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J. G. Chen1,2, Y. Zhou1,2,†, R. A. Antonia3 and T. M. Zhou4

1Institute for Turbulence-Noise-Vibration Interactions and Control, Harbin Institute of Technology
(Shenzhen), Shenzhen 518055, PR China

2Digital Engineering Laboratory of Offshore Equipment, Shenzhen 518055, PR China
3School of Engineering, University of Newcastle, NSW 2308, Australia

4School of Civil, Environmental and Mining Engineering, The University of Western Australia,
WA 6009, Australia

(Received 11 November 2018; revised 27 February 2019; accepted 7 April 2019;
first published online 17 May 2019)

This work focuses on the temperature (passive scalar) and velocity characteristics
within a turbulent Kármán vortex using a phase-averaging technique. The vortices are
generated by a circular cylinder, and the three components of the fluctuating velocity
and vorticity vectors, ui and ωi (i= 1, 2, 3), are simultaneously measured, along with
the fluctuating temperature θ and the temperature gradient vector, at nominally the
same spatial point in the plane of mean shear at x/d= 10, where x is the streamwise
distance from the cylinder axis and d is the cylinder diameter. We believe this is the
first time the properties of fluctuating velocity, temperature, vorticity and temperature
gradient vectors have been explored simultaneously within the Kármán vortex in
detail. The Reynolds number based on d and the free-stream velocity is 2.5 × 103.
The phase-averaged distributions of θ and ui follow closely the Gaussian distribution
for r/d 6 0.2 (r is the distance from the vortex centre), but not for r/d > 0.2. The
collapse of the distributions of the mean-square streamwise derivative of the velocity
fluctuations within the Kármán vortex implies that the velocity field within the vortex
tends to be more locally isotropic than the flow field outside the vortex. A possible
physical explanation is that the large and small scales of velocity and temperature
fields are statistically independent of each other near the Kármán vortex centre, but
interact vigorously outside the vortex, especially in the saddle region, due to the
action of coherent strain rate.

Key words: vortex dynamics, vortex streets, wakes

1. Introduction
Vortices are associated with many natural phenomena such as the hurricane, the

tornado and the near wake of bluff bodies. Yet, our knowledge of these vortices is
rather inadequate, which hampers our ability to harness these phenomena. Consider
the circular cylinder near wake for example. The vortices in the von Kármán street
(referred to as the Kármán vortices hereinafter) are the distinct feature of this flow and
play a predominant role in the flow development. Naturally, a thorough understanding
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of the vortices is a necessary first step in understanding the dynamics of the flow
(Williamson 1996).

The Kármán vortices in the near wake have been intensively investigated (e.g.
Cantwell & Coles 1983; Hussain & Hayakawa 1987; Kiya & Matsumura 1988;
Hayakawa & Hussain 1989; Matsumura & Antonia 1993; Zhou & Antonia 1993,
1994). Cantwell & Coles (1983) were first to propose that the mechanism of the
turbulence production in the wake is the vortex stretching near the saddle point
between the Kármán vortices. This was subsequently confirmed by Hussain &
Hayakawa (1987) who outlined the topological features of the vortices in the near
wake to explain the dynamics of this flow. They pointed out that turbulence is
produced in the saddle region due to the vortex stretching, transported along the
diverging separatrix and accumulated within the Kármán vortex. Chen et al. (2018)
found experimentally that the turbulent energy dissipation occurs largely within the
Kármán vortex, thus complementing Hussain & Hayakawa’s (1987) topological model.
Their finding is consistent with Hussain & Hayakawa’s (1987) observation that the
Kármán vortices are associated with the concentration of incoherent random motions,
as the energy dissipation is predominantly connected to small-scale turbulence. One
may surmise that the ‘turbulence’ inside the Kármán vortex may have very different
characteristics from that outside the vortex. It is therefore of fundamental interest to
examine the features of the turbulence inside the vortex by ensuring that weighting
is given only to the region of the flow that lies inside the vortex. Hangan (2018)
measured the tornado vortex in his laboratory using particle imaging velocimetry
(PIV) and observed that the conventional probability density function (p.d.f.) of the
tangential fluctuating velocity within the tornado vortex was non-Gaussian. This
raises an obvious question: are the p.d.f.s of the fluctuating velocities as well as the
vorticity within the Kármán vortex, especially at or near the centre of the vortex, also
non-Gaussian?

The thorough understanding of how a passive scalar such as heat behaves within the
Kármán vortex is also of fundamental and practical importance. A distinctive feature
of the passive scalar mixed by a turbulent flow is the presence of ramp-cliff structures
in the temperature signal (e.g. Gibson, Friehe & McConnell 1977; Sreenivasan &
Antonia 1977; Warhaft 2000). This essentially reflects the fact that the temperature
field is physically arranged in the form of concentration plateaus separated by
warm/cool temperature fronts (Shraiman & Siggia 2000). Although the temperature
fronts are large-scale events, of size comparable to the integral length scale (Gibson
et al. 1977), the effect of the sharp front may be felt by the small scales. There
is sufficient evidence that the ramp-cliff structures make an important contribution
to the non-zero skewness of the temperature derivatives both in the streamwise
and lateral directions (e.g. Sreenivasan & Antonia 1977; Tong & Warhaft 1994).
Antonia et al. (1986) studied the topology of velocity and temperature fluctuations
in the nearly self-preserving region of a turbulent plane jet and found that the
temperature front is aligned with the diverging separatrix which connects the adjacent
vortical structures. A similar result is also observed in the near/intermediate wake of a
circular cylinder (Matsumura & Antonia 1993; Chen et al. 2016), where the diverging
separatrix connects consecutive Kármán vortices of opposite sign. These studies also
demonstrated that a high temperature concentration resides within the Kármán vortices,
as a result of the warm shear layer shedding from the heated cylinder and wrapping
into vortices. The temperature field within the vortex is spatially separated from the
large-scale temperature front as well as from the coherent strain in the saddle region.
Then one question arises: how do the characteristics of the temperature field within
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the vortex differ from those outside? This knowledge may provide important insight
into the role the large-scale structures play in the interaction between the different
scales of the passive scalar field.

This work aims to address the issues raised above. The paper is organized as
follows. Section 2 introduces experimental details and the phase-averaging technique
employed in this work. The statistics of the velocity and temperature fluctuations
within the vortex are discussed in § 3. The small-scale temperature and velocity fields
are investigated in § 4. In § 5, we compare the interaction between large and small
scales within and outside the vortex. Conclusions are given in § 6.

2. Experimental details and phase-averaging technique
2.1. Experimental details

A detailed description of the experimental configuration was given in Chen et al.
(2016) and here we briefly recall some important features of the experimental details.
Experiments were conducted in an open-loop wind tunnel with a 2.0 m long working
section of 1.2 (width) × 0.8 m (height). A circular cylinder was used to generate
the wake. The cylinder is aligned horizontally at the centre of the test section and
supported rigidly by two aluminium sharp-edged end plates. The cylinder is made
of a 110 cm long smooth brass tube with an outer diameter of 12.7 mm, i.e. with
an aspect ratio of approximately 87 and a blockage ratio of 1.6 %. A coiled heating
wire with a diameter of approximately 0.5 mm was inserted into a ceramic tube,
which was put inside the cylinder as a heating element. The free-stream velocity
U1 was 3.0 m s−1, corresponding to a Reynolds number Re (≡ U1d/ν) of 2.5× 103,
where ν is the kinematic viscosity. Measurements were conducted within the cylinder
mid-span plane at x/d= 10, 20 and 40, where x is the streamwise distance from the
cylinder axis (figure 1a). This study focuses on the flow field at x/d= 10 where the
Kármán vortex is more organized than at the two downstream positions.

The unheated cylinder wake has been shown to be statistically symmetrical about
the centreline, e.g. by Zhou et al. (2009). As a result, the present measurements
were made only on one side of the centreline, i.e. y/d=−0.2–2.8, with a transverse
measurement increment of approximately 0.2d. The coordinate system and some
symbols are defined in figure 1(a). The maximum mean temperature excess Θ0,
relative to the ambient fluid, is approximately 1.6 ◦C on the wake centreline (y/d= 0).
This excess is small enough to avoid any buoyancy effects, and hence allows the
temperature to be treated as a passive scalar.

A probe consisting of four X-wires (X1–X4 in figure 1b) and four cold wires
(C1–C4 in figure 1b) was used to measure simultaneously the fluctuating velocity ui,
vorticity ωi, temperature θ and temperature gradient θ,i at nominally the same spatial
point, where i (= 1, 2 and 3) represents the x, y and z directions, respectively. Please
refer to Chen et al. (2016) for more details about the probe and its performance in
measuring ui, ωi and θ .

2.2. Phase-averaging technique
A phase-averaging technique is used to calculate the statistics of the examined quantity
at a specified phase. The technique is the same as that used in Chen et al. (2016) and
will not be repeated here. Briefly, the instantaneous quantity Γ may be viewed as the
sum of the time-averaged component Γ and the fluctuating component β, which can
be further decomposed into a coherent fluctuation β̃ and a remainder βr, namely

β = β̃ + βr. (2.1)
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FIGURE 1. (a) Experimental arrangement and the coordinate system; (b) side (left) and
front (right) view of the probe.

The coherent part β̃ reflects the effect from the large-scale coherent structures, while
the remainder βr reflects largely the random incoherent motions in the flow. The phase
average of the fluctuating quantity β is given by

β̃(φ)=
1
N

N∑
i=1

βφ,i, (2.2)

where φ represents the phase, and N is the number of detected vortex shedding
periods, which is presently approximately 1980. When the cylindrical coordinate is
used, with the vortex centre at r= 0, the value of β̃(r) is given by

β̃(r)=
1
N

N∑
i=1

βr,i. (2.3)

3. Temperature and velocity fluctuations within the Kármán vortex
In order to have a visual perspective of the Kármán vortex and the associated

temperature field, we start by plotting (figure 2) the colour-filled iso-contours of
ω̃∗3 and θ̃∗. Hereafter, an asterisk denotes normalization by d, U1 and/or Θ0. This
information was first obtained by Chen et al. (2016) and is simply re-presented
here as a reference. The phase φ can be interpreted in terms of a longitudinal
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FIGURE 2. (Colour online) (a) Phase-averaged spanwise vorticity ω̃3
∗ and (b)

temperature fluctuation θ̃∗.

distance based on Taylor’s hypothesis; the range φ= 0–2π corresponds to the average
vortex wavelength. The Kármán vortex centre and saddle points, identified from
the phase-averaged sectional streamlines (not shown), are marked by ‘+’ and ‘×’
respectively. The vortex boundary which has been arbitrarily assumed to correspond to
approximately 25 % of the maximum concentration of ω̃3

∗ in figure 2(a) is represented
as a thick dashed line in figure 2(b). The inclined dash-dotted line passing through the
saddle point represents the diverging separatrix. Clearly, the opposite-signed Kármán
vortices are alternatively arranged along the wake centreline (figure 2a). The vorticity
contours are inclined as a result of the vigorous interaction between neighbouring
vortices. The high temperature warm fluid (positive θ̃∗) is distributed within the
Kármán vortices, while the cool fluid (negative θ̃∗) entrained by the vortices from
the ambient free stream occupies the alley way between consecutive vortices. Two
large-scale warm/cool temperature fronts emerge: one is along the direction of the
diverging separatrix, which is similar to Antonia et al.’s (1986) observation in a
plane jet; another is immediately downstream of the vortex roll. The different effects
of these two fronts on the temperature field will be discussed in § 5. Our primary
objective here is to focus on the statistics of the temperature and velocity fields
within the Kármán vortex and how they differ from the conventional statistics that
give equal weighting to flow regions both within and outside the vortex.

Zhou & Antonia (1993) examined, based on vortex detections, the distribution of the
conditionally averaged circumferential velocity, along the streamwise direction through
the vortex centre, within the Kármán vortex and found that this velocity follows the
Oseen vortex model (e.g. Granger 1985, p. 475) reasonably well. Figure 3 presents
the distributions of the three phase-averaged components ũi(r1)

∗ (i= 1, 2 and 3) of the
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FIGURE 3. (Colour online) The distributions of the phase-averaged (a) mean and (b)
mean-square fluctuating velocities and temperature within the vortex in the x-direction
through the vortex centre. The data of ũ1(r1)

∗ and ũ2(r1)
∗ in Zhou & Antonia (1993)

(dash-dotted line) are included in (a) for comparison. The vertical lines mark the inner
and outer core radii r∗c and r∗o , respectively.

fluctuating velocity vector, along with θ̃ (r1)
∗, where r∗1 is the streamwise distance from

the vortex centre calculated using Taylor’s hypothesis. The distributions of ũ1(r1)
∗

and ũ2(r1)
∗ in Zhou & Antonia (1993) are also included for comparison. The present

distributions ũ1(r1)
∗ and ũ2(r1)

∗ agree reasonably well with those obtained by Zhou
& Antonia (1993). The value of ũ2(r1)

∗ increases rapidly and almost linearly near the
vortex centre and reaches a maximum before decreasing slowly. The slightly more
rapid rise in ũ2(r1)

∗ of Zhou & Antonia (1993) near the vortex centre is ascribed to
the fact that these authors detected only the rather strong vortices. The region r∗6 r∗c
(≈0.2), where ũ2(r1)

∗ rises rapidly and approximately linearly and the coherent motion
behaves like a rigid body, may be referred to as the inner core of the vortex. The
region at larger r∗ which is enclosed by the radius r∗0 ≈ 0.65, at which ũ2(r1)

∗ reaches
the maximum, is identified with the outer core of the vortex. As will be shown later,
the inner core region possesses some unique features which are absent in the outer
core region. The ũ1(r1)

∗ shows its maximum magnitude at the vortex centre and drops
gradually with increasing r∗1 . The occurrence of the maximum ũ1(r1)

∗ at the vortex
centre is consistent with Zhou & Antonia’s (1992) finding that the vortex convection
velocity at the vortex centre is larger than the local mean velocity. The magnitude
of ũ3(r1)

∗ is rather small compared to that of ũ1(r1)
∗ or ũ2(r1)

∗. This is reasonable.
Being mostly induced by the rib structures and the distorted spanwise vortices, u3
is statistically randomly orientated; as a result, the positive and negative u3 tend to
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FIGURE 4. (Colour online) The p.d.f.s (red circles) of (a) fluctuating temperature and
(b–d) velocities at different distances (r∗ = 0–0.6) from the Kármán vortex centre (φ =
0, y∗ = y∗c). The conventional p.d.f.s (blue squares) at the lateral position of the vortex
centre (y∗= y∗c) are also included for comparison. The black dash-dotted lines are Gaussian
distribution.

cancel each other. The value of θ̃ (r1)
∗ displays its maximum at the vortex centre and

decreases with increasing r∗1 , which agrees internally with the concentric vorticity and
temperature iso-contours within the vortex (figure 2b). It is interesting to note that
the radial position of θ̃ (r1)

∗
≈ 0 coincides approximately with r∗0 . This observation

suggests that the rotational motion or coherence needs to be adequately strong to
retain heat or the scalar within the vortex.

The radial distribution of the phase-averaged mean-square values of the fluctuating
velocities and temperature are shown in figure 3(b). The distributions of ũ2

1(r1)
∗ have a

local minimum at the vortex centre. As r∗1 increases, ũ2
2(r1)

∗ is similar to ũ2(r1)
∗ with a

maximum at approximately r∗0 , while ũ2
1(r1)

∗ and ũ2
3(r1)

∗ reach their maxima rapidly at
r∗1 = 0.2, i.e. the edge of the inner core, before decreasing slowly beyond this location.
Within the inner core (r∗1 6 r∗c ), θ̃ 2(r1)

∗ is approximately constant, suggesting that the
root-mean-square (r.m.s.) scalar field is more homogeneous within the inner core than
the r.m.s. velocity field.

Figure 4 compares the p.d.f.s of ui and θ at different radial distances (r∗ = 0,
0.2, 0.4, 0.6) from the vortex centre, i.e. y∗ = y∗c = 0.4 and φ = 0 (figure 2a). Their
conventional p.d.f.s at the same y∗ position as the vortex centre are also shown for
comparison. All the data are centred, that is, the mathematical expectation has been
subtracted, and then are normalized by the standard deviation, viz. α′= (α−E(α))/σα
where α denotes ui(r), θ(r), ui and θ at y∗ = y∗c ; σα stands for the standard deviation
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of α, and E(α) is the mathematical expectation. Note that E(α) is 0 for ui and θ ,
and equal to α̃(r) for ui(r) and θ(r). After such standardization, all the examined
fluctuations α′ have a zero mean and a standard deviation of unity so that their p.d.f.s
can be compared with a standard Gaussian distribution where the mean and standard
deviation are zero and unity, respectively. An impressive result is that all the p.d.f.s
of the temperature and velocity fluctuations at the Kármán vortex centre, i.e. Pθ(r∗=0)
and Pui(r∗=0), follow the Gaussian distribution closely. In contrast, their conventional
counterparts, i.e. Pθ and Pui , exhibit different distributions, especially Pu2 and Pθ ;
Pu1(r∗=0) appears to be slightly more negatively skewed than Pu1 , which is probably
linked to the effect of the streamwise convention velocity of the vortex centre. As
commented earlier, the convection velocity at the vortex centre is greater than the
local mean velocity. The distributions of Pu2 and Pθ reflect the effect of the coherent
motions in the flow. Specifically, Pθ exhibits a sharp cutoff on its left side due to
the presence of the cool fluid (figure 2b). This is confirmed by the observation that
the cutoff temperature (obtained after adding the mean temperature at this y∗ position
to θ ) is very close to the ambient temperature. The twin peaks in Pu2 , located at
approximately the same magnitude of u′2, reflect the positive and negative lateral
velocities on either side of the Kármán vortex centre. The symmetric Pu3 with respect
to u′3 = 0 reflects the spanwise symmetry of the plane wake. The higher value of Pu3

near 0 than the Gaussian distribution is ascribed to the higher intermittency of u3.
This is confirmed by the larger kurtosis of u3 relative to the Gaussian value at this
y∗, which will be shown later in this section. This is likely due to the fact that u3 is
mostly induced by the rib structures and the distorted spanwise vortices in the near
wake.

When r∗ reaches 0.2, Pθ(r∗=0.2) and Pui(r∗=0.2) are still close to the Gaussian
distribution. However, beyond the inner core region, say at r∗ = 0.4 and 0.6, the
p.d.f.s of both velocity and temperature fluctuations depart appreciably from the
Gaussian distribution and the departure becomes more pronounced as r∗ increases.
This difference between the p.d.f.s at r∗ = 0.2 and at r∗ > 0.4 is particularly evident
for the p.d.f.s of θ(r∗) (figure 4a) and u2(r∗) (figure 4c). The result is fully consistent
with what figure 3(b) indicates, that is, the inner core region (r∗1 6 r∗c ) of the vortex
is markedly different from the outer core.

The higher moments such as skewness and kurtosis of ui and θ may also provide
important insight into the physical characteristics of the vortex. Figure 5 shows the
lateral distributions of the skewness (S) of θ(φ= 0) and ui(φ= θ) across the vortex, as
well as θ and ui at the same y∗. In figure 5(a), the distribution of Sθ(φ=0) is closer to 0
than Sθ at each y∗ position, particularly at the vortex path (y∗= y∗c). This observation is
consistent with figure 4(a) in which Pθ is apparently more positively skewed; Sui(φ=0)
is close to 0 at y∗c but gradually departs from 0 as y∗ is away from y∗c , which conforms
to the finding in figure 4(b–d). The y∗ positions corresponding to Sui ≈ 0 are generally
larger than y∗c , probably due to the effect of the saddle region outside the vortex.
Note that the saddle point occurs at y∗ ≈ 1.4 (figure 2), larger than y∗c(= 0.4). It is
worth noting that the distributions of Su1 and Su3 are very similar, but distinct from
the distribution of Su2 . This feature is also reflected in the p.d.f.s of ui in figure 4(b–d).
The kurtosis (K) of θ(φ= 0) (figure 6a) is closer to the Gaussian value of 3 than the
conventional kurtosis Kθ at all y∗ positions. For the velocity field (figure 6b–d), Kui

deviates from the value of 3, except for Ku1 , but all the magnitudes of Kui(φ=0) are
reasonably close to 3.

In summary, the statistics of the velocity and temperature fields within the Kármán
vortex are quite different from the corresponding conventional statistics. The p.d.f.s
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FIGURE 5. (Colour online) Distribution of skewness of temperature and velocity
fluctuations (red circles) within a Kármán vortex in y∗ direction across the vortex
centre (φ = 0). The conventional skewness is shown for comparison (blue squares). (a)
Temperature fluctuation, (b–d) velocity fluctuations. The vertical dashed line marks the
lateral position corresponding to the vortex centre.

of the fluctuating temperature and velocity components within the vortex, especially
within the inner core region, are characterized approximately by the Gaussian
distribution. The physics underpinning this phenomenon is linked to the isolated
nature of the random and relatively small-scale turbulence within the Kármán vortex,
that is, this turbulence is sheltered from the effect of the coherent structures outside
the vortex. This will be discussed in detail in § 5.

4. The p.d.f.s of small-scale temperature gradient and vorticity within the Kármán
vortex
The properties of the small scales within the Kármán vortex are examined in

this section via the statistics of vorticity and temperature derivatives. Some remarks
are due in connection with the spatial resolution of the probe before we proceed
with our examination of the small-scale temperature gradient and vorticity inside the
vortex. In the study, the streamwise derivatives of the velocity and temperature
fluctuations are estimated using Taylor’s hypothesis, i.e. 1x1 ≈ −1tUc where
Uc = 0.87U1 is the averaged convection velocity of the vortices (Zhou & Antonia
1992) and 1t = 1/fsamp. The use of Taylor’s hypothesis in the present flow has
been validated by Mi & Antonia (2010) in the near wake of a circular cylinder at
a similar Reynolds number. The spatial resolution of measurements in the x, y, z
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FIGURE 6. (Colour online) Distribution of kurtosis of temperature and velocities (red
circles) within the Kármán vortex in y∗ direction across the vortex centre (φ = 0). The
conventional kurtosis is shown (blue squares) for comparison. (a) Temperature fluctuation,
(b–d) velocity fluctuations. The horizontal dashed line marks the value of 3, the kurtosis
of a Gaussian distribution.

directions are estimated to be approximately 5.8η, 11η, 15η, respectively, where
η≡ (ν3/ε̄)1/4 is the Kolmogorov length scale on the centreline and ε̄ is approximated
by assuming transverse homogeneity in the y–z plane, instead of isotropy. The
assumption of homogeneity has been shown (Lefeuvre et al. 2014) to provide a
better estimation of the mean turbulent energy dissipation rate in the near wake.
It has been previously established that the optimum spatial resolution for velocity
derivatives is 3–5η (e.g. Shafi & Antonia 1997; Zhou, Pearson & Antonia 2001;
Zhou et al. 2003); a larger wire separation can cause attenuated velocity derivatives,
while a smaller wire separation may overestimate the velocity derivatives because
of the electronic noise contamination. The relatively coarse spatial resolution of the
probe in the y and z directions may attenuate the high wavenumber range of the
power spectrum of the vorticity (e.g. Zhu & Antonia 1996). However, it is worth
pointing out that the inadequate spatial resolution of the probe is not a problem for
the qualitative comparison of the p.d.f.s conducted in this section since both θ,i and
θ,i(r∗) or ωi and ωi(r∗) are attenuated basically at the same level.

Figure 7 shows the p.d.f.s of the temperature derivatives at the vortex centre
and at r∗ = 0.2, along with the conventional p.d.f.s at the same y∗ position as
the vortex centre. For convenience, we use the notation θ,i ≡ ∂θ/∂xi (i = 1, 2
and 3). A semilogarithmic scale is used to emphasize the tails of the p.d.f.s. The
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FIGURE 7. (Colour online) Comparison between the p.d.f.s of the three components of
the temperature gradient at different distances (r∗= 0 and 0.2) from the vortex centre and
Gaussian distribution. The conventional p.d.f.s at the same lateral position of the vortex
centre are also included. The dash-dotted lines are the Gaussian distributions.

conventional p.d.f.s of the temperature derivatives exhibit extended exponential tails
for all three components, essentially reflecting the intermittency of the small scales of
the temperature field. This behaviour is expected and has been widely reported both
in experimental (e.g. Tong & Warhaft 1994) and numerical (e.g. Holzer & Siggia
1994; Watanabe & Gotoh 2004) studies. The spiky peak of Pθ,i at θ,i= 0 is due to the
presence of the cool potential fluid entrained into the wake by the coherent vortex
(figure 2b). What is quite surprising, if not remarkable, is that the p.d.f.s of the
temperature derivatives at the vortex centre, Pθ,i(φ=0), appear to follow the Gaussian
distribution much more closely than the conventional p.d.f.s Pθ,i . It is noted that the
Taylor micro-scale Reynolds number Reλ (≡ (u1)rmsλ/ν, where λ = (u1)rms/(u1,1)rms

is the Taylor microscale and ‘r.m.s.’ stands for the root mean-square-value of the
quantity) is not large, approximately 110, at the vortex centre. The p.d.f.s of the
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temperature derivatives in various turbulent flows with larger Reλ (please refer to the
review of Warhaft 2000) have non-Gaussian distributions with extended exponential
tails, similarly to the distribution of Pθ,i in figure 7(a–c). It is noted that there is a
marked change at r∗= 0.2 where the p.d.f.s Pθ,i(r∗= 0.2) display evident exponential
tails and deviate appreciably from the Gaussian distribution. This deviation becomes
even more pronounced with increasing r∗ (not shown). Recall that the p.d.f. of the
temperature fluctuation remains Gaussian at r∗= 0.2 (figure 4a). The marked deviation
of the p.d.f.s Pθ,i(r∗=0.2) from the Gaussian distribution indicates that the area around
the vortex centre, where the p.d.f.s of the temperature derivatives can be approximated
by a Gaussian distribution, contracts, compared to its counterpart of the temperature
fluctuation.

It is clearly of interest to also examine the p.d.f.s of the three components of
the vorticity within the Kármán vortex. As expected, the conventional p.d.f.s Pωi
(i = 1, 2 and 3) of the vorticity components at y∗ = y∗c exhibit extended exponential
tails (figure 8), reflecting the intermittency of the small-scale velocity field (e.g.
She, Jackson & Orszag 1991; Jiménez et al. 1993; Shafi & Antonia 1997). Note
that the conventional p.d.f.s of the three vorticity components also show different
characteristics from each other, particularly around the peak of the p.d.f. Apparently,
Pω2 displays a more pronounced peak and more stretched tails than Pω1 and Pω3 ,
suggesting that ω2 is more intermittent than ω1 and ω3 in the present flow. This
is corroborated by the larger kurtosis (not shown) of ω2 than those of ω1 and ω3
across the flow. The two peaks in Pω3 which are opposite in sign are caused by
the alternate arrangement of positive and negative vortices (figure 2a). Like Pθ,i(r∗=0)
(figure 7), the p.d.f.s Pωi(r∗=0) of the three vorticity components at the vortex centre
also tend to follow the Gaussian distribution better than their conventional p.d.f.s
Pωi(y∗=y∗c ). However, at r∗ = 0.2, the vorticity p.d.f.s exhibit an appreciable deviation
from the Gaussian distribution, showing extended exponential tails. This is different
from the scenario of the p.d.f.s of the velocities (figure 4b–d) which follow the
Gaussian distribution rather well at r∗ = 0.2. This difference between the p.d.f.s of
the vorticities and velocities resembles that between the p.d.f.s of the temperature
derivatives and the temperature fluctuation. This is fully consistent with previous
findings that the small-scale turbulence, irrespectively of whether the focus is on the
velocity or temperature field, is more intermittent, resulting in the deviation of the
corresponding p.d.f.s from the Gaussian distribution. The present result indicates that
the Gaussian distribution is a good approximation of the small scales of the passive
scalar and velocity fields only closely around the vortex centre within the vortex
inner core region.

Due to the inadequate spatial resolution of the probe, the value of the skewness
and kurtosis of θ,i and ωi may not be completely trustworthy. Nevertheless, one can
immediately infer from the closeness of the three p.d.f.s Pθ,i(r∗=0) and Pωi(r∗=0) in
figures 7 and 8 that the small scales around the vortex centre are not only Gaussian
but also satisfy local isotropy approximately. Indeed, we estimate that the skewness
and kurtosis of θ,i and ωi at the vortex centre are much closer to those of the
Gaussian distribution than the corresponding statistics outside the vortex at the saddle
point (φ = π, y∗ = 1.4, see figure 2). For example, the values of |S| for (θ,1, θ,2, θ,3)
and (ω1, ω2, ω3) at the vortex centre are (0.17, 0.27, 0.19) and (0.10, 0.12, 0.34),
respectively, while those at the saddle point are (0.88, 1.73, 0.32) and (0.29, 0.21,
0.64), respectively. It is worth pointing out that it is extremely difficult to find a flow,
including grid turbulence (see for example Antonia et al. 1978), where the skewness
of the temperature derivative is zero. Also, K of (θ,1, θ,2, θ,3) and (ω1, ω2, ω3)
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FIGURE 8. (Colour online) Comparison between the p.d.f.s of the three components of
the vorticity at different distances (r∗=0 and 0.2) from the vortex centre and the Gaussian
distribution. The conventional p.d.f.s at the same lateral position of the vortex centre are
also included. The dash-dotted lines are Gaussian distribution.

at the vortex centre are (4.6, 3.7, 3.6) and (4.2, 3.6, 3.5) respectively, while the
corresponding K at the saddle point are (13, 17, 15) and (9.0, 12, 7.6) respectively.
The much higher kurtosis of θ,i and ωi at the saddle point also indicates that the high
intermittency in the conventional p.d.f.s of θ,i and ωi (figures 7 and 8) is largely due
to the contribution of the flow field outside the vortex in the saddle region.

In view of the smaller values of |S| of θ,i and ωi at the vortex centre, one can expect
the flow field in the vortex core region to be more locally isotropic, compared to the
conventionally averaged flow. For locally isotropic turbulence, the following equations
should be satisfied (Taylor 1935)

u1,
2
1 = u2,

2
2 = u3,

2
3, (4.1)

2u1,
2
1 = u1,

2
2 = u1,

2
3 = u2,

2
1 = u2,

2
3 = u3,

2
1 = u3,

2
2, (4.2)
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FIGURE 9. (Colour online) Comparison between the lateral distributions of the (a)
conventional and (b) phase-averaged (φ = 0) mean-square values of the streamwise
derivative of the velocities.

and
u1,2u2,1 = u1,3u3,1 = u2,3u3,2 =−1/2u2

1,1. (4.3)

For a locally isotropic temperature field, the different components θ,2i (i = 1,
2 and 3) of the temperature dissipation rate must be equal to each other (e.g.
Sreenivasan 1991). Because θ,22 and θ,23 would be attenuated due to the inadequate
spatial resolution of the probe in the y and z directions (please refer to the earlier
discussion of the probe resolution), a simplified test of local isotropy for the velocity
field within the Kármán vortex is made here by checking whether the equations in
(4.2) associated with ui,1 (i = 1, 2, 3) are satisfied within the vortex. Note that the
spatial resolution of the probe in the streamwise direction is 5.8η, quite close to the
optimum resolution range (3–5η). Thus, the attenuation of the mean-square velocity
derivatives should be minimum in the streamwise direction. Figure 9 exhibits the
distributions of the mean-square value of ui,1 within the Kármán vortex at the same
phase as the vortex centre (φ = 0), and those of the conventional mean-square values.
The conventional distributions of 2u1,

2
1

∗

, u2,
2
1

∗

and u3,
2
1

∗

deviate appreciably from each
other (figure 9a), particularly at y∗ < 1. This is not unexpected because the coherent
motions, including the spanwise Kármán vortices and the streamwise ribs, in the
near wake are strongly anisotropic. This departure between the mean-square velocity
derivatives, which decreases downstream, is not negligible even in the self-preserving
far wake (e.g. Browne, Antonia & Shah 1987). However, the distributions of
2ũ1,

2
1(φ = 0)∗, ũ2,

2
1(φ = 0)∗ and ũ3,

2
1(φ = 0)∗ are close to each other (figure 9b),
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which is fully consistent with (4.2). The peak of the mean-square values occurs in
the region y∗ = 0.4–0.8 in figure 9(a), which corresponds to the y∗ range where the
vortex core region resides (figure 2a). It may be inferred that the turbulent energy
dissipation rate (≡νui,j(ui,j + uj,i), which can be simplified as 15νu1,

2
1 for isotropic

turbulence) within the vortex will have its maximum value in the same y∗ range
(i.e. 0.4–0.8). This is confirmed by the spatial distribution of the turbulent energy
dissipation rate in the same flow (see figure 11 of Chen et al. 2018).

5. Physical difference within and outside the vortex
The statistics within the Kármán vortex of the temperature and velocity fields,

including both fluctuations ui and θ (§ 3) and small scales ωi and θ,i (§ 4) are quite
different from their conventional counterparts, especially within the inner core region.
Their contrasting behaviours, shown in figures 4–8, indicate that the physics is
different inside and outside the vortex.

The spanwise vortex rolls and the streamwise ribs are the predominant coherent
structures in the near wake. The former induces the fluctuating velocities u1 and u2,
while the latter is the major contributor to u3 (e.g. Djenidi & Antonia 2009). The
presence of the cool fluid entrained by the vortex rolls from the free stream results in
the occurrence of large-scale temperature fronts outside the vortex. The coherent strain
between the consecutive vortices accounts for the temperature front near the saddle
point aligned along the diverging separatrix (e.g. Antonia et al. 1986; Matsumura &
Antonia 1993; also figure 2b). In distinct contrast to the complex structures outside
the Kármán vortex, the flow field within the vortex is filled with random incoherent
motions (Hussain & Hayakawa 1987) and the highly concentrated temperature
fluctuations of warm fluid (Matsumura & Antonia 1993). The flow region within
the inner vortex core is essentially ‘sheltered’ from the various coherent motions
outside the vortex. Therefore, the nearly Gaussian distributions of the fluctuations
ui(r∗) and θi(r∗) around the vortex centre are not unexpected. This is also why
the p.d.f.s of ui(r∗) and θi(r∗) gradually depart from the Gaussian distribution with
increasing r∗ (figure 4). Note that the p.d.f. of u2(r∗= 0.6) (figure 4c) tends to exhibit
two peaks similar to those observed in Pu2(y∗=y∗c ). This is essentially a footprint of the
positive and negative coherent u2 induced by the Kármán vortex on either side of its
centroid.

The large-scale structures outside the vortex are also expected to influence ωi and
θ,i. Two factors account for the high intermittency of ωi and θ,i outside the vortex,
as reflected by the stretched tails and/or a spiky peak in the conventional p.d.f.s of
θ,i (figure 7) and ωi (figure 8). Firstly, irrotational fluid is entrained from the free
stream (figure 2b), resulting in the concentrated patches of ωi and θ,i interspersed with
quieter regions of irrotational fluid. This is often referred to as external intermittency
(Cossin 1943; Davidson 2015, p. 377). Secondly, the vortex stretching caused by the
coherent strain in the saddle region produces fine-scale turbulent fluctuations. As such,
the large and small scales of both temperature and velocity fields could be coupled at
the saddle region. This effect of the large scales on the small scales of the turbulence
can also lead to the high intermittency of the small scales (Landau & Lifschitz 1987).
In contrast, one may surmise that the coupling between large and small scales of the
fluctuating temperature or velocity field is rather weak around the vortex centre, which
would account for the observation that the p.d.f.s of the temperature derivative and the
vorticity are quite close to the Gaussian distribution. To gain some further sight into
this, we take two approaches to evaluate the degree of coupling between the large and
small scales of both temperature and velocity fields within and outside the vortex.
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FIGURE 10. (Colour online) Colour-filled iso-contours of the correlation coefficients at
the same phase ρ(ψ, ζ |φ): (a) ψ = θ and ζ = χ , (b) ψ = q and ζ =ω2. The iso-contours
of θ (solid lines represent positive θ and dashed lines are for negative θ ) are superposed
in (a) for reference.

The first is the phase-averaged correlation coefficient defined by

ρ(ψ, ζ |φ)≡

[
(ψ − E(ψ))(ζ − E(ζ ))

σψσζ

∣∣∣∣∣ φ
]
, (5.1)

where ψ stands for θ or the turbulent kinetic energy q (≡ u2
1 + u2

2 + u2
3), representing

the large scales in the temperature or velocity field, and ζ stands for the temperature
dissipation rate χ (≡ θ 2

,1 + θ 2
,2 + θ 2

,3) or enstrophy ω2 (≡ ω2
1 + ω2

2 + ω2
3), which

characterizes the small scales. The ρ(ψ, ζ |φ) quantifies the correlation between the
large scales and small scales of the temperature or velocity field at the same phase.
It should be noted that, at a given phase φ, E(ψ) and E(ζ ) are not necessarily 0, but
equal to their corresponding phase-averaged values at this phase, i.e. ψ̃(φ) and ζ̃ (φ).
Technically, ρ(θ 2, χ |φ) is more analogous to ρ(q, ω2

|φ) than ρ(θ, χ |φ). But here we
would like to highlight the effect of the temperature front (interface between positive
and negative temperature) on the coupling between distinct scales in the temperature
field. Therefore, ρ(θ, χ |φ) is employed to avoid the ambiguity of the temperature
front caused by θ 2.

Figure 10(a) shows the iso-contours of ρ(θ, χ |φ), superposed onto the iso-contours
of the phase-averaged temperature (figure 2b) which serve as a reference. A large
value of ρ(θ, χ |φ), of the order of 0.7, appears in the saddle region along the
diverging separatrix where the large-scale temperature front forms, while a much
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smaller value, close to 0, is associated with the downstream half of the vortex. The
minimum correlation coefficient does not occur at the vortex centre, probably because
of the physical separation between the concentrations of θ and χ within the vortex.
It is noted that the presence of the entrained cool fluid in the warm wake gives
rise to two large-scale cool–warm temperature fronts, one near the saddle point and
aligned along the diverging separatrix and the other immediately downstream of the
vortex (figure 2b). The former is associated with large ρ(θ, χ |φ), while the latter is
related to small ρ(θ, χ |φ) (figure 10a). The observation suggests that the magnitude
of the coherent strain in the saddle region plays a crucial role in the interaction
between different scales in the temperature field. This is presumably because the
strain rate may act to amplify the temperature gradient (e.g. Pumir 1994). The large
values of ρ(q, ω2

|φ), of the order of 0.5, occur in the saddle region, while near-zero
magnitudes of ρ(q, ω2

|φ) reside around the centre of the Kármán vortex (figure 10b).
It may be inferred from figure 10(a,b) that the large and small scales of both velocity
and temperature fields are, at best, loosely coupled within the Kármán vortex but
are strongly coupled outside, especially in the saddle region under the effect of the
coherent strain.

Another way of evaluating the degree of coupling between the large and small
scales is to examine the expectation of ω2 conditioned on q and that of χ conditioned
on θ at different locations in the flow. One may expect that the dependence between
θ and χ , or q and ω2, is weak in a region where their correlation coefficient is
small. The dependence of χ on θ and ω2 on q may be given by the conditional
expectations of χ(φ) and ω2(φ), i.e. E(χ(φ)|θ(φ))† and E(ω2(φ)|q(φ))†, where ‘†’
denotes normalization by χ̃(φ) and ω̃2(φ), respectively. A few typical locations are
marked in figure 10(a). A constant E(χ(φ)|θ(φ))† is expected when χ(φ) and θ(φ)

are statistically independent of each other. For locations associated with a small
correlation coefficient, i.e. φ = 0, −0.1π and −0.2π, E(χ(φ)|θ(φ))† (figure 11a)
is generally equal to unity at different θ(φ), indicating that χ(φ) is statistically
independent of θ(φ) at these locations. In contrast, E(χ(φ)|θ(φ))† exhibits a
significant dependence on θ(φ) when ρ(θ, χ |φ) is large at φ = −0.8π. At this
position, a large value of E(χ(φ)|θ(φ))† is associated with a large magnitude of
θ(φ). A similar scenario applies for the dependence of ω2 on q (figure 11b). For
phases φ = 0.1, 0, −0.1π where ρ(q, ω2

|φ) is small (figure 11b), E(ω2(φ)|q(φ))† is
essentially equal to unity. On the other hand, at φ = −π where ρ(q, ω2

|φ) is large
(figure 11b), E(ω2(φ)|q(φ))† deviates from unity and increases with the value of q.

In summary, figures 10 and 11 show unequivocally a marked difference within
and outside the Kármán vortex in the interaction between the large- and small-scale
structures. This result conforms with the perception that the coherent strain in the
saddle region plays an important role in this interaction. It confirms our assertion
that the flow field within the vortex core region is ‘sheltered’ from the effect of the
large-scale structures or coherent strain outside, resulting in the Gaussian p.d.f.s of
fluctuating velocities and temperature within this region.

6. Conclusions and further discussion
We have investigated the velocity and temperature fields within the Kármán vortex

generated by a circular cylinder using phase averaging. To our knowledge, this is the
first time when the statistics of both the velocity and temperature or passive scalar
fields within the Kármán vortex have been presented in such detail. The following
conclusions can be drawn.
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FIGURE 11. (Colour online) Conditional expectations (a) E(χ(φ)|θ(φ))† and (b)
E(ω2(φ)|q(φ))† at four spatial locations marked in figures 10(a) and 10(b), respectively.

(i) The turbulent Kármán vortex is characterized by a rapid and approximately
linear rise in the tangential velocity ũ2(r1)

∗ within the inner core region (r∗1 6 r∗c )
of the vortex. The temperature and velocity fields within the Kármán vortex display
quite different statistical features from their corresponding conventional statistics. The
p.d.f.s of the fluctuating temperature and velocities within the inner core region exhibit
essentially a Gaussian distribution. In contrast, their corresponding conventional p.d.f.s,
especially the p.d.f.s of u2 and θ , depart noticeably from the Gaussian distribution
due to the presence of strong coherent motions or the cool fluid entrained by these
motions. The distributions of ũ2

1(r1)
∗ and ũ2

3(r1)
∗ have a minimum at the vortex centre

and rise to their maximum at r∗1 = r∗c . The distribution of θ̃ 2(r1)
∗ remains unchanged

at its largest magnitude within the inner core region. The observations suggest that
the flow behaviour within r∗ 6 r∗c is quite different from that in the region r∗ > r∗c .
The p.d.f.s of ui and θ follow the Gaussian distribution closely within the inner core
region, but not outside. It is found that the warm fluid boundary within the vortex
(θ̃ (r1)

∗
= 0) corresponds approximately to the outer core radius (r∗o) where ũ2(r1)

∗

reaches its maximum value. The finding suggests that it is the strong rotational motion
of the vortex that is responsible for retaining the heat within the vortex. Based on
this finding, one may surmise that the tornado-like vortex may be also characterized
by two critical radii, i.e. r∗c and r∗o , although the former one is not recognized in the
studies of the tornado vortex (e.g. Hu et al. 2011; Yang, Sarkar & Hu 2011).

(ii) The p.d.f.s of the components of the temperature gradient and vorticity
follow closely the Gaussian distribution at the vortex centre but their conventional
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counterparts do not. Away from the vortex centre, say at r∗ = 0.2, the p.d.f.s of the
vorticities and the temperature derivatives deviate from the Gaussian distribution. The
region where the p.d.f.s of the temperature derivative and vorticity fluctuations can
be approximated by a Gaussian distribution is smaller than that for temperature and
velocity fluctuations.

(iii) The distinct interactions between the large- and small-scale structures within
and outside the vortex underpin the corresponding different behaviours of the statistics
of the temperature and velocity fields. The behaviour of the phase-averaged correlation
coefficients ρ(θ, χ |φ) and ρ(q, ω2

|φ) suggests that small-scale structures within the
vortex feel little effect from the large scales. On the other hand, the large- and
small-scale structures are strongly coupled outside the vortex, especially in the saddle
region, for both velocity and temperature fields. The strong coherent strain in the
saddle region provides a strong link between the large- and small-scale structures.
This is further substantiated by the marked difference in the conditional expectations
E(χ(φ)|θ(φ))† and E(ω2(φ)|q(φ))† within and outside the vortex, which correspond
to small and large conditional correlation coefficients, respectively.

The present study indicates that the turbulence within the inner core of the
vortex centre is very close to being homogeneous and locally isotropic (figure 9).
Kolmogorov (1941) assumes the hypothesis of local isotropy is realized with good
approximation in sufficiently small domains when the Reynolds number is adequately
large. The present findings suggest that the Reynolds number may not need to
be extremely large (Reλ is approximately 110 at the vortex centre) to achieve
approximately locally isotropic turbulence, as long as the effect of the large scales
can be avoided. This is in full accord with the findings of Antonia, Djenidi & Danaila
(2014) that the Kolmogorov scaling applies only when the large-scale term in the
transport equations for the second-order velocity structure function can be neglected.
The Gaussian p.d.f. of the temperature inside the vortex inner core suggests that the
passive scalar has been sufficiently mixed in this region. This raises a number of
interesting issues which should be worth pursuing in future studies, preferably with
the use of direct numerical simulation (DNS). The first relates to the process and
mechanisms by which the temperature becomes well mixed inside the vortex. One
expects the temperature to have non-Gaussian characteristics within the boundary layer
over the heated surface of the cylinder. Following separation, the thermal shear layer
is subjected to large fluctuating strain rates and indeed the small-scale temperature
fluctuations are highly intermittent and non-Gaussian in the region near the saddle
point. Nonetheless, the heated fluid that is transported into the core of the vortex
and subjected vigorously to the rotational motion within the vortex is remarkably
close to being Gaussian and locally isotropic. DNS should allow a reliable estimation
of the energy (and scalar variance) budgets within the vortex and therefore lead to
useful information on the scale-by-scale energy and scalar variance budgets within
the vortex. This, in turn, should provide important insight into why the small-scale
statistics in the vortex core are seemingly unaffected by the large scales of the flow.
Finally, the Gaussian nature of the small-scale fluctuations in the vortex core should
make it attractive to estimate statistics of pressure fluctuation in the core using the
joint-Gaussian calculation of Batchelor (1951), see also Pearson & Antonia (2001);
these statistics should of course be compared with those estimated directly from DNS.
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