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Manipulation of small-scale particles across streamlines is the elementary task of
microfluidic devices. Many such devices operate at very low Reynolds numbers and
deflect particles using arrays of obstacles, but a systematic quantification of relevant
hydrodynamic effects has been lacking. Here, we explore an alternative approach,
rigorously modelling the displacement of force-free spherical particles in vortical Stokes
flows under hydrodynamic particle–wall interaction. Certain Moffatt-like eddy geometries
with broken symmetry allow for systematic deflection of particles across streamlines,
leading to particle accumulation at either Faxen field fixed points or limit cycles. Moreover,
particles can be forced onto trajectories approaching channel walls exponentially closely,
making possible quantitative predictions of particle capture (sticking) by short-range
forces. This rich, particle-size-dependent behaviour suggests the versatile use of inertia-
less flow in devices with a long particle residence time for concentration, sorting or
filtering.
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1. Introduction
Controlled manipulation of small particles in suspension is crucial in fundamental research
and applications such as biomedical and biochemical processing (Ateya et al. 2008;
Nilsson et al. 2009), disease diagnostics and therapeutics (Gossett et al. 2010; Puri &
Ganguly 2014), drug discovery and delivery systems (Dittrich & Manz 2006; Nguyen
et al. 2013), self-cleaning and antifouling technologies (Callow & Callow 2011; Kirschner
& Brennan 2012). The essence of particle manipulation is to drive the particles across
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streamlines, making them follow specific pathlines (trajectories) distinct from the fluid
elements based on their properties.

Microfluidic particle manipulation aims at transportation, separation, trapping and
enrichment (Sajeesh & Sen 2014; Lu et al. 2017) and can be achieved through various
approaches. Many techniques exploit certain particles’ response to external forces, e.g.
electrical (Xuan 2019), optical (Lenshof & Laurell 2010) and magnetic (Van Reenen
et al. 2014) techniques. However, not all particles of interest will be susceptible to these,
which is why there is a continued interest in manipulation based solely on hydrodynamic
forces (Karimi et al. 2013). Most notably, techniques that use particle inertia have gained
prominence (Di Carlo et al. 2007; Di Carlo 2009; Agarwal et al. 2018) and quantitative
theories have been developed beyond classical equations of motion (Maxey & Riley 1983)
to rigorously describe the effect of inertial forces in both the background flow and the
disturbance flow around the particle (Agarwal et al. 2021; Agarwal 2021). Recent work
by Agarwal et al. (2024) also integrates the important case of acoustofluidic particle
manipulation (Bruus et al. 2011; Laurell et al. 2007; Friend & Yeo 2011) as a particular
limit of inertial particle manipulation. Despite the description of such forces in simple
flow fields that is now known analytically, many practical cases still lack a fundamental
quantitative theory on how devices based on hydrodynamic effects work.

This also applies to viscous Stokes flow. Even in the absence of inertia, particles
interact hydrodynamically with other particles or large-scale interfaces (walls or fluid–
fluid boundaries), with effective interactions that are notoriously long-ranged (Happel &
Brenner 1965; Brady & Bossis 1988; Pozrikidis 1992; Kim & Karrila 2011, 2013). Early
theoretical efforts by Brady & Bossis (1988) and Claeys & Brady (1989, 1993) show in
general terms that a particle moving in a Stokes flow should never experience surface-
to-surface contact with a boundary (interfaces cannot touch in finite time). However, in
practical situations where Stokes flow around obstacles is used to manipulate particles,
such as deterministic lateral displacement (DLD) (Huang et al. 2004; McGrath et al.
2014; Zhang et al. 2020), most modelling descriptions assume contact with obstacles and
eschew any proper hydrodynamic modelling. Very recent, more careful studies of the
interaction between non-spherical particles and obstacles in Stokes flow (Li et al. 2024)
describe trajectories without contact while still observing a net displacement effect on the
transported particle. However, that work uses an ad hoc interaction force (Dance et al.
2004) rather than the full hydrodynamic interaction between the particle and the interface.

In all cases, a single encounter of a particle with an obstacle has a very small net effect
on particle position (Li et al. 2024; Das et al. 2024), which is why practical (DLD) set-
ups use forests of pillar obstacles. Therefore, the present work focuses on vortical flows
that enable repeated particle–interface encounters for sizable cumulative effects. In § 2,
we present modelling equations for particle displacement by hydrodynamic interactions
in Stokes flow. In § 3, we quantify the results in analytically known internal Stokes flows,
suggesting novel design strategies for precisely manipulating particles in Stokes flow, from
accumulation to capture. Section 4 provides discussion and conclusions.

2. Hydrodynamic model of particle–wall interaction in Stokes flow
In most microfluidic set-ups, at least a subset of particles placed into the flow will
be located or transported near boundaries, which could be solid (no-slip) or fluid–
fluid interfaces (e.g. immiscible liquids, droplets, bubbles). Generally, the proximity of
a boundary will lead to specific displacements depending on Reynolds number, density
contrast and other parameters. In steady inertial microfluidics the presence of boundaries
and the resulting flow gradients lead to slow inertial migration even at considerable
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Figure 1. Schematic of a particle at (x p, yp) near a flat wall submerged in an arbitrary background flow u.

distances to the boundaries (Segre & Silberberg 1962; Di Carlo 2009), while in oscillatory
inertial microfluidics (such as set-ups using acoustically driven microbubbles) boundary
effects become important in very close proximity and can be approximately treated by
lubrication theory (Thameem et al. 2017; Agarwal et al. 2018). In flow with negligible
inertia, one would expect boundary effects to be longer-range and potentially more
prominent, but the question of whether a practically usable net displacement after an
encounter of a particle with a wall or an obstacle is feasible has not been fundamentally
answered (figure 1).

Different quantities can be targeted in modelling of particles in Stokes flow, particularly
(i) the forces on a particle moving at a given speed, (ii) the forces on a particle held fixed
in a certain location or (iii) the motion of a force-free particle. The latter is our focus
here, as it describes the trajectory of a density-matched particle not subject to external
forces. Progress in describing all three cases has built on a body of literature based on
early pioneering work (Brenner 1961; Goldman et al. 1967b,a).

Generally, studies of force-free particles result in predictions for the deviation of the
particle velocity from the background fluid velocity in which it is embedded, i.e. the
non-passive part of the particle motion. This velocity correction can be decomposed
into effects in the direction parallel to the boundary and in the perpendicular direction.
A comprehensive analysis of the equation of motion of a force-free particle with wall-
normal velocity corrections is given by Rallabandi et al. (2017). Other work has described
wall-parallel velocity corrections far from and near the wall (Ekiel-Jeżewska & Wajnryb
2006; Pasol et al. 2011). Here, we derive an original formalism for the displacement of
spherical particles in Stokes flows, expanding on existing work to arrive at an equation
of motion applicable for all particle–wall distances. We demonstrate several modes of
systematic (net) particle displacement across streamlines due to wall interaction effects,
a phenomenon not previously acknowledged widely. While particles can never cross
streamlines in unidirectional Stokes flow (Bretherton 1962), streamline crossing should
generally be expected in the presence of wall-normal flow components. A simple example
is a particle very close to a wall transported in a channel flow undergoing contraction –
the particle cannot stay on its initial streamline without penetrating the wall.

2.1. Moffatt eddies
The ideal test case to quantify boundary effects in a Stokes flow is a flow that is (i)
analytically known and for which (ii) the walls are isolated and flat. We take inspiration
from the classic work of Moffatt (1964): when two rigid flat boundaries form a wedge, a
distant stirring of the fluid will induce a flow consisting of a sequence of vortices shown
in the upper panel of figure 2(a). Moffatt (1964) also describes the special case of zero
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Figure 2. (a) Schematic of Stokes flow in a wedge between rigid boundaries (top) and between parallel plates
(bottom); the source of the fluid motion is a rotating cylinder between the planes. Modified from (Moffatt
1964). (b) The eddy streamline pattern in the latter case, from the symmetric stream function (2.1). Particles
(ap = 0.1) follow closed trajectories (coloured) for different particle initial positions.

wedge angle, i.e. a Stokes flow between two parallel plates as sketched in the lower panel
of figure 2(a). We set these two plates at y = ±1.

The Moffatt parallel-plate solution consists of a series of alternating congruent vortices
that take up the height of the channel (figure 2b shows streamline contours) and
whose strength decays exponentially with distance from a stirrer on the far left. The
corresponding stream functionψ is known analytically (asymptotically far from the stirrer)
and has the form

ψ = (A cos ky + By sin ky)e−kx . (2.1)

The constant A is an overall scale, which can be set to one. In order to fulfil the no-
slip boundary conditions at y = ±1, B = − cot(k) follows. Additionally, the complex
parameter k = p + iq must satisfy the transcendental equation 2k + sin 2k = 0 (Moffatt
1964). The solution with the smallest positive real part is p ≈ 2.106, q ≈ 1.125. Its
symmetry with respect to the centre plane of the channel implies (together with the
time-reversal symmetry of Stokes flow) that a particle released anywhere and deflected
by interaction with one of the walls will experience the opposite deflection when
encountering the other wall so that all trajectories must close and there is no net
displacement of particles. Figure 2(b) shows some examples computed with the deflection
formulae derived in §§ 2.3 and 2.4, but the statement is true independent of the exact
formalism.

Thus, we focus instead on a different analytical solution of the parallel-plate Moffatt
case whose stream function is antisymmetric in y:

ψ = (C sin ky + Dy cos ky)e−kx . (2.2)

Again, we set C = 1 and D = − tan(k) to fulfil boundary conditions at y = ±1. The
parameter k must now satisfy the transcendental equation

2k − sin 2k = 0 (2.3)

and the relevant solution with the smallest positive real part is k = p + iq with p = 3.749,
q = 1.384. This flow, with two vortices across the channel, is shown in figure 3(a). The
vortex-to-vortex distance in the x direction is thus ξ = π/q ≈ 2.27, and the damping factor
of the flow speeds in neighbouring vortices is ζ = epπ/q = e8.51 ≈ 4950. We will see that
this flow accomplishes permanent net displacements of particles.
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Figure 3. (a) Moffatt eddy flow with pairs of counter-rotating vortices taking up the channel height, from the
antisymmetric stream function (2.2). (b) Wall-parallel flow modification factor f (Δ) at large Δ. (c) Plot of
f (Δ) at smallΔ. (d) Example of normal particle velocity as a function ofΔ, for x = 1 and ap = 0.1 in the flow
of (a): far from the wall, the model follows the particle-expansion velocity vP E

p from (2.10), while for Δ< 0.5
(inset) the variable-expansion approach of (2.12) is used.

2.2. Particle velocity in the presence of a wall
In any ambient Stokes flow, the velocity of a spherical particle of radius ap differs from
the background flow velocity u (without walls) by the Faxen correction (Faxén 1922)
evaluated at the particle position x p, resulting in

up,F (x p(t))= u(x p(t))+
a2

p

6
∇2u(x p(t)). (2.4)

For finite distances h between the centre of the particle and the wall (cf. figure 1), this
velocity is modified by the presence of the wall. Both particle and fluid inertia are absent,
and the particle trajectory is described by a first-order overdamped dynamical system with
the wall interaction effects as a velocity correction W(h):

dx p(t)

dt
= up(t)= up,F (x p(t))+ W(x p(t), h) . (2.5)

We show that in many situations for small ap the wall effect W is perturbative, i.e.
of a higher order than a2

p. The principle of (2.5) has been acknowledged in the literature
(Brenner 1961; Goldman et al. 1967a,b; O’Neill 1964; O’neill & Stewartson 1967; O’Neill
1967; Perkins & Jones 1992), but has not been systematically applied for arbitrary h
to determine particle trajectories meant for net displacement. The following subsections
quantify the particle velocity corrections W parallel to and normal to the walls.
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2.3. Wall-parallel corrections to the particle velocity
Consider first a force-free sphere embedded in a semi-infinite region bounded by a plane
no-slip wall at y = −1 (cf. figure 1), so that h = y + 1. Decomposing the ambient velocity
field u = (u, v), we now focus on corrections Wx to the wall-parallel motion u p. This
component of the wall effect is conveniently expressed as a fraction of the Faxen-corrected
velocity, i.e.

Wx (x, y)= − f (Δ)

(
u(x, y)+ a2

p

6
∇2u(x, y)

)
(2.6)

where we have replaced h by the dimensionless gap measure

Δ≡ h − ap

ap
, (2.7)

representing the surface-to-surface distance relative to the radius of the particle (cf.
Rallabandi et al. 2017; Thameem et al. 2017; Agarwal et al. 2018).

The wall-parallel velocity correction coefficient f (Δ) has been worked out in detail
for specific cases such as linear shear flow (O’neill 1968; Jeffrey & Onishi 1984; Stephen
Williams et al. 1992; Williams 1994; Chaoui & Feuillebois 2003), quadratic flow (Goren
& O’Neill 1971; Ekiel-Jeżewska & Wajnryb 2006; Pasol et al. 2006) or modulated shear
flow (Pasol et al. 2006), with asymptotic expressions available for Δ→ 0 and Δ→ ∞.
We note that (i) the wall effects are most prominent for small Δ and (ii) the linear shear
part of any flow dominates as Δ→ 0. In particular, when Δ= 0 (particle touching the
wall), the sphere has to come to rest.

In order to obtain a uniformly valid expression for f (Δ), we follow the expansion
approach of Pasol et al. (2011) but modify it to enforce exact matching with known
asymptotic results. For Δ� 1, linear shear flow is dominant, and Williams’s near-wall
expression (Williams 1994) must be recovered. Far from the wall, f (Δ)→ c�−3, where
the positive constant c =O(1) depends on the type of flow (Goldman et al. 1967a; Ghalia
et al. 2016). The exact value of c makes no qualitative difference to the effects explored
here, and we enforce c = 5/16 to agree with the far-field asymptote provided by Goldman
et al. (1967a) for linear shear flow.

Appendix A details the derivation leading to the following expression:

f (Δ)= 1 − (1 +Δ)4

0.66 +Δ(3.15 +Δ(5.06 +Δ(3.73 +Δ)))− 0.27(1 +Δ)4 log(Δ/(1 +Δ))
,

(2.8)
employed for all Δ. Figure 3(b,c) illustrates the agreement with the asymptote at Δ� 1
(Goldman et al. 1967a) as well as the logarithmic lubrication-theory approach to f = 1 at
Δ→ 0 (Stephen Williams et al. 1992; Williams 1994).

Note that this logarithmic behaviour means that 1 − f only drops to ≈0.32 atΔ= 10−4,
which for a typical particle of ap = 5 μm translates into a subnanometre gap, where
continuum theory breaks down. Thus, in practical situations, f will slow the wall-parallel
motion significantly but never dramatically. Furthermore, by its nature, this wall-parallel
velocity modification is much less important than the wall-normal effect in pushing
particles across streamlines, which is the main focus of the present work.

2.4. Wall-normal corrections to the particle velocity
A general expression for the wall-normal component of the hydrodynamic force on
spherical particles in arbitrary Stokes flows was obtained by Rallabandi et al. (2017),
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employing a quadratic expansion of the background flow around the centre of the
particle:

F⊥ = 6πμap[{−A(up − u)− apB(e⊥ · ∇u)+ a2
p

2
C(e⊥e⊥ : ∇∇u)+ a2

p

2
D∇2u} · e⊥]x p ,

(2.9)
where e⊥ is the unit normal to the wall pointing toward the particle centre and μ is
the viscosity of the fluid. Here up = (u p, vp) denotes the velocity of the particle when
employing an expansion around the particle position. The scalar quantities A, B, C and
D are analytically known dimensionless hydrodynamic resistances depending on Δ. The
first correction term, proportional to A, is due to the translation of the particle relative
to the mean surrounding background flow and is identical to the general expression from
Brenner (1961). The term proportional to B is due to extensional gradients of the flow field.
This contribution is zero for a sphere in an infinite flow field (Happel & Brenner 2012;
Batchelor 1970) but is generally non-zero for a finite distance to the wall. The second
moments of the background flow result in two separate contributions to the force: one
(proportional to C) dependent on the curvature of the background flow velocity normal to
the wall (e⊥e⊥ : ∇∇u); another (proportional to D) proportional to ∇2u. This latter term
asymptotes to the Faxen correction as Δ→ ∞.

The full analytical expressions for A, B, C and D are given in Rallabandi et al. (2017).
The asymptotic behaviours of A, B, C and D for large separations Δ� 1 (Alarge etc.)
and for small separations Δ� 1 (Asmall etc.) are given in Appendix B.

For our case of a force-free particle, we set F⊥ = 0 in (2.5) as well as e⊥ = ±ey (for
the wall at y = ∓1, respectively. The resulting equation can be solved for the wall-normal
particle velocity vP E

p – the superscript PE stands for particle expansion as we expand the
background flow around xp(t). Writing the wall-normal velocity corrections W ±

y due to
the presence of both walls at y = ±1 separately, we have

vP E
p (xp(t))= vp,F (xp(t))+ W −

y (xp(t))+ W +
y (xp(t)), (2.10)

with

W ±
y (xp(t))= ±ap

B
A
∂v

∂y

∣∣∣∣
x p

+ a2
p
C

2A
∂2v

∂y2

∣∣∣∣
x p

+ a2
p

( D
2A − 1

6

)
∇2v

∣∣∣
x p
, (2.11)

and it is understood that A, B, C and D are evaluated at arguments Δ from (2.7) defined
by h = 1 ± yp for the walls at y = ∓1, respectively. Note that the last term of (2.11)
explicitly subtracts the Faxen correction so that each Wy term vanishes as Δ→ ∞.
When the particle approaches a wall closely, we enter the regime of Δ� 1. In the
wall-parallel direction, we still use the expression for Wx from equation (2.6), which
includes the lubrication limit at very small Δ. However, in the wall-normal direction,
the formalism relying on Taylor expansion of the flow around the particle centre vP E

p
is not accurate enough to describe the particle motion – this is easily seen because the
predicted particle normal velocity from (2.10) does not vanish when the particle touches
the wall. In Rallabandi et al. (2017), it was shown that for Δ� 1, the no-penetration
boundary condition can be enforced by replacing the background flow field in (2.11) by its
quadratic expansion around the point on the wall closest to the particle. However, we find
that this wall-expansion formalism will not smoothly transition to the expression (2.11)
when Δ∼ 1, because the exponential dependence of the flow field (2.2) with substantial
|k| compromises the accuracy of the quadratic expansion even at relatively short distances
from the wall.
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Therefore, we generalize and improve the transition to vP E
p at small Δ by constructing

the quantity vV E (x, y), the second-order expansion of v(x, y) around variable expansion
points xE = x p, yE = yE (yp), i.e.

vV E (x, y)= v(xE , yE )+ (y − yE )
∂v

∂y

∣∣∣∣
xE

+ 1
2
(y − yE )

2 ∂
2v

∂y2

∣∣∣∣
xE

+ 1
2
(x − xE )

2 ∂
2v

∂x2

∣∣∣∣
xE

.

(2.12)
We omit the linear in x and mixed terms because these never give non-zero contributions
when evaluated within our formalism. The expansion point must coincide with the nearest
point on the wall when the particle is touching, and with the particle y position as Δ→ 1
to consistently merge into the particle-expansion formalism. Thus, for a wall at y = −1
and a particle at yp we set

yE = 1 + 2(yp − ap) . (2.13)

ForΔ< 1, we use this variable expansion point velocity vV E instead of v in the evaluation
of particle velocity normal to the wall, resulting in

vV E
p (xp(t))= vV E (xp)+

a2
p

6
∇2vV E (xp)+ W V E−

y (xp) . (2.14)

Note that the effects of the wall at y = +1 are negligible here. The wall correction is now

W V E−
y (xp)= −ap

B
A
∂vV E

∂y

∣∣∣∣
xp

+ a2
p
C

2A
∂2vV E

∂y2

∣∣∣∣
xp

+ a2
p

( D
2A − 1

6

)
∇2vV E

∣∣∣
xp
,

(2.15)
where the derivatives and resistance coefficients are still evaluated at the particle position.
This formalism smoothly interpolates between no penetration for Δ� 1 and the second-
order approximation to vP E atΔ= 1. The eventual particle velocity normal to the wall for
any Δ is taken to be piecewise:

vp(x, y)=
{
vP E

p if Δ� 1
vV E

p if 0 �Δ� 1.
(2.16)

Using equations (2.6), (2.8) and (2.10)–(2.16) in the dynamical system (2.5), we have
thus established a formalism for computing particle trajectories in the presence of channel
wall effects for arbitrary Stokes background flow. To the authors’ knowledge, the present
work is the first to formulate a closed hydrodynamics-based equation of motion for
particles entrained in wall-bounded Stokes flow.

3. Results and discussion

3.1. Particle motion in Moffatt eddy flow
We now use this formalism to discuss the fate of a neutrally buoyant spherical particle
placed in a vortical Moffatt flow. We only briefly mention that the computations confirm
that the symmetric flow field (2.1) induces closed trajectories for any initial condition (see
figure 2b) because of the equal and opposite effects of both walls. As our focus lies on the
permanent displacement of particles, we concentrate in the following on the antisymmetric
flow given by (the real part of) the stream function ψ of (2.2), with u(x, y)=R(∂ψ/∂y),
v(x, y)=R(−(∂ψ/∂x)).
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Without loss of generality, we discuss trajectories of particles placed in the lower half of
the channel, interacting more strongly with the lower wall at y = −1, though the influence
of both walls is taken into account (see (2.10)).

First, it is easy to see that if the flow field (u, v) consists of closed (vortex) streamlines,
the Faxen trajectories given by equation (2.4) must also close. Thus, the Faxen trajectory
field can be interpreted as an altered ’incompressible flow field’. For small ap, this altered
flow up,F is a perturbation of the Moffatt flow.

Any permanent particle displacement (non-closing trajectories) is thus a result of the
wall correction W , a further perturbation on the reference field up,F . Note that while it
is tempting to model only half of the channel and focus on, say, one of the lower half
vortices in figure 3(a) bounded by a no-slip wall at y = −1 and a no-stress wall at y = 0,
the disturbance flow from the particle will violate the latter boundary condition. We also
verify that for small enough particles, the results of this approach are indistinguishable
from the formalism for two no-slip walls (see supplementary material).

In an antisymmetric Moffatt eddy, the vortex symmetry is broken in both the x and y
directions so that there is no a priori reason for particles to follow closed trajectories. Let
us first focus on initial conditions inside a clockwise vortex (yellow frame in figure 3a,
isolated in figure 4a). Solving (2.5) for reasonably small particle size (ap � 0.2), the
following observations can be made: (i) particles initially placed near the vortex centre
follow trajectories that spiral away from the centre (blue in figure 4a; also see the close-
up of figure 4b); (ii) particles initially placed near the outer edge of the vortex follow
trajectories that spiral inwards (green in figure 4a); and (iii) the spiralling is significantly
slower for smaller ap.

This suggests the presence of an unstable fixed point near the vortex centre (open circle
in figure 4a) and the existence of a stable limit cycle at a finite distance from the wall
(red in figure 4a). As particles complete cycles in the vortex, the wall encounters have a
cumulative effect that pushes them towards one well-defined closed trajectory, suggesting
the possibility of systematic particle manipulation and accumulation even for force-free
spheres in zero-Re Stokes flow. In what follows, we quantify these effects.

3.2. Particle motion near a Faxen field fixed point

3.2.1. Linear stability analysis
The observed (slow) spiralling away from the fixed point must result from the wall
corrections added to the Faxen field, whose trajectories are closed. Linearizing around
the fixed point of the Faxen field yields quantitative predictions of the spiralling rate.
Note that for a particle of any reasonable size ap � 1 near the fixed-point position (at
y ≈ −0.5), the gap measure will be Δ� 1, so that wall effects are accurately described
using the large-Δ asymptotics of (B1). The leading-order wall correction terms are then
considerably simpler:

Wx,large(x, y)= − ca3
p

(y + 1)3
u p,F (x, y), (3.1)

Wy,large(x, y)= −15
16

a3
p

(y + 1)2
∂vp,F (x, y)

∂y
, (3.2)

where the constant c can vary depending on the specific flow, but is O(1) (Goldman
et al. 1967a; Ghalia et al. 2016); cf. § 2.3. Near the fixed point of the Faxen field, the
Blarge/Alarge term in Wy dominates the others (Blarge/Alarge =O(a3

p), Clarge/Alarge =
O(a5

p), Dlarge/Alarge =O(a4
p)) and is the only one contributing to O(a3

p) in (3.2). This
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Figure 4. Particle trajectories near a stable limit cycle. (a) Particles (ap = 0.2) spiral out (blue) or spiral into
(green) a stable limit cycle (red) in a clockwise eddy. The open circle indicates the unstable fixed point, squares
indicate the starting points of the particles and stars indicate the end points. (b) Close-up indicating radial
distance of the particle rp(t) from the fixed point of the Faxen field. (c) Analytical results for the average of
rp(t) match the solution of the dynamical system (2.10); τ is defined in (3.10).

term is still of higher ap order than the Faxen correction so that, in the limit of large Δ
and small ap, the wall correction is perturbatively small.

We thus linearize (2.5) around the Faxen field fixed point (xF , yF ) (given by up,F = 0)
and obtain [

ẋ p
ẏp

]
= ∇up|(xF ,yF )

[
x − xF
y − yF

]
. (3.3)

The matrix ∇up ≡ A1 of this dynamical system can be decomposed as

A1 = AF + S, (3.4)

where AF is the Jacobian of the Faxen field:

AF =
[
∂u p,F (x,y)

∂x
∂u p,F (x,y)

∂y
∂vp,F (x,y)

∂x
∂vp,F (x,y)

∂y

] ∣∣∣∣∣
(xF ,yF )

(3.5)

and S is due to the wall corrections:
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S =
[ ∂Wx (x,y))

∂x
∂Wx (x,y))

∂y
∂Wy(x,y))

∂x
∂Wy(x,y))

∂y

] ∣∣∣∣∣
(xF ,yF )

. (3.6)

The eigenvalues of A1 are

λ
A1
1,2 = 1/τ ± iω1, (3.7)

where the real part 1/τ is due to the wall correction S only, as the fixed point of the
incompressible Faxen field is a centre.

The imaginary part ω1 is the angular frequency of the spiralling motion, which
differs only perturbatively from that of the Faxen field, ω1 =ωF +O(a3

p), where ωF ≡√
det(AF ). To leading order, the frequency can be evaluated directly from the background

flow, i.e.

ωF =ω0 +O(a2
p)≡

√
∂u(x, y)

∂x

∂v(x, y)

∂y
− ∂u(x, y)

∂y

∂v(x, y)

∂x
+O(a2

p) . (3.8)

3.2.2. Analytical prediction of particle spiralling rate
The real part of the eigenvalue (3.7) translates into an exponential growth rate of the radial
distance rp of the particle from (xF , yF ), i.e. 1/τ = T r(A1)/2 = T r(S)/2:

1
τ

= 1
2

(
∂Wx,large(x, y)

∂x
+ ∂Wy,large(x, y)

∂y

) ∣∣∣∣
(xF ,yF )

. (3.9)

Using the simplified wall corrections (3.1) and (3.2), neglecting higher orders of ap
and using incompressibility, we obtain an explicit expression for the characteristic radial
growth rate in terms of the background flow field only:

1
τ

= 1
rp

drp

dt
= a3

p

32(y + 1)3

(
(16c + 30)

∂v(x, y)

∂y
− 15(y + 1)

∂2v(x, y)

∂y2

) ∣∣∣∣
(xF ,yF )

.

(3.10)
The resulting particle motion rp(t)= rp0et/τ from (3.10) with c = 5/16 is shown in

figure 3(c), demonstrating excellent agreement with the average numerically determined
distance from the fixed point of the Faxen field (xF , yF ) (oscillations are due to the non-
circular shape of the orbit).

Although this spiralling rate will change quantitatively with c, any O(1) values of c will
give very similar values of 1/τ (choosing c a factor of 2 larger or smaller only changes the
spiralling rate by ±12 %). In the following, we use the linear-shear value c = 5/16, as it is
the physical choice for particles at smaller Δ, which we discuss below.

Near the fixed points of different vortices, the expression (3.10) is unchanged except
for overall factors of powers of −ζ (neighbouring vortices having opposite orientation).
Likewise, (3.8) remains valid up to powers of ζ . Thus, a convenient dimensionless measure
for the spiralling trajectories is β ≡ |ω0τ |, valid for all vortices:

β = |ω0τ | ≈ 0.337
a3

p
. (3.11)

For ap � 1, the value β � 1 represents the number of orbits around a Faxen field fixed
point that a particle travels until its radial distance changes significantly. If ap is 0.1, for
instance, such characteristic particle displacement accumulates over about 300 cycles in
the vortex.
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Figure 5. (a) Plot of the zero contour of 1/τ together with the stable limit cycle of an ap = 0.1 particle.
The open circle indicates the unstable fixed point. (b) Particle size dependence of stable limit cycle location.
(c) Close-up of limit cycles for ap = 0.01, 0.008 showing the bandwidths of uncertainty δ1 ≈ 8 × 10−5, δ2 ≈
8 × 10−4. (d) The minimum gap between the particle and the wall obeys a power law in particle size: �min +
1 ∝ aαp , where α ≈ −0.92.

3.3. Particle motion and manipulation in a clockwise vortex
As empirically shown by the red line in figure 3(a), the spiralling out of particles from the
unstable fixed point eventually settles onto an asymptotically closed trajectory (a stable
limit cycle), also reached from initial conditions closer to the wall, resulting in an inward
spiral. As a motivation for the existence of this limit cycle, we compute the real part of
the eigenvalues of the linearized dynamical system in the entire vortex region, i.e. (3.10)
for arbitrary (x, y). Figure 5(a) shows that a particle spiralling out from (xF , yF ) at first
encounters only positive rates of radial growth, but then a greater and greater part of the
trajectory is taken up by points with negative growth rate. Eventually, on the limit cycle,
the integral effect of positive and negative growth balances.

How does the limit cycle location depend on particle size? As the spiralling rate
decreases dramatically with smaller ap according to (3.11), direct forward integration of
(2.5) to the limit cycle is very time-consuming. Instead, we adopt a bisection scheme,
integrating from an initial x position until the same x coordinate is reached again,
registering the change �y in the y coordinate. Iterating between initial conditions of
positive and negative�y, we find the position of periodic trajectories with great accuracy.
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We plot the stable limit cycle locations for different particle sizes in figure 5(b). Note
that for reasonably small ap even the point of closest approach to the wall hasΔ=�min �
1, so that using the large-Δ approximations of A, B, C and D from Appendix B is
quantitatively accurate. As the particle gets smaller, the limit cycle grows, with a minimum
distance hmin closer to the wall, though hmin decreases very slowly for very small ap.
Due to the exponential x-dependence of the flow field components resulting from (2.2),
we need to control for numerical errors in forward integration. Carefully evaluating (for
a given ap) the limit cycles starting from different initial positions, we obtain a band
of uncertainty around the mean limit cycle. Figure 5(c) shows that this uncertainty δ
increases as ap decreases. With the standard numerical accuracy and scheme we used,
uncertainty bands begin to overlap for ap � 0.005. Accurate data for smaller ap could be
accessed with more powerful algorithms or CPUs, but this is not our focus here. Restricting
ourselves to ap � 0.008, we show hmin/ap =�min + 1 as a function of ap in figure 5(d),
demonstrating an accurate power law (all uncertainties are below the symbol size) of the
form

(�min + 1)∝ aαp, (3.12)

with an exponent α ≈ −0.92. Note that �min diverges as ap → 0 so that the Δ� 1 limit
becomes ever more accurate. Indeed, none of the quantitative results of figure 5(d) change
when the full or asymptotic expressions for the wall effects are used. The scaling implies
hmin ∝ aηp with η≈ 0.08, confirming the very slow approach of the limit cycles towards
the wall.

For particle sizes relevant to microfluidics, this effect means that there is a practical
boundary for how close to the wall the particles can approach. Taking the characteristic
(half-width) length of the channel to be 50 μm, a 1 μm particle (ap = 0.02) will not
approach the wall any closer than 7.8 μm. Moreover, using the locations of stable limit
cycles to separate particles becomes very difficult for small particles. For practical
situations, the difference between the hmin for a 1 μm particle and a 2.5 μm particle is
only 0.7 μm. Separation by size can be further compromised by the presence of Brownian
motion. Using characteristic time scales τ from (3.11) to estimate positional uncertainty
due to Brownian diffusion, we find that an ap = 5 μm particle is hardly affected, while the
position of a strongly colloidal ap = 1 μm particle will be spread out over several μm.

Despite these caveats, the ability to concentrate particles on a limit cycle trajectory
without inertial effects purely because of the background flow geometry is of fundamental
interest. It is encouraging that the location of this limit cycle for small particles can be
determined entirely within the large-Δ approximation, i.e. without the intricate details
of near-wall corrections or lubrication limits. This gives confidence in not only the
qualitative but also the quantitative description of the phenomenon: when placed in certain
bounded vortical Stokes flows, small spherical particles, even when neutrally buoyant, will
eventually accumulate on well-defined closed trajectories.

3.4. Particle motion and manipulation in a counterclockwise vortex
Any vortex adjacent to a clockwise vortex like the one discussed in § 3.2 is
counterclockwise and congruent in geometry. For example, the vortex indicated by the
green frame in figure 3(a) has flow exactly reversed from the yellow-framed vortex (and
a factor ζ slower). Because of the time reversibility of Stokes flow and the fact that all
wall effects result from the background Stokes flow and its derivatives, the behaviour of
particles on trajectories is also time-reversed. Thus, the fixed point in a counterclockwise
vortex is stable, 1/τ changes sign and β stays the same by definition. The limit cycle for
a given ap is unstable but is congruent in shape with the stable cycle discussed before.
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Figure 6. Particle trajectories near an unstable limit cycle. (a) Particles (ap = 0.1) spiral out (orange) towards
the wall or spiral into (purple) a fixed point from an unstable limit cycle (dashed red) in a counterclockwise
eddy. A particular spiralling-out trajectory is shown in blue. The filled circle indicates the stable fixed point,
squares indicate the particle starting points and stars indicate the particle end points. (b) Close-up of the
close approach to the wall of the trajectory from (a). The solid portion of the trajectory shows approximately
exponential thinning of the gap, shown in the semi-logarithmic plot of (c). The black dashed line indicates the
exponential behaviour from the wall-expansion approximation (3.13). The red dot-dashed line corresponds to a
surface-to-surface approach of 5 nm distance for a 5 μmparticle in a channel of 50 μmhalf-width.

Particles spiral inward from the unstable limit cycle towards the fixed points but spiral
outward when placed outside the limit cycle (figure 6a). The latter case is of prime interest
because it allows particles to approach the wall more and more closely. As the gap between
particle and wall diminishes, any short-ranged intermolecular attractive force (e.g. van
der Waals force) whose reach is often in the nanometre range (Hirschfelder et al. 1954;
Batsanov 2001) can take over and lead to attachment (sticking) of the particle to the wall.
This general mechanism (hydrodynamics allowing a particle to get close enough to a wall
to stick by short-ranged attraction) has been acknowledged before (Friedlander et al. 2000;
Humphries 2009), but the case discussed here allows for quantitative predictions.

Figure 6(b) exemplifies a particle trajectory that approaches very close to the wall, with
a nearly normal initial approach and a subsequent piece of trajectory nearly parallel to the
wall. Here, Δ� 1 characterizes the trajectory and this is the only scenario in the present
work where the variable expansion method for particle normal velocity (2.15) is necessary.
The semi-logarithmic plot versus time in figure 6(c) shows that the ‘near-parallel’ portion
contains a stretch of approximately exponential decay of the (relative) gap Δ. Indeed,
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this behaviour follows from a series to leading order in small Δ of (2.15), i.e. the wall-
expansion limit of yE → −1. Here, (2.14) simplifies to

d�
dt

= 1.6147apκ(x)Δ, (3.13)

where κ(x)= ∂2v/∂y2(x,−1) is the background flow curvature at the wall, and the
prefactor was first derived in Goren & O’Neill (1971) and confirmed in Rallabandi
et al. (2017). The trajectory part showing the exponential approach (the solid portion in
figure 6b,c) indicates slow motion in the x direction, so that κ(x) is nearly constant. We
fix the x value as that of the turning point (point of maximum curvature) of the trajectory,
here x ≈ 0.991. Using this value in (3.13) gives an exponential behaviour (dashed line in
figure 6c) in good agreement with the approach of the trajectory to the wall. This behaviour
remains robust to changes of the exact modelling of the expansion point locations yE in
(2.13).

This exponential approach to a wall accords with the general derivations of Brady et al.,
showing that the gap between solid surfaces in Stokes flow can never vanish in finite time
(Brady & Bossis 1988; Claeys & Brady 1989, 1993). In a practical situation, the rapidly
decaying gap width leads to sticking by short-range interaction at a well-defined position
after a well-defined time. If figure 6(c) pertains to a microfluidic situation exemplified
by a channel half-width of 50 μm and a particle radius of 5 μm, the red dashed line
indicates a gap of 5 nm between particle and wall, at the low end of the typical range
of van der Waals forces (Israelachvili 1974). The particle can, therefore, be expected to
stick at a time and location entirely determined by the geometry of the background flow.
Thus, we demonstrate here how, in a pure Stokes flow, particles can be driven towards
boundaries and forced to stick to a wall in predictable locations. Note that conceptually,
a counterclockwise vortex allows for the concentration of randomly distributed particles
in two locations: the stable fixed point near the centre of the vortex and the well-defined
small region of wall sticking. Both alternatives provide practically relevant protocols for
filtering in microfluidic devices. Particles placed inside the unstable limit cycle will be
concentrated at the fixed point, while particles placed outside the unstable limit cycle will
be deposited onto a surface.

Our single-particle formalism implicitly assumes the limit of dilute particle
concentration in a microfluidics application. Including effects of particle–particle
interaction is a desirable future extension of this approach in order to assess non-inertial
effects in particle-laden flows important to practical applications (Guha 2008).

4. Conclusions
We have quantitatively shown that force-free particles placed in an internal Stokes flow can
be systematically displaced in a variety of ways through purely hydrodynamic interactions
with the enclosing walls. Since a particle cannot contact a wall in finite time, a typical
trajectory has a portion of approaching the wall and a portion of receding, governed by the
background flow and the wall corrections derived from it. If the approaching and receding
parts of the flow are symmetric, displacement effects off a streamline will cancel out. Thus,
a Stokes flow that induces net particle displacement must break wall-parallel symmetry.

For practical use, vortical flows are advantageous, where the effects of many
approaching/receding events can accumulate. However, if the vortex is symmetrically
confined between walls, the net displacement effects induced by both walls will again
cancel, and the particle trajectory must close. For net cumulative displacement, the vortex
must, therefore, break wall-normal symmetry as well, for example by being confined
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between no-slip and no-stress boundaries. A net-transport internal Stokes flow thus breaks
symmetries in both directions by particle–wall interactions, which act as perturbations
on the Faxen flow trajectories. This is in agreement with recent experimental results that
record permanent displacements of fibres passing by obstacles of symmetry-broken shape
(Li et al. 2024). For such non-spherical particles (whether rigid or elastic), the effect of
a single particle–boundary encounter could be much enhanced, as the wall effects affect
different parts of the particle differently, and the overall torque balance will influence the
resulting displacement. The study of this case will be the subject of future work.

Our formalism predicts how the particles approach or recede from fixed points at the
centre of the vortices, and how the particles accumulate at stable limit cycles, whose
locations are dependent on particle size. When placed in certain bounded vortical Stokes
flows, small spherical particles, even when neutrally buoyant, will eventually accumulate
on well-defined closed trajectories. In practical applications, the accumulated particles
can be induced to aggregate or react with each other. We can also predict how particles
move away from unstable limit cycles towards boundaries. Generically, such trajectories
must eventually lead to exponential thinning of the fluid layer between particle and wall.
Thus, submicrometre distances are reached, leading to sticking in predictable locations by
short-range forces. Such adhesion to walls in Stokes flows adds a simple and controllable
tool to studies of sticking phenomena, which have been investigated for some time.
Researchers have investigated particles captured, filtered and deposited on surfaces in low-
Reynolds flow by short-range interactions with the wall when approaching (Arias-Zugasti
et al. 2019; Espinosa-Gayosso et al. 2012). Applications include fibre filtration (Tien
et al. 1977; Myojo et al. 1984) and fog meshes (Park et al. 2013) inspired by moisture-
collecting desert beetles (Parker & Lawrence 2001; King et al. 2022). This is also related
to the functionality of facemasks in the recent COVID-19 pandemic (Howard et al. 2021).
However, most of the work emphasizes the dependence of particle deposition probabilities
on the finite Stokes number in the flow, while few studies focus on the Stokes flow regime
or acknowledge that any filtration effect is possible in this limit.

Let us estimate the rate of particle drift across streamlines in dimensional terms. Taking
the length scale (channel half-width) as H = 50 μm, we want to ensure that the channel
Reynolds number Re = HU/ν for aqueous solutions (ν ∼ 10−6 m

2
s−1) is less than 10−2

along the particle trajectories, even in regions of the highest speed U . Given this constraint
and assuming ap = 5 μm, the time scale τ from (3.10) is ≈ 57 s so that a significant radial
displacement is expected on a time scale of minutes. For larger particles, this time scale
decreases rapidly (∝ a−3

p ), and the process can also be sped up by using a solution of
higher viscosity.

The Moffatt eddy flow discussed here is convenient because of its closed analytical
form. However, it would be extremely difficult to set up experimentally due to the
exponential decay of the flow speed with x and the need to drive the flow far away
from the field of view. The exponential dependence of speed on coordinates also makes
the Reynolds number constraint for Stokes flow extremely stringent. Nevertheless, the
principles of displacement and the scaling of the wall effects are not specific to this
flow and will be robust in any symmetry-breaking vortical Stokes flow, and the modelling
equations for the crucial wall-normal displacement such as (2.11) and (2.15) are valid for
arbitrary background flow.

Cavity flows are a class of vortical flows that are practically used in microfluidic devices
at low and vanishing Reynolds numbers. In the Stokes limit, they can be expressed as
infinite sums of Moffatt solutions (Shankar 1993; Shankar & Deshpande 2000) and can be
driven by rotating cylinders (Hellou & Coutanceau 1992; Hellou 2001) or by superimposed
transport flows (Hellou & Bach 2011). Because of the linearity of the Stokes equations
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and the velocity corrections, such flows do not pose principal difficulties to the present
formalism. These finite-domain modifications of Moffatt’s solutions have a less severe
ratio of driving velocity to the eddy velocity scale (the analogue of epπ/q ), and it is thus
much easier to fulfil the conditions of small Re.

It is instructive to compare the scaling of the migration velocity of small particles far
from the wall (Δ� 1) with that of approaches using particle inertia. In a number of
approaches quantifying the effect of steady inertia (Ho & Leal 1974; Schonberg & Hinch
1989; Asmolov & McLaughlin 1999; Di Carlo et al. 2007; Hood et al. 2015) the migration
speed for force-free particles is proportional to a3

p, the same scaling as our result (3.2).
In approaches using oscillatory inertia (Agarwal et al. 2021,2024), the scaling varies from
a3

p for small Stokes number to a4
p for large Stokes number. Thus, the strictly non-inertial

effects described in the present work show scaling equal to or even more favourable than
inertial techniques for small particles. It should be noted that at low (non-zero) Re the
walls of a microfluidic device will almost always be close enough to the particle to enable
modelling as in Ho & Leal (1974) or Hood et al. (2015), i.e. the effects of inertia at large
distances are not present. This is why Saffman lift (Saffman 1965), an unbounded-flow
effect, should not be directly compared with these results.

In closing, we note that oscillatory-flow microfluidic set-ups used for fast particle
manipulation often result both in inertial forces on particles (Agarwal et al. 2021,2024) and
in the generation of steady vortical streaming flow of low Reynolds number (Rallabandi
et al. 2014; Thameem et al. 2017; Rallabandi et al. 2017). The effects discussed in
the present work can thus be exploited and optimized together with inertial effects,
leading to better protocols for the accumulation, concentration, deflection and sorting of
microparticles.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2025.64.
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Appendix A
To get the shear coefficient of the particle parallel velocity f (Δ), we start with the form
from Pasol et al. (2011):

f (Δ)= 1 −
[

1 − a log
(

1 − 1
1 +Δ

)
− b1

(
1

1 +Δ

)
− b2

(
1

1 +Δ

)2

−b3

(
1

1 +Δ

)3

− b4

(
1

1 +Δ

)4
]−1

.

(A1)

We take a series expansion of f (Δ) as Δ→ ∞ to the order �3:

f (Δ)= −−a + b1

Δ
− a2 + a(1

2 − 2b1)− b1 + b2
1 + b2

�2

− −a3 + b1 − 2b2
1 + b3

1 + a2(−1 + 3b1)− 2b2 + 2b1b2 − 1
3a(1 − 9b1 + 9b2

1 + 6b2)+ b3

�3

+ H.O.T .
(A2)
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According to Goldman et al. (1967a) as Δ→ ∞, f (Δ)� 1 − 5
16�

−3, which means that
the order �−1 and �−2 must vanish, resulting in

a − b1 = 0 a2 + a

(
1
2

− 2b1

)
− b1 + b2

1 + b2 = 0, (A3)

so that b1 = a and b2 = a/2. With b1 and b2 substituted, matching with Goldman’s large-Δ
asymptotic expression obtains

b3 = 5
16

+ a

3
. (A4)

We then take a series expansion of f (Δ) as Δ→ 0 to leading order:

f (Δ)≈ 1 + 2
3a + 2(−1 + b3 + b4)+ 2a log(Δ)

. (A5)

According to Williams (1994) as Δ→ 0, f (Δ)� 1 − 1
0.66−0.269 log( Δ

1+Δ)
. By matching all

the parameters, we obtain a = 0.269 and

1
2
(−3a − 2(−1 + b3 + b4))= 0.66. (A6)

Combined with equations (A4) and (A6), this determines b3 = −0.223 and b4 = 0.159.
All parameters of (A1) are now specified, and the result is equation (2.8).

Appendix B
The scalar quantities A, B, C and D are dimensionless hydrodynamic resistances
depending onΔ. The analytical expressions for A, B, C and D are given (as infinite sums)
in Rallabandi et al. (2017). For large separations (Δ� 1), one obtains four hydrodynamic
resistances at leading order:

Alarge = 1 + 9
8
�−1, Blarge = 15

16
�−1, Clarge = 21

32
�−3, Dlarge = 1

3
+ 3

8
�−1.

(B1)
The ratios used in the equations for velocity corrections are, to leading order,

Blarge

Alarge
≈ 15

16
�−2,

Clarge

Alarge
≈ 21

32
�−3,

Dlarge

Alarge
≈ 1

3
. (B2)

For small separations (Δ� 1), one obtains four hydrodynamic resistances to leading
order:

Asmall =�−1 + 1
5

log�−1 + 0.9713, Bsmall =�−1 − 4
5

log�−1 + 0.3070,

Csmall =�−1 − 14
5

log�−1 + 3.7929, Dsmall = log�−1 − 0.9208 .
(B3)

These results can be used to obtain the numerical prefactor of the wall-expansion limit
equation (3.13).
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