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Abstract

In this paper, a solid helical pulse-forming line (HPFL) is described. The electromagnetic (EM) dispersion theory is used to
calculate the important parameters of the HPFL based on tape helix model. Dispersion effects on the important EM
parameters of HPFL, such as electric length and characteristic impedances, are analyzed. When Al2O3 ceramic is
applied to be the dielectric in the HPFL, the pulse width of the HPFL is calculated nearly 50 ns only with the length of
305 mm. EM field simulation can draw the dispersion curve of the HPFL directly, which can describe the dispersion
effect on the electric length of HPFL. Furthermore, the EM field simulation and experiments are carried out to verify
the theoretical calculations of the pulse wide and characteristic impedances. Both simulation and experimental results
can prove the EM analyses and calculations in this paper.
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1. INTRODUCTION

Compact, portable pulsed power systems are required for
modern applications (Joler et al., 2002; Gundersen et al.,
2003; Jiang et al., 2004; 2005). Pulse-forming line (PFL)
is one of the basic elements of a pulsed power system. Con-
ventionally, it is feasible to build high-voltage long-pulse
pulsed power generators using liquid dielectric such as trans-
former oil or water in PFL (Korovin et al., 2001; Yang et al.,
2009). Currently, solid ceramic dielectrics have been widely
investigated as potential, attractive candidates in compact,
portable pulsed power systems, as they can behave in a
high dielectric constant and high breakdown strength at the
same time (Sharma et al., 2011; Su et al., 2014). In particu-
lar, compared with transformer oil, ceramic dielectric materi-
al commonly has a larger dielectric constant about a few tens
to a few thousands, of which the bulk breakdown strength is
also high up to 100 kV/cm (Xia et al., 2008; Zhang et al.,
2010). Besides, there is no other subsidiary equipment adopt-
ed for long time and large numbers repetitive running, which
is important when water is used with characteristics of a
strong polarity and low resistivity (Zhang et al., 2013).
Although ceramic is an ideal dielectric for compact and

portable PFLs, large ceramic bulks are difficult to manufac-
ture (Xia et al., 2008). Many researches are focused on the

volume effect of solid material breakdown (Decup et al.,
2009; Neusel & Schneider 2014), which is a major difficulty
in using ceramic lines at high-power level. Hence, the solid
state PFLs are often built as small planar structure and
stacked in the Blumlein or Marx form to generate a long-
width, high-power pulse (Nunnally et al., 2005; Wang
et al., 2013a). Unfortunately, the surface flashover often
occurs at high voltage in planar lines, when bulk breakdown
strength is not achieved (Wang et al., 2013b). On the other
hand, planar lines are an “open” structure, which the cou-
pling between lines will decrease the efficiency of voltage
multiplication (Korioth, 1998). It is possible to solve these
problems by designing PFL of other structure. Unlike
planar structure, the possibility of surface flashover in coaxial
structure line is lower for the fewer flashover ways. More-
over, the helical structure can be employed to increase
pulse width of PFL.

The tape helix is first used in the helical-type traveling
wave tubes as an ideal slow-wave structure with good disper-
sion characteristics and broad transmission band (Kompfner
1947; Johnson et al., 1956). Since 1980s, the tape helix has
been introduced in the field of pulsed power technology to
construct electron accelerator based on helical pulse-forming
line (HPFL) (Teranishi et al., 1991; Korovin et al., 2001; Liu
et al., 2006), so that the pulse duration of the accelerator can
be scaled up to several hundred numbers range, while the size
of PFL decreased.

The “quasi-static” transmission circuit method is the
common used method for characteristic parameters analysis
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of the helical PFL (Johnson et al., 1956; Liu et al., 2007). But
this method always employs parameters without dispersion
to describe the HPFL which does have dispersion, so that
the method has errors. Electromagnetic (EM) dispersion
theory for the helical slow wave structure, including helical
sheath method and tape helix model, can be used to analyze
the HPFL (Stark 1954; Kino & Paik, 1962; Kartikeyan et al.,
1999). However, in the helical sheath method, the effects
from tape width and other local geometric structures are
still not clear, so that the spatial harmonic components in
the EM field cannot be calculated. It is also difficult to calcu-
late the characteristic impedances and pulse width, influ-
enced by the spatial harmonics in the PFL. By contrast, the
tape helix model is able to analyze the dispersion of HPFL
and calculate the characteristic impedances, pulse width,
and field proportions of spatial harmonics (D’Agostino
et al., 1998; Dialetis et al., 2009). Recently, Zhang and Liu
(2012); Zhang et al. (2011; 2012a; 2012b) have used the
tape helix model to analyze the helical dispersion Blumlein
transmission line successfully.
In this study, a solid HPFL has been constructed. At first,

the characteristic impedances, pulse width, and dispersion
curve of the HPFL are calculated by the EM dispersion
theory based on the tape helix model. Then, the calculation
is verified by CST microwave simulation. At last, some low-
voltage test results on the HPFL are introduced.

2. HPFL STRUCTURE AND ITS DISPERSION
MODEL

Cylindrical coordinates (r, θ, z) of the slow-wave structure
are established along the axial direction (z) as shown in
Figure 1. r and θ represent the radial and azimuthal direc-
tions. r1 and r2 represent the radii of the inner shield, outer
tape helix, respectively. δ and p are the tape width and the
pitch, respectively. ψ is the pitch angle and l is the length

of the tape in the axial direction. Geometric parameters of
the HPFL are shown in Table 1. If l≫ r2, the slow-wave
system can be viewed as infinite long. Considering the
ideal boundary conditions of the metal shields, only two re-
gions are divided to analyze the EM fields distribution, such
as Region I (r1< r< r2) and Region II (r2< r). The ceramic
material fills in Region I, and the relative permittivity and
permeability of the filling ceramic are e1 and μ1, respectively.
For the dielectric in outer space (Region II), the relative per-
mittivity e2= 1 and permeability μ2= 1. In our simulation
and tests, the ceramics material is Al2O3, of which the rela-
tive permittivity e1= 9.3 and permeability μ1= 1.
In the PFL based on the tape helix, the pitch p and tape

width δ are of a finite size, and the distance between the ad-
jacent tape turns cannot be neglected (Zhang & Liu, 2012).
Under these conditions, the helical sheath model which
neglects the mini-structures ( p and δ) brings in an error.
Therefore, with the help of tape helix model, the EM field
distribution and dispersion equation of the HPFL are calcu-
lated in the section of Appendix as Eqs. (A3) and (A4),
and (A8), respectively.

3. ANALYSIS OF DISPERSION CURVE AND EM
PARAMETERS

3.1. Dispersion Curve

For a square PFL with pulse duration as τ, the main part of the
spectrum of the formed square pulse is in [0, 1/τ], according
to Fourier transformation results. In other words, those EM
components whose spectrums are outside [0, 1/τ] have
negligible contributions to the formed square pulse. So,
the approximate work band of the PFL is about [0, 1/τ].
Especially, the main frequency band can be estimated as
[0, 20 MHz] for a 50 ns range PFL. From the calculation
of Appendix as Eq. (A8), the dispersion Eq. (1) consists of
infinite terms of Bessel functions (n0 is infinite).
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Table 1. Geometric parameters of the helical PFL

r1 (mm) r2 (mm) δ (mm) p (mm) l (mm)

26.5 33.5 20 25 305

Fig. 1. The tape-helix structure of HPFL.
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According to Eq. (A6), the coefficient A10 of the zeroth spa-
tial harmonic (n= 0) is about several degrees larger than the
coefficients A11 of high-order spatial harmonics (n= 1). Fur-
thermore, A1n becomes smaller when n becomes larger. So,
we would guess that the EM field of high-order spatial har-
monics occupies very small proportions in the total EM
field in the HPFL, and the EM dispersion characteristics of
the HPFL are almost determined by the zeroth harmonic.
To prove our assumption, the dispersion curve with different
number of the spatial harmonics according to Eq. (1) is

plotted as shown in Figure 2. There are two major features
in Figure 2. That is to say, the curve of n0= 20 coincides
with the curve of n0= 50 and the three curves partly coincide
under low frequency.

Under this low-frequency condition of the HPFL, the fun-
damental harmonic determines the dispersion characteristics
of the HPFL as shown in Figure 2. In view of that, only the
zeroth term in dispersion Eq. (1) can be considered, so the
dispersion relation of the zeroth harmonic is obtained as
Eq. (2), in which

ω = ±γ0 cotψT0(γ0)

T0(γ0) =
(I02 − [I01/K01]K02)[(−[I11/K11][I12/K12])K02 − (I02 + [I11/K11]K02)]

μ(I12 − [I11/K11]K12)[ε2εK12([I01/K01] − [I02/K02]) − ε1ε(I12 + [I01/K01]K12)]
{ }1

2

⎧⎪⎪⎨
⎪⎪⎩ (2)

Actually, dispersion relation (2) shows the dispersion charac-
teristics of the HPFL in the first “Brillouin zone” (−π< β0,
p< π). According to Eq. (A1), the periodical helical slow-
wave system has periodical dispersion relation. Using Eqs.
(A1) and (2), the periodical dispersion relation of the
HPFL is given as

ω(βp) = ω(β0p+ 2πn), n = 0,±1,±2,±3, . . . (3)

Using the data in Table 1 and the dispersion relation in Eq.
(3), the dispersion curve of all the spatial harmonics in the
HPFL is plotted as shown in Figure 3.
Generally speaking, the field is almost only determined by

the fundamental harmonic, and the higher-order spatial har-
monics can be ignored. So, the important parameter like the
characteristic impedances of the HPFL can be analyzed just
by considering the dispersion curve in the first Brillouin zone.

3.2. EM Parameters of HPFL

As the dispersion characteristics of the designed HPFL are
almost determined by the fundamental harmonic in the first
Brillouin zone, the analyses of the HPFL can be simplified
by a large extent. In this section, the characteristic impedanc-
es (Z ) and electric length (τ0) are calculated in the section of
Appendix as Eqs. (A9)–(A11). According to Eq. (4) and data
in Table 1, the important EM parameters of the HPFL are
presented in Figure 4. As we know, the pulse width (τ) is
twice as the electric length (τ0).

τ0 = l/vph = lβ/ω, τ = 2τ0

Z = β0(I01K02 − I02K01)
γ20K01M10in

⎧⎨
⎩ (4)

In Figure 4a, the electric length of the HPFL is presented.
The electric length of the HPFL almost keeps constant when
frequency ( f ) increases, which shows that the dispersion has

Fig. 2. Dispersion curves with different number of n0.

Fig. 3. Dispersion curve of the spatial harmonics of the HPFL.
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very few effects on the pulse width. Figure 4a also shows that
the main frequency band can be estimated as [0, 20 MHz]. In
Figure 4b, the characteristics impedances of the zeroth spatial
harmonic of the HPFL decrease little when frequency ( f ) in-
creases under the main frequency band.

4. EM SIMULATION BY CST SOFT

4.1. Dispersion Curve

Codes of CST MICROWAVE STUDIO suite can be em-
ployed to simulate the dispersion curve of the periodical
slow-wave structure. The dispersion curves calculated by
CST show a good agreement with theory calculations as
shown in Figure 5.

4.2. Pulse-forming simulation

In order to obtain the pulse-forming characteristic of the
HPFL, we have built a transient model of pulse-forming
system using the CST MWS co-simulation tool (Wang
et al., 2015). The geometric model, circuit schematic, and
the waveform of current through 33 Ω load are shown in
Figure 6. Before the time of 890 ns, the HPFL is charged
through the DC voltage source 1 and the voltage-control
switch is open. Pulse voltage source 2 is set to control the
switch closing in the time of 890 ns, so the HPFL begins
to be discharged in the matched resistance at the rest of
time as shown in Figure 6c.
In Figure 6c, the waveform of voltage on HPFL is reduced

to half, which shows that the matching resistance of
HPFL is nearly 33 Ω. Additionally, the current pulse is of
50 ns pulse width. These results show a good agreement
between the simulation and theory calculations as shown in
Figure 4.

5. EXPERIMENTAL RESULTS

5.1. Delay Time Measurement

In order to testify the theoretical calculation and simulation
results of the electric length which describe the phase veloc-
ity and dispersion characteristics of the HPFL, the principle
of the delay time measurement is as follows.
The signal source is employed to generate the pulse with

50 ns pulse width. Then, the signal is divided to two channel
(CH1 and CH2), one of which is connected to the oscillo-
scope directly and the other of which is connected to the os-
cilloscope through the HPFL. By measuring the time gap
between the two channels in the oscilloscope, we can get
the delay time. However, that delay time is not equal to the

Fig. 4. Important characteristic parameters of the HPFL. (a) Electric length of the PFL (τ0) versus frequency ( f ); (b) characteristic im-
pedance (Z ) versus frequency ( f ).

Fig. 5. Comparison between the dispersion curves calculated by CST and by
theory for the HPFL when 0< β0p< π.
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electric length of the HPFL, since the delay time is equal to
the sum of the electric length and the origin time gap of two
channels. Therefore, two time gaps need to be carried out for
measuring the delay time of the HPFL, including the time
gap with HPFL and the time gap without HPFL. In Figure 7b,
we put the waveforms of two tests together in one figure and
make the two CH2 waveform lines overlap. At this time, the
delay time is the time gap between two CH1 waveforms,
which is 24 ns as shown in Figure 7b, which means that
the theoretical calculation of electric length of the HPFL is
correctly shown in Figure 4b.
In Figure 7b, we could find that the CH1 and CH2 wave-

forms are different in one test, no matter whether the HPFL is
added in the measurement circuit, while the two CH1 and
CH2 without the HPFL waveforms are similar to the CH1

and CH2 with the HPFL, respectively. It is because that the
CH2 channels consist of two 50 Ω coaxial line each with
two clamps to connect the HPFL as shown in Figure 7a.
When the HPFL is not added in the measurement circuit,
the two coaxial lines are clamped together by the two
clamps. The clamps bring mismatching to the 50 Ω coaxial
line, which can generate a reflect pulse into CH1 channel.
That is why the CH1 and CH2 waveforms are different in
one test.

5.2. Pulse-forming Test under Low Voltage

For the purpose of testifying the theoretical calculations of
the characteristic impedances and pulse width of the HPFL,
experimental system of a pulse-forming platform was built

Fig. 6. CST simulation model of pulse-forming system and the formed voltage pulse by HPFL. (a) Geometric model of HPFL in co-
simulation; (b) CST co-simulation model of the pulse-forming circuit; (c) the waveforms of voltage on port2 of HPFL and the load current
pulse.

Fig. 7. Test platform for delay-time measurements (a) and the waveforms of signals (b).
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up as shown in Figure 8a. The system consisted of a voltage
regulator (T ), a silicon diodes, a 10 kΩ current-limiting water
resistance (R1), HPFL, a mercury switch (S1), a matched load
(33 Ω). The working process is as follows. Firstly, the HPFL
is charged up to 100 V. Then, the HPFL is discharged to the
33 Ω load through the switch and a pulse is obtained on the
load.
In Figure 8b, the waveform of voltage on PFL is reduced to

half, which suggests that the matching resistance of the HPFL
is nearly 33 Ω. Additionally, the pulse obtained on the resis-
tor is of 50 ns pulse width. These experimental results show a
good agreement with the simulation results as shown in
Figure 6.

6. CONCLUSIONS

Recent technological advances have directed further research
toward reduction in dimensions of pulse power system to a
portable scale. In our study, a compact, portable ceramic he-
lical PFL is designed and analyzed by the dispersion theory.
The tape-helix model is introduced to analyze the effects of
dispersion on the important EM parameters of HPFL. Disper-
sion effects on the important EM parameters of PFL, such as
electric length and characteristic impedances, are also ana-
lyzed in detail. EM field simulation and experiments are

carried out to testify the theoretical calculations well. At pre-
sent, the Al2O3 HPFL can deliver a pulse with 50 ns width. In
fact, if the other high breakdown strength solid dielectrics
(Jue et al., 2007; Chung et al., 2008; Chen et al., 2011)
with a greater relative permittivity were chosen, the pulse
width would be greater. As a unit of multi-PFL, we can
stack it as the Marx form to increase the output power.
These works mentioned above will be done in the future.
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APPENDIX

CALCULATIONS OF DISPERSION EQUATIONS

The EM field and its excitation surface current density J are
both in periodical distribution, due to the helical symmetry of
the tape helix. If l≫ r2, the EM field and J both consist of
their own spatial harmonic components according to the
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Floquet theorem (Scotto & Parzen, 1956). In these spatial
harmonics, the axial phase constant βn of the nth harmonic
is related to β0 (phase constant of the fundamental harmonic)
as Eq. (A1)

βn = β0 + 2πn/p (A1)

As the source of the EM field, the excitation surface current
on the tape helix has many distribution models. In this paper,
the current model in (Scotto & Parzen, 1956; Tien, 1953) is
adopted. That is to say, (1) the magnitude of the current den-
sity is taken as becoming infinitely large in an inverse square
root manner as the tape edges are approached and is zero in
the gap between helical conductors; and (2) the phase cons-
tant phase contour of the current is normal to the edge of the
helical tape. The surface current density consists of two of
which one is in parallel with the helical direction (J//) and
the other is normal to the helical direction (J⊥= 0). Then,

J// can also be calculated by the Floquet theorem as

J// = e−j(β0z−ωt) ∑+∞

n=−∞

J//ne
−jn

2π
p
z− θ

( )⎛
⎜⎝

⎞
⎟⎠

= e jωt
∑+∞

n=−∞

(J//ne−jn(βnz−θ))

|J//n| = bessel J0(βnδ/2)
bessel J0(βnδ/2)

J//0

∣∣∣∣
∣∣∣∣

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A2)

In Eq. (A2), bessslJ0 represents the 0-order solution of Bessel
J function. “j” is unit of imaginary number, n is the order
number of the spatial harmonic, ω is the angular frequency
of the nth harmonic. By solving the Maxwell equations,
the analytical solutions of EM field in Regions I and II are
as follows.
EM field in Region I (r1< r< r2) as

E1z = e−j(β0z−ωt) ∑+∞

n=−∞
(A1nInr + A2nKnr)e−jn(2πz/p−θ)

H1z = e−j(β0z−ωt) ∑+∞

n=−∞
(A3nInr + A4nKnr)e−jn(2πz/p−θ)

E1r = e−j(β0z−ωt) ∑+∞

n=−∞

jβn
γn

(A1nI
′
nr + A2nK

′
nr) −

ωμn

γ2nr
(A3nInr + A4nKnr)

[ ]
e−jn(2πz/p−θ)

E1θ = e−j(β0z−ωt) ∑+∞

n=−∞

−nβn
γ2nr

(A1nInr + A2nKnr) − jωμ

γn
(A3nI

′
nr + A4nK

′
nr)

[ ]
e−jn(2πz/p−θ)

H1r = e−j(β0z−ωt) ∑+∞

n=−∞

ωε1εn

γ2nr
(A1nInr + A2nKnr) + jβn

γn
(A3nI

′
nr + A4nK

′
nr)

[ ]
e−jn(2πz/p−θ)

H1θ = e−j(β0z−ωt) ∑+∞

n=−∞

jωε1ε

γn
(A1nI

′
nr + A2nK

′
nr) −

βnn

γ2nr
(A3nInr + A4nKnr)

[ ]
e−jn(2πz/p−θ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A3)

The EM field in Region II (r> r2) as

E2z = e−j(β0z−ωt) ∑+∞

n=−∞
(B1nInr + B2nKnr) e−jn(2πz/p−θ)

H2z = e−j(β0z−ωt) ∑+∞

n=−∞
(B3nInr + B4nKnr) e−jn(2πz/p−θ)

E2r = e−j(β0z−ωt) ∑+∞

n=−∞

jβn
γn

(B1nI
′
nr + B2nK

′
nr) −

ωμn

γ2nr
(B3nInr + B4nKnr)

[ ]
e−jn(2πz/p−θ)

E2θ = e−j(β0z−ωt) ∑+∞

n=−∞

−nβn
γ2nr

(B1nInr + B2nKnr) − jωμ

γn
(B3nI

′
nr + B4nK

′
nr)

[ ]
e−jn(2πz/p−θ)

H2r = e−j(β0z−ωt) ∑+∞

n=−∞

ωε2εn

γ2nr
(B1nInr + B2nKnr) + jβn

γn
(B3nI

′
nr + B4nK

′
nr)

[ ]
e−jn(2πz/p−θ)

H2θ = e−j(β0z−ωt) ∑+∞

n=−∞

jωε2ε

γn
(B1nI

′
nr + B2nK

′
nr) −

βnn

γ2nr
(B3nInr + B4nKnr)

[ ]
e−jn(2πz/p−θ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A4)
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In Eqs. (A3) and (A4), and e and μ are the permittivity and
permeability, respectively. A1n∼A4n and B1n∼B4n are field
coefficients which need to be calculated. In and Kn are the
modified Bessel functions of the first and second kinds, re-
spectively. k and γn are the angular wave number and the
phase constant in the transverse direction, and γ2n= β2n−k2.
If the inner are ideal conductors and outer space is infinite,

their boundary conditions are given as

E1z = 0,E1θ = 0(r = r1)
E2z = 0,E2θ = 0(r = ∞)

{
(A5)

The boundary conditions of tape helix are shown as

E1z = E2z,E1θ = E2θ

H2z − H1z = −J// sinψ,H2θ − H1θ = J// cosψ(r = r2)∫
S2
(E// · J∗//) dS2 = 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(A6)

Using field Eqs. (A3), (A4) and boundary conditions of (A5)

and (A6), the field coefficients can be calculated as (A7)

A1n = γnJ//n
jω

[cos(ψ) − βnn sin(ψ)/(γ2nr2)]Kn1Kn2

ε2εK ′
n2(In2Kn1 − In1Kn2) − ε1εKn2(I ′n2Kn1 − In1K ′

n2)

A3n = −J//n sin(ψ)K ′
n1K

′
n2

Kn2(I ′n2K ′
n1 − I ′n1K

′
n2) − K ′

n2(In2K ′
n1 − In1K ′

n2)
A2n = −A1nIn1/Kn1,A4n = −A3nI

′
n1/K

′
n1

B1n = 0,B2n = In2Kn1 − In1Kn2

Kn1Kn2
A1n

B3n = 0,B4 = (I ′n2K ′
n1 − I ′n1K

′
n2)

K ′
n1K

′
n2

A3n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A7)

In Eq. (A7), In1 and In2 are the simplified forms of In(γnr1)
and In(γnr2) , respectively, so do Kn1 and Kn2. I′n2 represents
the derivative of In(γnr) to γnr when r= r2, so does K′

n2.
The transmitted waves determined by the EM fields are

shown as Eqs. (A3) and (A4). According to Eqs. (A3),
(A4) and the last equation in Eq. (A6), the dispersion equa-
tion of the helical PFL based on tape helix can be obtained as

∑+∞

n=−∞

γn[cos(ψ) − βnn sin(ψ)/(γ2nr2)]2Kn2(In2Kn1 − In1Kn2)
ω[ε2εK ′

n2(In2Kn1 − In1Kn2) − ε1εKn2(I ′n2Kn1 − In1K ′
n2)]

+ ωμ sin2(ψ)K ′
n2(I ′n2K ′

n1 − I ′n1K
′
n2)

γn[Kn2(I ′n2K ′
n1 − I ′n1K

′
n2) − K ′

n2(In2K ′
n1 − I ′n1Kn2)]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(J//nJ∗//n)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 0 (A8)

In Eq. (A8), J//n J
∗
//n can be substituted as the last equation in

Eq. (A2). The dispersion equation consists of infinite terms
of Bessel functions.
If we integrate H1θ [in Eq. (A3)] along a closed circle

which just encloses the tape helix in the azimuthal direction,
current Izin can be calculated as

−Izin = j
∑+∞

n=−∞
A1nM1n

M10 = 2πr2ωε1ε
γ0

I ′02 −
I01
K01

K ′
02

( )
⎧⎪⎪⎨
⎪⎪⎩ (A9)

Large quantities of terms of Bessel functions are included in
Eq. (A9), so that it is difficult to solve this complicated equa-
tion. However, as we analyzed before, the EM dispersion
characteristics of the HPFL are almost determined by the

zeroth harmonic at low-frequency band. In addition, M10

can be obtained by setting n= 0 as Eq. (A9).
Then, we calculate the potential by integrating the zeroth

harmonic E1r from r1 to r2 as

φ = −
∫r2
r1

E1r(r)|n=0dr = − jβ0A10(I02K01 − I01K02)
γ20K01

(A10)

At last, the characteristic impedances of the HPFL can be
calculated as

Z = φ

−Izin
= β0(I01K02 − I02K01)

−γ20K01M10
(A11)
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