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By combining Biot’s theory of poro-elasticity with standard shallow-layer scalings, a
theoretical model is developed to describe axisymmetric gravity-driven flow through
a shallow deformable porous medium. Motivated in part by observations of surface
uplift around CO2 sequestration sites, the model is used to explore the injection of
a dense fluid into a horizontal, deformable porous layer that is initially saturated
with another, less dense, fluid. The layer lies between a rigid base and a flexible
overburden, both of which are impermeable. As the injected fluid spreads under
gravity, the matrix deforms and the overburden lifts up. The coupled model predicts
the location of the injected fluid as it spreads and the resulting uplift of the overburden
due to deformation of the solid matrix. In general, the uplift spreads diffusively far
ahead of the injected fluid. If fluid is injected with a constant flux and the medium
is unbounded, both the uplift and the injected fluid spread in a self-similar fashion
with the same similarity variable ∝r/t1/2. The asymptotic form of this spreading is
established. Results from a series of laboratory experiments, using polyacrylamide
hydrogel particles to create a soft poro-elastic material, are compared qualitatively
with the predictions of the model.

Key words: geophysical and geological flows, gravity currents, porous media

1. Introduction

Gravity currents and other shallow flows through porous media play a central
role in a range of geophysical and industrial problems, ranging from the seepage
of contaminated plumes or the spread of fresh water lenses above saline aquifers to
the displacement of one fluid by another in oil reservoirs to enhance recovery (Bear
1988; Phillips 2009). The fluid mechanics of such flows are often explored under the
assumption that the porous matrix does not deform due to fluid flow. However, when
flow-induced pressure gradients are high, or when the solid matrix is relatively soft,
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as in some biological problems (e.g. Mow, Holmes & Lai 1984), the deformation of
the matrix can be significant. Our goal in the current paper is to formulate a model
of poro-elastic flow in a shallow layer, where elastic deformation of the porous matrix
is coupled to the flow of fluid through it. We apply the model to study the dynamics
of axisymmetric poro-elastic gravity currents.

Specific motivation for this problem comes from observations of surface
displacements at the CO2 storage sites at In Salah in the Algerian desert (Ringrose
et al. 2013). Geological sequestration has been widely proposed as a means of
countering atmospheric emissions of CO2 through the injection of supercritical CO2

into (typically) water-saturated porous rock (e.g. Zhang 2013; Huppert & Neufeld
2014). Being less dense than the ambient water, injected CO2 rises and spreads as
a gravity current below the impermeable overburden of the porous reservoir (Boait
et al. 2012). At In Salah, approximately 4 million tonnes of CO2 were sequestered
between 2004 and 2011 into a sandstone layer, roughly 20 m thick and located
approximately 2 km underground (Ringrose et al. 2009, 2013). Around the sites
of injection, vertical surface displacements of the order of centimetres have been
detected by interferometric synthetic aperture radar (InSAR) measurements (Onuma
& Ohkawa 2009; Rucci, Vasco & Novali 2013). These observations highlight how
the injection and subsequent spread of CO2 has deformed the porous sandstone layer,
much as fluid pumping in other hydrological contexts generates subsidence or uplift
(e.g. Bear & Corapcioglu 1981a,b). The InSAR measurements have been proposed as
a monitor of the progress of the CO2 current (Ringrose et al. 2009), even though the
detailed relation between the uplift at the surface and the location of the underlying
current has not yet been fully understood.

The large horizontal and thin vertical extent that is typical of sequestration sites
is well suited to the conventional shallow-layer modelling of gravity currents (e.g.
Huppert & Woods 1995; Lyle et al. 2005; Nordbotten & Celia 2006). Despite this,
most existing studies in geological engineering use standard geomechanical models
coupled with reservoir-type simulations (Rutqvist, Vasco & Myer 2010; Bissell et al.
2011; Rutqvist 2012). These studies have provided predictions for uplift and rates of
spread that have been compared with the observations from In Salah, highlighting how
local topography and fractures have helped to guide the flow of CO2. They do not,
however, focus on the detailed fluid mechanics of spreading poro-elastic currents, nor
extract the dependence on the physical parameters of the problem, which are the goals
of the current paper.

In this paper we formulate a poro-elastic model for axisymmetric flow in a shallow
layer that combines Biot’s theory (e.g. Detournay & Cheng 1993; Coussy 2004)
with shallow-layer scalings following standard gravity-current theory (e.g. Huppert
& Woods 1995). Our methodology is similar to that adopted for other subsidence
and pumping problems in hydrology (e.g. Gibson, Schiffman & Pu 1970; Bear &
Corapcioglu 1981a,b,c) and industrial filtration (Barry, Mercer & Zoppou 1997). In
a biological context, a similar poro-elastic framework has been used to describe cell
dynamics (Charras, Mitchison & Mahadevan 2009; Moeendarbary et al. 2013) and
tissue swelling or oedemas (Simon et al. 1996). Indeed, flow-induced deformation of
shallow poro-elastic layers is central to a number of biological problems, with the
indentation of tissue layers such as cartilage playing a key role in, for example, the
lubrication of joints (see Mak, Lai & Mow 1987; Mow et al. 1989; Jensen et al.
1994; Sachs et al. 1994; Barry & Holmes 2001).
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Our current formulation generalizes previous models in two notable ways: first,
we allow for two fluids of different density, one displacing the other as it spreads
under gravity (we assume that the medium is fully saturated). Second, we assume
that the poro-elastic layer lies between a rigid base and a flexible overburden, both
of which are impermeable, and that the poro-elastic material cannot slide freely at
either surface. Poro-elastic deformations are therefore significantly constrained by the
shallow geometry. Both features provide the conceptual framework for application to
uplift in CO2 sequestration.

We complement our theoretical model with a series of idealized laboratory
experiments. Previous experimental studies using deformable media have predominantly
been concerned with one-dimensional compression tests, using materials such as
artificial sponges (Parker, Mehta & Caro 1987; Lanir, Sauob & Maretsky 1990),
synthetic fibres (Barabadi et al. 2009) and biological tissue (Eisenberg & Grodzinsky
1987). In more recent experiments, MacMinn, Dufresne & Wettlaufer (2015) used a
mono-layer of small spherical polyacrylamide hydrogel particles to study flow-induced
deformation of an idealized two-dimensional poro-elastic medium. Such hydrogels
are convenient materials for poro-elastic experiments, being relatively inexpensive and
straightforward to prepare and visualize. We used similar hydrogel particles, fully
saturated in water, to provide a rough experimental analogue of the theoretical model.

The paper is laid out as follows. In § 2, we formulate the poro-elastic shallow-layer
framework to construct our model. The model takes the form of coupled evolution
equations for the height of the injected fluid current and the uplift of the flexible
overburden owing to deformation of the medium. In § 3, we discuss numerical results
of the model with a constant flux of injection. In § 4, we present an asymptotic
analysis of the model and deduce scaling relationships for the spread of the injected
current and of the uplift. In § 5, we present the results of the laboratory experiments.
The main conclusions and implications of this work are summarized in § 6.

2. Theoretical modelling
2.1. Governing equations

We consider flow through a deformable porous medium in an axisymmetric geometry
described by cylindrical polar coordinates (r, z) (figure 1). The porous layer sits on
top of a rigid, impermeable, flat base located at z = 0 and extends up to a height
z = H(r, t), where it is overlain by a heavy flexible sheet. The layer initially has
uniform depth H =H0. The solid matrix has constant density ρs, and the medium is
initially fully saturated with ambient fluid of density ρ2 6ρs and viscosity µ2. Another
fluid of density ρ1 and viscosity µ1 is injected into the medium and spreads under
gravity. Following standard gravity-current theory (Huppert & Woods 1995), we take
ρ1 > ρ2, so that the injected fluid spreads along the bottom of the porous layer; the
spreading of a lighter fluid injection along the top of the medium can be modelled in
an analogous fashion. The interface between the two fluids is denoted by z= h(r, t).
The amount of fluid within a representative volume element of the material is given
by the porosity φ(r, z, t), which varies in both space and time. The pore-averaged
velocity of the fluid and solid phases are u f = (uf ,wf ) and us = (us,ws), respectively.
Both phases are assumed to be incompressible, such that their densities are constant.

The governing equations for flow and deformation in a poro-elastic medium are
continuity for the liquid and the solid phases, Darcy’s law and a global momentum
balance:

∂φ

∂t
+∇ · (φu f )= 0,

∂

∂t
(1− φ)+∇ · [(1− φ)us] = 0, (2.1a,b)
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r

z

FIGURE 1. A schematic showing the depth h(r, t) of the injected fluid and the uplift
H(r, t) of the overburden, associated with an injected flux Q at r = 0. The porosity and
fluid pressure at z=H are given by φ =Φ(r, t) and p= P(r, t), respectively. Before any
fluid is injected, H =H0, Φ =Φ0 and P=P , where P is the overburden pressure.

φ(u f − us)=− k
µi
(∇p+ ρigez), (2.2)

∇ · [(1− φ)σ − φpI] = [ρiφ + ρs(1− φ)]gez, (2.3)

where k(φ) is the permeability of the medium, p is the pore pressure, g is the
gravitational acceleration, σ is the phase-averaged solid stress tensor, I is the identity
tensor and ez is the unit vector in the z direction. The subscript i refers to the injected
(i= 1) or ambient (i= 2) fluid.

The equations are closed by a constitutive law for the solid stress. More commonly,
as suggested by Terzaghi’s principle in soil mechanics (e.g. Wang 2000), the closure
is a constitutive law for the ‘effective’ stress tensor σe of the medium, which is the
difference between the total volume-averaged stress and the pore pressure, σe= (σ +
pI)(1− φ). The momentum balance (2.3) can be re-written in terms of σe as

∇ · (σe− pI)= [ρiφ + ρs(1− φ)]gez. (2.4)

In general, an elastic constitutive law for σe takes the form

σe= σe(∇ξ), (2.5)

where ξ = (ξ , ζ ) is the deformation of the medium away from a reference state
with constant porosity Φ0. The deformation, which we describe in terms of Eulerian
variables, is related to the solid velocity us via the convective derivative

us =
(
∂

∂t
+ us · ∇

)
ξ . (2.6)

In this paper, following standard formulations of Biot’s theory (e.g. Detournay &
Cheng 1993), we adopt a linear elastic constitutive law (i.e. Hooke’s law) for the
effective stress (2.5),

σe=
(
K − 2

3 G
)
(∇ · ξ)I +G[(∇ξ)+ (∇ξ)T], (2.7)

where K and G are the bulk and shear moduli, which are assumed to be constant.
Note that these moduli are properties of the porous medium, rather than of the pure
solid alone. In fact, in the shallow-layer limit introduced in § 2.2, (2.7) simplifies
significantly and could be replaced by a more general nonlinear constitutive law
without undue extra complication.
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2.2. Dimensionless shallow-layer scalings
We suppose that the vertical extent H0 of the porous layer is much less than the
characteristic radial length scale L of the flow, so that H0 � L. Scaling analysis of
the continuity equation for the fluid phase (2.1a) indicates that wf � uf . However, we
cannot make the same deduction for the solid velocity in (2.1b): under the assumption
that the solid cannot freely slip on the boundaries, there must be a frictional balance
between normal and shear stress there, which indicates that ξ ∼ ζ and thus us ∼ ws.
The relative magnitude of the fluid and solid velocities can be determined by (2.1),
which indicates that ws ∼wf , and so us� uf .

We introduce the following dimensionless quantities:

r∗ = r
L
, (z∗, ξ ∗, ζ ∗)= 1

H0
(z, ξ , ζ ), ρ∗i =

ρi

ρs
, p∗ = p

ρsgH0
, k∗ = k

k0
, (2.8a−e)

u∗f =
uf

U
, (w∗f , u∗s ,w∗s )=

L
UH0

(wf , us,ws), t∗ = Ut
L
, (2.9a−c)

where U = ρsgk0H0/µ1L and k0 = k(Φ0) is a characteristic permeability scale. For
notational convenience, we also define the scaled dimensionless density differences
and the viscosity, or mobility, ratio,

ρ̂1 = (1−Φ0)
ρs − ρ1

ρs
, ρ̂2 = (1−Φ0)

ρs − ρ2

ρs
, (2.10a,b)

1ρ = ρ1 − ρ2

ρs
= ρ̂2 − ρ̂1, M = µ1

µ2
. (2.11a,b)

For the arrangement depicted in figure 1, 0 6 ρ̂1 6 ρ̂2 6 1 and 1ρ > 0. At this stage,
the radial length scale L is not prescribed by the dynamics, and in the absence of an
external radial scale in the boundary conditions it remains undetermined. In such a
situation, we expect that the equations permit a similarity solution, as we in fact find
to be the case and discuss in § 3.

In the shallow-layer framework, we retain only the leading-order terms in H0/L. The
dimensionless shallow-layer continuity equations are given from (2.1) by

∂φ

∂t∗
=− 1

r∗
∂

∂r∗
(r∗φu∗f )−

∂

∂z∗
(φw∗f )=

∂

∂z∗
[(1− φ)w∗s ]. (2.12a,b)

From (2.2) and the shallow-layer scalings, the pore pressure is hydrostatic and the
fluid velocity is given by the horizontal component of Darcy’s law,

∂p∗

∂z∗
=−ρ∗i , φu∗f =

{
−k∗ ∂p∗/∂r∗ for 0< z∗ < h∗,
−Mk∗ ∂p∗/∂r∗ for h∗ < z∗ <H∗.

(2.13a,b)

The vertical momentum balance in (2.4), together with the linearly elastic rheology
(2.7), reduces to an ordinary differential equation for the vertical displacement ζ ∗,
given by

E
∂2ζ ∗

∂z∗2
− ∂p∗

∂z∗
= [ρ∗i φ + (1− φ)], (2.14)
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where
E= K + 4G/3

ρsgH0
(2.15)

is a dimensionless elastic modulus or stiffness of the medium.
In the shallow framework, the closure relationship (2.6) becomes one-dimensional

and gives an explicit equation for the solid velocity: w∗s = ∂ζ ∗/∂t∗/(1 − ∂ζ ∗/∂z∗).
Substitution of this expression into the equation of continuity of the solid phase
(2.12b) gives, after rearranging,

(
∂

∂t∗
+w∗s

∂

∂z∗

)(
1− ∂ζ ∗/∂z∗

1− φ
)
= 0, (2.16)

or, after integration,
∂ζ ∗

∂z∗
= φ −Φ0

1−Φ0
(2.17)

given that Φ0 is the constant porosity of the reference state. Equations (2.13a), (2.14)
and (2.17) can be combined to eliminate ζ ∗ and p∗:

∂φ

∂z∗
= ρ̂i(1− φ)

E
. (2.18)

The horizontal deformation ξ ∗ does not appear in the equations given above,
which is a result of the linear elastic constitutive law (2.7). For a more general
nonlinear constitutive law, the leading-order elastic stress might also feature the strain
component ∂ξ/∂z, which could be recovered from the leading-order horizontal stress
balance in (2.4).

2.3. Boundary and initial conditions
For the remainder of the paper, we drop the starred notation that identifies the
dimensionless variables.

2.3.1. Surface and interface conditions
The boundary conditions on the impermeable and immobile base of the medium are

wf =ws = ζ = 0 at z= 0, (2.19)

while the interface z= h(r, t) between the two fluids satisfies the kinematic condition

∂h
∂t
+ uf |z=h

∂h
∂r
=wf |z=h. (2.20)

At the upper surface of the medium, we assume that both the solid and the fluid
phases remain in contact with the overburden at all times. In the shallow-layer limit,
the corresponding kinematic conditions are

∂H
∂t
+ uf |z=H

∂H
∂r
=wf |z=H and

∂H
∂t
=ws|z=H. (2.21a,b)

A balance of normal stress at the upper surface of the medium also gives

−p+ ez · σe · ez =−P at z=H, (2.22)
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where P is the dimensionless normal stress imposed by the overburden. Given the
constitutive equation (2.7) and the shallow-layer scalings, we have ez ·σe · ez=E∂ζ/∂z,
and so, from (2.17), the normal-stress balance reduces to

p−P = E
φ −Φ0

1−Φ0
at z=H. (2.23)

The stress P in general contains contributions from the bending and tension of the
overburden, as well as from gravity. Here, we neglect the elastic response of the
overburden and take P to be a constant, given by the weight of the overburden per
unit area.

2.3.2. Injection and far-field conditions
Fluid is injected into the medium as a point source at the origin with a flux Q(t),

while no ambient fluid is removed. Thus,

lim
r→0

∫ h

0
rφuf dz= Q

2π
, lim

r→0

∫ H

h
rφuf dz= 0, (2.24a,b)

where we note that the dimensional flux is QH0LU =Qρsgk0H2
0/µ1.

For the analysis of the model, we assume that the domain extends infinitely in the
radial direction with

h→ 0, H→ 1, as r→∞. (2.25a,b)

For laboratory experiments and numerical computations the extent of the domain
must be finite. In these cases, we consider an impermeable boundary where
∂H/∂r = ∂h/∂r = 0 at r = redge� 1. We will be primarily interested in times before
significant pressure signals from the injection have reached the edge of the domain,
and so this far-field boundary condition plays little role in the dynamics.

2.3.3. Initial conditions
The medium has initial depth H(r, t = 0)= 1, and is fully saturated with ambient

fluid such that h(r, t= 0)= 0. The initial porosity profile φ(r, z, t= 0)= φ0(z) can be
calculated from the integral of (2.18), and is given by

φ0 = 1− (1−Φ0)e(1−z)ρ̂2/E, (2.26)

where we have fixed the reference state φ(t = 0, z = 1) = Φ0 to coincide with the
initial condition at the surface. Note that if the stiffness E is sufficiently small, (2.26)
unphysically predicts that the porosity falls below zero at a finite depth within the
layer. In a physical setting, it is likely that the assumption of linear elasticity would
break down well before this limit is reached. In practice, we will only consider
parameter settings in which the porosity is everywhere significantly larger than zero,
and so we ignore the possibility of vanishing porosity.
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2.4. The dimensionless model
By integrating (2.13a), we find that the hydrostatic pore pressure is

p(r, z, t)=
{

P+ ρ2(H − h)+ ρ1(h− z) for 0< z< h,
P+ ρ2(H − z) for h< z<H,

(2.27)

where P(r, t) is the (unknown) surface pore pressure. The porosity distribution is given
by integrating (2.18), which yields

φ(r, z, t)=
{

1− (1−Φ)e(H−h)ρ̂2/E+(h−z)ρ̂1/E for 0< z< h,
1− (1−Φ)e(H−z)ρ̂2/E for h< z<H,

(2.28)

where Φ(r, t) is the porosity at z=H. The pressure P and porosity Φ are linked by
the continuity of normal stress at z=H (2.23), which gives

P−P = E
Φ −Φ0

1−Φ0
. (2.29)

The porosity Φ at the upper surface is also related to the heights h and H via the
kinematic condition (2.21), which can be combined with the vertical integral of the
continuity equations (2.12) to give a conservation law for the solid phase in any
vertical slice,

∂

∂t

[∫ H

0
(1− φ) dz

]
= 0, or

∫ H

0
(1− φ) dz=

∫ 1

0
(1− φ0) dz. (2.30a,b)

Using (2.26) and (2.28), we then find the following expression for the surface porosity
Φ[h(r, t),H(r, t)]:

1−Φ
(1−Φ0)[eρ̂2/E − 1] =

{
e(H−h)ρ̂2/E − 1+ ρ̂2

ρ̂1
[ehρ̂1/E − 1]e(H−h)ρ̂2/E

}−1

. (2.31)

The two kinematic conditions (2.20) and (2.21) and the continuity equations (2.12)
can be combined to give the evolution equations

∂

∂t

∫ h

0
φ dz+ 1

r
∂

∂r
rJ1 = 0,

∂H
∂t
+ 1

r
∂

∂r
r(J1 + J2)= 0, (2.32a,b)

where the fluxes of injected and ambient fluid are

J1 =
∫ h

0
φuf dz=−

∫ h

0
k
∂p
∂r

dz=−hK1

(
∂P
∂r
+ ρ2

∂H
∂r
+1ρ ∂h

∂r

)
, (2.33a)

J2 =
∫ H

h
φuf dz=−M

∫ H

h
k
∂p
∂r

dz=−M(H − h)K2

(
∂P
∂r
+ ρ2

∂H
∂r

)
, (2.33b)

respectively, and where K1 = h−1
∫ h

0 k dz and K2 = (H − h)−1
∫ H

h k dz. The fluxes of
injected and ambient fluid at the origin are

lim
r→0

(rJ1)= Q
2π
, lim

r→0
(rJ2)= 0. (2.34a,b)

The gradient of the surface pressure P in (2.33) can be calculated by differentiation
of the stress-balance condition (2.29), which eliminates P from the model owing to
the neglect of bending and tension in the overburden.
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2.5. Brief summary of the model
The evolution of the upper surface at z=H and the interface at z= h between injected
and ambient fluid are given by (2.32) and (2.33). In fact, the derivation of these
equations applies for any general three-dimensional shallow geometry, in which case
the coupled evolution equations can be summarized as

∂H
∂t
−∇ ·

{
[hK1 +M(H − h)K2]

(
E

1−Φ0
∇Φ + ρ2∇H

)
+ hK11ρ∇h

}
= 0,

(2.35a)
∂

∂t

∫ h

0
φ dz−∇ ·

{
hK1

(
E

1−Φ0
∇Φ + ρ2∇H +1ρ∇h

)}
= 0, (2.35b)

where ∇ indicates the gradient operator in the plane normal to the direction of gravity,
and the vertical integral of φ and the gradients of the surface porosity Φ can be
calculated from (2.28) and (2.31), respectively.

The dimensionless parameters in (2.35) are the elastic modulus E, the viscosity ratio
M = µ1/µ2, the scaled fluid densities ρ1 and ρ2 (or ρ̂1 = (1−Φ0)(1− ρ1) and ρ̂2 =
(1−Φ0)(1− ρ2)), and the initial porosity at the upper surface Φ0. The averages K1
and K2 are determined by specifying the permeability function k(φ).

Equations (2.35) provide a general formulation to describe shallow flow in a
poro-elastic layer which cannot freely slip at its surfaces. They could be generalized
to include, for example, a nonlinear constitutive law or a non-flat lower surface, or
they can be reposed in the limit of no gravity (see (4.15)). For the remainder of
this paper, we consider axisymmetric flow with a fixed constant flux Q of injection
(in appendix A, we also consider the closely related problem of constant-pressure
injections). We further focus on the geophysical context, for which the dimensionless
stiffness E is relatively large. This transpires because the elastic moduli for rocks are
typically appreciably larger than the lithostatic pressure difference across the layer.
Rough parameter values from the sandstone formation at In Salah (Rutqvist et al.
2010), for example, suggest that E ≈ 1.3× 104. In the asymptotic limit E→∞, the
model reduces to the usual gravity-current equations in a rigid porous medium, as
we will demonstrate in § 4.

From (2.28), flow-induced vertical variation in φ through the medium is relatively
small when E is large. Thus, although a permeability function k(φ) is easily
incorporated in the model via the vertical averages K1 and K2 in (2.33) and (2.35),
the functional form of k(φ) has no significant effect on the dynamics. For the
remainder of the paper we therefore make the simplifying assumption that k is
constant, and set k=K1 =K2 = 1.

3. Results

We solved the coupled evolution equations (2.35) numerically in an axisymmetric
domain of radial extent redge� 1, using a semi-implicit second-order finite-difference
scheme, with constant-flux conditions in (2.34) and the initial conditions H= 1, h= 0,
and φ = φ0 given by (2.26). For this problem, one can show from a local analysis
of the governing PDEs that the front of the injected fluid travels with a finite speed
and spatial gradient (as for a classical gravity current in a non-deformable medium)
while the uplift and its spatial gradient remain continuous there. As such, no special
treatment was required in the numerical scheme to describe this moving front.
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FIGURE 2. (Colour online) Snapshots from numerical simulations with the
default parameter settings given at the start of § 3, with redge = 250, at times
t = 0, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 (solid), together with the equivalent
similarity solutions evaluated at t = 2, t = 256 and t = 1024 (dashed). (a) The height
h(r, t) of the injected current and (b) the uplift H̃(r, t)= H(r, t)− 1. Note the different
horizontal scales. The insets show the radial extents Rh and RH of the injected current
and the uplift, respectively, defined as h(Rh, t)= 0 and H̃(RH, t)= 10−5.

In the case of an unbounded domain, the system of equations and boundary
conditions (2.34) and (2.35) with a constant flux of injection contains no natural
radial length scale and so permits a self-similar solution in terms of the variable
η ≡ r/t1/2. In § 3.1, we show that solutions converge to this self-similar form, and
subsequently demonstrate the dependence of the similarity solutions on the different
parameters of the model. Unless otherwise stated, we use default parameter settings
of E= 16, Q= 0.1, ρ2 = 0.5, ρ1 = 0.7 and Φ0 = 0.3.

3.1. Convergence to self-similar form
Figure 2 shows snapshots of the height h of the interface and of the surface
displacement H̃ = H − 1. Comparison of these snapshots reveals that h and H have
quite different profiles. In particular, the uplift of the medium spreads far ahead of
the location of the injected fluid. As remarked above, the injected current has a sharp
front at r= Rh(t), where h→ 0 with finite slope, with no discernible signature in the
profile of the upper surface at that point. By contrast, the upper surface smoothly
levels off with no clear nose; that is, it does not have compact support. Indeed, we
will show in § 4.1 that the uplift propagates in a linear diffusive manner ahead of the
injected current. To measure the radial extent of the uplift, RH(t), we are therefore
forced to adopt a nominal threshold amplitude; in figure 2 this is chosen to be 10−5,
so that H(RH, t)= 10−5.

Figure 2 also demonstrates that solutions evolve to self-similar form, with both
h(r, t) and H̃(r, t) converging to specific functions of the similarity variable η≡ r/t1/2.
The insets in figure 2 show in more detail how the front of the injection spreads
self-similarly after a short transient, whereas the (thresholded) radial extent of the
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FIGURE 3. (Colour online) Similarity solutions with M = 1 for different values of the
elastic modulus E as marked, in terms of the similarity variable η≡ r/t1/2. (a) The height
z= h of the injected current (solid) with the similarity solution for E→∞ (dashed; see
§ 4.2). (b) The uplift H̃=H− 1. (c) The increase in the surface pore pressure P̃=P−P ,
for E= 4 (solid), E= 16 (dotted) and E= 256 (dashed). Note the different scales in the
different horizontal scales between (a) and (b), and the different vertical scales in (b).

uplift adopts the self-similar form immediately, but deviates from this scaling once
RH(t) reaches the far edge of the domain. Inevitably, this collision leads to a slight
deviation from the self-similar form for the profiles of H̃ in the vicinity of the edge
of the domain at later times (see comparison of dashed and solid lines in figure 2b).
However, the self-similar form of h(r, t) and H̃(r, t) is still maintained over the bulk
of the domain.

3.2. Similarity solutions with M = 1
The similarity solutions can be obtained directly by rewriting the governing PDEs
(2.35) as a fourth-order system of ODEs, using the transformations ∂/∂r→ ∂/∂η and
∂/∂t→ (−η/2)∂/∂η. Alternatively, provided they have converged to self-similar form,
similarity solutions can be extracted directly from suitable snapshots of solutions of
the PDEs. Here we predominantly use the latter approach, but have verified that it
gives the same answer as the former.

Figure 3 shows solutions of the interface height h, the uplift H̃ = H − 1, and
the increase in the pore pressure at the upper surface, P̃ = P − P , for different
values of the elastic modulus E. The figure confirms the previous observation that
the uplift spreads ahead of the position of the injected fluid, but also shows that
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FIGURE 4. (Colour online) Similarity solutions of (a,c) the scaled interface height and
(b,d) the scaled uplift against the scaled similarity variable. (a,b) Comparison for different
values of the elastic modulus E: E= 4 (black solid), E= 16 (blue solid), E= 256 (black
dashed), E = 1024 (blue dashed). (c,d) Comparison for E = 256 and different values of
the other parameters: Q = 0.1, ρ1 = 0.7, Φ0 = 0.3 (black solid), Q = 0.025 (blue solid),
ρ1 = 0.9 (black dashed), Φ0 = 0.1 (blue dashed). All unquoted parameters are given by
the default values at the start of § 3. The only appreciable deviation from the scalings is
for E= 4 in (a,b).

h and H have a quite different dependence on E. In particular, while h is largely
unaffected by changes in E (figure 3a), the radial spread of the uplift increases and
its magnitude decreases as the medium becomes stiffer (figure 3b). Profiles of the
surface overpressure P̃, which is a potentially important variable when considering the
possibility of fractures or failures in the medium, mirror those of the uplift (figure 3c),
except near the point in injection where the pressure profiles are rounded off. Unlike
the uplift, the magnitude of P̃ increases with the stiffness of the medium.

Figure 4 shows solutions of h and H̃ for a selection of different parameter values.
The results collapse onto roughly the same profiles when the similarity variable η≡
r/t1/2 and h are scaled by

η∼
(

Q1ρ
Φ2

0

)1/4

, h∼
(

Q
1ρ

)1/2

, (3.1a,b)

(figure 4a,c) and when η and H̃ are scaled by

η∼ E1/2, H̃ ∼ Q
E
, (3.2a,b)

(figure 4b,d). A theoretical basis for these scalings will be discussed in § 4.

3.3. Similarity solutions with viscosity ratio M 6= 1
There are a number of differences to the dynamics discussed above when M =
µ1/µ2 6= 1. Figure 5 shows that, for M < 1 (ambient fluid is more viscous than
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FIGURE 5. (Colour online) Similarity solutions for different values of the viscosity ratio
M = µ1/µ2: M = 0.01 (red dashed), M = 0.1 (blue dashed), M = 1 (black solid), M = 10
(blue solid) and M = 100 (red solid). (a) The height h, with (inset) a comparison for
M = 0.01 with the asymptotic results of § 4.3, showing h (blue), (H − 1)/Φ0 (red) and
the solution (black dashed) of the relevant asymptotic evolution equation (4.19b). (b) The
uplift H̃, with (inset) the same data on logarithmic axes. Note that, in (a), the profiles for
M > 1 are very similar and the separate lines are difficult to distinguish.

injected fluid), both the height of the injected current and the height of the uplift
differ significantly from when M = 1. The injected current extends further but the
height is lower, as has been observed in non-deformable porous layers (Nordbotten
& Celia 2006; Pegler, Huppert & Neufeld 2014), while the magnitude of the uplift
increases. The uplift also becomes more localized to the position of the injected
fluid rather than spreading ahead of the current. For M > 1 (figure 5) (ambient
fluid is less viscous than injected fluid), the height of the injected current is almost
indistinguishable from when M = 1, although the uplift is enhanced and is more
localized when M is increased (figure 5b; inset). The different behaviour of the
system for M 6= 1 is rationalized by the asymptotic analysis of the model in the
following section. We find that the behaviour for M > 1 can be explained within
the framework of an analysis for general M (§§ 4.1 and 4.2), but a quite distinct set
of scalings for both the uplift and the current emerge in the limit M � E−1/2, as
discussed in § 4.3. As for a non-deformable medium (see Pegler et al. 2014), this
axisymmetric, shallow-layer formulation does not predict Saffman–Taylor fingering
for any values of M.

4. Asymptotic limits of the model for large elastic modulus E� 1

The numerical solutions indicate that both the uplift and the injected current
converge to the same self-similar form in terms of η≡ r/t1/2. However, both the form
of the profiles of h and H and their dependence on the different parameters of the
model are quite different. In particular, the uplift propagates far ahead of the injected
current, which appears to be almost independent of E for E>O(10). In this section
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we rationalize the different features of the injected current and the uplift by means
of an asymptotic analysis of the model for E� 1. We find that the uplift has a radial
scale ∼E1/2 and obeys a linear diffusion equation ahead of the injected fluid (§ 4.1),
which itself has an O(1) radial extent and a form that reduces to the standard solution
for a gravity current in a non-deformable medium (§ 4.2). Interestingly, the separation
of radial scales between uplift and injected fluid breaks down if the injected fluid
is much less viscous than the ambient fluid, such that M� E−1/2� 1; a new set of
scalings emerge in this limit, and both h and H have a radial scale ∼E1/4 (§ 4.3).

4.1. The uplift
Ahead of the injected current, h= 0 and the hydrostatic pressure and porosity profiles,
given from (2.27) and (2.28), are

p= P+ ρ2(H − z), (4.1)

φ = 1− (1−Φ)e(H−z)ρ̂2/E; Φ = 1− (1−Φ0)
eρ̂2/E − 1
eHρ̂2/E − 1

, (4.2a,b)

respectively. The evolution equation for the uplift H, given from (2.32), is

∂H
∂t
= M

r
∂

∂r

{
rH
[
ρ2 + ρ̂2(1−Φ0)[eρ̂2/E − 1]

[eHρ̂2/E − 1]2 eHρ̂2/E

]
∂H
∂r

}
. (4.3)

Note that (4.3) is also recovered throughout the domain in the case when the injected
fluid is identical to the ambient fluid (ρ1 = ρ2 and µ1 =µ2).

For E� 1, (4.3) reduces to

∂H
∂t
= 1

r
∂

∂r

[
MEr

H
∂H
∂r

]
= 1

r̃
∂

∂ r̃

[
r̃
H
∂H
∂ r̃

]
, (4.4)

in terms of a rescaled radial coordinate r̃ = r/(ME)1/2. This rescaling quantifies the
observed scale separation in the numerical solutions: the uplift extends a distance
∼(ME)1/2 ahead of the injected current. On the relatively long radial scale r̃, the
injection appears as a point source of ambient fluid with flux

lim
r̃→0

[
ME

r̃
H
∂H
∂ r̃

]
=− Q

2π
. (4.5)

The source therefore drives a weak uplift H = 1 + H̃, with H̃ = O(Q/(ME)) � 1
satisfying the linear diffusion equation

∂H̃
∂t
= 1

r̃
∂

∂ r̃

(
r̃
∂H̃
∂ r̃

)
, (4.6)

from (4.4), which rationalizes the diffusive character of the numerical solutions.
Moreover, the self-similar form of the far-field uplift is given from (4.5) and (4.6) by

H − 1= Q
ME

f
(

η√
ME

)
, (4.7)
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where f (x) satisfies the ODE (xf ′)′ + x2f ′/2= 0. The predictions in (4.7) confirm the
observed scalings shown in figure 4 and reported in (3.2), and generalize them for
M 6= 1 and M�E−1/2 (see § 4.3). The separation of length scales between the injected
current and the uplift implies that the latter is insensitive to the detailed dynamics
of the injected fluid in this limit. Note that the scaling in (4.7b) is just the classical
poro-elastic diffusion scale; see e.g. Coussy (2004).

4.2. The injected current
For E� 1 and h> 0, the porosity becomes

φ =Φ = 1− 1−Φ0

H
, (4.8)

to leading order, from (2.28) and (2.31), such that φ is independent of depth. Hence

∂Φ

∂H
= 1−Φ0

H2
,

∂Φ

∂h
=−h(1−Φ0)

21ρ

EH2
, (4.9a,b)

which can be used to evaluate ∂P/∂r and thus the leading-order fluxes J1 and J2 in
(2.33):

J1 =−E h
H2

∂H
∂r
−1ρ

[
h− (1−Φ0)h2

H2

]
∂h
∂r
, (4.10a)

J2 =−E M(H − h)
H2

∂H
∂r
+ M1ρ(1−Φ0)h(H − h)

H2

∂h
∂r
. (4.10b)

In order to achieve a balance in the evolution equations (2.32), J1 and J2 must be
O(1), which implies that ∂H/∂r=O(E−1) in (4.10). Hence, as above, H= 1+ H̃ with
H̃ =O(E−1)� 1, and so

∂H
∂t
=−1

r
∂

∂r
r(J1 + J2)=O(E−1)� 1, (4.11)

which indicates that the total flux r(J1 + J2) is a constant to leading order, given by
Q/2π. The slope of the uplift becomes

E
∂H̃
∂r
=−1ρ

[
1

[h+ (1− h)M] − (1−Φ0)

]
h
∂h
∂r
− Q

2πr[h+ (1− h)M] , (4.12)

to leading order, from (4.11) and (4.10). The terms involving the uplift can thus be
eliminated from (4.10a), and the evolution equation (2.32a) reduces to

Φ0
∂h
∂t
= 1

r
∂

∂r

[ −Qh
2π[h+ (1− h)M] +1ρ

rh(1− h)M
h+ (1− h)M

∂h
∂r

]
+O(E−1), (4.13)

which is the standard evolution equation for the height of a gravity current with
a fixed flux Q in a confined, non-deformable, porous medium (see, e.g. Pegler
et al. 2014). Provided that the injected current does not fill the layer, (4.13) can be
approximated by taking the limit h� 1 to give the equation for a gravity current in
an unbounded medium (Lyle et al. 2005), which yields similarity scalings of

h∼
(

Q
1ρ

)1/2

, η≡ r/t1/2 ∼
(

Q1ρ
Φ2

0

)1/4

, (4.14a,b)
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for the height and extent of the injected current. These scalings were observed in the
full similarity solutions in (3.1) and in figure 4. Interestingly, the scalings appear to
hold all the way down to E= 4, which suggests that the influence of the uplift on the
injected current is negligible except in very deformable media (small E).

A further interesting feature of the leading-order equations (4.8)–(4.10) is that they
correspond to the limit of neglecting gravity (i.e. purely pressure-driven flow), because
E ∝ 1/g (cf. (2.15)). However, in this limit we cannot deduce that H is constant
to leading order, as in (4.11), since time has also been scaled by 1/g (see § 2.2).
Instead, the time derivatives in the evolution equations must be balanced with terms
proportional to E in (4.10) to give equations for the evolution of h and H in the
absence of gravity:

∂

∂ t̃
(Φh)= 1

r
∂

∂r

[
rh
H2

∂H
∂r

]
; ∂H

∂ t̃
= 1

r
∂

∂r

[
r[h+ (H − h)M]

H2

∂H
∂r

]
, (4.15a,b)

where t̃=Et and Φ = 1− (1−Φ0)/H from (4.8). The evolution of both injected fluid
and uplift are governed by gradients in the slope of the overburden in this limit.

4.3. Small viscosity ratio M ≡µ1/µ2� 1
The features of the model for E� 1 discussed above change when the viscosity ratio
M is sufficiently small, such that the ambient fluid is much more viscous than the
injected fluid. This is potentially the case for CO2 sequestration, where the injected
CO2 has a much lower viscosity than the ambient brine; we consider this issue in § 6.

The key to understanding the change in behaviour is first to observe that the flux
of ambient fluid, J2, is proportional to M, and so the evolution equations (2.32) can
be combined to give

∂

∂t
(Φh)= ∂H

∂t
−O(M), (4.16)

since the porosity is still given by (4.8) for E� 1 and so is independent of depth.
Equation (4.16) implies

h= H̃
Φ
+O(M). (4.17)

In other words, the height of the injected current is small, and it undercuts the more
viscous ambient fluid which is plugging up the porous layer. Moreover, the uplift
becomes coupled directly to the injected fluid current and no longer diffuses ahead.

In view of (4.17), the leading-order fluxes J1 and J2 in (4.10) simplify still further
and the evolution equations (2.32) reduce to

∂

∂t
(Φh)= E

r
∂

∂r

(
rh
H2

∂H̃
∂r

)
,

∂H̃
∂t
= E

r
∂

∂r

[
r[h+ (H − h)M]

H2

∂H̃
∂r

]
. (4.18a,b)

To satisfy both (4.17) and (4.18) simultaneously, we can no longer deduce that H̃ =
O(E−1) as in § 4.2. Instead, provided M� h� 1 (which we establish below), we find
that (4.17) and (4.18) reduce to

h= H − 1
Φ
; ∂h

∂t
= E

r
∂

∂r

(
rh
∂h
∂r

)
, (4.19a,b)
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and a change in the scaling of the radial structure of the solution is required. In
particular, (4.19) (which has the same form as a standard equation for a gravity current
in a porous medium) together with the boundary condition −Q/2π = Φ0Erh(∂h/∂r)
as r→ 0, furnish the similarity solution,

h= H − 1
Φ0
=
(

Q
Φ0E

)1/2

f
(

η

(QE/Φ0)1/4

)
, (4.20)

where f (x) satisfies the ODE (xff ′)′ + x2f /2= 0. Thus, the height of the current and
uplift are indeed small: h∼ H̃ ∼ O(E−1/2). The condition M� h demands that M�
E−1/2� 1, which identifies the viscosity ratio for which the scalings change. If either
M > O(E−1/2) or h� M, then (4.18b) reduces to the linear diffusion equation (4.6)
discussed in § 4.1, and the uplift again diffuses ahead of the current.

The scalings in (4.20) can be compared with the previously identified scalings
in (4.7) and (4.14). There is a transition from the injected current being driven by
buoyancy forces and evolving independently of E for M =O(1), scaling as in (4.14),
to the current being independent of buoyancy and being controlled by E as M→ 0,
with scaling (4.20a,b). The magnitude of the uplift also becomes independent of M to
leading order. These asymptotic results are consistent with the trends in the numerical
results of figure 5; in particular, figure 5(a; inset) shows a relatively good agreement
between direct measurement of h and the predictions of h using either (4.19a) or
solutions to (4.19b).

5. Laboratory experiments
5.1. Experimental results

To complement the theory, we carried out laboratory experiments using polyacrylamide
hydrogel particles. Dry particles swell to roughly 40 times their size on the addition
of water, and form soft, elastic, roughly spherical beads of radius 0.38±0.08 mm. We
filled the base of a cylindrical tank, of radius of 445 mm, to a depth of H0= 35 mm
with a layer of hydrogel particles to form a deformable porous medium (figure 6a).
Because the particles consist predominantly of water, their density is only very slightly
higher than 1 g cm−3. The saturated bed of particles was overlain by a flexible but
impermeable polydimethylsiloxane (PDMS) sheet of thickness 5 mm. The sheet fitted
closely inside the tank, such that water did not leak around the edges during an
experiment. There was a small hole at the base in the centre of the tank through
which water could be injected at a fixed flux (using a peristaltic pump) or allowed to
drain. Interstitial air in the medium was removed by first significantly over-saturating
the particles to produce a thin slurry, before slowly draining excess water to produce
a medium that was fully saturated.

The experiments were intended to provide a relatively simple qualitative comparison
with the theoretical model in the limit that the injected and ambient fluid are identical.
One-dimensional compression tests suggested that the saturated medium had an elastic
modulus of K+ 4G/3≈ 20–30 kPa, in rough agreement with previously quoted values
for this material (MacMinn et al. 2015). The dimensionless stiffness therefore lay
in the range 70 . E . 80, and so was fairly large, as in the limit considered in
our analysis. Despite this, there are a number of complications associated with this
experimental set-up which render a systematic comparison with the theoretical model
difficult (see § 5.2).
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medium

0
1
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(a) (b)

FIGURE 6. (Colour online) (a) A schematic of the experimental set-up. (b) An image from
an experiment in which the injected water was dyed blue to distinguish it from the clear
ambient water. The profile above shows the uplift of the upper surface, as measured by the
deflection of the line on the PDMS sheet, and demonstrates that the uplift travels ahead of
the blue fluid. The flux was Q= 100 cm3 min−1 and the image was taken roughly 2 min
after the start of injection.

The main variable that was changed between experiments was the injection rate. We
also carried out sets of experiments for different depths H0 of the medium, which are
not presented but exhibited qualitatively similar results to those discussed here. During
each experiment, we took measurements of the uplift by using a camera to track
a line drawn on the surface of the PDMS sheet. The camera was located 770 mm
from the centre of sheet at an angle of 35◦ from the horizontal. Figure 6(b) shows a
picture from an experiment in which the injected fluid was dyed blue, together with
the measured profile of the uplift of the upper surface. Note that the injected fluid
noticeably lags behind the measured uplift.

Figure 7 shows measurements of the height of the upper surface over time, for two
different injection rates Q. The uplift is qualitatively similar to the numerical solutions
(see, for example, figure 3b), except near to the point of injection, where the profiles
are smoother. This difference is most likely due to bending stresses in the PDMS
sheet, which we estimate to be important on length scales of a few centimetres (see
§ 5.2). Such stresses eliminate the logarithmic divergence of the uplift H̃ for r→ 0
predicted by the model (see appendix A) by rounding off the profile there.

Comparison of figure 7(a,b) suggests that the main difference between the
measurements at different injection rates is the magnitude of the uplift, and that
the rate at which the uplift propagates radially is largely independent of the flux.
This observation is corroborated by snapshots of the uplift for a range of different
values of the flux (figure 8), which shows that the profiles collapse onto roughly the
same curve when scaled by the injection rate Q, in agreement with the theoretical
prediction in (4.7a).

Given that the uplift scales with the injection rate, we identify the radial extent of
the uplift by choosing a threshold in H̃/Q. More specifically, we define

RH =min {r : H̃ < 2Q× 10−3}. (5.1)

Measurements of RH from the experiments (figure 9) agree qualitatively with the
predicted scalings in (4.7), with the radial spread being largely independent of the
injection rate Q and scaling with t1/2 until RH reaches the edge of the tank. The
spread also slightly accelerates close to the boundary of the tank, as observed in the
numerical solutions in a finite domain (figure 2b inset). Contrary to theory, the uplift
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FIGURE 7. Experimental measurements of the height H̃ of the deviation of the upper
surface, in mm, at times t = 2, 4, 8, 16, 32, 64, 128 and 256 s. (a) Injection rate Q =
25 cm3 min−1. (b) Q = 200 cm3 min−1. The coordinate x measures the radial distance
from the point of injection, such that r= |x|.
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FIGURE 8. (Colour online) Experimental measurements of the height H̃ of the deviation
of the top surface scaled by the injection rate Q, at times (a) t=10 s and (b) t=100 s, for
different injection rates Q= 25 cm3 min−1 (black solid), Q= 50 cm3 min−1 (blue solid),
Q = 100 cm3 min−1 (red solid), Q = 200 cm3 min−1 (green solid), Q = 300 cm3 min−1

(black dashed) and Q = 400 cm3 min−1 (blue dashed). The coordinate x measures the
radial distance from the point of injection, such that r = |x|. The noise in the profiles
with the lowest injection rates reflects the sub-pixel resolution of the processed images
(achieved using a Gaussian fit to the intensity of the tracked line), which was roughly
50 µm.

spreads initially (up to ∼10 s) more rapidly than t1/2 and the height above the point
of injection increases steadily. The disagreement with theory is again most likely
due to bending stresses in the overburden near the origin, at least at early times. At
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FIGURE 9. (Colour online) Experimental measurements for different injection rates: Q=
25 cm3 min−1 (black solid), Q = 50 cm3 min−1 (blue solid), Q = 100 cm3 min−1 (red
solid), Q = 200 cm3 min−1 (green solid), Q = 300 cm3 min−1 (black dashed) and Q =
400 cm3 min−1 (blue dashed). (a) The radial extent RH , defined by (5.1), of the uplift,
scaled by t1/2. The measurements are approximately independent of Q and show a scaling
of t1/2 until RH reaches the edge of the tank. (b) The height H̃(r= 0) above the point of
injection, scaled by Q.

later times, the pressure signal has reached the edge of the domain and the entire
overburden is lifting up.

5.2. Limitations of the experiments
The experimental system provides a simple laboratory-scale deformable porous
medium, with which we have been able to confirm qualitatively some of the
theoretical results. There are some difficulties in using hydrogel particles as an
idealized poro-elastic medium, which prevented a more quantitative comparison with
the model. In particular, the particles are always coated with a layer of water, and it
is not clear whether their aqueous contents continually leak out. In this situation it is
very difficult to distinguish the effective solid phase from the fluid, and therefore to
measure the initial porosity. We also found that the elastic modulus of the saturated
medium varies appreciably with the porosity, which complicates the characterization
of the properties of the medium.

One of the notable features of the experimental results is the influence of bending
in the overburden around the point of injection. The flexural rigidity B of the PDMS
sheet was B≈ 0.024 Pa m3 (given a Young’s modulus of ≈1.8 MPa, a thickness of
5 mm and a Poisson ratio of 0.45; see Lister, Peng & Neufeld, 2013). The relative
importance of bending in the balance of stresses (2.23) at the upper surface is given
by the ratio of the bending pressure B∇4H to the hydrostatic pressure ρgH. Such a
balance gives a rough length scale of r≈ 4 cm over which bending is likely to affect
the uplift, which is consistent with the length scale of the rounding of the profiles
around the point of injection in figures 7 and 8. A similar analysis can be carried
out in a geophysical context: for an overburden rock with Young’s modulus 10 GPa
and depth 1 km, bending of the overburden would affect the uplift for roughly 1 km
around the injection site.

6. Conclusions
In this paper, we used a two-phase poro-elastic formulation and shallow-layer

scalings to describe the injection and gravity-driven spread of fluid in an axisymmetric
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Regime h η≡ r/t1/2 H −H0 η≡ r/t1/2
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(
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[
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µ1Φ0H0

]1/4

TABLE 1. A summary of the dimensional scalings of the heights z= h and z=H and of
the corresponding similarity variables η≡ r/t1/2 for injection with a constant (dimensional)
flux Q, where H0 is the depth of the layer, g is the gravitational acceleration, ρ1, ρ2 and
ρs are the densities of the injected and ambient fluids and of the solid phase, µ1 and µ2
are the viscosities of the injected and ambient fluids, Φ0 and k0 are characteristic porosity
and permeability scales (all respectively), and Ẽ≡K+ 4G/3 combines the bulk modulus K
and shear modulus G of the porous medium. Note that the scalings presented for h and η
in the top line are the scalings for a porous gravity current in a deep domain (Lyle et al.
2005), which will apply for as long as the injection does not fill up the porous layer;
see Pegler et al. (2014). The scaling of η for the uplift in the top line is the classical
poro-elastic diffusion scale (Coussy 2004).

poro-elastic layer lying on a rigid horizontal substrate and below a flexible overburden.
We derived a model coupling the evolution of the height h(r, t) of the injected current
with the resultant deformation of the medium and corresponding uplift H(r, t) of the
overburden. In the absence of an external radial length scale, both h and H are
described by self-similar solutions with respect to the similarity variable η ≡ r/t1/2.
In geophysical settings, the dimensionless modulus or stiffness E, which is the ratio
of elastic to gravitational stresses, is typically large, and we focused on that limit in
this work.

We found that deformation of the medium has, in general, only a very small effect
on the dynamics of the injected fluid. In many geological cases, the current evolves
as a standard gravity current in a rigid porous medium (see the scalings in table 1),
and is largely independent of the stiffness for moderate to large E, provided the
viscosity of the ambient fluid µ2 is not much larger than that of the injected fluid µ1
(specifically, µ1/µ2 >O(E−1/2)). The uplift of the medium, on the other hand, varies
significantly with the stiffness. There is a separation of radial scales between the
uplift and the injected fluid: the uplift spreads in a linear diffusive manner ahead of
the injected fluid and is insensitive to the detailed dynamics of the spreading current
(see table 1).

Owing to this diffusive character, there is no true front to the outgoing signal of the
uplift. Instead, its radial spread rH(H ) must be defined using a prescribed threshold
H − H0 =H in the elevation change. In fact, because the full diffusion solution of
(4.7) has a Gaussian nose, it can be shown that

rH ∼
(

k0Ẽ
µ2

)1/2 [
log
(

Qµ2

H k0Ẽ

)]1/2

t1/2, (6.1)

where the dependence on viscosity µ2, elastic modulus Ẽ ≡ (K + 4G/3), injection
rate Q and permeability scale k0 follow from the detailed similarity solution of (4.7).
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The radial extent rH of the uplift is therefore only weakly dependent on the rate of
injection Q, and is independent of the buoyancy terms, the initial porosity Φ0, and the
viscosity of injected fluid µ1, all of which affect the evolution of the injected current.

Both the uplift and the height of the injected fluid are functions of the same
similarity variable, and the ratio rh/rH of the radial spread of injected fluid to that
of the uplift is therefore independent of time. Using (6.1) and the scalings in table 1,
we estimate

rh

rH
∼
[

Q(ρ1 − ρ2)gµ2
2

k0Ẽ2Φ2
0µ1

]1/4 [
log
(

Qµ2

H k0Ẽ

)]−1/2

. (6.2)

If an uplift of H is observed at a radial distance rH , this ratio allows one to
determine the predicted extent rh of the injected fluid.

In many physical situations, the pore pressure, rather than the flux, is imposed at
the point of injection. In the appendix A, we studied injection with a fixed pore
pressure, and found that the dynamics of constant-pressure injections evolve to be
essentially equivalent to those for constant flux. This conclusion applies for as long
as a significant pressure signal has not reached a far boundary of the domain, which
is also when our constant-flux solutions deviate from self-similar behaviour.

In contrast to this behaviour, in an idealized non-deformable medium the dynamics
associated with injection at a fixed pressure must inevitably depend upon the far-field
boundary conditions because of the pressure gradients that are immediately set-up. In
a deformable medium the pressure signal spreads diffusively and the nearest boundary
at r= redge will have a negligible effect on the dynamics until significant pressure has
built up there, which occurs over a time scale of t∼µ2r2

edge/k0Ẽ. Example parameter
values from In Salah (Rutqvist et al. 2010) suggest times of the order of 103 days if
the nearest boundary or obstacle is at redge= 10 km. Until this time, the dynamics will
evolve essentially independently of any far-field conditions, such as faults or fractures
in the medium.

Interestingly, if the injected fluid is much less viscous than the ambient fluid (so
that µ1/µ2� E−1/2), then the conclusions discussed above break down. In this case
(discussed in § 4.3), the injected fluid undercuts the much more viscous ambient fluid
which plugs up the medium. The uplift then becomes localized to the position of the
injected current rather than diffusing ahead, and the dependence on the parameters
change (see table 1). In the context of CO2 sequestration, however, we estimate that
E > O(103) while µ1/µ2 ≈ 1/20. Thus, although the viscosity ratio is small, it is
unlikely to be smaller than E−1/2.

In this work we have focused on relatively large values of the stiffness E, since
this is the limit appropriate to geophysical contexts. An interesting extension
of the model is to consider situations with significant deformation, as in some
biological applications. A first step in this direction requires the relaxation of
linear poro-elasticity. In such a situation it may also prove necessary to remove
the assumption that the fluid and solid phases move together as the overburden lifts
up. A pocket of fluid may then float up above the solid matrix to lubricate the
overburden, or fluid may drain away underneath as the solid lifts up.
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Appendix A. Fixed pore pressure at the point of injection

Fluid may be injected at a fixed pore pressure, rather than a fixed flux. In this
appendix, we consider injection at a fixed pressure pI and show that the flow is
qualitatively similar to that with a (related) fixed flux Q, until significant uplift has
reached a boundary of the domain. As we will show below, infinite pore pressure is
required at r = 0 to sustain a non-zero flux, which implies that we must consider a
finite fixed pressure pI at a small non-zero radius of injection rI . In this case, the
boundary condition of fixed flux (2.24a) is replaced by

p(r= rI, z= 0)= pI, (A 1)

or, equivalently, using the expression for hydrostatic pressure (2.27) and the balance
of normal stress at z=H (2.29),

p̃I − ρ2(H − h)− ρ1h= E
Φ −Φ0

1−Φ0
, at r= rI, (A 2)

where p̃I = pI −P is the excess imposed pore pressure above the overburden pressure.
Equation (A 2) can be combined with the equation for Φ(h, H) (2.31) to give an
implicit relationship between H and h at r = rI , which can be solved iteratively
together with the constraint that there is no flux of ambient fluid at r = rI (2.34b).
The corresponding flux Q(t) is given by (2.34a).

Figure 10 compares results from numerical simulations with fixed flux and fixed
pressure at r = rI . After an initial transient, simulations with fixed flux have an
almost constant pressure p̃I (figure 10a), while simulations with fixed pressure have
an almost constant flux Q (figure 10b). Figure 10(c,d) emphasizes the correspondence
by comparing solutions in which the near-constant flux of the constant-pressure
injection was matched by that of an injection with constant flux. In common with
most other porous or viscous gravity-current problems, the profiles for fixed flux and
non-zero rI also give very good agreement with the similarity solution.

The dynamics of injection with a fixed pressure can be exposed by an analysis of
the equations in the limit rI→ 0. Provided that the flux of injected fluid remains non-
zero in this limit, we require J1 6= 0 and J2 = 0 from the flux boundary conditions
(2.34). These constraints indicate that h∼H as r→ 0; in other words, as rI→ 0 the
entire layer fills up with injected fluid in some small region close to r= 0. The shape
of h ∼ H close to r = 0 can be determined from the equation for the flux (2.33a),
which reduces to

−rh
(
ρ1 + E

1−Φ0

∂Φ

∂h

)
∂h
∂r
→ Q

2π
as r→ 0, (A 3)

or

h∼H ∼
[

Q
πρ1

log
(

1
r

)]1/2

as r→ 0. (A 4)

That is, in some exponentially small region near to r= 0, h∼H diverges. (In the limit
h→H→∞, the gradient of Φ vanishes and Φ→ 1.) The logarithmic divergence of
h as r→ 0 is a generic feature of axisymmetric viscous gravity currents.
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FIGURE 10. (Colour online) Comparison of profiles from simulations with fixed flux Q
or fixed pressure p̃I at r = rI . (a) The pressure p̃I at rI from simulations with fixed flux
Q= 0.1, for different rI = 1 as marked. (b) The flux Q at rI from simulations with fixed
pressure p̃I = 0.72, for different rI = 1 as marked. (c,d) The height h(r, t) of the injected
current and the uplift H̃(r, t), as marked, at times t= 40 (leftmost group of curves) and
t= 400 (rightmost group of curves), with rI = 0.1, for fixed flux Q= 0.1 (solid) and fixed
pressure p̃I = 0.72 (short dashed). The simulations with fixed flux agree with the similarity
solution (long dashed). The other parameters in these simulations are those given at the
start of § 3.

The excess pressure p̃I at rI is given by (A 2) which, using (A 4) and Φ→ 1, gives

p̃I ∼
[
ρ1Q
π

log
(

1
rI

)]1/2

+ E as rI→ 0. (A 5)

In other words, for sufficiently small values of rI , the flux and the pressure are directly
linked via (A 5), and so flow with a fixed pressure should be the same as flow with the
corresponding fixed flux given by (A 5). Equation (A 5) also confirms that the pressure
associated with a non-zero flux Q diverges as rI→ 0.

The agreement of simulations with fixed flux and fixed pressure in figure 10
is not exact, which does not contradict (A 5) because the radius of injection is
not exponentially small in those simulations. For the parameter values of those
simulations and h=O(1), (A 4) gives estimates of rI of the order of rI ∼ e−20, which
is many orders of magnitude smaller than can be readily attained numerically.

In a finite domain, we expect a qualitative difference between the dynamics with a
fixed-flux and fixed-pressure boundary conditions once significant uplift has reached
the far boundary at r= redge. If the pressure were fixed then the flux would decrease
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significantly, whereas if the flux were fixed then the whole system would became
pressurized. The diffusive scalings in (4.7) indicate that this change in the dynamics
occurs after a (dimensionless) time scale t∼ r2

edge/(ME).
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