually (Vansteenkiste et al.,
2015).

The incorporation of automated AOI analysis in usability studies has the potential to make
the usability engineering process driven by quantitative metrics. Traditionally, usability engi-
neering relies on qualitative methods such as observations, interviews, questionnaires, and
expert opinions, or quantitative metrics such as task completion or time on tasks, which
are derived manually from an evaluator present during testing, or from video data. The
usage ofeye tracking could potentially automate the analysis of usability studies, as both the
collection and analysis of data do not require specific input by the user (Malan et al.,
2018). Based on AOI analysis, metrics related to the ease of use can be computed automati-
cally, independent of an evaluator’s bias. This could potentially lead to more data-driven
usability engineering process, as it is currently employed in the UI and user experience
(UX) design of mobile phone apps and websites.

Several methods for automating gaze object mapping for mobile eye tracking have been
proposed, based on the advances in object detection in the field of computer vision.
Automated gaze object mapping methods aim to map gaze fixations automatically to AOIs.
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These approaches can be divided into three categories. First,
marker-based approaches for the automatic computation of
AOIs have been proposed (Kiefer et al., 2014; Zhang et al.,
2015). However, these marker constitute an unwanted distraction
for the user and are only limited to specific applications. Second,
based on feature point detectors such as SIFT (Lowe, 2004),
methods have been proposed to either detect whole objects (De
Beugher et al., 2012; Toyama et al., 2012) or to map the gaze coor-
dinate from a planar artistic painting in a geometrically correct
fashion on to a reference view of that painting (MacInnes,
2018). Third, object detection based on convolutional neuronal
networks (Garcia-Garcia et al., 2018) was used by Wolf et al.
(2018) for computational gaze object mapping (cGOM). This
approach automatically maps gaze data to AOIs using the object
detection and instance segmentation algorithm provided by Mask
R-CNN (He et al., 2017).

Unfortunately, existing methods for automated AOI analysis
cannot be applied to the tangible products with a screen-based
UI that have become so ubiquitous in everyday life. Screen inter-
faces are no longer bound to static settings such as desktop PCs,
which inhibits the use of the static screen-mounted eye-tracking
system as the head of the participant moves freely relative to
the screen but are integrated into an increasing number of consu-
mer and medical devices that feature (touch) screens, which can
be interacted with and manipulated by hand. These include
smartphones, tablets, ATMs, and coffee machines, which we
refer to as tangible screen-based UIs. For AOI analysis, it is essen-
tial to define the screen’s outline as an AOI. However, though the
geometric contour of the screen is preserved over time, the con-
tent displayed on the screen – the focal point of the interaction
– often changes over time, making the screen a dynamic AOI.
This limits the application of existing methods such as cGOM
(Wolf et al., 2018), which only detects an entire object but not
the content of the screen, and dynamic mapping by MacInnes

(2018), which requires the mapped plane to contain static high-
spatial frequency information.

The objective of this paper is to present and evaluate a method
to automatically map the user’s gaze on dynamic AOIs to tangible
screen-based UIs based on computer vision and deep learning.
This paper presents an algorithm for automated Dynamic AOI
Mapping (aDAM), which allows the automated mapping of
gaze data recorded with mobile eye tracking to the predefined
AOIs on tangible screen-based UIs. We evaluate the accuracy
and robustness of each individual component of aDAM using
two devices with distinct features and geometric properties
using data from usability studies. We then compare the time
required by an analyst for the automated analysis with aDAM
to the current manual analysis.

Algorithm

The basic algorithm of aDAM requires two main elements – auto-
mated gaze mapping and automated screen matching – which
together form the aDAM. Figure 1 shows an overview of the
steps required by aDAM, with the gaze mapping element outlined
in green and the screen matching element outlined in red. Input is
a frame from an eye-tracking scene video with the gaze point
coordinate (orange circle). The output of the gaze mapping is
the coordinate of the gaze point on a static representation of
the UI. The input to the screen matching is the cropped and
straightened image of the screen from the frame and the output
is the correctly identified screen content for each frame.
Combined, they make it possible to map the gaze to a reference
view with the dynamic AOI of the screen. To achieve this,
aDAM relies on two geometric properties of the screen interface:
a planar surface and the rectangular shape of the screen. Overall,
the input to the automated AOI mapping is a sequence of frames
with a respective gaze point coordinates, formulated in pixel

Fig. 1. Overview of the detailed steps of aDAM, for automated gaze mapping (green) and automated screen matching (red). (1) Tracking of screen outline. (2)
Calculation of perspective transformation and mapping onto the static reference UI representation. (3) Application of transformation on gaze point. (4)
Isolation of screen. (5) Extraction of screen information through look up in database. (6) Fusion of data for dynamic AOI mapping.
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coordinates for each frame and a set of reference screens. The out-
put is the gaze coordinate in the reference UI representation and
the screen content for every frame.

Automated gaze mapping

Building on an initial approximation of the location of the screen
corners, the exact outline of the screen is determined by using
state-of-the-art computer vision algorithms. The starting point
of the algorithm, an initial guess for the four corners of the screen
(1), is shown in Figure 2. Given the starting point, a region is
defined, and a canny edge detector (Canny, 1986) is applied
(2). A line segment detector (LSD) is used (Grompone von Gioi
et al., 2012) on the black and white image, and the dominant
lines are normalized, weighted, and arranged into four distinct
groups. The dominant line in each of the four groups is deter-
mined and the intersections between the four lines are calculated
(4). This step outputs the coordinates of the corner points in the
video frame, which are calculated even if the screen has rounded
corners. This algorithm is also robust to a corner point being con-
cealed, for instance by the hand of the user.

The basis for the automated gaze mapping and the automated
screen matching is a perspective transformation of the surface
plane of the device. The screen surface can be transformed into
a reference coordinate framework by means of a perspective
transformation based on the corner points tracked on the screen,
step (1)–(4) in Figure 1. Perspective transformation is a non-affine
geometric transformation often used to map points or lines from
one plane to another (Hartley and Zisserman, 2003). The planar
surface of the screen constitutes one plane; a static UI representa-
tion of the device with geometrically predefined AOIs, such as the
screen outline and/or elements like buttons on the bezel forms a
second plane with reference coordinates.

With the perspective transformation, the gaze point coordinate
from the video can be mapped to the reference coordinates of the
reference image. The output of the eye-tracking glasses provides
the coordinates of the gaze in the video, as marked by the orange
circle in Figure 1. They are then transformed into the reference
coordinate system. The output of this step is the gaze point coor-
dinates in the coordinate system of the reference image. In the
coordinate system of the reference layout, AOIs can now be
defined geometrically. The hits of the gaze point on AOIs can
then be computed: this procedure is called semantic gaze map-
ping. The AOIs are not limited to the screen but can also

incorporate other geometrically fixed elements, such as buttons
and instructions on safety labels.

Automated screen matching

The screen content can be determined with feature point match-
ing by comparing it to a database of given reference screens, as
shown in Figure 3. The perspective corrected screen is isolated
and compared to all existing screens, in order to find the most
matching feature points. We chose the binary robust invariant
scalable keypoints (BRISK) algorithm for detecting and comput-
ing feature points (Leutenegger et al., 2011) as a license-free alter-
native to the SIFT detector (Lowe, 2004). The feature points were
then matched to their counterparts in the reference screen using a
brute-force matcher. All reference screens or screen segments
have to be available before this step. Also, the matching can be
applied to a predefined section of the screen. Due to the high
frame rate of the video, ambiguous screens can appear during
transitions between two screens. This is handled by applying a
moving average filter to exclude false matches during transitions.
Every screen is consequently matched with a time stamp. The out-
put is a time-series with the content of the screen information.
This information can then be combined with the predefined static
AOIs; for instance, the AOI “screen” is replaced with the dynamic
screen from the corresponding frame.

Automated screen corner recovery

The location of the corner points of one frame can be used as the
first estimate of the corner points of a subsequent image using
optical flow, such that no manual input is required. Since a
video does not examine isolated frames, but a series of frames,
the information of the prior frame can be used to estimate the
approximate position of the current corner points for screen out-
line detection. In case that the prior image contains information
that can be used for the estimate of the current image, we use
Lucas–Kanade optical flow (Lucas and Kanade, 1981) to track
the motion of the corner points in the next image. This estimate
is then used for the initial guess of the gaze mapping algorithm of
the next image. However, this assumes that both frames contain
the device and that only a limited relative movement of the screen
contour has occurred. Typically, relatively long periods of interac-
tion can be handled in this way.

Fig. 2. Steps for screen edge detection from an initial guess. (1) Initial guess with search region. (2) Canny edge detection in search region. (3) Grouping of line
segments. (4) Intersection of dominant line segments which form corner points.
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In case that the prior image contains no exploitable informa-
tion, the initial guess is reconstructed either by a manual input
or with an object detection and instance segmentation
approach. If the screen being tracked is not in the frame, for
example, because the user is looking away, frames have to be
skipped until the screen reappears. In this case, the outline of
the screen has to be located and detected. We refer to this as
recovery, as we are not using the information of the previous
frame. This can be done using a manual input, where the user
selects the approximate position of the corner points manually.
However, this requires continuous input by the user every time
the user looks away from the screen. To avoid this, we employ
an object detection algorithm to estimate the location of the
device screen.

For object detection and instance segmentation, Mask
R-CNN is used to estimate the location of the screen outline,
which is then used as the initial guess for the line segment
detection. Mask R-CNN provides not only a bounding box
around an object in an image, as for example Faster R-CNN
(Ren et al., 2017), but also a mask that outlines the contour
of the object (Fig. 4). In the case of the screen, it outputs a
binary mask that covers the screen’s contour. However, the
mask provided by Mask R-CNN is not precise enough in detect-
ing the screen corners to apply the perspective transformation
(see Section “Automated screen matching”), and only provides
a good initial guess, much better than just with the rectangular
bounding box provided by Faster R-CNN, which is unable to
incorporate a perspective tilt. We therefore use the screen out-
line detection to determine the exact corner points of the
screen. Mask R-CNN is trained using a data set generated
from the video, which has to be labeled accordingly for every
type of device used in a usability study.

The data generated by the screen outline detection can later be
used for the training of the neural network. The collection of data

for a training data set requires images where the device is present
and where the coordinates of the screen outline are known.
Implicitly, this is provided by the screen outline detection for
every frame. Running the screen outline detection with occasional
manual input until enough training data is collected is a time-
efficient method at this preparatory step. At a later stage, even
larger data sets can be used to re-train the neural network if
required.

Fig. 3. Screen matching. (1) The original frame from the video. (2) Extracted and straightened screen image. (3) Matching of screen to predefined screens. (4)
Identified screen content.

Fig. 4. Output of mask R-CNN: a binary mask, which approximates the screen con-
tour (in red). The outermost edges of the mask are then used as an initial guess
for screen outline detection and subsequent gaze mapping.

508 M. Batliner et al.

https://doi.org/10.1017/S0890060420000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060420000372


Methods

The evaluation of the algorithm is performed using two medical
devices, which serve as two extreme examples of tangible screen-
based UIs. Figure 5 shows the two devices used for the evaluation:
an infusion device (FlowBox, Onefusion AG, Zurich, Switzerland)
on the left and a ventilation monitor (S1, Hamilton Medical AG,
Bonaduz, Switzerland) on the right. The infusion device has a 3′′’
screen with no touch capability and various buttons on the front
for interaction and can be easily moved and attached to a pole.
The ventilation monitor has a 15′′ touch screen, buttons on the
bezel and is permanently connected to a stand. They differ con-
siderably in use, size, and functionality, but both feature a rectan-
gular screen. Both devices are typically used in a hospital at the
bedside of a patient, and the user, usually a nurse or doctor, inter-
acts with both the device and the patient. In addition, the user can
move freely around the bed to examine the patient or to connect
or adjust medical devices such as a hose from the device to the
patient. In this setting, the user’s head moves freely and the per-
spective of the screen can change with each image. This prevents
the use of screen-mounted eye-tracking systems.

The different elements of aDAM, such as automated gaze map-
ping, automated screen matching, and automated recovery, are
examined for their accuracy and robustness, as well as the time
saved when using aDAM instead of manual mapping. The gaze
and scene data used in this study come from separate usability stud-
ies conducted with the infusion device and the ventilation monitor,
each used by healthcare professionals in a simulated hospital envi-
ronment. The eye-tracking data was recorded with SMI Eye
Tracking Glasses 2w (SensorMotoric Instruments, Teltow,
Germany). These mobile eye-tracking glasses track the user’s gaze
at 60 Hz with a reported gaze accuracy of 0.5°. The scene video is
recorded at a resolution of 1280 × 960 at 24 fps. The data were pro-
cessed and exported from BeGaze 3.7 (SensorMotoric Instruments,
Teltow, Germany). The ground truth for the accuracy and robust-
ness evaluation is provided by the evaluation of one analyst.

Automated gaze mapping

An experiment was conducted to compare the geometric accuracy
of the automated gaze mapping to a manual mapping done by an
analyst. For this purpose, the mapping of the gaze from the video
frame to the coordinates in a static UI representation was

performed by aDAM and an analyst separately, similar to steps
(1)–(3) in Figure 1. The geometric distance (in pixels) between
the two coordinates was then calculated and converted to the
absolute distance on the device in millimeters. This was done
for 100 images for both the infusion device and the ventilation
monitor.

Automated screen matching

For evaluation, automated screen matching is applied to sample
frames from a video sequence and then compared to a manual
evaluation. For the infusion device, this is done for the entire screen,
as shown in Figure 3, and the screens were sorted according to the
sequence they would appear in an actual interaction. However, the
ventilation monitor has a more complex interface: for instance, it
has four tiles in the main view, which can be configured by the
user. As these elements are possible AOIs, we evaluate the screen
matching for these sub-screen segments. As the tiles are geometri-
cally well-defined, one can apply a mask, as shown in Figure 6,
for each position of the four tiles. To evaluate the automated screen
matching for the ventilation device, we took 150 samples frames
from four layouts (combinations of screens) and identified the
seven individual screen segments present in these four layouts,
and which are shown in Figure 6 (on the right).

Automated screen recovery

An experiment was conducted to evaluate the automated screen
recovery depending on the size of different training data sets.
This involved collecting 100 images of scenes in the videos
when automated screen recovery was required. For these frames,
automated screen recovery was applied and checked to see if
the screen contour found with Mask R-CNN and the subsequent
line segment detection was correct. Both frames with and without
a screen present were used. This was done for both the infusion
device and the ventilator monitor using independent training
data of different sizes (10, 50, 150, 200, 250, and 300 images).
They were split into training and validation sets at a 9:1 ratio.

Time analysis

To compare the effort required for manual mapping and auto-
mated mapping with aDAM, the times required were compared

Fig. 5. The two tangible screen-based UIs used for evaluation. (Left) Infusion device and (right) ventilation monitor.
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for both aDAM and five expert analysts. Both manual mapping
and aDAM require a fixed effort to prepare and export data at
the beginning and end of an analysis, regardless of the video size.
For the mapping process, we define a mapping rate: how many min-
utes of gaze data are mapped per minute. For manual mapping,
both the fixed effort and the mapping effort require constant atten-
tion and interaction by the user. For aDAM, we differentiate
between the required user effort and the pure computation time,
which does not require any interaction on the part of the analyst.
For aDAM, there is a fixed user effort and a fixed computing effort
for preparation and export. No effort for the analyst is required for
the mapping since it is a pure computational process.

From the recorded efforts we calculate the break-even point,
which is the gaze data sample size for which aDAM’s fully auto-
mated approach requires less effort on the part of the analyst
than the manual mapping. To do this, we used 2-minute video seg-
ments from five different eye-tracking videos from the usability
study with the infusion device to have five expert analysts carry
out the manual mapping and one analyst carry out the mapping
using aDAM. The five expert analysts had multiple years of experi-
ence and analyzed eye-tracking data on a daily basis. The analyst
using aDAM was intensively trained to use the algorithm. We
recorded the time required by both the analysts and aDAM to cal-
culate the fixed effort per user, the computational effort, and the
mapping rates, similar to Wolf et al. (2018). The mapping rate is
the ratio of the mapping time and the data sample size. The evalu-
ation of the runtime and training of data with aDAM were per-
formed using an NVIDEA Tesla V100 (Graphics Processing Unit)
via Amazon Web Services (AWS) cloud computing. Semantic
Gaze Mapping by the experts was performed using BeGaze 3.7.

Results

Automated gaze mapping

The mapping is robust for both the infusion device and the ven-
tilation monitor, as 95% of all mapped points have less than 5.4

and 6 mm error, respectively, which corresponds to 0.62° and
0.69° error in visual angle (degree) at a distance of 50 cm between
eye and the object. Figure 7 shows the results for the mapping
error for both the infusion device and the ventilation monitor.
The narrow distribution of the mapping error for both devices
points to the robustness of the mapping.

Automated screen matching

aDAM achieves a 95% overall matching rate for the infusion
device and 98% for most screens of the ventilation device.
Table 1 shows the results for matching success of both the infu-
sion device and the ventilation monitor without gaze mapping.
For the infusion device, a matching rate of 95.1% was achieved
when using the filter. Without the filter, the matching rate was
91.3%. The screen matching remained at the same rate even for
one screen where the number on the screen changed due to a
user input (manual input to set the infusion flow rate). For the
ventilation device, the result for each of the seven sub-screens is
presented in Table 1. For screens 1–5, the matching rate is over
98% when using the filter. However, for screens 6 and 7, that
can be seen in Figure 6, the matching rate is 7.5% and 0.5%
after filtering and 3% and 18% before filtering. Screen 6 was
often misattributed to screen 3, which has a quite similar arrange-
ment of features. Screen 7 was misattributed to different screens,
which may be the reason that the screen seems to have the least
features.

Automated screen recovery

The best recovery rate that is achieved with the data sets available
is at 100% for the infusion device and 76% for the ventilation
monitor. For both the infusion device and the ventilation moni-
tor, the true negative rate is 100%, meaning that no “screen”
was detected in the frames in which no device is present. The
true positive rate (the frames where the device is present and a

Fig. 6. Matching of predefined sub-screens. (Left) The main screen with the four main tiles, which are masked out individually for the matching process. (Right) The
sub-screens that can be configured to take different positions of tiles on the main screen.
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recovery should be possible) for the infusion device is above 90%
for the entire range of data size, as shown in Table 2. For the ven-
tilation monitor, the true positive rate ranges from 45% for 10
images in the training set to 76% for 200 images. The true positive
rate decreases to 66% when the number of images in the training
set is increased to 300.

Time analysis

The break-even point for an analyst’s effort for aDAM compared
to manual analysis is 8.9 min gaze data time. The manual analysis
requires a fixed effort of 2.5 min for preparation and export. The
mapping rate ranges from 3.89 to 5.92 with a mean mapping rate
of 4.79 min for the five analyst. For aDAM, the fixed user effort is
at approximately 45 min for the assisted labeling of the data.
Another 30 min of computation time are required for the training
of the weights for Mask R-CNN. The mapping rate, which

consists of pure computational effort, is 5.3 min per min gaze
data. The break-even point for the analyst’s effort, as shown in
Figure 8, does not include the computation time.

Discussion

We presented a method to automatically map a user’s gaze point
on dynamic AOIs on tangible screen-based UIs using computer
vision and deep learning, and evaluated it with data from two
use case examples. The goal of the evaluation was to assess the
accuracy and robustness of the different elements of aDAM and
to compare an analyst’s effort analyzing data with aDAM to the
current standard of manual analysis with a usability study.

The accuracy and robustness of both the automated gaze map-
ping and the screen matching indicate that aDAM can be applied
to a wide range of products. The two medical devices selected for
evaluation represent very different types of interfaces with differ-
ent screen sizes and cover a wide range of applications such as
tablets, ticket vending machines, and many other industrial and
medical UIs. The screen outline detection required for perspective
transformation and subsequent gaze mapping has proved to be
robust and was able to handle partial occlusions, for example,
the obstruction of the screen by a user’s hand. In addition, the
screen matching rate was encouragingly high and robust for all
screens displayed by the infusion device and for most of the
screens displayed by the ventilator monitor. The resulting errors
result either from the inaccuracy of the screen outline detection,
which leads to a slightly distorted perspective transformation, or
from the mapping of the reference that was performed manually.
The screens that had a low matching rate had fewer feature points
that could be used for the matching. This indicates that for
screens featuring no unique characteristics, the extraction of
screen content must be more elaborate and may include optical
character recognition or incorporate prior knowledge on the
screens for a spatially more specific approach.

The screen recovery allows for the automated operation of
aDAM and works with relatively little training data. For the

Fig. 7. Error distance between manual gaze mapping of an analyst compared to aDAM for the infusion device (left) and the ventilation monitor (right). The error
indicated corresponds to the absolute distance on the surface of the device.

Table 1. The matching rate for the infusion screens and the ventilation
sub-screens with the filter applied (post-filtering) and without the filter
(pre-filtering)

Device
(Sub-)
Screen

Matching rate
(pre-filtering)
(%)

Matching rate
(post-filtering)

(%)

Infusion
device

All 91.3 95.1

Ventilation
monitor

1 100 100

2 100 100

3 92.3 100

4 95.2 99.8

5 42.6 98.25

6 3 7.5

7 18 0.5
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infusion device the automatic recovery works well, with a true
positive rate (TPR) of above 90% for 10–300 images in the train-
ing data – a surprisingly low number. For different training data,
the mask provided by Mask R-CNN may vary and may not allow
for successful initialization of the LSD, so recovery for that frame
fails. For the ventilation monitor, the TPR peaks at 76% and does
not reach quite the same result as the infusion device. We assume
that larger data sets would be required. One has to consider that
the sizes of data sets used for training are very low compared to
other applications. Using the newest MS COCO (Lin et al.,
2014) weights, trained with hundreds of thousands of labeled
images, transfer learning can be applied, allowing the model to
work with less input data. Furthermore, the training images
stem from the very same environment that the Mask R-CNN
is applied to. We, therefore, assume that when the environ-
mental conditions change, but the stimulus remains constant,
a re-training would be necessary based on images taken under
the changed environmental conditions, resulting in a larger
data set. Especially with more complex interfaces such as

the ventilation monitor, the risk of overfitting is higher when
using small data.

aDAM allows, for the first time, the automated AOI analysis of
tangible screen-based UIs with AOIs that change dynamically
over time. With aDAM, the automatic mapping of the gaze
from the tangible screen-based UI is independent of the (chang-
ing) screen content, which would be a problem for the purely fea-
ture point matching approach as proposed by MacInnes (2018).
The AOI on the UI representation can be static over time, if the
UI includes buttons, for instance, but with the screen matching
approach, the AOIs can change over time: aDAM can explicitly
taking into account dynamically changing screen content.
aDAM is the first approach that allows the automated AOI anal-
ysis on tangible screen-based interfaces while taking into account
temporally dynamic changing surface conditions. However, the
mapping is currently limited to 2D planar surfaces. Extending
the mapping of gaze to 3D objects, such as UI with AOIs on a sec-
ond surface, would require computationally expensive 3D recon-
struction algorithms (Lepetit and Fua, 2005; Moons et al., 2008)

Table 2. True positive rate for the screen recovery of both the infusion device and the ventilation monitor for different numbers of training images

Device No. of training images True positive (%) False positive (%) True negative (%) False negative (%)

Infusion device 10 100 0 100 0

50 100 0 100 0

150 97 3 100 0

200 91 9 100 0

250 100 0 100 0

300 97 3 100 0

Ventilation monitor 10 45 55 100 0

50 45 55 100 0

150 66 34 100 0

200 76 24 100 0

250 58 42 100 0

300 66 34 100 0

Fig. 8. User effort for ADAM and manual analysis. For the user effort of the manual analysis, the minimal and maximally measured mapping rate are also depicted.
The intersection of user effort for aDAM and manual analysis occurs at 8.9 min gaze data time.
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combined with methods for gaze depth estimation (Mansouryar
et al., 2016).

The algorithm requires a minimal input by the analyst for
setup and training, whereas the analyzed gaze data duration and
effort is only determined by computation time. For every experi-
mental setup where the stimulus and the environment change,
such as a new usability study, aDAM requires additional initial
setup time. Time is required by an analyst to collect training
data and to train the convolutional neural network model based
on the Mask R-CNN approach, which is used later for screen cor-
ner recovery in aDAM. However, this setup can be used for any
number of participants thereafter, as the analysis effort with
aDAM is then determined by computation time, with no interac-
tion on the part of the analyst. The collection of training data and
labeling of the screen outline can also be assisted by the methods
presented in this paper. The efficiency of the approach for data
analysis could increase the viability of mobile eye tracking in
usability testing for a wider audience. Although there is some
variability in the analysis time by the experts, and a potentially
even higher analysis time for non-experts, in the future the com-
putational power increase, this will only make aDAM more viable.
Furthermore, cluster-based analysis (Saluja et al., 2019) could be
used to further process the data.

The following limitations must be addressed: First, though the
two devices for the evaluation were chosen to represent two
extremes on the spectrum, the applicability to other types of
the devices must still be demonstrated. Second, we extrapolated
from 10 min mapped gaze data per analyst for the time analysis.
However, we argue that the mapping rate of an analyst effectively
decreases over time, due to factors such as required breaks and
fatigue, which would favor our algorithmic approach even more.
Third, the computations were done using cloud computing.
aDAM also runs on normal desktop computer, but much more
slowly, due to computational limitations. However, we argue
that cloud computing services are already publicly available at a
low cost (3$/h) and should not limit the application. Fourth, we
hypothesize that when multiple screens are too similar or that
do not contain enough features, it can lead to a decreased perfor-
mance of the screen matching algorithm. Finally, the aDAM is
currently limited to settings where there is only one screen pre-
sent. The method could be extended in the future to handle multi-
ple screens.

Conclusion

We presented and evaluated a method, aDAM, to automate AOI
analysis for mobile eye tracking on tangible screen-based UIs. The
efficiency of the approach offers the potential for a broader adop-
tion of mobile eye tracking in usability testing for the develop-
ment of new products and may contribute to a more
data-driven usability engineering process in the future.

Acknowledgment. Code and a video example have been made available at
https://gitlab.ethz.ch/pdz/aDAM.git.
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