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Abstract
It has been conjectured that, for any fixed r� 2 and sufficiently large n, there is a monochromatic
Hamiltonian Berge-cycle in every (r − 1)-colouring of the edges of Kr

n, the complete r-uniform hypergraph
on n vertices. In this paper we prove this conjecture.

2020 MSC Codes: 05C65, 05C45, 05D10

1. Introduction
For a given r� 2 and n� r, an r-uniform Berge-cycle of length n, denoted by Cr

n, is an r-uniform
hypergraph with the core sequence v1, v2, . . . , vn as the vertices, and distinct edges e1, e2, . . . , en
such that ei contains vi, vi+1, where addition in indices is modulo n. The case r = 2 gives the usual
definition of the cycle Cn on n vertices for graphs. A Berge-cycle of length n in a hypergraph with
n vertices is called a Hamiltonian Berge-cycle.

For an r-uniform hypergraph H, the Ramsey number Rk(H) is the minimum integer n such
that there is a monochromatic copy of H in every k-edge colouring of Kr

n. The existence of such a
positive integer is guaranteed by Ramsey’s classical result in [9]. The Ramsey numbers of various
variations of cycles in uniform hypergraphs have recently been studied; see e.g. [5, 6, 8]. In this
regard, Gyárfás, Lehel, Sárközy and Schelp proposed the following conjecture for Berge-cycles.

Conjecture 1.1 ([2]). Assume that r� 2 is fixed and n is sufficiently large. Then every (r − 1)-edge
colouring of Kr

n contains a monochromatic Hamiltonian Berge-cycle.

Conjecture 1.1 states that for a given r� 2 we have Rr−1(Cr
n)= n when n is sufficiently large.

The case r = 2 is trivial, since for each n� 3 the complete graph Kn has a Hamiltonian cycle.
The case r = 3 was proved by Gyárfás, Lehel, Sárközy and Schelp [2]. Recently, Maherani and the
author gave a proof for the case r = 4; see [7]. For general r, the asymptotic form of Conjecture 1.1
was proved by Gyárfás, Sárközy and Szemerédi using the method of the Regularity Lemma; see
[4]. To see more results on Conjecture 1.1, we refer the reader to [2, 3, 4] and references therein.
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92050217).
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In this paper we establish Conjecture 1.1. Based on the above results on this conjecture, it only
suffices to give a proof for r� 5. The main result of this paper is the following theorem.

Theorem 1.2. Suppose that r� 4 and n> 6r
( 4r
r−1

)
. Then in every (r − 1)-edge colouring of Kr

n there
is a monochromatic Hamiltonian Berge-cycle.

For a given r� 2, let p(r) be the minimum value ofm for which the statement of Conjecture 1.1
holds for any n�m. Theorem 1.2 guarantees the existence of such a function p(r) (in fact it shows
that p(r)� 6r

( 4r
r−1

) + 1). Determining p(r) seems to be an interesting problem, though we will not
make any serious attempt in this direction. At present we do not know much about p(r). Our
conjecture is that p(r) is much less than 6r

( 4r
r−1

) + 1, at least for small values of r. An indication of
this is given by p(3)= 5 (see [2]) and p(4)� 85 (see [7]).

2. Basic definitions and some preliminaries
Before we give our proof we present some definitions. Assume thatH is an r-uniform hypergraph.
The shadow graph S(H) is a graph with vertex set V(H), where two vertices are adjacent if they
are covered by at least one edge of H. Consider an (r − 1)-edge colouring of H =Kr

n with colours
1, 2, . . . , r − 1 and assume thatG= S(H) (soG is a complete graph). For each edge e= xy ofG, we
assign a list L(e) of colours of all edges of H containing x and y. For an edge e ∈ E(G), the colour
i ∈ L(e) is good if at least r − 1 edges (of H) of colour i contain both vertices of e. We consider
a new multi-colouring L∗ for the edges of G. For each edge e ∈ E(G), assume that L∗(e)⊆ L(e) is
the set of all good colours for e. Throughout this paper, for each natural number m, assume that
[m]= {1, 2, . . . ,m}. For each vertex x ∈V(G) and any 1� i� r − 1, assume that

Ui(x)= {y ∈V(G) \ {x} | i ∈ L∗(xy)}, Ui(x)= {y ∈V(G) \ {x} | i /∈ L∗(xy)},

and di(x) is the number of edges of colour i containing x in H. For any I ⊆ [r − 1], set

UI(x)=
⋂
i∈I

Ui(x) and UI(x)=
⋂
i∈I

Ui(x).

We say that a set of vertices S⊆V(G) avoids the set of colours W ⊆ [r − 1] if, for each i ∈W,
there is a vertex x ∈ S with di(x)�

( 4r
r−1

)
or an edge e= xy for x, y ∈ S with i /∈ L∗(e). We will use

the following lemmas in the proof of Theorem 1.2.

Lemma 2.1 ([7]). Assume that r� 3 and H =Kr
n is an (r − 1)-edge coloured complete r-uniform

hypergraph on n vertices. Also, suppose that G= S(H) and there is a monochromatic Hamiltonian
cycle in G under multi-colouring L∗. Then there is a monochromatic Hamiltonian Berge-cycle in H.

Lemma 2.2 ([1]). Let G be a simple graph and let u and v be non-adjacent vertices in G such that
dG(u)+ dG(v)� n. Then G is Hamiltonian if and only if G+ uv is Hamiltonian.

Lemma 2.3 ([1]). Let G be a simple graph with degree sequence 0� d1 � d2 � · · ·� dn < n and
n� 3. If, for each i< n/2, we have di > i or dn−i � n− i, then G is Hamiltonian.

The following simple remark can be proved by induction onm and it will be used later on.
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Remark 2.1. Assume that am � am−1 � · · ·� a1 � a> 0 are real numbers and a1 + · · · + am = l.
Then m∏

i=1
ai � am−1(l− (m− 1)a).

In the rest of this paper, for a real number r, we use �r� (resp. �r�) to mean the greatest integer
not exceeding r (resp. the least integer not less than r).

3. Outline of the proof of Theorem 1.2
Here we sketch the main ideas of our proof of Theorem 1.2. Suppose to the contrary that
there is no monochromatic Hamiltonian Berge-cycle in a given (r − 1)-edge colouring c of
H =Kr

n with colours 1, 2, . . . , r − 1. We will show that (see Claim 4.5), by suitable renam-
ing of colours, for some 0� f � r − 2 there are distinct vertices x, y1, y2, . . . , yr−1 such that
|Ur−1(x)|� (n− 1)/2, i /∈ L∗(xyi) for any f + 1� i� r − 1 and {yi}fi=1 avoids [f ]. We choose dis-
tinct vertices x, y1, y2, . . . , yr−1 with these properties and maximum f . Without loss of generality
we assume that

|Uf+1(x)|� |Uf+2(x)|� · · ·� |Ur−1(x)|.
Then we divide our proof into some cases, and in each case, using the distinct vertices x and
{yi}r−1

i=1 , we construct a new graph � on V(H) so that any Hamiltonian cycle in � can be extended
to a monochromatic Hamiltonian Berge-cycle of colour f + 1 in H. In short V(�)=V(H),
and for any two adjacent vertices u and v of � there exists an edge guv ∈ E(H) of colour f + 1
containing u and v. Moreover, guv 	= gu′v′ for almost any two distinct edges uv and u′v′ in E(�).

Overall, � can be defined as follows. The maximality of f and the choices of the vertices D=
{yi}r−1

i=1 ∪ {x} imply that for almost all vertices u ∈V(H) there are many vertices v such that there
is an edge euv in H of colour f + 1 containing u, v with |euv ∩D|� r − 2. You can see the reason
for the existence of many vertices v with this property in the proof of Claim 4.12 when f � r − 3
and in Section 4.3 for f = r − 2. Now we consider the new graph with vertex set V(H) and edges
uvmentioned above. Then for f < r − 2 we add a few suitable edges (the edges E2 (4.9), E3 (4.11)
and E4 (4.12) defined in Section 4.4) to this graph to get a new graph � with minimum degree at
least 2r + 1.

To complete our proof (in fact to get a contradiction to our incorrect assumption) it suffices to
show that � is a Hamiltonian graph. To do this, we show that the degree sequence of the graph
� satisfies Chvátal’s condition in Lemma 2.3. More precisely, if d1 � d2 � · · ·� dn are degrees of
the vertices of �, then for each i� n/2 we have di > i or dn−i � n− i. Hence, by Lemma 2.3, � is
Hamiltonian and we are done.

Finally I would like to mention that in Claim 4.18, the reader can see how we can extend a
Hamiltonian cycle in � into a monochromatic Hamiltonian cycle in H when f � r − 3, as can be
seen in Section 4.3 for r = f − 2.

4. The proof of Theorem 1.2
Suppose to the contrary that there is no monochromatic Hamiltonian Berge-cycle in a given
(r − 1)-edge colouring c of H =Kr

n with colours 1, 2, . . . , r − 1. We will get a contradiction in
this section.

4.1 Useful definitions and facts
For each 1� i� r − 1, let Wi be the set of all edges e of G= S(H) for which i /∈ L∗(e). Using
Lemma 2.1, we may assume that the subgraph of G with vertex set V(G) and edge set E(G) \Wi
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is not Hamiltonian. Now consider Si ⊆Wi with minimum cardinality, such that the spanning
subgraph of G induced by E(G) \ Si is not Hamiltonian. Assume that Gi and Gc

i are the spanning
subgraphs of G induced by Si and E(G) \ Si, respectively. For each colour 1� i� r − 1, respec-
tively, assume that Ti and Ri are the sets of all isolated vertices and all vertices with degree at least
(n− 1)/2 in Gi. Also, assume that Qi =V(Gi) \ (Ti ∪ Ri). We will frequently need the following
fact in our proof.

Fact 4.1. For each 1� i� r − 1, Gc
i is non-Hamiltonian. Moreover, for each e ∈ E(Gi), we have

i /∈ L∗(e) and Gc
i + e is Hamiltonian.

For any two non-adjacent vertices x and y of Gc
i , by Fact 4.1 the graph Gc

i + xy is Hamiltonian
and so, by Lemma 2.2, we have dGc

i
(x)+ dGc

i
(y)� n− 1. Therefore we have the following fact on

the sums of degrees of adjacent vertices in Gi.

Fact 4.2. For any two adjacent vertices x and y of Gi, we have dGi(x)+ dGi(y)� n− 1.

This fact implies that Qi is an independent set in Gi. If Ri = ∅ for some i, then since Qi is an
independent set, the graph Gi has no edge and so Gc

i is a complete graph, a contradiction to the
fact thatGc

i is non-Hamiltonian. Hence Ri 	= ∅ (see Section 2 for the notations that are not defined
here). Now we claim that |Ri|� |Ti| for each 1� i� r − 1. Assume to the contrary that for some
i we have |Ri| < |Ti|. Let

Ri = {x1, x2, . . . , x|Ri|}, Ti = {y1, y2, . . . , y|Ti|}, Qi = {z1, z2, . . . , z|Qi|}.
Obviously

C = y1x1 . . . y|Ri|x|Ri|y|Ri|+1 . . . y|Ti|z1 . . . z|Qi|

is a Hamiltonian cycle in Gc
i , a contradiction. By the same argument, we have |Ri ∪Qi| > |Ti|.

Therefore we have the following fact.

Fact 4.3. For each 1� i� r − 1, we have

• Qi is an independent set in Gi,
• Ri 	= ∅ and |Ri|� |Ti|,
• |Ri ∪Qi| > |Ti|.

4.2 Vertices avoiding all colours
An argument similar to the proof of Claim 2.3 of Theorem 2.2 in [7] (set t = 2 and follow the
proof) yields the following result.

Claim 4.4. Let P ⊆ [r − 1] and |P| = p. Then there is a set of vertices Q⊆V(G) with |Q|� p+ 1
such that Q avoids P.

First assume that there is a subset S⊆V(G) that avoids a set of colours containing at least
|S| + 1 colours c1, c2, . . . , c|S|+1. Using Claim 4.4, there is a subset S′ ⊆V(G) containing at most
r − 1− |S| vertices that avoids [r − 1] \ {c1, c2, . . . , c|S|+1}. Now S∪ S′ avoids [r − 1], which is
impossible since the number of edges in H containing S∪ S′ is

(
n− |S∪ S′|
r − |S∪ S′|

)
� n− r + 1,
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and for each 1� i� r − 1 the number of edges of colour i containing S∪ S′ is at most
( 4r
r−1

)
(note

that n> 6r
( 4r
r−1

)
). Therefore each subset S⊆V(G) avoids at most |S| colours in [r − 1].

Claim 4.5. By suitably renaming the colours, there are distinct vertices x and {yi}r−1
i=1 such that

|Ur−1(x)|� (n− 1)/2 and for some 0� f � r − 2, {yi}fi=1 ⊆ ⋂r−1
i=f+1 Ti, the set of vertices {yi}fi=1

avoids [f ] and i /∈ L∗(xyi) for any f + 1� i� r − 1.

Proof of Claim 4.5. Let S= {yi}fi=1 ⊆V(G) be the largest subset of vertices with f � r − 1 that
avoids a set containing f colours. Note that it is possible to have S= ∅. Without any loss of gener-
ality, we may assume that S avoids [f ]. The case f = r − 1 is impossible, since the number of edges
in H containing S is

n− r + 1> 6r
(

4r
r − 1

)
− r + 1,

and for each 1� i� r − 1 the number of edges of colour i containing S is at most
( 4r
r−1

)
. Hence

f � r − 2. If yi /∈ Tj for some 1� i� f and f + 1� j� r − 1, then there is a vertex v ∈V(G) such
that j /∈ L∗(vyi) and thus S∪ {v} avoids [f ]∪ {j}, a contradiction to the maximality of S. Hence

S⊆
r−1⋂

i=f+1

Ti. (4.1)

If f = r − 2, then choose x ∈ Rr−1 and yr−1 ∈NGr−1 (x). Since dGr−1 (x)� (n− 1)/2 we have
|Ur−1(x)|� (n− 1)/2, and there is nothing to prove. Now let f � r − 3. If for some x ∈V(G) and
for some f + 1� i, j� r − 1 with i 	= j we have Ui(x)∩Uj(x) 	= ∅, then for any v ∈Ui(x)∩Uj(x)
the set S∪ {x, v} avoids [f ]∪ {i, j}, a contradiction to the maximality of f . Hence the following fact
holds.

Fact 4.6. For any f + 1� i, j� r − 1 with i 	= j, and for each x ∈V(G), we haveUi(x)∩Uj(x)= ∅.

Now we claim that there is a vertex

x ∈
r−1⋃

i=f+1

Ri \
r−1⋃

i=f+1

Ti.

If there is such a vertex x, then the proof of Claim 4.5 will be finished by an easy argument. To see
this, without any loss of generality assume that x ∈ Rr−1. Since x has degree at least (n− 1)/2 in
Gr−1, we have |Ur−1(x)|� (n− 1)/2. On the other hand, for each i= f + 1, . . . , r − 1 we have x ∈
Ri ∪Qi. Hence, for each f + 1� i� r − 1, there is a vertex yi with xyi ∈ E(Gi), and using Fact 4.1
we have i /∈ L∗(xyi). Therefore the vertices x and {yi}fi=1 have the desired properties in Claim 4.5
and we are done. Now, to show that

r−1⋃
i=f+1

Ri \
r−1⋃

i=f+1

Ti 	= ∅,

assume to the contrary that
r−1⋃

i=f+1

Ri ⊆
r−1⋃

i=f+1

Ti. (4.2)

We consider the following cases, and in each case we get a contradiction.
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Case 1. Ri ∩ Rj = ∅ for any f + 1� i, j� r − 1.

By Fact 4.3, for each i� r − 1 we have |Ri|� |Ti|. On the other hand, we have Ri ∩ Rj = ∅ for
any f + 1� i, j� r − 1, and using (4.2),

r−1⋃
i=f+1

Ri ⊆
r−1⋃

i=f+1

Ti.

Therefore we have |Ri| = |Ti| for each f + 1� i� r − 1,
r−1⋃

i=f+1

Ri =
r−1⋃

i=f+1

Ti

and Ti ∩ Tj = ∅ for any f + 1� i, j� r − 1 and i 	= j. Note that by (4.1) we have S⊆ ⋂r−1
i=f+1 Ti,

and therefore f = 0. Using Fact 4.3 for each 1� i� r − 1, we have Ri 	= ∅. On the other hand,
for each 1� i� r − 1 we have |Ri| = |Ti| and the degree of each vertex of Ri in Gi is at least
(n− 1)/2. Hence, for each 1� i� r − 1, Qi 	= ∅. For each 1� i� r − 1, we have dGi(w)� n−
1− |Ti| when w ∈ Ri, and dGi(w)� |Ri| when w ∈Qi. On the other hand |Ri| = |Ti|, and by
Fact 4.2 we have dGi(x)+ dGi(y)� n− 1 for any two adjacent vertices x and y of Gi. Therefore,
for each i, the bipartite subgraph of Gi with colour classes Ri and Qi is complete, and also the
subgraph of Gi induced by Ri is a complete graph. Without any loss of generality, suppose that
for every 1� i� r − 2 we have |Rr−1|� |Ri|. Now, for every 1� i� r − 2, set Ai = Rr−1 ∩ Ti and
Bi = Rr−1 ∩Qi = Rr−1 \Ai (note that Rr−1 ∩ Ri = ∅). Also, with no loss of generality, assume that
|Ai|� |Aj| for i� j� r − 1.

First assume Ar−3 is non-empty. Clearly Rt \ Tr−1 is non-empty for some t ∈ {r − 3, r − 2},
since |Tr−1| = |Rr−1| < |Rr−2 ∪ Rr−3|. In the next paragraph we will show that Bt 	= ∅. Now
choose two vertices u ∈ Bt and v ∈ Rt \ Tr−1. Since uv is an edge of Gt , using Fact 4.1 we have
t /∈ L∗(uv). On the other hand v ∈ Rt \ Tr−1 and Rt ∩ Rr−1 = ∅, so v ∈Qr−1. Therefore uv is an
edge of Gr−1, and again using Fact 4.1 we have r − 1 /∈ L∗(uv) and thus {u, v} avoids {t, r − 1},
which contradicts the fact that f = 0.

To see the fact Bt 	= ∅, first suppose that t = r − 3. If Br−3 = ∅, then Rr−1 =Ar−3 ⊆ Tr−3 and
soRr−1 =Ar−2 ⊆ Tr−2 (note that |Ar−3|� |Ar−1| andAr−3 ∪Ar−2 ⊆ Rr−1). HenceTr−3 ∩ Tr−2 ∩
Rr−1 = Rr−1 	= ∅, a contradiction to the fact that Ti ∩ Tj = ∅ for any 1� i, j� r − 1 and i 	= j. Now
suppose that t = r − 2. If Br−2 = ∅, then Rr−1 =Ar−2 ⊆ Tr−2 and so Ar−3 ⊆ Tr−2 ∩ Tr−3, again a
contradiction to the fact that Ti ∩ Tj = ∅ for any 1� i, j� r − 1 and i 	= j.

Now assume that Ar−3 = ∅. Then A1 = · · · =Ar−3 = ∅, and therefore Rr−1 ⊆ Tr−2, since
r−1⋃

i=f+1

Ri =
r−1⋃

i=f+1

Ti.

If Ri \ Tr−1 is non-empty for some i ∈ {1, . . . , r − 3}, then i, r − 1 /∈ L∗(uv) for all u ∈ Bi and v ∈
Ri \ Tr−1 (note that since Rr−1 ∩ Ri = ∅ and Ai = ∅, we have Rr−1 = Bi 	= ∅) and thus {u, v} avoids
{i, r − 1}, which is impossible. Otherwise

r−3⋃
i=1

Ri ⊆ Tr−1.

On the other hand, |Tr−1| = |Rr−1|� |Ri| for every 1� i� n− 1. Hence r = 4 and R1 = T3. Since
3⋃

i=1
Ri =

3⋃
i=1

Ti and A1 = ∅,
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we have R3 = T2 and R2 = T1, and hence R1 ⊆Q2, R2 ⊆Q3 and R3 ⊆Q1. Now since for each
1� i� 3 the bipartite subgraph of Gi with colour classes Ri and Qi is complete, for any three
vertices vi ∈ Ri, where i= 1, 2, 3, we have v1v3 ∈ E(G1), v1v2 ∈ E(G2) and v2v3 ∈ E(G3), and thus
using Fact 4.1 we have 1 /∈ L∗(v1v3), 2 /∈ L∗(v1v2) and 3 /∈ L∗(v2v3). Therefore {v1, v2, v3} avoids
[3]= {1, 2, 3}, which is again impossible.

Case 2. Ri ∩ Rj 	= ∅ for some f + 1� i, j� r − 1 and i 	= j.

Without any loss of generality, assume that Rr−2 ∩ Rr−1 	= ∅, and let x ∈ Rr−2 ∩ Rr−1. Note that
f � r − 3, and using Fact 4.6 we have Ur−2(x)∩Ur−1(x)= ∅. Therefore

dGr−2 (x)= dGr−1 (x)= (n− 1)/2,
NGr−2 (x)∩NGr−1 (x)= ∅,

V(G)= {x} ∪NGr−2 (x)∪NGr−1 (x).
Hence Tr−2 ∩ Tr−1 = ∅ and thus f = 0; note that by (4.1) we have

S= {yi}fi=1 ⊆
r−1⋂

i=f+1

Ti.

Recall that r� 4. Without loss of generality assume that

|Rr−3 ∩NGr−1 (x)|� |Rr−3 ∩NGr−2 (x)|.
First assume x ∈ Rr−3. Then, for each y ∈NGr−3 (x), the set {x, y} clearly avoids a set containing

r − 3 and one of the colours r − 2 or r − 1, a contradiction to the fact that f = 0. In fact {x, y}
avoids {r − 3, r − 2} if y ∈NGr−2 (x), and {x, y} avoids {r − 3, r − 1} if y ∈NGr−1 (x).

Now assume x /∈ Rr−3. Then since Rr−3 	= ∅, V(G)= {x} ∪NGr−2 (x)∪NGr−1 (x) and |Rr−3 ∩
NGr−1 (x)|� |Rr−3 ∩NGr−2 (x)|, we have Rr−3 ∩NGr−1 (x) 	= ∅. Now consider y ∈ Rr−3 ∩NGr−1 (x).
If there is a vertex z ∈NGr−3 (y)∩NGr−2 (x), then {x, y, z} avoids {r − 3, r − 2, r − 1}, again con-
tradicting f = 0. Therefore NGr−3 (y)⊆NGr−1 (x)∪ {x}. Since y ∈NGr−1 (x), dGr−2 (x)= dGr−1 (x)=
(n− 1)/2 and dGr−3 (y)� (n− 1)/2, we have x ∈NGr−3 (y), and thus {x, y} avoids {r − 3, r − 1},
which is impossible.

We choose distinct vertices x and {yi}r−1
i=1 with the desired properties mentioned in Claim 4.5

and maximum f . For simplicity we will denote UI(x) and UI(x) (for I ⊆ [r − 1]) by UI and UI ,
respectively. Also, for simplicity we denote Ui(x) and Ui(x) (1� i� r − 1) by Ui and Ui, respec-
tively. Using Claim 4.5 we have |Ur−1|� (n− 1)/2, and by Fact 4.6 we have Ui ∩Uj = ∅ for
any f + 1� i, j� r − 1 with i 	= j. Hence |Ur−1|� |Ui| for each 1� i� r − 1, and without loss
of generality we may assume that

|Uf+1|� |Uf+2|� · · ·� |Ur−1|. (4.3)

Also, by Claim 4.5 we have f � r − 2. Let

Y = {y1, y2, . . . , yr−1} \ {yf+1} and Yi = {y1, y2, . . . , yr−1} \ {yf+1, yi}
for every 1� i� r − 1. We will use the following simple fact in our proof. It follows from the fact
that {yi}fi=1 avoids [f ], and for each f + 1� i� r − 1 we have i /∈ L∗(xyi).

Fact 4.7. For every 1� i� r − 1, the set of vertices Yi ∪ {x} avoids the set of colours [r − 1] \
{i, f + 1}.

Also, we need the following fact in our proof later on.
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Fact 4.8. For every 1� i� r − 1 and i 	= f + 1, we haveUi ∩ (Yi ∪ {yf+1})= ∅. Moreover,Uf+1 ∩
Yf+1 = ∅.

The proof of Fact 4.8 is trivial. In fact, if for i 	= f + 1 we have Ui ∩ (Yi ∪ {yf+1}) 	= ∅, then the
set of vertices Yi ∪ {x, yf+1} avoids all colours [r − 1]. But this is impossible, since the number of
edges in H containing Yi ∪ {x, yf+1} is

n− r + 1> 6r
(

4r
r − 1

)
− r + 1,

and for each 1� i� r − 1 the number of edges of colour i containing Yi ∪ {x, yf+1} is at most( 4r
r−1

)
. The proof of the second result in Fact 4.8 is similar.

In the rest of our proof we define a Hamiltonian graph � with V(�)=V(H) in such a way
that every Hamiltonian cycle C of � can be extended to a monochromatic Hamiltonian Berge-
cycle of H. For this, we consider two cases f = r − 2 and f � r − 3, and in each case we first give
the definition of the new graph �. Then, using Dirac’s condition and Lemma 2.3, we show that
� is Hamiltonian, and finally we prove that every Hamiltonian cycle of � can be extended to a
monochromatic Hamiltonian Berge-cycle of colour f + 1 ofH. Clearly these results will complete
our proof.

4.3 Case f = r − 2
In this section we assume f = r − 2. Consider a graph � with vertex set V(�)=V(H) and edge
set E(�)= E1 ∪ E2, where the sets Ei are defined as follows. Also, the sets Fi are defined and will
be used later on.

We define E1 as follows:
E1 = {uv | u, v ∈V(�) \ Y , c(Y ∪ {u, v})= r − 1}. (4.4)

For each uv ∈ E1, set euv = Y ∪ {u, v} and
F1 = {euv | uv ∈ E1}. (4.5)

We define E2 as follows:
E2 = {yiv | 1� i� r − 2, v ∈V(�) \ Y , }. (4.6)

Since Y avoids f = [r − 2], we know that for a fixed u ∈V(�) \ Y , apart from at most
(r − 2)

( 4r
r−1

)
choices of v ∈V(�) \ (Y ∪ {u}), the edges euv = Y ∪ {u, v} of H are of colour r − 1,

so d�(u)� n− r
( 4r
r−1

)
. Also, for each 1� i� r − 2, we have d�(yi)= n− (r − 2). This observa-

tion comes from the definition of the set E2. One can easily see that Dirac’s condition implies that
the graph � is Hamiltonian; see [1].

Now we show that every Hamiltonian cycle in � can be extended to a monochromatic
Hamiltonian Berge-cycle of colour r − 1 in H. Suppose that v1, v2, . . . , vn are the vertices of
a Hamiltonian cycle C in � that appear in this order. Now we define the distinct edges
g1, g2, . . . , gn ∈ E(H) of colour r − 1 one by one (in the same order as their subscripts appear),
such that for each i= 1, 2, . . . , n we have {vi, vi+1} ⊆ gi, and g1, g2, . . . , gn form a Hamiltonian
Berge-cycle with the core sequence v1, v2, . . . , vn. We choose gi = evivi+1 ∈ F1 for vivi+1 ∈ E1.
Now assume vivi+1 ∈ E2. Choose gi = Y ∪ {vi, vi+1, ui} of colour r − 1 with ui ∈V(�) \ (Y ∪
{vi−1, vi, vi+1, vi+2}) and gi 	= gj for every j< i.

Such an edge gi exists since at least n− r
( 4r
r−1

)
edges of colour r − 1 contain Y ∪ {vi, vi+1}, and

{vi, vi+1} lies in at most 2(r − 3)+ 2 edges gj for j< i. Note that for vivi+1 ∈ E2, if {vi, vi+1} ⊆ gj for
some 2� j� i− 2, then vjvj+1 ∈ E2, |Y ∩ {vi, vi+1, vj, vj+1}| = 2 and gj = Y ∪ {vi, vi+1, vj, vj+1}.
On the other hand, since each edge of E2 has exactly one vertex yi, for some 1� i� r − 2 we
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have |E(C)∩ E2| = 2(r − 2) and so {vi, vi+1} ∈ E2 has been used in at most 2(r − 3) edges gj
for 2� j� i− 2. Therefore at most 2(r − 3)+ 2 edges gj for 1� j� i− 1 contain {vi, vi+1} if
vivi+1 ∈ E2.

4.4 Case f � r − 3
In this section we assume f � r − 3. First we prove the following claim.

Claim 4.9. |Uf+1|� r − 2.

Suppose to the contrary that |Uf+1|� r − 1. Now let

M = {xy1y2 . . . yf uf+1uf+2 . . . ur−1 | ui ∈Ui}.
For each f + 1� i� r − 1, by the definition of Ui we have i /∈ L∗(xy) for every y ∈Ui, so there

are at most (r − 2)|Ui| edges inM of colour i. On the other hand, {yi}fi=1 avoids the set of colours
{1, 2, . . . , f }, and thus at most

( 4r
r−1

)
edges inM are of colour i for every 1� i� f . Therefore

|M|� (r − 2)
r−1∑

i=f+1

|Ui| + f
(

4r
r − 1

)
.

The inequalities (4.3), Remark 2.1 and the assumption |Uf+1|� r − 1 imply that

(r − 1)r−f−3(s− (r − f − 3)(r − 1))|Ur−1|

�
r−1∏

i=f+1

|Ui| = |M|

� (r − 2)(s+ |Ur−1|)+ f
(

4r
r − 1

)
,

where

s=
r−2∑

i=f+1

|Ui|.

Therefore p(s)� 0, where

p(x)= ((r − 1)r−f−3(x− (r − f − 3)(r − 1))− (r − 2))|Ur−1| − (r − 2)x− f
(

4r
r − 1

)
.

Evidently p(x) is an increasing function, its derivative being positive for every x because of our
assumption |Uf+1|� r − 1. By Claim 4.5 we have |Ur−1|� (n− 1)/2. On the other hand, s�
(r − f − 2)(r − 1), f � r − 3 and n> 6r

( 4r
r−1

)
. Hence we have

p(s)� p((r − f − 2)(r − 1))

= ((r − 1)r−f−2 − (r − 2))|Ur−1| − (r − f − 2)(r − 2)(r − 1)− f
(

4r
r − 1

)

> 0,

a contradiction. Hence |Uf+1|� r − 2.
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Assume that

Bi =Ui \ ((∪j>i Uj)∪ {yi})
for every 1� i� r − 1 and

Uf+1 = {u1(= yf+1), u2, . . . , ul}.
According to Claim 4.9, we have l� r − 2. Let U be the set of all vertices y /∈ Y ∪ {x, yf+1} for
which the edge Y ∪ {x, y} is of colour f + 1. We have the following claim.

Claim 4.10. |U|� n− r
( 4r
r−1

)
.

To give a proof of Claim 4.10, we know that {yi}fi=1 avoids the set of colours {1, 2, . . . , f }.
Hence, for each 1� i� f , the number of vertices y /∈ Y ∪ {x, yf+1} for which the edge Y ∪ {x, y}
is of colour i is at most

( 4r
r−1

)
. On the other hand, i /∈ L∗(xyi) for every f + 1� i� r − 1, so for

each f + 1� i� r − 1, the number of vertices y /∈ Y ∪ {x, yf+1} for which the edge Y ∪ {x, y} is of
colour i is at most r − 2. Therefore we have |U|� n− r

( 4r
r−1

)
.

Let U be partitioned into A1,A2, . . . ,Ar−1, where |Ar−1| = �n/2� + 1, Af+1 = ∅ and ||Ai| −
|Aj||� 1 for every 1� i, j� r − 2 with i, j 	= f + 1. Based on Claim 4.10, we have

|Ai|� n/(2r)−
(

4r
r − 1

)
− 1

for every 1� i� r − 2. This fact will be used later on.
Now consider a graph � with vertex set V(�)=V(H) and edge set E(�)= ⋃5

i=1 Ei, where the
sets Ei are defined as follows. Also, the sets Fi are defined and will be used later on.

We define E1 as follows:

E1 = {uv | u ∈ Bi, i 	= f + 1, v /∈ Y ∪ {x, u}, c(Yi ∪ {x, u, v})= f + 1}. (4.7)

For each uv ∈ E1, we set euv = Yi ∪ {x, u, v}, where i is the minimum number such that i 	= f + 1,
Bi ∩ {u, v} 	= ∅ and c(Yi ∪ {x, u, v})= f + 1. Now we let

F1 = {euv | uv ∈ E1}. (4.8)

Note that for every 1� i� r − 1 we have

Bi =Ui \ ((∪j>i Uj)∪ {yi}),
and by Fact 4.8 we have Bi ∩ Y = ∅. Therefore, in the subgraph of G= S(H) induced by the edges
E1, the vertices Y are isolated vertices. Now we define the edges crossing the vertices Y .

We define E2 as follows:

E2 = {yiv | v ∈Ai, 1� i� r − 1, i 	= f + 1}. (4.9)

For each yiv ∈ E2 we set eyiv = Y ∪ {x, v}. Also, we let
F2 = {eyiv | yiv ∈ E2}. (4.10)

Now we define new edges to increase the degrees of vertices in Uf+1 with small degrees in
the subgraph of G= S(H) induced by the edges E1 ∪ E2. In fact we define a set of new edges E3
such that the degree of each vertex ui for 1� i� l in the subgraph of G= S(H) with vertex set
V(H) and edge set E1 ∪ E2 ∪ E3 is at least 2r + 1. To define E3, we do the following. Let �1 be the
graph with vertex set V(H) and edge set E1 ∪ E2. For each 1� i� l assume that Ni = Y ∪Uf+1 ∪
N�1 (ui)∪ {x} and set ti = 0 if d�1 (ui)> 2r and ti = 2r + 1− d�1 (ui) otherwise. Now we show that
there are

∑l
i=1 ti distinct edges eij /∈ F1 ∪ F2 (where 1� i� l and 1� j� ti) of colour f + 1 with
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ui ∈ eij such that for each 1� i� l there exist ti distinct vertices vij ∈ eij \Ni. For this, set r11 = 0,
N11 =N1 and E11 = F1 ∪ F2 and repeat the following step for i= 1, 2, . . . , l if ti > 0.
Step i. For each 1� j� ti, since

df+1(ui)>
(

4r
r − 1

)
�

(|Nij| − 1
r − 1

)
+ rij,

there is an edge eij /∈ Eij of colour f + 1 which contains ui and a vertex vij ∈ eij \Nij. Note that
since {yi}fi=1 avoids [f ] and f is maximum subject to this property, we have df+1(ui)>

( 4r
r−1

)
. Now

set ri(j+1) = rij + 1, Ni(j+1) =Nij ∪ {vij} and Ei(j+1) = Eij ∪ {eij} and continue the above procedure.
We apply the above procedure ti times to find the edges eij and the vertices vij for 1� j� ti with
desired properties. Finally, let r(i+1)1 = ri(ti+1),N(i+1)1 =Ni+1 and E(i+1)1 = Ei(ti+1) and go to step
i+ 1.

Clearly El(tl+1) \ E11 contains
∑l

i=1 ti distinct edges eij with desired properties. Now set

A=
l⋃

i=1

ti⋃
j=1

eij, Ei = {uivij | 1� j� ti}, Fi = {eij | 1� j� ti}, E3 =
l⋃

i=1
Ei, F3 =

l⋃
i=1

Fi.

(4.11)
The set of edges E4 is defined in a more or less similar way. Here we define these edges to

increase the degrees of vertices in U{1,2,...,r−1} with small degrees in the subgraph of G= S(H)
induced by the edges E1 ∪ E2 ∪ E3, where

U{1,2,...,r−1} =
r−1⋂
i=1

Ui.

In fact we define a set of new edges E4 such that the degree of each vertex in U{1,2,...,r−1} in the
subgraph of G with vertex set V(H) and edge set

⋃4
i=1 Ei is at least 2r + 1. We will see this result

in Fact 4.16. To define E4, we do the following.
Assume that

U{1,2,...,r−1} = {w1,w2, . . . ,wm} and d�2 (w1)� d�2 (w2)� · · ·� d�2 (wm),

where �2 is the graph with vertex set V(H) and edge set
⋃3

i=1 Ei. For each 1� i� r′ =min{r,m},
set t′i = 0 when d�2 (wi)> 2r. Otherwise set t′i = 2r + 1− d�2 (wi). Also, set

N′
i = Y ∪Uf+1 ∪N�2 (wi)∪ {x}.

An argument similar to that used in the definition of E3 shows that there are
∑r′

i=1 t′i distinct edges
e′ij /∈ F1 ∪ F2 ∪ F3 (where 1� i� r′ and 1� j� t′i) of colour f + 1 with wi ∈ e′ij such that for each
1� i� r′ there exist t′i distinct vertices v′

ij ∈ e′ij \N′
i . Now set

B=
r′⋃
i=1

t′i⋃
j=1

e′ij, E′
i = {wiv′

ij | 1� j� t′i}, F′
i = {e′ij | 1� j� t′i}, E4 =

r′⋃
i=1

E′
i, F4 =

r′⋃
i=1

F′
i .

(4.12)
We define E5 as follows:

E5 = {xv | v ∈V(�) \ (Y ∪Uf+1 ∪A∪ B)}. (4.13)
In the following fact, using the above definitions, we see that the set of edges F1, F1, F1, F1 are

pairwise disjoint.

Fact 4.11. For each 1� i, j� 4 and i 	= j, we have Fi ∩ Fj = ∅.
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First we show that F1 ∩ F2 = ∅. To the contrary assume that f ∈ F1 ∩ F2. Since f ∈ F1 from
the definition of F1 we have f = euv = Yi ∪ {x, u, v}, where u ∈ Bi, i 	= f + 1, v /∈ Y ∪ {x, u} and
c(Yi ∪ {x, u, v})= f + 1. One can easily see that yi /∈ f . On the other hand, f ∈ F2. Hence f =
eyjz = Y ∪ {x, z} for some z ∈Aj, where 1� j� r − 1 and j 	= f + 1. Hence yi ∈ Y ⊆ f , a con-
tradiction. Therefore F1 ∩ F2 = ∅. Now, using the definition of E3, we have F3 = ⋃l

i=1 Fi and
Fi = {eij | 1� j� ti}. On the other hand, eij /∈ F1 ∪ F2 for every 1� i� l and 1� j� ti. Therefore
F3 ∩ (F1 ∪ F2)= ∅. Again, from the definition of E4, we have F4 = ⋃r′

i=1 F′
i and F′

i = {e′ij | 1�
j� t′i}. Moreover, e′ij /∈ F1 ∪ F2 ∪ F3 for every 1� i� r′ and 1� j� t′i . Therefore F4 ∩ (F1 ∪
F2 ∪ F3)= ∅.

Claim 4.12. The graph � is Hamiltonian.

Proof of Claim 4.12. Assume that d1 � d2 � · · ·� dn are the degrees of the vertices of �. Our aim
is to show that d1 > 2r and dn−i � n− i for each 2r − 1� i� n/2. Then Lemma 2.3 will imply
the existence of a Hamiltonian cycle in �. Now we give the following facts about the degrees of
vertices of �.

Fact 4.13. d�(x)� n− 4r3.

To see Fact 4.13, note that using the definitions A and B (in the definitions of E3 and E4) and
Claim 4.9 (which indicates l� r − 2) and the fact r′ � r, we have

|A|� r(t1 + t2 + · · · + tl)� r(2r + 1)l� r(r − 2)(2r + 1)

and

|B|� r(t′1 + t′2 + · · · + t′r′)� r2(2r + 1).

Therefore

d�(x)= n− |Y ∪Uf+1 ∪A∪ B|� n− 4r3.

Fact 4.14. For each 1� i� r − 1 with i 	= f + 1 and each u ∈Ui \ {yi}, we have

d�(u)> n− r
(

4r
r − 1

)
.

Moreover, for every u ∈Uf+1, we have d�(u)> 2r.

To show Fact 4.14, note that Fact 4.7 implies that the set of vertices Yi ∪ {x} avoids the set of
colours [r − 1] \ {i, f + 1}. On the other hand i /∈ L∗(xu) for u ∈Ui \ {yi}, and thus (Yi ∪ {x, u})
avoids all colours [r − 1] \ {f + 1}. Therefore, apart from at most (r − 2)

( 4r
r−1

)
choices of v ∈

V(�) \ (Y ∪ {x, u}), we have uv ∈ E1 and so d�(u)> n− r
( 4r
r−1

)
. Moreover, for every ui ∈Uf+1,

we have d�(ui)� d�1 (ui)+ ti > 2r (see the definition of E3).

Fact 4.15. d�(yr−1)> n/2 and d�(yi)> 2r for each 1� i� r − 1 and i 	= f + 1.

Fact 4.15 follows from the fact that yiv ∈ E(�) for each v ∈Ai and |Ar−1| > n/2 and |Ai| > 2r
for each 1� i� r − 1 and i 	= f + 1.

Fact 4.16. d�(u)> 2r for each u ∈U{1,2,...,(r−1)}.
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To see Fact 4.16 assume that
U12...(r−1) = {w1,w2, . . . ,wm} 	= ∅.

We claim that
min{d�(wi) | 1� i�m} > 2r.

First assume that m� r. According to the definition of E4, for each 1� i�m we have d�(wi)�
d�2 (wi)+ t′i > 2r, where �2 is the graph with vertex set V(�) and edge set

⋃3
i=1 Ei. Now let m�

r + 1, |Ur−1 \ {yr−1}| = k and
d�2 (w1)� d�2 (w2)� · · ·� d�2 (wm).

Again, according to the definition of the edges E4, we have d�(wi)> 2r for 1� i� r and so it
suffices to show that d�(wr+1)� d�2 (wr+1)> 2r. For i= 1, . . . ,m, consider

Ni = {{x, y1, y2, . . . , yr−2, v,wi} \ {yf+1} |v ∈Ur−1 \ {yr−1}}.
For every 1� i�m, suppose that ni is the number of edges of colour f + 1 in Ni. Clearly, for
each 1� i�m, the edges of colour f + 1 in Ni belong to F1 and so d�2 (wi)� ni. Moreover, the
set {x, y1, y2, . . . , yr−2} \ {yf+1} avoids the colours [r − 1] \ {f + 1, r − 1} and r − 1 /∈ L∗(xv) for
each v ∈Ur−1 \ {yr−1}. Therefore, among all mk edges in

⋃m
i=1 Ni, there are at most

( 4r
r−1

)
edges

of colour i for each i 	= f + 1, r − 1 and at most (r − 2)k edges of colour r − 1. Thus
m∑
i=1

ni � (m− r + 2)k− (r − 3)
(

4r
r − 1

)
.

If d�2 (wr+1)� 2r, then
r+1∑
i=1

ni �
r+1∑
i=1

d�2 (wi)� 2r(r + 1).

Therefore
m∑

i=r+2
ni � (m− r + 2)k− (r − 3)

(
4r

r − 1

)
− 2r(r + 1)> (m− r + 1)k,

which is impossible since |⋃m
i=r+2 Ni| = (m− r − 1)k. Thus d�(wr+1)� d�2 (wr+1)> 2r and con-

sequently d�(wi)> 2r for r + 1� i�m. On the other hand, according to the definition of �, we
have d�(wi)� d�2 (wi)+ t′i > 2r for each 1� i� r, and thus min{d�(wi) | 1� i�m} > 2r.

Clearly

V(H)=V(�)= (∪r−1
i=1 Ui)∪ {yi}fi=1 ∪U{1,2,...,(r−1)} ∪ {x}.

Therefore Facts 4.13–4.16 imply that the minimum degree of � is greater than 2r, so d1 > 2r. Now
we are going to show that dn−i � n− i for each 2r − 1� i� n/2. To see this, first we show that
most of the vertices of Ur−1 have degree greater than n− 2r in �. For this, let Di be the set of all
edges of colour i containing the vertices of Yr−1 ∪ {x} for each i 	= f + 1, r − 1, and let

W =
⋃

i	=f+1,r−1

⋃
e∈Di

(e \ (Yr−1 ∪ {x})).

Using Fact 4.7, Yr−1 ∪ {x} avoids each colour i 	= f + 1, r − 1, so |Di|�
( 4r
r−1

)
. On the other

hand, for each i 	= f + 1, r − 1 and each e ∈Di we have |e \ (Yr−1 ∪ {x})| = 2, and thus |W|�
2(r − 3)

( 4r
r−1

)
. For every u ∈Ur−1 \ (W ∪ {yr−1}), r − 1 /∈ L∗(xu), and we have uv ∈ E1, apart from

at most r − 2 choices of v ∈V(�) \ (Y ∪ {x, u}). Moreover, for every u ∈Ur−1 ∩W \ {yr−1}, apart
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from at most (r − 2)
( 4r
r−1

)
choices of v ∈V(�) \ (Y ∪ {x, u}), we have uv ∈ E1 and so d�(u)>

n− r
( 4r
r−1

)
. Hence we have the following fact.

Fact 4.17. d�(u)> n− 2r, where u ∈Ur−1 \ (W ∪ {yr−1}). Moreover, for each u ∈Ur−1 ∩W \
{yr−1}, we have d�(u)> n− r

( 4r
r−1

)
.

By Fact 4.17, for each vertex u ∈Ur−1 \ (W ∪ {yr−1}) we have d�(u)> n− 2r. Moreover, since
|Ur−1|� (n− 1)/2 and |W|� 2(r − 3)

( 4r
r−1

)
, we have

|Ur−1 \ (W ∪ {yr−1})|� n− 3
2

− 2(r − 3)
(

4r
r − 1

)
,

and hence at least ⌈
n− 3
2

⌉
− 2(r − 3)

(
4r

r − 1

)

vertices of � have degree greater than n− 2r. This means that

di > n− 2r for i�
⌊
n+ 5
2

⌋
+ 2(r − 3)

(
4r

r − 1

)
. (4.14)

Fact 4.14 implies that for each 1� i� r − 1 and i 	= f + 1 and for every u ∈Ui \ {yi}, we have
d�(u)> n− r

( 4r
r−1

)
. Now, using Fact 4.13, we have d�(x)� n− 4r3. On the other hand, |Ur−1|�

(n− 1)/2 and n− 4r3 > n− r
( 4r
r−1

)
, and thus at least �(n− 1)/2� vertices of � have degree greater

than n− r
( 4r
r−1

)
. This means that

di > n− r
(

4r
r − 1

)
for i�

⌊
n+ 3
2

⌋
. (4.15)

Now, using Fact 4.15, we have d�(yr−1)> n/2. Therefore we have

di > n/2 for i�
⌊
n+ 1
2

⌋
. (4.16)

Since n> 6r
( 4r
r−1

)
, using (4.14), (4.15) and (4.16) we conclude that dn−i � n− i for each 2r −

1� i� n/2. Moreover, d1 > 2r. Now, Lemma 2.3 implies the existence of a Hamiltonian cycle
in �.

Claim 4.18. There is a monochromatic Hamiltonian Berge-cycle of colour f + 1 in H.

Proof of Claim 4.18. We show that everyHamiltonian cycle in� can be extended to amonochro-
matic Hamiltonian Berge-cycle of colour f + 1 in H. Suppose that v1, v2, . . . , vn = x are the
vertices of a Hamiltonian cycle C in �. Now, for i= 1, 2, . . . , n, we define the edges gi ∈ E(H)
of colour f + 1 one by one (in the same order as their subscripts appear), so that {vi, vi+1} ⊆ gi
and g1, g2, . . . , gn form a Hamiltonian Berge-cycle with the core vertices v1, v2, . . . , vn. First we
repeat the following step for i= 1, 2, . . . , n− 2 to define the edges g1, g2, . . . , gn−2.

Step i. If vivi+1 ∈ Ej for some j ∈ {1, 2}, then set gi = evivi+1 ∈ Fj. Let gi = ekj ∈ F3 if {vi, vi+1} =
{uk, vkj} and ukvkj ∈ E3, where k ∈ {1, 2, . . . , l} and 1� j� tk. Finally, let gi = e′kj ∈ F4 if {vi, vi+1} =
{wk, v′

kj} and wkv′
kj ∈ E4, where k ∈ {1, 2, . . . , r′} and 1� j� t′k. Then go to step i+ 1.
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According to the definitions of F1, F2, F3 and F4, for each 1� i� n− 2 the edge gi ∈ ⋃4
i=1 Fi is

of colour f + 1 and {vi, vi+1} ⊆ gi. Now we claim that gi 	= gj for every i 	= j with 1� i, j� n− 2. It
suffices to prove the following fact.

Fact 4.19. For each 1� i� n− 2 and 1� j< i, we have gi 	= gj.

Proof of Claim 4.19. Assume that gi ∈ Fri and gj ∈ Frj , where ri, rj ∈ {1, 2, 3, 4}. Using Fact 4.11,
Fri ∩ Frj = ∅ if ri 	= rj. Hence gi 	= gj when ri 	= rj. Therefore we may assume that ri = rj. First
assume that j= i− 1. We divide our proof of this case into some subcases.

Subcase 1. First let ri−1 = ri = 1. Then
gi−1 = evi−1vi = Yp ∪ {x, vi−1, vi} and gi = evivi+1 = Yq ∪ {x, vi, vi+1},

where p, q are the minimum numbers such that p, q 	= f + 1,
Bp ∩ {vi−1, vi} 	= ∅, Bq ∩ {vi, vi+1} 	= ∅

and
c(Yp ∪ {x, vi−1, vi})= c(Yq ∪ {x, vi, vi+1})= f + 1.

One can easily see that {vi−1, vi}� gi and thus gi 	= gi−1.

Subcase 2. Now let ri−1 = ri = 2. Then {vi−1, vi} = {yt , v} for some 1� t� r − 1, t 	= f + 1, v ∈
At and gi−1 = evi−1vi = eytv = Y ∪ {x, v}. Since Ap ∩Aq = ∅ for p 	= q and ri = 2, we have vi = yt ,
vi−1, vi+1 ∈At and gi = evivi+1 = eytvi+1 = Y ∪ {x, vi+1}. Clearly vi+1 /∈ gi−1 and thus gi 	= gi−1.

Subcase 3. Now let ri−1 = ri = 3. Then, by the definitions of E3 and F3 (see (4.11)), we have
gi−1 = ek1j1 ∈ F3 and gi = ek2j2 ∈ F3, where {vi−1, vi} = {uk1 , vk1j1} and {vi, vi+1} = {uk2 , vk2j2} for
some k1, k2 ∈ {1, 2, . . . , l}, 1� j1 � tk1 and 1� j2 � tk2 . Now assume to the contrary that gi−1 = gi.
Using the definitions of E3 and F3, we have vk1j1 , vk2j2 /∈Uf+1 and so vi = uk1 = uk2 , k1 = k2,
vi−1 = vk1j1 and vi+1 = vk2j2 . On the other hand vi−1 	= vi+1, and thus j1 	= j2. Hence, from the
definition of F3, we have ek1j1 	= ek1j2 and thus gi−1 	= gi, a contradiction to our assumption.

Subcase 4. Finally, let ri−1 = ri = 4, and then using the definitions of E4 and F4 (see (4.12)) we have
gi−1 = e′k1j1 ∈ F4 and gi = e′k2j2 ∈ F4, where {vi−1, vi} = {wk1 , v′

k1j1} and {vi, vi+1} = {wk2 , v′
k2j2} for

some k1, k2 ∈ {1, 2, . . . , r′}, 1� j1 � t′k1 and 1� j2 � t′k2 . With the same argument we can see that
k1 	= k2 or j1 	= j2. Therefore, from the definition of F4, we have e′k1j1 	= e′k1j2 and thus gi−1 	= gi.

Now assume j� i− 2. In this case, by the definitions of F1, F2, F3 and F4, one can easily see that
{vi, vi+1}� gj or {vj, vj+1}� gi and so again gi 	= gj. This completes the proof of Claim 4.19.

Now we are going to give the definitions of gn−1 and gn with desired properties. First let i=
n− 1. Since {vn−1, x} has been used in at most one of the edges gi, with 1� i� n− 2 (only possibly
in gn−2) and f + 1 ∈ L∗(vn−1x), we can choose an appropriate edge gn−1 of colour f + 1, where
gn−1 	= gi for each 1� i� n− 2. Similarly, for i= n, since {x, v1} has been used in at most two
edges gi, with 1� i� n− 1 (only possibly in g1 and gn−1) and f + 1 ∈ L∗(xv1), then we can choose
an appropriate edge gn of colour f + 1, where gn 	= gi for each 1� i� n− 1. This completes the
proof of Claim 4.18.

This finishes the proof of Theorem 1.2.
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[6] Haxell, P., Łuczak, T., Peng, Y., Rödl, V., Ruciński, A. and Skokan, J. (2009) The Ramsey number for 3-uniform tight
hypergraph cycles. Combin. Probab. Comput. 18 165–203.

[7] Maherani, L. and Omidi, G. R. (2017)Monochromatic Hamiltonian Berge-cycles in colored hypergraphs.Discrete Math.
340 2043–2052.

[8] Omidi, G. R. and Shahsiah, M. (2014) Ramsey numbers of 3-uniform loose paths and loose cycles. J. Combin. Theory
Ser. A 121 64–73.

[9] Ramsey, F. P. (1930) On a problem of formal logic. Proc. London Math. Soc. (2) 30 264–286.

Cite this article: Omidi GR (2021). A proof of a conjecture of Gyárfás, Lehel, Sárközy and Schelp on Berge-cycles.
Combinatorics, Probability and Computing 30, 654–669. https://doi.org/10.1017/S0963548320000243

https://doi.org/10.1017/S0963548320000243 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000243
https://doi.org/10.1017/S0963548320000243

	A proof of a conjecture of Gyárfás, Lehel, Sárközy and Schelp on Berge-cycles†
	Introduction
	Basic definitions and some preliminaries
	Outline of the proof of Theorem 1.2
	The proof of Theorem 1.2
	Useful definitions and facts
	Vertices avoiding all colours
	Case f=r-2
	Case fr-3



