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Decomposition of available potential energy for
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A decomposition of available potential energy is derived for Boussinesq fluid flow in
networks of connected control volumes. The two constituent parts of the decomposition
are positive definite and therefore meaningful representations of available energy. The first
(inner) part accounts for available potential energy that is intrinsic to each control volume,
while the second (outer) part accounts for the context provided by the larger parent volume
to which each smaller control volume belongs. While the intended application casts the
control volumes as connected rooms in a building, the formulation can be applied to
any domain that is partitioned by either physical boundaries or abstract zones and can be
invoked recursively to clarify the hierarchical dependence of available potential energy on
scale and context. By deriving budgets for the decomposition, two ways in which available
potential energy can be redistributed between its inner and outer parts are identified. The
first accounts for an apparent generation of available potential energy due to diapycnal
mixing within a control volume that is constrained by removable boundaries. The second
involves the reversible conversion between inner and outer parts that occurs when mass or
heat is transported between control volumes and accounts for the concomitant change in
context. Analytical expressions are derived for the hierarchy of contributions to available
potential energy in an example involving three connected spaces, before budgets for the
decomposition from a direct numerical simulation are analysed. Finally, the dependence
of mixing efficiency on remote regions that was identified by Davies Wykes et al. (J. Fluid
Mech., vol. 781, 2015, pp. 261–275) is revisited to demonstrate the precise way in which
the proposed decomposition quantifies context.

Key words: turbulent mixing, stratified turbulence

1. Introduction

1.1. Background
Recognition by Margules (1903), Lorenz (1955) and Van Mieghem (1956) that fluids
have at their disposal a limited fraction of their potential energy for conversion into
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kinetic energy led to the development of the concept of available potential energy
(Tailleux 2013a). The concept has since been applied widely in atmospheric and oceanic
communities, not least in focusing attention on the a priori unknown proportion of useful
energy that is extracted from stratified turbulence to produce diapycnal mixing rather than
viscous dissipation, which is often discussed in terms of mixing efficiency (Linden 1979;
Fernando 1991; Peltier & Caulfield 2003; Ivey, Winters & Koseff 2008; Caulfield 2020).

Available potential energy (APE) is a thermodynamic concept because it quantifies
the maximum amount of useful work that can be obtained from a system (Keenan 1951;
Haywood 1974; Tailleux 2013a) by distinguishing between different forms of energy. Like
exergy (see, e.g. Kucharski 1997; Gaggioli 1998), which is based on the observation that
convex thermodynamic potentials are minimised at equilibrium, global APE is positive
definite. The relevant equilibrium (reference) state that is typically used to quantify global
APE is an adiabatically rearranged density field that minimises potential energy. Like
classical thermodynamics, global APE formalism developed by focusing on the energy
associated with volume integrals, leading to bulk frameworks for Boussinesq (Winters
et al. 1995) and non-Boussinesq (Tailleux 2009) fluids.

Candidates for local (pointwise) definitions of APE require careful consideration
because, under volume integration, many distinct local choices map onto the same
global definition of APE. Indeed, consistency can be achieved to within any function
of state whose integral over the volume of interest vanishes (Winters & Barkan
2013). In this regard, Holliday & Mcintyre (1981) and Andrews (1981) derived local
definitions of APE for Boussinesq and non-Boussinesq fluids, respectively, that are
consistent with Lorenz (1955). These original formulations were generalised and clarified
conceptually by Tailleux (2018) for multicomponent compressible stratified fluids and
possess the distinguishing feature of being (locally) positive definite, making them
physically meaningful and useful definitions of available energy (Roullet & Klein 2009).
As described by Shepherd (1993) and Scotti & Passaggia (2019), the said functions of
state are intimately related to the Casimir functions that emerge as invariants for adiabatic
motion described by non-symplectic Poisson manifolds (Littlejohn 1982; Weinstein 1983).

The use of reference states to quantify the effect of density differences is common in the
analysis of buoyancy-driven flows. As described by Smith, Montgomery & Zhu (2005), the
ability to redefine pressure allows one to define a ‘local’ or ‘system’ buoyancy, illuminating
the fact that buoyancy is a derived quantity whose physical meaning depends on the
context induced by the (arbitrary) choice of reference state. In their analysis of internal
waves, Scotti, Beardsley & Butman (2006) noted that reference states in definitions of
local APE density need not correspond to an adiabatic rearrangement of the density
field, while Andrews (1981) and Tailleux (2013b) showed that alternative reference states
produce values of APE that are bounded from below by Lorenz’s original (adiabatically
sorted) reference state (Lorenz 1955). In relation to the analysis of local/isolated density
perturbations, Lamb (2008) also considered the implications of alternative reference states
in defining an APE density that features, with that of Scotti et al. (2006), among the
alternative definitions of local APE density reviewed by Kang & Fringer (2010). More
recently, issues associated with size of the domain that is used to define a reference state
were addressed by Dewar & McWilliams (2019), using ‘Thorpe sorting’ (based on Thorpe
1977) over a vertical column to quantify the efficiency of local ocean mixing events.

In building physics the concept of APE for buoyancy-driven flows has not been applied
extensively, despite the increasingly prominent role played by thermodynamical concepts
such as energy storage and efficiency. Exceptions include estimations of the mechanical
energy required for transition from displacement ventilation to mixing ventilation (Linden
1999; Craske & Hughes 2019) and an analysis of mixing efficiency for filling boxes
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Figure 1. An example of the space Ω in a building as a set of connected control volumes ω1, . . . , ω5
that partition Ω and are therefore subvolumes. The buoyancy within each subvolume can be adiabatically
rearranged to produce reference states b∗(ω1), . . . , b∗(ω5) to minimise (and therefore release) APE within each
subvolume, termed ‘inner’ APE in § 2. The reference states themselves can be rearranged globally, with respect
to the larger parent volume Ω into b∗(Ω) to minimise (and therefore release) APE over the entire domain Ω ,
termed ‘outer’ APE in § 2. The sum of inner and outer APE over all subvolumes ω1, . . . , ω5 corresponds to the
system’s global APE (as defined by Winters et al. 1995).

(Davies Wykes et al. 2019). As illustrated in figure 1, a particular challenge is to reconcile
the fluid dynamics of individual rooms with the behaviour of the entire building, where
the latter is typically modelled as a network of connected zones (Axley 2007). Details
of the flow within each zone are invisible to the network, which only accounts for the
mean flow between zones that is driven by bulk pressure differences. Such treatment
therefore creates a distinction between outer (large-scale) and inner (small-scale) subgrid
processes, whose coupling is crucial because thermal stratification and airflow within a
room affect contaminant transport, thermal comfort and advective heat transfer between
adjacent rooms (see, for e.g. Kuesters & Woods 2012; Bhagat et al. 2020).

A distinguishing feature of buildings are the walls and floors that separate individual
rooms. Punctured by relatively small openings, such as doors and windows, the walls and
floors provide constraints that make a unified understanding of a building’s energetics
challenging. Indeed, as noted by Andrews (2006, p. 481) in the context of momentum
constraints, whilst APE sets an upper bound on the energy that can be released by
reconfiguring the buoyancy field, ‘in the presence of further constraints on the subsequent
motion, the maximum energy available for such conversion may well be less than the
APE’, as explored in the context of topographical barriers in the ocean by Stewart et al.
(2014). On the other hand, analysis of individual rooms is difficult because of their open
nature and coupling with adjacent rooms.

To address these challenges, the aim of this work is to decompose the APE associated
with individual subvolumes (rooms) of a larger volume (a building) into two parts. As
labelled in figure 1, the first (inner) contribution will account for the APE that is intrinsic
to a room while the second (outer) contribution will account for the APE arising from
the context provided by the rest of the building. The decomposition is recursive and relies
on the definition and integral properties of local APE density (Winters & Barkan 2013;
Scotti & Passaggia 2019). With the application of building ventilation in mind, attention
is restricted to Boussinesq fluids with a linear equation of state.

1.2. Context matters
Figure 2 provides simple examples of situations in which context affects the meaning
and interpretation of APE. The first, shown in figure 2(a), demonstrates that the
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Figure 2. Simple examples where context is crucial in understanding the APE of subvolumes. Example
(a) illustrates that the potential energy of a domain whose horizontal sections are not path connected can
possess multiple local minima. In example (b) both sides of the tank initially contain a stable two-layer
density profile. Irreversible diapycnal mixing of ω1, enhanced by stirring, gives ω1 a higher centre of mass
than ω2, which would lead to counter-clockwise circulation between the tanks if openings were added in
the partition. Example (c) is from Davies Wykes, Hughes & Dalziel (2015), who considered mixing of the
(unstably) stratified fluid in region ω1 (thick red line) to produce a uniform buoyancy (thin red line). Here, APE
depends on whether ω1 is considered in isolation or as part of Ω = ω1 ∪ ω2, in spite of the fact that the APE
associated with ω2 is zero because its initial distribution of buoyancy is also its reference state. The reason is
that individual reference states for ω1 and ω2 (thin dashed blue line) possess APE with respect to the global
reference state over Ω (thick dashed grey line).

potential energy of a buoyancy field in a domain whose horizontal sections are not path
connected can possess multiple local minima, as discussed by Stewart et al. (2014) in the
context of ocean topography. In fact, example 2(a) admits infinitely many local minima,
parameterised by the distance h between the buoyancy interface either side of the partition.
A distinction can therefore be drawn between the potential energy that is available within
each horizontally connected subvolume and the larger potential energy that would be
available if the partition were removed. Internal constraints, from boundaries such as walls
or topography, provide forces found in local minima of potential energy that hold the state
away from the unique global minimum. Indeed, with sufficient stirring, relatively buoyant
fluid just above the density interface in ω1 could enter ω2 and therefore tap into a global
reservoir of APE that would not be apparent from the sum of APE that is intrinsic to each
subvolume. In § 2 the APE that is intrinsic to a given subvolume is referred to as ‘inner’
APE and the difference between a local minimum of potential energy and the global state
of minimum potential energy is attributed to ‘outer’ APE, as suggested in figure 1.

The example in figure 2(b) shows that irreversible diapycnal mixing can appear to create
APE when subvolumes are separated by a physical partition. If ω1 and ω2 initially contain
the same two-layer stable stratification then the system resides in a (unique) state of global
minimum potential energy. However, stirring of the fluid in ω1 to enhance mixing will
eventually result in ω1 having a higher centre of mass than ω2, leaving the system’s
potential energy in a local, but not global, minimum. APE can be subsequently released, by
making openings in the partition, to bring the system closer to the state of global minimum
potential energy. In § 4.1 budgets for the decomposition described in § 2 are derived to
quantify the effect that diapycnal mixing has on the inner and outer parts of a system’s
APE.

The final example of a situation in which context matters is from Davies Wykes et al.
(2015), who considered the unstable profile of buoyancy shown in figure 2(c), prior to the
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homogenisation of ω1. Context is relevant in this example because the hypothetical mixing
of fluid in ω1 need not involve fluid from ω2. Yet, the ‘mixing efficiency’ of the process,
defined as the increase in background potential energy divided by the initial APE, depends
on whether the calculation is based on ω1 or Ω = ω1 ∪ ω2. As shown in figure 2(c), the
reason is that the reference state for ω1 does not coincide with the reference state for
Ω . Indeed, the reference state of ω1 (when ω2 is ignored) possesses available potential
energy with respect to Ω . Consequently, Davies Wykes et al. (2015, p. 273) remark that ‘a
mixing efficiency that is independent of the volume of interest can be defined only if that
volume is at least as large as the region affected by an adiabatic rearrangement of the initial
density field to a statically stable state’, which is a stringent condition of reducibility that
complicated systems are unlikely to satisfy. This example is revisited in § 6.1, after APE is
decomposed into inner and outer parts in § 2 to quantify the precise role that context plays
in complicated systems.

1.3. Outline
In § 2 the proposed decomposition is described. Starting with existing local definitions of
APE density in § 2.1, inner and outer contributions to the APE of subvolumes are defined in
§ 2.2. In § 3 an example involving three subvolumes is discussed, for which all parts of the
APE decomposition can be deduced analytically. In § 4 budgets for the APE decomposition
are derived and two mechanisms responsible for conversion between inner and outer APE
are identified. To complement and extend § 3, § 5 considers the time evolution of the
APE budget using data from a two-dimensional direct numerical simulation. In § 6 the
implications of the results are discussed by revisiting figure 2(c) in § 6.1 and the recursive
properties of the decomposition are summarised in § 6.2.

2. Inner and outer APE

Before accounting for context in defining the APE of a subvolume in § 2.2, this section
reviews the motivation behind the local (pointwise) definition of local APE density,
developed originally by Holliday & Mcintyre (1981) for a Boussinesq fluid with a linear
equation of state and shown by Winters & Barkan (2013) to be equivalent to the widely
applied bulk formulation of APE for Boussinesq fluids described by Winters et al. (1995).

2.1. Local APE density
To quantify the portion of a flow’s potential energy that is available to perform ‘useful’
work, it is necessary to define a reference state that minimises potential energy. Such a
construction is analogous to reference states of minimum internal energy or maximum
entropy in thermodynamics. The reference state is found from a volume-preserving and
adiabatic rearrangement of the buoyancy field into a state that is in stable hydrostatic
equilibrium. As discussed in § 1.2, if all horizontal sections of the domain are path
connected (cf. figure 2(a), which shows a domain whose horizontal sections are not
path connected), then the reference state is unique. Under the rearrangement, a parcel
of fluid at location x = (x, y, z) with buoyancy b(x) is mapped to the vertical position
z∗(b(x)) and the rearranged buoyancy field is denoted b∗, which means that b∗(z∗(b)) = b.

The APE A(Ω) associated with a buoyancy field in a domain Ω of volume V accounts
for the potential energy (z∗ − z)b associated with displacing each parcel of fluid from the
(unique) reference equilibrium state of minimum potential energy that was described in
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z

b∗ (z) b b∗

a > 0

(a) (b)

z

b∗ (z)b b∗

z∗ (b)

z∗ (b)

a > 0

Figure 3. Geometric ‘proof’ that (2.2) is positive definite when b∗ is a monotonically increasing function with
b∗(z∗) = b. Panel (a) illustrates a case for which b∗(z) < b (and therefore z < z∗(b)) and (b) illustrates a case
for which b < b∗(z) (and therefore z∗(b) < z).

the preceding paragraph (Winters et al. 1995), and is therefore positive definite,

A(Ω) =
∫
Ω

(z∗ − z)b dV � 0. (2.1)

By definition, the minimum value of zero in (2.1) is produced by the reference field itself,
for which b = b∗ and z∗ = z.

Pointwise, however, (z∗ − z)b is not positive definite because b does not necessarily have
the same sign as (z∗ − z) (Roullet & Klein 2009). But, inclusion of the energy associated
with the rearrangement of the reference state that would accompany the movement of a
single parcel from z∗ to z, leads to

a = (z∗ − z)b −
z∗∫

z

b∗(η) dη

︸ ︷︷ ︸
a∗

, (2.2)

which, as illustrated in figure 3, is positive definite if b∗ is monotonic and b∗(z∗) = b
(Holliday & Mcintyre 1981; Scotti et al. 2006), and is therefore a viable thermodynamic
quantity analogous to exergy (Tailleux 2013a). For a detailed discussion about how (2.2)
emerges from a gauge-fixing condition in terms of Casimir functions (invariants), the
reader is referred to Scotti & Passaggia (2019). Conversely, the local APE (2.2) can be
regarded as the Legendre transformation of a∗ (which is convex because b∗ increases
monotonically) if z∗ is regarded as a free parameter, such that

a = max
z∗

{(z∗ − z)b − a∗} , (2.3)

and the maximising condition that b∗(z∗) = da∗/dz∗ = b emerges naturally as the ‘force’
that is conjugate to the displacement z∗ − z releasing the maximum potential energy.

As noted by Tailleux (2013a), the thermodynamic nature of APE in (2.2) is not obvious
from the integral definition (2.1) because, since the operation leading to z∗ is a volume
preserving and adiabatic rearrangement of fluid in the domain,

∫
Ω

ξ(z∗)∫
ξ(z)

g(η) dη dV = 0, (2.4)
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for any functions g and ξ ; hence, the volume integral of a∗ (for which g corresponds to b∗
and ξ corresponds to the identity function) over Ω vanishes. To understand why, it is useful
to regard z∗ as a permutation of fluid parcels of finite volume, which can be decomposed
into a finite number of cycles (see e.g. MacLane & Birkhoff 1999). Using a suitable change
of variables to account for ξ , the integral of g(η) over each cycle vanishes because it can
be decomposed into an integral over [z, z∗] followed by an integral over [z∗, z], which
necessarily cancel because integrals of g, which depend only on the vertical coordinate,
are path independent. Winters & Barkan (2013) provide a more detailed explanation for
the particular case corresponding to a∗ in (2.2) and Scotti & Passaggia (2019) provide a
more general explanation in terms of the symmetry associated with the system’s Casimir
functions.

To account for (2.4), which plays a fundamental role in the decomposition described in

§ 2.2, an equivalence relation (see, for e.g. MacLane & Birkhoff 1999), denoted
Ω∼=, can be

defined for expressions whose difference vanishes upon integration over a given domain
Ω . For example, application of (2.4) to (2.2) allows us to write

a
Ω∼= (z∗ − z)b, (2.5)

to express the equality of a and (z∗ − z)b to within terms whose integral over Ω is zero.

2.2. The APE of subvolumes
The construction of APE described in § 2.1 involves a reference state computed from the
buoyancy field in Ω . However, if the volume Ω is partitioned into subvolumes ωi ⊂ Ω ,
then each subvolume has its own reference state b∗(ωi) corresponding to the rearrangement
of the buoyancy field within ωi to minimise the potential energy of ωi, as illustrated in
figure 1. Together, the reference states of each subvolume have a potential energy that is
at least as large as the unconstrained reference state associated with the parent volume Ω .
Consequently, the sum of each subvolume’s APE will be less than, or at best equal to,
the maximum energy that can be released through reconfiguration of the buoyancy field
over Ω . In such cases, the physical or notional boundaries that separate the subvolumes
provide ‘forces’ that are conjugate to the additional displacements that would be required
to release the full APE over Ω .

Starting from (2.2), consider the local APE in a subvolume ω ⊂ Ω with respect to the
reference state of the parent volume Ω ,

a(Ω) = [z∗(Ω) − z] b −
z∗(Ω)∫
z

b∗(Ω)|η dη. (2.6)

To be explicit, and to avoid subscripts, the notation z∗(Ω), b∗(Ω) will be used to define
the functions that map a buoyancy b to the vertical position z∗(Ω)|b and a height z to
the corresponding reference buoyancy b∗(Ω)|z, respectively. The notation ‘|·’ (such as |η,
|b and |z above) should be read as ‘evaluated at ·’, but will be omitted for brevity when
arguments to functions are clear from the context.

Following the examples in § 1.2, it is useful to account separately for the APE of fluid
within ω relative to: (i) the parent reference height z∗(Ω) and (ii) the subvolume reference
height z∗(ω). Specifically, it is useful to represent the available energy released during a
two-stage sorting process z �→ z∗(ω) �→ z∗(Ω), in which a parcel of fluid is moved to its
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equilibrium position in ω, before being moved to its final equilibrium position in Ω . To
express the decomposition mathematically, (2.6) can be refactored as

a(Ω) = [z∗(Ω) − z∗(ω)] b︸ ︷︷ ︸
(i)

+ [z∗(ω) − z] b︸ ︷︷ ︸
(ii)

−
z∗(Ω)∫
z

b∗(Ω)|η dη. (2.7)

But (2.7) is unsatisfactory, because terms (i) and (ii) are not individually positive definite
and the integral of b∗ is composite, involving both z �→ z∗(ω) and z∗(ω) �→ z∗(Ω).
However, (2.4) can be used to reformulate (2.7) by adding and subtracting terms that
vanish upon integration over the subvolume ω, enabling the integral of b∗ in (2.7) to be
appropriately distributed between terms (i) and (ii).

Although the reference state b∗(Ω) is not necessarily the same as b∗(ω), (2.4) usefully
implies that the net work associated with rearranging b∗(Ω) over ω is zero, modulo
integration over ω (cf. Scotti et al. 2006; Scotti & Passaggia 2019), such that

z∗(ω)∫
z

b∗(Ω)|η dη
ω∼= 0. (2.8)

The physical meaning of the decomposition (2.7) is therefore made explicit by invoking
(2.8) to repartition the contributions to (i) and (ii),

a(Ω)
ω∼= [z∗(Ω) − z∗(ω)] b −

a∗(Ω|ω)︷ ︸︸ ︷
z∗(Ω)∫

z∗(ω)

b∗(Ω)|η dη

︸ ︷︷ ︸
a(Ω|ω)�0

+ [z∗(ω) − z] b −

a∗(ω)
ω∼=0︷ ︸︸ ︷

z∗(ω)∫
z

b∗(ω)|η dη

︸ ︷︷ ︸
a(ω)�0

. (2.9)

The contribution a(ω) corresponds to the APE inside the subvolume ω without reference
to the context provided by Ω . In contrast, the contribution a(Ω|ω) corresponds to the
additional potential energy of fluid within ω that can be made available by removing the
partitions of Ω . Both contributions are positive definite because they have the same form
as (2.2) and will therefore play a crucial role in accounting for context in § 4.3, with regards
to the transport of APE between subvolumes. Although the right-hand side of (2.9) does
not correspond to the traditional definition of APE density (2.6) in a pointwise sense,
it articulates the two-stage sorting process and is equivalent to (2.6) under integration
over the subvolume ω. The decomposition (2.9) appears to be similar to the mean/eddy
decomposition of APE density for a compressible fluid described by Tailleux (2018, § 4.1)
to account for ‘non-resting’ reference states (cf. Andrews 2006). A notable difference,
however, is that (2.9) was able to make use of (2.8) to remove sign-indefinite contributions,
modulo integration over ω.

Integration of (2.9) provides a decomposition for the APE of ω, given Ω , whose
constituent parts add together to give the integral of the traditional local APE density
defined in (2.6),

A(ω|Ω) =
∫
ω

a(Ω|ω) dV

︸ ︷︷ ︸
A(Ω|ω)�0

+
∫
ω

a(ω) dV

︸ ︷︷ ︸
A(ω)�0

=
∫
ω

a(Ω) dV. (2.10)
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For the reasons stated below (2.9), A(Ω|ω) is referred to as ‘outer’ APE and A(ω) is
referred to as ‘inner’ APE. The total APE A(ω|Ω) associated with ω is the sum of its
inner and outer parts (for A(ω|Ω) read ‘the APE of ω given Ω’ and for A(Ω|ω) read ‘the
APE of Ω given ω’). The outer APE A(Ω|ω) corresponds to the positive energy required
to create the subvolume reference state b∗(ω) by rearranging the global/parent reference
state b∗(Ω), while the inner APE A(ω) corresponds to the positive energy required to
create the buoyancy field b by rearranging the subvolume reference state b∗(ω) over
ω. For mathematical readers, the choice of terminology comes from noting that, for a
Boussinesq fluid, an adiabatic rearrangement of the buoyancy field is a permutation and
that permutations leaving the contents of each subvolume unchanged can be regarded as
subgroups (cf. the closed-loop cycles in § 4 of Winters & Barkan 2013). In this way the
outer APE involves permutations that belong to the quotient of Ω-permutations with the
(inner) ω-permutations, which is reminiscent of the relationship between inner and outer
automorphisms from group theory (cf. MacLane & Birkhoff 1999).

The (global) APE A(Ω) of the parent domain Ω is obtained by summing (2.10) over all
subvolumes ω belonging to a partition P(Ω) of Ω ,

A(Ω) =
∑

ω∈P(Ω)

A(Ω|ω) +
∑

ω∈P(Ω)

A(ω). (2.11)

In figure 1, for example, P(Ω) = {ω1, ω2, ω3, ω4, ω5}. If A(Ω) = 0, then A(Ω|ω) = 0
and A(ω) = 0 for all ω ⊂ Ω because A(Ω|ω) and A(ω) are positive definite. Application
of (2.4) shows that the combined contribution from the integrals of a∗(Ω|ω) within
A(Ω|ω) over each subvolume vanishes in (2.11) because, in summation, the integrals of
a∗(Ω|ω) over ω correspond to an integral over Ω ,

∑
ω∈P(Ω)

A(Ω|ω) =
∑

ω∈P(Ω)

∫
ω

[z∗(Ω) − z∗(ω)] b dV −
∑

ω∈P(Ω)

∫
ω

a∗(Ω|ω)︷ ︸︸ ︷
z∗(Ω)∫

z∗(ω)

b∗(Ω)|η dη dV

︸ ︷︷ ︸
0

,

(2.12)

which shows that (2.11) is equivalent to the global APE (2.1). As explained in § 6.2,
(2.11) can be applied recursively to subsets of Ω down to infinitesimal subvolumes (i.e.
individual points x), for which the inner APE A(x) necessarily vanishes and the outer APE
A(ω|x) corresponds to the local APE density (2.6) with respect to ω.

2.3. Background potential energy
The background potential energy (BPE) associated with a buoyancy field in Ω is the
potential energy of the reference state b∗(Ω). The BPE is therefore equal to the difference
between the system’s potential energy and the global APE A(Ω). As described in § 2.2
for APE, the BPE of a particular subvolume ω ⊂ Ω can be split between outer and inner
contributions that do and do not make reference to the context provided by Ω , respectively.
Formally, the definitions follow from subtracting the right-hand side of (2.9) from the
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potential energy −bz and integrating over the subvolume ω,

B(ω|Ω) = −A(ω|Ω) −
∫
ω

bz dV = −A(Ω|ω)︸ ︷︷ ︸
B(Ω|ω)

−
∫
ω

bz∗(ω) dV

︸ ︷︷ ︸
B(ω)

. (2.13)

The inner BPE B(ω) accounts for the subvolume reference state b∗(ω), while the outer
BPE B(Ω|ω) accounts for the eventual position of the reference state b∗(ω) within the
parent volume Ω . The outer components of BPE are necessarily equal in magnitude and
opposite in sign to the outer components of APE A(Ω|ω), which means that B(Ω|ω) � 0;
hence

B(Ω) =
∑

ω∈P(Ω)

B(Ω|ω) +
∑

ω∈P(Ω)

B(ω) �
∑

ω∈P(Ω)

B(ω). (2.14)

Equation (2.14) implies that the sum of the inner BPE in each subvolume is bounded
from below by the global BPE B(Ω), which corresponds to the fact that b∗(Ω) is the
global minimiser of potential energy. More generally, the inner BPE is subadditive under
the union of disjoint subsets of Ω ,

B(ω1 ∪ ω2) � B(ω1) + B(ω2), (2.15)

which implies, and is implied by, the inner APE being superadditive under the union of
disjoint subsets of Ω ,

A(ω1 ∪ ω2) � A(ω1) + A(ω2), (2.16)

as observed in possible formulations of APE in the presence of topographical barriers
by Stewart et al. (2014). Any gap between the left- and right-hand sides of (2.16) results
from the potential energy that can be made available by joining ω1 and ω2 and is a direct
consequence of the positivity of the outer APE A(Ω|ω1) and A(Ω|ω2).

In providing a lower bound on the APE A(ω1 ∪ ω2), (2.16) resembles the result obtained
by Andrews (1981), and explained by Tailleux (2013b), that the APE defined with respect
to alternative reference states is bounded from below by the APE corresponding to
the unique (Lorenz) reference state obtained from an adiabatic transformation of the
buoyancy field. As seen in (2.15), the reason for the resemblance is that constraints on
the reference state increase BPE and therefore reduce available potential energy. The
difference, however, is that in (2.15) and (2.16) the constraint comes from the isolation of
subvolumes, rather than the adiabatic constraint embodied by the Lorenz reference state.

3. Analytical example

In this section the ideas outlined in § 2.2 are clarified using the simple example illustrated
in figure 4. The domain Ω consists of three ‘rooms’: ω1, ω2 and ω3. High- and low-level
openings connect ω1 to ω2 and ω2 to ω3. If the upper and lower halves of ω1 contain
fluid of buoyancy b1 � 1 and 1, respectively, and the volumes ω2 and ω3 contain fluid of
uniform buoyancy 0 and b2, respectively, how do the geometrical parameters λ, μ and ν

affect the constitution of the system’s initial APE?
In this example, the set of subsets (or power set) of Ω is T(Ω) ={∅, ω1, ω2, ω3, ω1 ∪

ω2, ω2 ∪ ω3,ω3 ∪ ω1, Ω}. As depicted in the Hasse diagram of figure 5, T(Ω) is a partially
ordered set under the operation of inclusion (e.g. ω1 ⊂ ω1 ∪ ω2). Each node of the Hasse
diagram represents the inner APE of that volume and an arrow from a set X ∈ T to a set
Y ∈ T, where X ⊂ Y , represents the outer available potential energy A(Y|X) of X with
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Decomposition of APE for networks of connected volumes

1

λL μL νL

1/2

b1

b20

1/2

λ/2

μ

ν

λ/2

ω3ω2ω1

Figure 4. The arrangement of connected volumes Ω = ω1 ∪ ω2 ∪ ω3, whose power set T(Ω) =
{∅, ω1, ω2, ω3, ω1 ∪ ω2, ω2 ∪ ω3, ω3 ∪ ω1, Ω}, is displayed in the Hasse diagram in figure 5. The length of
Ω is L (i.e. λ+ μ + ν = 1) and the bar on the right corresponds to the global reference state b∗(Ω) when
0 � b1 � b2 � 1.

Ω

ω1 ω2 ω3

A (ω3)A (ω1)

A (Ω|ω1∪ω2)

A (ω1∪ω2|ω1) A (ω2∪ω3|ω3)

ω3∪ω1ω1∪ω2 ω2∪ω3

A (Ω|ω2∪ω3)

Figure 5. The Hasse diagram of the partially ordered power set T(Ω) corresponding to all combinations of
the rooms in figure 4. An arrow from a set X ∈ T to a set Y ∈ T, where X ⊂ Y , represents the outer APE
A(Y|X) that characterises the context provided by Y for X. Each node of the diagram represents the inner APE
associated with a given set (i.e. subvolume), which can be decomposed into various different components by
following the arrows and nodes downwards. The bottom of the diagram represents infinitesimal points as empty
sets, which have zero inner APE, as discussed further in § 6.2.

respect to Y . The bottom of the diagram represents all (empty) infinitesimal points x,
whose inner APE is necessarily zero. The nodes and arrows of the Hasse diagram therefore
represent all possible APEs that one might wish to define and provides a graphical
interpretation of the various subvolume APEs that can be combined according to (2.11).
For example, the global APE A(Ω) can be decomposed into inner and outer components
for each subvolume in the partition P(Ω) = {ω1 ∪ ω2, ω3},

A(Ω) = A(Ω|ω1 ∪ ω2) + A(ω1 ∪ ω2)︸ ︷︷ ︸
A(ω1∪ω2|Ω)

+ A(Ω|ω3) + A(ω3)︸ ︷︷ ︸
A(ω3|Ω)

. (3.1)

All components of the APE associated with figures 4 and 5 can be calculated analytically
and are enumerated explicitly in the Appendix for cases in which 0 � b1 � b2 � 1. As
indicated in table 1 (Appendix), some of the contributions can be deduced from others by
applying the relationships established in § 2.2 recursively.

Figure 6 displays the value of several APE components with respect to the subvolume
width parameters λ, μ and ν. For generality, and to avoid having to make assumptions
about the relative size of 0, b1, b2 and 1, the data plotted in figure 6 were
generated numerically. The algorithm employs a one-dimensional discretisation of the
reference states over the ‘finest’ partition {ω1, ω2, ω3} of Ω . In this way the outer APE
associated with joining subvolumes was calculated recursively by sorting concatenated
reference states and verified against the analytical expressions listed in the Appendix.
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Ω
Ω|ω1   ω2
ω1   ω2

Ω|ω1
Ω|ω2
ω1

ω2   ω3
ω1   ω2|ω1
ω2   ω3|ω2

0 0.1 0.2 0.3 0.4 0.5 0.6
λ

0

0.05

0.10

0.15

0.20

A/L

(a)

0.1 0.2 0.3 0.4 0.5 0.6
ν

0

0.05

0.10

0.15

0.20

A/L

(b)
b2 > 1 b2 ≤ 1 b2 > 1

Figure 6. Components of the APE associated with figure 4. Panel (a) displays the effect of changing the
relative width λ of volume ω1 without changing μ = 1/3 such that ν = 2/3 − λ with b1 = 1/2 and b2 =
3/4. Panel (b) displays the effect of changing the relative width ν and buoyancy b2 of subvolume ω3 without
changing the APE A(ω2 ∪ ω3) = 1/16 and λ = 1/3 with b1 = 1/2. The vertical line in the centre of panel (a)
is placed at λ = 1/3 for comparison with § 5.

In figure 6(a) the relative width λ of volume ω1 is regarded as variable and μ = 1/3
is fixed, with ν = 2/3 − λ, b1 = 1/2 and b2 = 3/4. When λ = 0, ω1 does not contribute
APE, and figure 6(a) shows that the total APE in the system is equal to A(ω2 ∪ ω3). As λ
increases, the system’s global APE A(Ω) increases. The increase is primarily because the
growth of the inner APE A(ω1), and the outer APE A(Ω|ω1), associated with ω1 exceeds
the reduction in APE associated with ω2 ∪ ω3. The fact that the outer APE A(Ω|ω1)
accounts for a significant fraction of the APE associated with ω1 illustrates that the context
provided by ω2 and ω3 is important. As illustrated on the right-hand side of figure 4, the
sorting process over Ω splits ω1 because b1 � b2 � 1, releasing APE that is not included
in A(ω1).

In figure 6(b) the width ν and buoyancy b2 of volume ω3 are regarded as variable,
with λ = 1/3, b1 = 1/2 and the APE A(ω2 ∪ ω3) = 1/16 held constant. As seen at the
edges of the shaded regions (where 1 < b2), when ν = 1/6 or ν = 1/2, b2 = 1 and the
global reference state changes discontinuously. When ν = 1/2 the global APE A(Ω) is
minimised. As ν increases from 0, the global APE A(Ω) is dominated by the reduction
in the size of ω1 ∪ ω2, because the outer contribution A(Ω|ω1 ∪ ω2) is insignificant
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Decomposition of APE for networks of connected volumes

when b1 � b2 � 1. When 1 < b2, however, the outer contribution A(Ω|ω1 ∪ ω2) becomes
significant. To see why, assume that μ ≈ 0 and note that when b1 � b2 � 1 the centre of
mass of ω3 does not change when it is sorted with respect to ω1 ∪ ω2, but when 1 < b2
available energy can be released through placement of ω3 at the top of Ω . In the example
shown in figure 6(b) the global APE A(Ω) increases without bound as ν → 2/3 because
b2 → ∞ in order to maintain the constraint A(ω2 ∪ ω3) = 1/16.

4. Inner and outer APE budgets

The non-dimensionalised equations of motion for Boussinesq fluid flow are

∂u
∂t

+ u · ∇u = −∇p + b k + 1
Re

∇2u, (4.1)

∇ · u = 0, (4.2)

∂b
∂t

+ u · ∇b = 1
Pe

∇2b, (4.3)

where u is the velocity, p is the kinematic pressure, k is the unit vector in the vertical (z)
direction and Re and Pe are Reynolds and Péclet numbers, respectively.

4.1. Budgets for inner and outer APE
Using (4.1)–(4.3) and the relation (2.4), the budget for the inner APE A(ω) is obtained by
applying d/dt and ∇2 to the local APE,

a(ω) = [z∗(ω) − z] b −
z∗(ω)∫
z

b∗(ω)|η dη, (4.4)

defined relative to the subvolume ω, and integrating over ω (see e.g. Scotti & White 2014),

dA(ω)

dt
= −Y(ω) −

T(ω)=0︷ ︸︸ ︷∫
ω

b∗(ω)∫
b

∂z∗(ω)

∂t

∣∣∣∣
β

dβ dV +

C(ω)︷ ︸︸ ︷∫
ω

w [b∗(ω) − b] dV

− 1
Pe

∫
ω

|∇b|2 ∂z∗(ω)

∂b
− ∂b∗(ω)

∂z
dV︸ ︷︷ ︸

D(ω)

− 2
Pe

∫
ω

[
∂b∗(ω)

∂z
− ∂b

∂z

]
dV

︸ ︷︷ ︸
2L(ω)

, (4.5)

where

Y(ω) =
∫
∂ω

(
u − ∇

Pe

)
a(ω) · n dS, (4.6)

accounts for ‘transport’ across the subvolume boundary ∂ω (relative to which the unit
normal n points outwards from the surface element dS) and will be discussed in § 4.3. As
shown by Scotti & Passaggia (2019, § 2), the integral contribution in (4.5) from temporal
changes in the background state, T(ω), vanishes (to see why, replace ξ with b∗ and g
with ∂tz∗ in (2.4), which expresses the fact that ω-integrated functionals of the reference
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state are not affected by the adiabatic sorting z �→ z∗(ω)). Equation (4.5) is equivalent
to the global budgets discussed in Winters et al. (1995), who considered closed domains
(such that u = 0 on ∂ω) and factored the linear terms in Y(ω), D(ω) and 2L(ω) slightly
differently.

Following the definition in (2.10) of local APE relative to Ω , replacement of ω with Ω

in (4.5) (except in specifying the domain of integration ω) yields an equivalent expression
for the budget of the total (outer plus inner) APE A(ω|Ω) = A(Ω|ω) + A(ω). The budget
of the outer APE A(Ω|ω) therefore corresponds to the difference between the budgets of
the total APE and the inner APE,

dA(Ω|ω)

dt
= −

∑
Y(Ω|ω) −

T(Ω|ω)︷ ︸︸ ︷∫
ω

b∗(Ω)∫
b∗(ω)

∂z∗(Ω)

∂t

∣∣∣∣
β

dβ dV +

C(Ω|ω)︷ ︸︸ ︷∫
ω

w[b∗(Ω) − b∗(ω)] dV

− 1
Pe

∫
ω

|∇b|2
[
∂z∗(Ω)

∂b
− ∂z∗(ω)

∂b

]
−

[
∂b∗(Ω)

∂z
− ∂b∗(ω)

∂z

]
dV

︸ ︷︷ ︸
D(Ω|ω)

− 2
Pe

∫
ω

[
∂b∗(Ω)

∂z
− ∂b∗(ω)

∂z

]
dV

︸ ︷︷ ︸
2L(Ω|ω)

, (4.7)

where

Y(Ω|ω) =
∫
∂ω

(
u − ∇

Pe

)
a(Ω|ω) · n dS. (4.8)

Equation (4.7), unlike (4.5), contains a contribution from temporal changes in the
reference state T(Ω|ω) that does not vanish upon integration over ω because it makes
reference to the context provided by Ω .

4.2. Conversion between inner and outer APE due to mixing
The total dissipation D(ω|Ω) of APE within subvolume ω ⊂ Ω is

D(ω|Ω) = D(Ω|ω) + D(ω) = 1
Pe

∫
ω

|∇b|2 ∂z∗(Ω)

∂b
− ∂b∗(Ω)

∂z
dV, (4.9)

which is equivalent to the integral of Gp in Scotti & White (2014). At the global
minimum in potential energy, the total dissipation D(ω|Ω), along with its outer and inner
components D(Ω|ω) and D(ω), respectively, vanishes for each subvolume ω because,
when A(Ω) = 0, ∂zb = ∂zb∗(Ω) everywhere. However, the same cannot be said about
a local minimum in potential energy (cf. figure 2a), for which ∂zb = ∂zb∗(ω) /= ∂zb∗(Ω)

in general.
With the exception of somewhat pathological cases, constructed by squeezing part

of a reference state b∗ horizontally to obtain a local buoyancy field b that satisfies
|∇b| = ∂zb < ∂zb∗, the inner dissipation D(ω) and the total dissipation D(ω|Ω) are
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A (Ω|σ) A (Ω|ω)

A (σ) A (ω)

B (Ω)

J (Ω|σ,Ω|ω)

D (Ω|ω)D (Ω|σ)

D (σ|Ω)

X (ω,σ)

J (σ,ω)

D (ω|Ω)

X (σ,ω)

Figure 7. Diagram illustrating two ways in which inner APE can be converted into outer APE. The first,
D(Ω|ω), is discussed in § 4.2 and accounts for diapycnal mixing that increases the outer APE at the expense
of inner APE in example 2(b). The second, X(σ, ω), accounts for the change in context that occurs when fluxes
J(Ω|σ, Ω|ω) and J(σ, ω) transport heat or mass from σ into ω. The conversion X(ω, σ ) is dashed because if
all pointwise fluxes from σ to ω are positive then X(ω, σ ) = 0, as described in the paragraph below (4.12).
An example of X can be found in the large-scale circulation driven by outer APE that is discussed in § 5 (see
figure 8), whose transport of buoyancy creates (or removes) inner APE from individual subvolumes.

typically positive. In contrast, the sign of the outer component of the APE ‘dissipation’,

D(Ω|ω) = 1
Pe

∫
ω

|∇b|2
[
∂z∗(Ω)

∂b
− ∂z∗(ω)

∂b

]
−

[
∂b∗(Ω)

∂z
− ∂b∗(ω)

∂z

]
dV, (4.10)

depends on the reference state of both ω and Ω . Because |∇b|2 � 0, stirring will generally
make the first term in the integrand of (4.10) dominant, such that the sign of ∂bz∗(Ω) −
∂bz∗(ω) determines the sign of D(Ω|ω). In figure 2(b), for example, stirring that leads
to mixing of the fluid in the left subvolume ω1 would raise the background potential
energy associated with the reference state z∗(ω1) such that ∂bz∗(Ω) − ∂bz∗(ω1) < 0 and
D(Ω|ω) < 0. Stirring (followed by mixing) would therefore result in the conversion of
inner APE A(ω1) to outer APE A(Ω|ω1). The physical explanation relates to the constraint
provided by the solid partition, which enables part of the ‘irreversible’ work D(ω|Ω) to
be stored as outer (context dependent) APE A(Ω|ω1) that can be subsequently released by
connecting ω1 and ω2.

In summary, the context that Ω provides to a subvolume ω is crucial in determining
the effect that irreversible mixing within ω has on the subvolume’s outer APE. This is
noteworthy because, as will be seen in § 5, outer APE is primarily responsible for driving
flow between subvolumes separated by physical partitions. It is therefore useful to regard
D(Ω|ω) as a conversion between inner and outer APE, as shown schematically on the
left-hand side of figure 7. In the following section another mechanism for conversion
between inner and outer APE is described.

4.3. Conversion between inner and outer APE due to transport
The terms Y(ω) and Y(Ω|ω) defined in (4.6) and (4.8), respectively, need to be considered
carefully because, since they do not involve the APE of adjacent subvolumes, they are not
proper transport terms. Instead, it desirable to define transport terms that account for APE
transported into ω from an adjacent subvolume σ .

On the boundary between ω and σ the inner and outer APE densities a(ω), a(σ ), a(Ω|ω)

and a(Ω|σ) that feature in (4.6) and (4.8) are not the same, because ω and σ provide
different local contexts. However, the local potential energy −zb and the local APE density
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a(Ω) (i.e. with respect to the parent volume Ω) in (2.9) have a single value anywhere in
Ω , which makes it possible to isolate those parts of Y(ω) and Y(Ω|ω) that correspond to
transport.

The definition of local APE density a(ω) in (2.9) in terms of a(σ ) at a point on the
boundary ∂ω between ω and σ , noting that the potential energy −zb is uniquely defined
on ∂ω, is

a(ω) = a(σ ) + [z∗(ω) − z∗(σ )] b + a∗(σ ) − a∗(ω)︸ ︷︷ ︸
Δ(σ,ω)

, (4.11)

which enables Y(ω) to be expressed as the sum of a flux J and a conversion term X,

Y(ω) =
∫
∂ω

(
u − ∇

Pe

)
a(θ) · n dS

︸ ︷︷ ︸∑
σ∈P(Ω)

−J(σ, ω)

+
∫
∂ω

(
u − ∇

Pe

)
Δ(θ, ω) · n dS

︸ ︷︷ ︸∑
σ∈P(Ω)

X(σ, ω)

, (4.12)

where θ , which depends on u and position on the boundary ∂ω, is the subvolume from
which u points outwards (for definiteness, this description focuses on cases for which Pe �
1 and therefore ignores the direction associated with −∇a). Transport J(σ, ω) corresponds
to the flux of inner APE density from any subvolume σ ∈ P(Ω) into ω ∈ P(Ω), and is
skew–symmetric such that J(σ, ω) = −J(ω, σ ). Therefore, over parts of the boundary
∂ω where θ /=ω in (4.12), J(σ, ω) > 0 is a flux into ω, while in cases where θ = ω,
J(σ, ω) = −J(ω, σ ) < 0 is a flux out of ω (under the assumption that Pe � 1). If ω is not
connected to σ then J(σ, ω) = 0 because the subvolume σ will not feature in the integral
of fluxes over ∂ω. Alongside J, X accounts for the change in context that occurs when
APE is transported into ω from σ . Unlike J, X is not skew–symmetric because fluxes into
ω from σ (i.e. θ = σ ) contribute to X(σ, ω) but do not contribute to X(ω, σ ).

Since the local APE density,

a(Ω) = a(Ω|ω) + a(ω) = a(Ω|σ) + a(σ ), (4.13)

is uniquely defined at boundaries, the conversion terms X(σ, ω) in (4.12) appear with
opposite sign in the expression for Y(Ω|ω),

Y(Ω|ω) = Y(ω|Ω) − Y(ω) =
∫
∂ω

(
u − ∇

Pe

)
a(Ω|θ) · n dS

︸ ︷︷ ︸∑
σ∈P(Ω)

−J(Ω|σ, Ω|ω)

−
∑

σ∈P(Ω)

X(σ, ω). (4.14)

When fluid (or thermal energy) is transported into a subvolume, the conversion term
X repartitions the inner and outer APE to account for the new context. For example,
the transport of fluid from a subvolume σ with uniform buoyancy, and therefore zero
inner APE (A(σ ) = 0), can produce inner APE (A(ω) > 0) in an adjacent subvolume
of different buoyancy, at the expense of a reduction in the outer APE A(σ ∪ ω|ω). The
decomposition therefore quantifies the effect that transport across the boundary of an open
system (i.e. a subvolume) has on its relationship with the surrounding environment. The
role of X is illustrated schematically alongside the effects of mixing that were discussed
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in § 4.2 in figure 7. The resulting budgets from (4.5) and (4.7) are

dA(ω)

dt
= C(ω) +

−D(ω)︷ ︸︸ ︷
D(Ω|ω) − D(ω|Ω) −2L(ω) +

∑
σ∈P(Ω)

[J(σ, ω) − X(σ, ω)] ,

(4.15)

dA(Ω|ω)

dt
= C(Ω|ω) − D(Ω|ω) − 2L(Ω|ω) − T(Ω|ω) +

∑
σ∈P(Ω)

[J(Ω|σ, Ω|ω) + X(σ, ω)] .

(4.16)

5. Numerical example

In this section the APE decomposition (2.10) is applied to the Navier–Stokes equations
(4.1)–(4.3), which are approximated on a two-dimensional domain described by
coordinates (x, z). The use of a two-dimensional domain is computationally convenient
in providing a relatively simple example that illustrates the ideas introduced in §§ 2 and 4
transparently and without loss of generality. For simplicity, the buoyancy field was sorted
directly to obtain reference states, rather than by adopting the more efficient approach
described by Tseng & Ferziger (2001) using probability density functions.

The configuration is based on figure 4 with L = 3, γ = μ = ν = 1/3, b1 = 1/2 and
b2 = 3/4. The length and time scales used to non-dimensionalise (4.1)–(4.3) are the height
of the domain and the maximum initial buoyancy, as shown in figure 4. The Reynolds and
Péclet numbers are Re = 20 000 and Pe = 20 000, respectively.

The code used to solve (4.1)–(4.3) is a two-dimensional second-order version of the
fourth-order finite volume code described in Craske & van Reeuwijk (2015). To represent
the non-dimensionalised domain of size 3 × 1 (see figure 4) a uniform grid of 2304 ×
768 cells is used. The vertical walls separating the subvolumes ω1, ω2 and ω3 are two
cells thick and implemented with an immersed boundary method. Neumann boundary
conditions n · ∇b = 0 on buoyancy, where n is the outward wall-normal direction, are
imposed at all solid boundaries and, in conjunction with the central differencing used on
the domain’s interior, implemented such that buoyancy is conserved to machine precision.
No-slip conditions u = 0 are imposed on the velocity field at all solid boundaries. Time
integration is performed using a second-order Adams–Bashforth scheme with an adaptive
step size. Running the simulation for 20 non-dimensional time units takes approximately
2 hours on one core of an Intel Xeon E5-2690 v4 2.60GHz CPU.

5.1. Buoyancy field evolution
Figure 8 displays the buoyancy field at different times during the simulation. The positive
buoyancy of fluid in ω1 and ω3, relative to ω2, leads to counter-rotating circulation around
each partition (clockwise over ω1 ∪ ω2 and counter-clockwise over ω2 ∪ ω3). The initial
configuration of buoyancy within ω1, which is unstable, is not the same as it is in ω3,
destroying the symmetry implied by the average buoyancy of each subvolume (equal to
3/4 in ω1 and ω3). Regions of mixing are indicated by blue (b ≈ 0.25) and yellow (b ≈
0.75). By t = 10 the structure of the initial large-scale circulations and transport between
subvolumes is less pronounced and has been replaced with vigorous mixing within each
subvolume.
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Figure 8. The instantaneous buoyancy field from the numerical simulation described in § 5 and figure 4 with
geometrical parameters L = 3 and γ = μ = ν = 1/3, and initial conditions b1 = 1/2 and b2 = 3/4. The
colour map is from ‘3 Wave Colormaps’ at ‘https://sciviscolor.org’ and was selected to highlight regions of
mixing around b = 0.25 and b = 0.75 in blue and yellow, respectively (see, e.g. Samsel et al. 2019).

Figure 9 displays histograms corresponding to the probability density functions for
buoyancy in ω1, ω2 and ω3, in which V∗(ωi)(b) is the volume of ωi below z∗(ωi)(b).
At t = 0, the distribution of buoyancy consists of spikes at b = 1/2 and b = 1 for ω1,
b = 0 for ω2 and b = 3/4 for ω3. Panels corresponding to later times illustrate that the
distribution of buoyancy within each subvolume gets wider as the system evolves because
diapycnal mixing creates intermediate values of buoyancy that were not present in the
initial distributions. For example, panels ( f –l) show that an increasing proportion of fluid
in ω3 has buoyancy b ≈ 3/8 = 0.375 due to transport of fluid with b ≈ 0 from ω2 into ω1.
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Figure 9. Probability density functions for the buoyancy field shown in each panel of figure 8 in each
subvolume. Note that the histograms corresponding to ω1, ω2 and ω3 represent probability densities because
the subvolumes, unlike their sum Ω , have unit volume. Also note that the scale used on the vertical axes is
different in each row of the figure.

The particular evolution of the subvolume buoyancy distributions therefore depends on the
system’s topology.

The probability densities shown in figure 9 are crucial in modulating the local and global
dissipation of APE that results from diapycnal mixing. In (4.5) the dissipation D(ω) of
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Figure 10. The temporal evolution of outer APE A(Ω|ω), inner APE A(ω) and their sum A(ω|Ω) for
subvolumes ω1, ω2 and ω3. The shaded region corresponds to A(Ω)/3 and therefore represents the
volume-averaged global APE to which contributions within each subvolume can be compared.

inner APE accounts for the distribution of buoyancy within ω (i.e. ∂bz∗(ω)) in product
with the dissipation of buoyancy variance |∇b|2/Pe. In (4.7), however, the dissipation
D(Ω|ω) of outer APE necessarily accounts for the context provided by Ω via the global
reference distribution ∂bz∗(Ω).

5.2. APE evolution
Figure 10 displays the temporal evolution of the APE decomposition in each subvolume.
For reference, the global APE A(Ω) = A(ω1 ∪ ω2 ∪ ω3) divided by three is shaded.
Dashed lines, which correspond to the total APE A(ω|Ω) for each subvolume and therefore
sum to A(Ω), indicate whether the total APE of a given subvolume is above or below
the average for Ω . As can be deduced analytically (see the tabulated expressions in the
Appendix), at t = 0, A(ω1) = 1/8, A(ω2) = 0, A(ω3) = 0, A(Ω|ω1) = 1/24, A(Ω|ω2) =
7/48 and A(Ω|ω3) = 3/48; hence (at t = 0),

A(Ω) =
∑

A(Ω|ωi) +
∑

A(ωi) = 1
8

+ 1
24

+ 7
48

+ 3
48

= 3
8
. (5.1)

In ω1 the initial inner APE A(ω1) = 1/8 is significantly larger than the initial outer
APE A(Ω|ω1) = 1/24, and both contributions diminish as the system evolves. In contrast,
the inner APE A(ω2) and A(ω3), which are initially zero, increase due to the transport of
buoyancy between volumes, and the conversion between outer and inner APE (described
by X in § 4.3), which will be discussed further in § 5.3. In this regard, the outer APE decays
more rapidly than the inner APE because the outer APE drives the large-scale circulation
between subvolumes that is ultimately responsible for generating inner APE in ω2 and ω3.
After approximately 5 time units the sum of inner APE

∑
A(ωi) dominates the sum of

outer APE
∑

A(Ω|ωi), which marks the onset of significant stirring followed by mixing
within each subvolume, as can be seen qualitatively in figure 8(d–l).

The largest contribution to the outer APE comes from A(Ω|ω2), due to the context
provided by ω1 and ω3. Indeed, at t = 0, A(Ω|ω2) is comparable to the total APE
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Figure 11. Terms in the budget of inner APE (4.15) for each subvolume (for the definitions of individual terms
see (4.5) and (4.12)). The light grey shaded region corresponds to the temporal derivative of inner APE and the
dark shaded region corresponds to the residual numerical error that is left when the terms in (4.15) are added
together. The vertical line corresponds to the upper limit of the time domain used in figure 12.

A(Ω|ω1) + A(ω1) of ω1, in spite of the fact that b ≡ 0 in ω2. At around t = 10, the total
APE in ω2, which becomes dominated by the inner APE A(ω2), is larger than the inner
APE in ω1.

5.3. Subvolume APE budgets
Figure 11 displays each term of the inner APE budget (4.15) with respect to time. Due to the
flow’s high Reynolds and Péclet number, diffusion down the inner reference states L(ω)

is relatively small. For the same reason, the diffusive contribution to the transport terms J
and X is excluded, which makes their calculation significantly simpler and their physical
meaning more transparent. The residual numerical error shown in figure 11 is relatively
small, which implies that (4.15) has been derived and implemented correctly. The error is
not identically zero because pointwise contributions to the APE dissipation D(ω), which
involves the product of three gradients, from the small number of computational cells that
are adjacent to the corners of the solid boundaries between subvolumes are difficult to
calculate accurately (see, e.g. figure 13 for a picture of the local APE dissipation).

In each subvolume the dissipation of inner APE D(ω) reaches a maximum after
approximately 8 units of time. During the first 4 units of time the transport J(ω2, ω1) < 0
(which is the only term contributing to

∑
J) corresponds to the inner APE that is lost

from ω1 as relatively dense (unstable) parcels of fluid are transported out of the volume at
high level and replaced with relative dense (stable) parcels of fluid at low level. This effect
provides an example of how outer APE can drive flows that reduce inner APE within a
subvolume. The loss of inner APE in ω1 due to J(ω2, ω1) < 0 corresponds exactly to the
gain in inner APE in ω2 due to J(ω1, ω2) > 0, which justifies regarding J, defined in (4.12),
as transport. However, the parcels of fluid with initial buoyancy b1, which were negatively
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Figure 12. Terms in the budget of outer APE (4.16) for each subvolume (for the definitions of individual terms
see (4.7), (4.12) and (4.14)). The light grey shaded region corresponds to the temporal derivative of outer APE
and the dark shaded region corresponds to the residual numerical error that is left when the terms in (4.16) are
added together. Note that D corresponds to the outer dissipation D(Ω|ω) = D(ω|Ω) − D(ω) in (4.16) and that
X corresponds to

∑
X(σ, ω) in (4.16), and therefore appears in this figure with an opposite sign to the −X that

appears in figure 11.

buoyant in ω1, become stable at the top of ω2. This change in context is quantified by
−X(ω1, ω2) in (4.12), which corresponds to a conversion from the inner APE A(ω2) into
the outer APE A(Ω|ω2), and therefore appears as a sink in figure 11(b).

The most significant remaining term in figure 11 is the buoyancy work C, defined relative
to the reference state of each subvolume, which represents the well-known reversible
conversion between APE and kinetic energy. Its relatively large negative contribution in ω1
at t ≈ 6 corresponds to the instability within ω1 arising from the unstable initial buoyancy
state. In contrast, C(ω2) is typically positive, due to circulation within ω2 that transports
relatively buoyant fluid entering ω2 at high level downwards and lifts relatively dense fluid
upwards (see, e.g. figure 8e).

Figure 12 displays the temporal evolution of terms in the outer APE budget (4.16).
The dominant term in all subvolumes is the (outer) conversion C(Ω|ω). In contrast to
C(ω), which accounts for ω without context, C(Ω|ω) accounts for work over the reference
buoyancy field and can only be non-zero when there is a mean vertical motion in a
subvolume (because neither b∗(Ω) nor b∗(ω) in (4.7) depend on x), resulting from high-
and low-level openings in this particular problem. Consequently, figure 12 shows that
outer APE is lost in each subvolume, because C(Ω|ω) is negative, to drive the large-scale
circulation between subvolumes.

A further noteworthy feature of figure 12(b) is the positive contribution from X(ω1, ω2)
(cf. −X(ω1, ω2) in figure 11b), which corresponds to the (reversible) conversion between
inner and outer APE due to transport between subvolumes, as discussed above in relation
to figure 11; the advection of parcels of fluid that are unstable with respect to ω1, but
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Figure 13. The local (pointwise) contribution to the (inner) APE dissipation D(ω) in each subvolume ω is
displayed in (a) and the (outer) APE dissipation D(Ω|ω) = D(ω|Ω) − D(ω) is displayed in (b) (note the factor
10 difference in the scales used for the colormaps). The local (pointwise) contributions to D(ω) and D(Ω|ω)

can be found in (4.5) and (4.7), respectively. The (outer) APE dissipation D(Ω|ω) represents a conversion
between inner and outer APE (see figure 7 for reference). All variables are plotted at t = 9.8, after the initial
condition shown in figure 4 (cf. figure 8g). The colour map for (a) is part of the ‘Outlier-Focused Colormaps’
found at ‘https://sciviscolor.org’, which provides the ‘Colormoves’ interface that was used to construct the
colour map in (b) (see, e.g. Samsel et al. 2019).

stable with respect to ω2, effectively converts inner APE A(ω1) into outer APE A(Ω|ω2)
via transport J(ω1, ω2), in accordance with figure 7.

5.4. Local APE dissipation
Figure 13(a) displays the local inner APE dissipation, whose integral over each subvolume
is D(ω), as defined in (4.5). As can be seen from the colour scale used in figure 13(a),
APE dissipation is dominated by large contributions from thin filaments, where both |∇b|
and ∂z∗/∂b are large.

As discussed in § 4.2, although the inner and total APE dissipation (D(ω) and D(ω|Ω),
respectively) are typically positive, the sign of the ‘dissipation’ associated with the
outer APE, D(Ω|ω) = D(ω|Ω) − D(ω), depends on context. Indeed, figure 13(b), which
displays local contributions to the outer APE dissipation D(Ω|ω), highlights positive and
negative contributions that correspond to a loss or gain of outer APE, respectively, due to
local mixing. In this particular problem, for which figure 12 indicates that the integral
D(Ω|ω) is small for all ω, the positive and negative contributions appear to occur in
approximately equal proportion within each subvolume.
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6. Discussion

In § 6.1, the example shown in figure 2(c) of § 1.2 is revisited from the perspective of
the decomposition developed in §§ 2 and 4, and in § 6.2 the recursive properties of the
decomposition are discussed.

6.1. Context matters (revisited)
As discussed in Davies Wykes et al. (2015), the underlying difficulty associated with
the example shown in figure 2(c) is that the reference state computed from the contents
of ω1 is not the same as the reference state computed from the contents of Ω . The
decomposition described in § 2 quantifies the role of context by identifying outer A(Ω|ω1)
and inner A(ω1) contributions to the total APE of ω1 relative to the reference state of the
global/parent volume Ω .

Before being mixed, the fluid in ω1 has a BPE equal to B(ω1) = −1/12, while the fluid
in ω2 has BPE B(ω2) = −5/24. A separate calculation, based on the reference state of Ω ,
shows that B(Ω) = −1/3 < −7/24 = B(ω1) + B(ω2), which is in accordance with the
subadditive property of subvolume BPE (2.15), and indicates that (prior to mixing in ω1)
part of the BPE in ω1 can be released by ‘connecting’ ω1 with ω2. When subtracted from
the potential energy of ω1 and Ω , these BPE values imply that the inner APE A(ω1) = 1/8
and A(Ω) = 1/6 > A(ω1), which, since A(ω2) = 0, illustrates that the buoyancy field of
Ω has APE that, rather than being wholly intrinsic to ω1, depends on the context provided
by Ω . This extrinsic contribution to the global APE A(Ω) was defined as the outer APE
A(Ω|ω1) in § 2. Indeed, noting the symmetry of 2(c) about z = 0, and integrating (2.6) to
find the total APE of ω1, with knowledge of Ω ,

A(ω1|Ω) = 2

0∫
−1/2

[
(z + 1)

(
z + 1

2

)
︸ ︷︷ ︸

[z(Ω)−z]b

−
2z+1∫
z

η

2
dη

︸ ︷︷ ︸
a∗(Ω)

]
dz = 7

48
, (6.1)

which contributes to the decomposition of A(Ω) in the following way:

A(Ω) =
A(ω1|Ω)=7/48︷ ︸︸ ︷

A(Ω|ω1)︸ ︷︷ ︸
1/48

+ A(ω1)︸ ︷︷ ︸
1/8

+
A(ω2|Ω)=1/48︷ ︸︸ ︷

A(Ω|ω2)︸ ︷︷ ︸
1/48

+ A(ω2)︸ ︷︷ ︸
0

= 1
6
. (6.2)

After mixing, which homogenises the buoyancy in ω1 (see the thin red line in figure 2c),
B(ω1) = 0, B(ω2) = −5/24 (unchanged) and, therefore, B(Ω) = −5/24, which enables
calculation of the following mixing efficiency over Ω:

B(Ω)

A(Ω)
=

1/48︷ ︸︸ ︷
B(Ω|ω1) +

1/12︷ ︸︸ ︷
B(ω1)+

1/48︷ ︸︸ ︷
B(Ω|ω2)+

0︷ ︸︸ ︷
B(ω2)

A(Ω|ω1)︸ ︷︷ ︸
1/48

+ A(ω1)︸ ︷︷ ︸
1/8

+ A(Ω|ω2)︸ ︷︷ ︸
1/48

+ A(ω2)︸ ︷︷ ︸
0

= 3
4
. (6.3)

In the absence of the additional context provided by ω2, (6.3) reduces to 2/3, which is
in agreement with Davies Wykes et al. (2015). The context provided by Ω affects the
production of BPE and initial APE, and therefore affects the numerator and denominator
of (6.3), which illustrates that the composite nature of mixing efficiency makes it a difficult
quantity to decompose, and therefore fully understand, in systems made of interconnected
parts.
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Figure 14. A conceptual illustration of the partitioning of a system’s APE using the decomposition developed
in § 2 and expressed in the recursive relation (2.11). The contribution of subvolume ω1 to the global APE A(Ω)

comprises inner APE A(ω1) and outer APE A(Ω|ω1), which sum to give the total APE A(ω1|Ω) of ω1. As
shown on the left-hand side, a given subvolume ω1 can itself be partitioned into ω11, . . . , ω16, which allows
the decomposition to be applied recursively, as explained in § 6.2.

A(Ω)

m
A(ωm) A(Ω|ωm)

n
A(ωmn

) A(ωm|ωmn
)

0

Figure 15. The recursive application of (2.11) to compute the global APE A(Ω) as a nested sum of outer
APE contributions from exponentially smaller volumes (second column). As the volumes tend to zero, the
contribution from inner APE tends to zero (first column).

6.2. Recursive properties of the decomposition
The decomposition in (2.11) expresses the inner APE of Ω as a sum of the outer and inner
APE associated with each of its constituent subvolumes. If a subvolume ωm is partitioned
into further subvolumes, then (2.11) can be applied recursively in evaluating the inner APE
A(ωm), as illustrated in figure 14.

Although subvolumes can be recursively decomposed, the inner APE associated with
the smallest subvolumes tends to zero. In that case the inner APE associated with the
root or largest parent volume Ω is obtained by summing the outer APE contributions
in the second column of figure 15. For example, the individual computational cells in
the simulations reported in § 5 have zero inner APE because they consist of a single
buoyancy. In the absence of any ‘subgrid’ APE in direct numerical simulation, for which
A(ω) might otherwise account, the outer APE of each computational cell relative to a
parent volume therefore corresponds to its local APE density (with respect to the parent
volume’s reference state) multiplied by its volume. The recursive application of (2.11) is
therefore captured by figure 15, which could contain an arbitrary number of intermediate
rows.

The decomposition described in § 2 was designed for environments with clearly defined
subvolumes created by physical boundaries, such as the walls and floors of buildings.
However, the arguments above suggest that it might be useful in analysing the role and
interaction of APE at different scales in heterogeneous environments more generally.
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7. Conclusions

Inner and outer contributions to the APE of a subvolume ω ⊂ Ω of a Boussinesq fluid
flow have been defined, where the inner contribution accounts for the APE within ω,
regardless of the parent volume Ω , and the outer contribution accounts for the APE arising
from the context provided by Ω . The inner and outer components of APE are positive
definite and follow naturally from previous definitions of local (pointwise) APE density.
The decomposition has a clear physical interpretation, describing the potential energy that
can be released within ω followed by the potential energy that can be released when the
(physical or abstract) constraints that separate ω from Ω are removed.

The decomposition is useful for analysing the energetics behind systems of connected
control volumes, such as rooms within buildings. There, the constraints provided by
walls and floors influence the fluid mechanics and suggest convenient models comprised
of networks of interconnected ‘zones’. Such zonal models are efficient, used widely in
industry and have an appealing simplicity, but they do not account for the ‘subgrid-scale’
physics of mixing within individual rooms. In particular, since air in rooms is thermally
stratified, the parameterisation of mixing is important because of its influence on thermal
comfort and in determining inter-zonal (or large-scale) circulation and transport. For
similar reasons, the decomposition will hopefully find use in the analysis and modelling of
subgrid-scale processes in the atmosphere or ocean (see, e.g. Smith 1973). More generally,
the approach might provide new avenues to explore in seeking physically meaningful
decompositions of local APE density into mean and eddy components (see, e.g. Scotti
& White 2014; Tailleux 2018).

The analysis of the budgets associated with inner and outer APE in § 5.3 identified two
ways in which inner APE can be converted to outer APE. The first, described in § 4.2,
relates to irreversible mixing and to the example shown in figure 2(b). When constraints
are provided by solid boundaries, diapycnal mixing in a subvolume ω can yield outer
APE by raising the centre of mass of a subvolume relative to adjacent subvolumes. The
second, described in § 4.3, relates to advective and diffusive transport between adjacent
subvolumes. Individually, inner APE density and outer APE density are not conserved
under transport between subvolumes, because they depend on the context provided by a
particular subvolume and its parent, respectively. However, their sum corresponds to the
total APE density, which does not account for local context and is therefore continuous
across subvolumes. Consequently, transport of mass or heat between subvolumes results
in a reversible conversion between inner and outer APE that accounts for the change of
context without changing the total APE density.

It might be tempting to regard the inner APE for each subvolume as unavailable in
the sense that it does not appear to be directly responsible for driving large-scale flow
between subvolumes. However, the possibility of conversion between inner and outer APE
identified in § 4.3, and described in the previous paragraph, makes the situation more
subtle. In a given case one should expect the eventual roles played by inner and outer APE
in driving circulation between sub volumes to depend crucially on the various competing
time scales involved.

The coupling between inner and outer APE with the kinetic energy budget is an area that
would benefit from further research. In this regard, the kinetic energy could be decomposed
into inner (subgrid-scale) and outer (large-scale) components. For example, the conversion
term C(Ω|ω) in the outer APE budget (4.7) is likely to appear with an opposite sign in
any budget that focuses on the kinetic energy associated with the mean motion within
and between subvolumes. In contrast, C(ω) in the inner APE budget (4.5) accounts for
conversion between APE and kinetic energy within a subvolume that is notionally assumed
to be closed.
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0 � b1 � b2 � 1 b1 = 1, b2 = 0

A(Ω)
L
8

(λ(1 − λ) + λ(λ+ 4μ − 1)b1 + 4μνb2) +
∑

n

A(ωn)
L
2
λ(1 − λ)

A(Ω |ω1 ∪ ω2) A(Ω) − A(Ω|ω3) − A(ω3) − A(ω1 ∪ ω2)
L
2
λ2ν2

1 − ν

A(Ω |ω2 ∪ ω3) A(Ω) − A(Ω|ω1) − A(ω1) − A(ω2 ∪ ω3)
L
2
λ2(1 − λ)

* A(Ω |ω3 ∪ ω1) A(Ω) − A(Ω|ω2) − A(ω2) − A(ω3 ∪ ω1)
L
2
λ2μ2

1 − μ

A(ω1 ∪ ω2)
L
8
λμ

1 − ν
(1 + 3b1) + A(ω1)

L
2
λμ

1 − ν

A(ω2 ∪ ω3)
L
2

μν

1 − λb2 0

* A(ω3 ∪ ω1)
L
8

(
3λ− λ2

1 − μ

)
(1 − b1)

L
2

νλ

1 − μ

A(ω1 ∪ ω2 |ω1) A(ω1 ∪ ω2) − A(ω1 ∪ ω2|ω2) −
∑
n /= 3

A(ωn)
L
2
λμ2

(1 − ν)2

A(ω1 ∪ ω2 |ω2)
L
8
λ2μ

(1 − ν)2 (1 + 3b1)
L
2
λ2μ

(1 − ν)2

A(ω2 ∪ ω3 |ω3) A(ω2 ∪ ω3) − A(ω2 ∪ ω3|ω2) −
∑
n /= 1

A(ωn) 0

A(ω2 ∪ ω3 |ω2)
L
2

μν2

(1 − λ)2 b2 0

* A(ω3 ∪ ω1 |ω1) A(ω3 ∪ ω1) − A(ω3 ∪ ω1|ω3) −
∑
n /= 2

A(ωn)
L
2

ν2λ

(1 − μ)2

* A(ω3 ∪ ω1 |ω3)
L
8

νλ2

(1 − μ)2 (1 − b1)
L
2

νλ2

(1 − μ)2

A(Ω |ω1) A(Ω) − A(Ω|ω3) − A(Ω|ω2) −
∑

n

A(ωn)
L
2
λ(1 − λ)2

A(Ω |ω2)
L
8

μ(λ2 + λ(3λ+ 4ν)b1 + 4ν(1 − μ)b2)
L
2
λ2μ

A(Ω |ω3)
L
8

ν(λ2 − λ(λ+ 4μ)b1 + 4μ(1 − ν)b2)
L
2
λ2ν

A(ω1)
L
4
λ(1 − b1) 0

A(ω2) 0 0

A(ω3) 0 0

Table 1. Inner and outer contributions to APE based on the initial conditions depicted in figure 4 and presented
in figure 6. The entries marked ‘*’ correspond to volumes that are not spatially adjacent (see figure 5) but are
included here for completeness and to aid calculation.
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Appendix. Formulae for analytical example

Table 1 provides analytical expressions for the APE decomposition presented in figure 6
based on the initial conditions depicted in figure 4. The table focuses on cases in which
0 � b1 � b2 � 1 and b1 = 1, b2 = 0. Different configurations of buoyancy, which would
change the global reference state shown on the right-hand side of figure 4, would produce
different expressions, demarcated by the gradient discontinuities in figure 6(b).
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