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Abstract. Abelian cellular automata (CAs) are CAs which are group endomorphisms of
the full group shift when endowing the alphabet with an abelian group structure. A CA
randomizes an initial probability measure if its iterated images have weak*-convergence
towards the uniform Bernoulli measure (the Haar measure in this setting). We are interested
in structural phenomena, i.e., randomization for a wide class of initial measures (under
some mixing hypotheses). First, we prove that an abelian CA randomizes in Cesàro mean
if and only if it has no soliton, i.e., a non-zero finite configuration whose time evolution
remains bounded in space. This characterization generalizes previously known sufficient
conditions for abelian CAs with scalar or commuting coefficients. Second, we exhibit
examples of strong randomizers, i.e., abelian CAs randomizing in simple convergence;
this is the first proof of this behaviour to our knowledge. We show, however, that no CA
with commuting coefficients can be strongly randomizing. Finally, we show that some
abelian CAs achieve partial randomization without being randomizing: the distribution
of short finite words tends to the uniform distribution up to some threshold, but this
convergence fails for larger words. Again this phenomenon cannot happen for abelian CAs
with commuting coefficients.

Key words: cellular automata, classical ergodic theory, symbolic dynamics
2010 Mathematics Subject Classification: 37B15 (Primary); 37A60, 37A05 (Secondary)

1. Introduction
Cellular automata (CAs), although extremely simple to define, provide a rich source of
examples of dynamical systems which are not yet well understood. This is particularly true
when taking a measure theoretic point of view and studying the evolution of a probability
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measure under iterations of CAs. The situation can be roughly depicted as follows:
for non-surjective CAs, essentially all behaviours that are not prohibited by immediate
computability restrictions can happen [1, 5, 12]; for the surjective case, various forms of
rigidity are observed (see [21] for an overview). In particular, since the pioneering work of
Lind and Miyamoto on the ‘addition modulo 2’ CA [16, 19], many CAs of algebraic origin
were shown to behave like randomizers [7, 13, 18, 22, 23], i.e., they converge in Cesàro
mean or in density to the uniform Bernoulli measure from any initial probability measure
from a large class C. In [16, 19], the class C is Bernoulli measures of full support. It was
later extended to full support Markov measures or n-step Markov processes, measures
with complete connections and summable decay of correlations and harmonically mixing
measures [21] and more [24, 28]. Apart from specific examples (as in [17]), the class
of CAs where randomizing behaviour has been shown is essentially contained in that of
‘linear’ CAs defined on an abelian group alphabet by

F(x)i =
∑
j∈V

θ j (xi+ j ),

where θ j are commuting endomorphisms (most of the time automorphisms or scalar
coefficients). Furthermore, the type of convergence considered has always been Cesàro
mean or convergence in density.

In this paper, we consider the class of harmonically mixing measures and the class of
abelian CAs that are like the ‘linear’ CAs described above but without the assumption of
commutation of endomorphisms. Our first main result is a complete characterization of
randomization in density in that setting.

THEOREM. (See Theorem 2) An abelian CA F randomizes in density any harmonically
mixing measure if and only if it does not possess a soliton, i.e., a non-zero finite
configuration whose set of non-zero cells stays within a bounded diameter under iterations
of the CA.

We show that this theorem extends the most general previous result [23] and allows us to
easily prove randomization for particular examples, even in the setting of non-commutative
coefficients [17], and hence answers a question of [21].

Our approach uses tools from harmonic analysis using a similar approach to the work
of Pivato and Yassawi on diffusion of characters [22, 23]. We rely on the abelian structure
of the considered CA to reduce randomization to a combinatorial property of diffusivity.
More precisely, we define a dual CA on the (Pontryagin) dual group and show that
diffusion in the dual is equivalent to randomization and that the diffusion property is
preserved by duality. Finally, we prove the equivalence between diffusivity and the absence
of solitons, not by using the abelian structure but by general combinatorial properties of
surjective CAs. This allows us to go beyond the commuting coefficient case, which was
treated in previous works by a careful analysis of binomial coefficients of the iterates of F .

We also prove the existence of a stronger form of randomization where taking
subsequences of density one or Cesàro mean is not necessary.

THEOREM. (See Theorem 4) There exist abelian CAs that randomize in simple
convergence any harmonically mixing measure.
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FIGURE 1. Three forms of randomization: F2 (defined in §6.2), addition modulo 2 and IZ2 (defined in §6.3).
The direction of time is upward. The CAs are iterated on an initial configuration drawn according to a Bernoulli
measure with 95% white (state 0). The addition modulo 2 does not converge directly because the image measure
is far from the uniform measure around times t = 2n (see Theorem 3). IZ2 randomizes individual cells but not

cylinders of length 2 (see Proposition 8).

This answers a question of [14, Question 59]. Experiments on small surjective CAs
[11, 29] suggest that this strong form of randomization is the most common, that it occurs
as well on non-abelian CAs, and even that randomization occurring only in density (or
Cesàro mean) might be an artefact of abelian CAs. This confirms the importance of the
non-commutative coefficients case, since we also prove that abelian CAs with commuting
coefficients cannot achieve such a strong form of randomization.

The results above are stated as randomization for the class of harmonically mixing
measures. We do not investigate when there are more randomized measures (as in [24]).
However, we show that there cannot be fewer: if an abelian CA randomizes in density
full-support Bernoulli measures, then it randomizes in density all harmonically mixing
measures. Interestingly, the rigidity is even stronger for abelian CAs with commutative
coefficients: we prove that if the frequency of individual states is randomized (in density),
then the CA is fully randomizing in density. In the case of non-commutative coefficients,
we can have partial randomization: we give examples for any K of abelian CAs which
do randomize all cylinders up to size K but fail to randomize completely. This suggests
that experimental work on randomization in general CAs should be done with care:
randomization might fail in non-obvious ways on long-range correlations.

The paper is organized as follows. In §2, we recall basic definitions and tools about
measure theoretic aspects of cellular automata; in §3, we study the evolution of ranks
of characters under iterations of abelian CAs, the property of character diffusion and its
link with randomization; in §4, we define the dual of an abelian CA, show that duality
preserves diffusivity in density and link this property with the absence of solitons; in §5, we
establish our main result, which is a characterization of randomization in density through
the absence of solitons; in §6, we exhibit a class of examples of strong randomization and
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randomization up to a fixed-length cylinder, and we show that these behaviours are specific
to CAs with non-commuting coefficients; and, finally, in §7 we give some directions for
further research on this topic.

2. Definitions and tools
Throughout this paper, we will state our results for dimension one, but they extend
straightforwardly to the d-dimensional case. Our convention on natural number is 0 ∈ N.

Let A be a finite alphabet. We define A∗ =
⋃

n∈N An to be the set of finite words and
AZ to be the set of (one-dimensional) configurations. For a finite set U ⊂ Z and u ∈AU ,
define the cylinder

[u]U = {x ∈AZ
: x |U = u}.

For u ∈An and k ∈ Z, also define [u]k = [u]{k,...,k+n−1} and [u] = [u]0.
We endow AZ with the product topology, which is metrizable using the Cantor distance:

i.e.,

for all x, y ∈AZ, d(x, y)= 2−1(x,y) where 1(x, y)=min{|i | : xi 6= yi }.

The shift map is defined by

for all x ∈AZ, σ (x)= (xi+1)i∈Z.

A CA is a pair (A, F), where F :AZ
→AZ is a continuous function that commutes

with the shift map (i.e., F ◦ σ = σ ◦ F). Equivalently, F is defined by a finite
neighborhood N ⊂ Z and a local rule f :AN

→A in the sense that

for all x ∈AZ and for all i ∈ Z, F(x)i = f (xi+N ).

Let (A,+) be an abelian group and let 0 its neutral element. A finite configuration is
a configuration x ∈AZ such that x(i)= 0 for all i ∈ Z except on a finite set. If x is a
finite configuration, we define its support by supp(x)= {i ∈ Z : x(i) 6= 0} and its rank by
rank(x)= |supp(x)|. Note that the set of finite configurations is dense in AZ. The notion
of finite points makes sense also when A has no group structure, assuming that a choice of
zero element 0 ∈A has been made.

An abelian CA F is a CA that is an endomorphism for (AZ,+) (componentwise
addition): i.e.,

for all x, y ∈AZ, F(x + y)= F(x)+ F(y).

Equivalently, F is a finite sum of shifts composed of endomorphisms of (A,+). More
precisely, there is a finite N ⊂ Z and a collection (φi )i∈N of endomorphisms of (A,+)
such that

F =
∑
i∈N

φi ◦ σ
i where φi :

AZ
→ AZ

x 7→ (φi (x( j))) j .

Note that the image of a finite configuration is always a finite configuration. In particular,
0 ∈A is a quiescent state, meaning that F(0Z)= 0Z, where 0Z denotes the constant-0
configuration.

We also define addition on abelian CAs by F + F ′ : x 7→ F(x)+ F ′(x).
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We say that F has commuting endomorphisms if the endomorphisms φi commute
pairwise. Supposing A to be a vector space over a finite field Fp turns out to be a source
of simple yet illustrative examples. As said above, we are particularly interested in the
non-commuting case. We will illustrate our results with the two representatives F2 and H2

defined over A= F2
2 by

F2(x)i =
(

0 1
1 0

)
· xi +

(
1 0
0 0

)
· xi+1,

H2(x)i =
(

1 0
0 0

)
· xi−1 +

(
0 1
1 0

)
· xi +

(
1 0
0 0

)
· xi+1,

where elements of A are seen as vectors and matrix notation is used to denote
endomorphisms of A.

2.1. CA acting on probability measures. Let M(AZ) be the space of probability
measures on the Borel sigma-algebra of AZ. In particular, we consider Mσ (AZ), the
subset of all σ -invariant measures. Here are a few examples that we mention throughout
the paper.
• Bernoulli measure. Take (βi )i∈A ∈ [0, 1]A such that

∑
i βi = 1. Let β be the usual

Bernoulli measure of parameters (βi ) on A. The Bernoulli measure of parameters
(βi ) on AZ is defined as µ=⊗Zβ: that is, each cell is drawn in an independent and
identically distributed manner and distributed as a Bernoulli measure. In other words,

for all u ∈A∗, µ([u])=
∏

0≤i<|u|

βui .

A particularly important example is the uniform Bernoulli measure on AZ, denoted
by λ, which is the Bernoulli measure of parameters (1/|A|)i∈A.

• Markov measure. Let (pi, j )i, j∈A be a non-negative matrix satisfying
∑

j pi j = 1 for
all i , and let (µi )i∈A be an eigenvector associated with the eigenvalue 1 (the choice
being unique if the matrix is irreducible). The associated two-step Markov measure is
defined as

for all u ∈A∗, µ([u])= µu0

∏
0≤i<|u|

pui ui+1 .

This can be extended to n-step Markov measures.
The weak-∗ topology on M(AZ) is metrizable. A possible metric is given by the

distance
dM(µ, ν)=

∑
k∈N

1
2k max

u∈A2k+1
|µ([u]−k)− ν([u]−k)|.

A CA (A, F) yields a continuous action on the space of probability measures M(AZ).

For any Borel set U, Fµ(U )= µ(F−1U ).

Given a subset X ⊆ N of natural numbers, its lower density is defined as
lim infn (|{i ∈ X, i ≤ n}|/n). We prove a diagonalization lemma for sequences of lower
density one, stating, informally, that the intersection of countably many sequences of lower
density one ‘eventually has lower density one’.
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LEMMA 1. Suppose that I is countable and, for all n ∈ I , Nn ⊂ N is a set with lower
density one. Then there there exists a set N ⊂ N of lower density one such that, for all
n ∈ I , N ∩ [k,∞)⊂ Nn ∩ [k,∞) for all large enough k.

Proof. We can assume that I = N. The intersection of finitely many sets of lower density
one has lower density one. Thus, we may assume that the Nn form a decreasing sequence
(with respect to inclusion) by replacing each Nn by N0 ∩ N1 ∩ · · · ∩ Nn .

Now let m0 = 0 and pick an increasing sequence of natural numbers (mn)n≥1 such that
|Nn ∩ [0, m)| ≥ m(1− 1/n) for all m ≥ mn , using the fact that Nn has lower density one.
Define N ∩ [mn−1, mn)= Nn ∩ [mn−1, mn) for all n. Then

|N ∩ [0, m)| = |N1 ∩ [0, m1)| + · · · + |N` ∩ [m`−1, m`)| + |N`+1 ∩ [m`, m)|

≥ |N` ∩ [0, m)|

≥m(1− 1/`),

where ` is maximal such that m` < m, and where the first inequality follows because the
Nn form a decreasing sequence under inclusion. �

Considering the iterated action of a CA on an initial measure µ, we distinguish various
forms of convergence.
• (F tµ)t∈N converges to ν if F tµ→ ν (for the weak-∗ convergence); equivalently,

F tµ([u])→ ν([u]) for every finite word u.
• (F tµ)t∈N converges in Cesàro mean to ν if (1/T )

∑T−1
t=0 F tµ→ ν; equivalently, if

(1/T )
∑T−1

t=0 F tµ([u])→ ν([u]) for every finite word u.
• (F tµ)t∈N converges in density to ν if there exists an increasing sequence (ϕ(t))t∈N of

lower density one such that Fϕ(t)µ→ ν; equivalently by Lemma 1, if for every finite
word u there exists an increasing sequence (ϕu(t))t∈N of lower density one such that
Fϕu(t)µ([u])→ ν([u]).

• (F tµ)t∈N converges on cylinders of support⊂ U to ν if µ(· |BU)→ ν(· |BU), where
BU is the Borel σ -algebra generated by the cylinders of support ⊂ U (this can be seen
as convergence of measures of M(AU)); equivalently, F tµ([u])→ ν([u]) for every
word u with supp(u)⊂ U.

Recall that, in a context where the alphabet is A, λ is the uniform Bernoulli measure
on AZ.

Definition 1. (Randomization) Let F :AZ
→AZ be a CA and let M⊂M(AZ) be a class

of initial measures.
F strongly randomizes M (respectively, in Cesàro mean, in density, on cylinders of

support U) if, for all µ ∈M, (F tµ)t∈N converges to λ (respectively, in Cesàro mean, in
density, on cylinders of support U).

PROPOSITION 1. Strong randomization implies all other forms of randomization, and
randomization in Cesàro mean is equivalent to randomization in density for σ -invariant
measures.

Proof. The first point is clear. The second point stems from the fact that the uniform
Bernoulli measure λ is an extremal point of Mσ (AZ) and that Mσ (AZ) is compact.
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We prove this point by contraposition. Assume that (F tµ)t∈N does not converge to λ in
density. Then there must exist some ε > 0 and some sequence (ϕ(t)) of upper density
α > 0 such that Fϕ(t)µ /∈ B(λ, ε), where B(λ, ε) is the open ball of radius ε centered on
λ (otherwise, for any n > 0, the set of times t with F tµ ∈ B(λ, 1/n) would be of density
one and, by Lemma 1, (F tµ)t∈N would converge to λ in density). Therefore there exists a
sequence of times (Ti )i∈N such that Ti/ϕ(Ti )→ α. Then

1
ϕ(Ti )+ 1

ϕ(Ti )∑
t=0

F tµ=
1

ϕ(Ti )+ 1

Ti∑
t=0

Fϕ(t)µ+
1

ϕ(Ti )+ 1

ϕ(Ti )∑
t=0

t /∈ϕ(N)

F tµ.

Let C be the convex hull of Mσ (AZ)\B(λ, ε). By compactness, this sequence
admits accumulation points that must be of the form αν + (1− α)η for some ν ∈ C
and η ∈Mσ (AZ). However, since λ is extremal in Mσ (AZ), λ /∈ C, so that λ 6= ν and
λ 6= αν + (1− α)η. In other words, the sequence ((1/(T + 1))

∑
F tµ)t∈N admits some

accumulation point which is not λ, and the proof is complete. �

2.2. Fourier theory.

Definition 2. (Character) A character of a topological group G is a continuous group
homomorphism G→ T1, where T1 is the unit circle group (under multiplication). Denote
by Ĝ the group of characters of G under elementwise multiplication.

The following result is well known (see, e.g., [4, Lemma 4.1.3]).

PROPOSITION 2. Any finite abelian group G is isomorphic to its dual Ĝ.

If A is a finite abelian group, ÂZ is in bijective correspondance with the sequences of
(Â)Z whose elements are all 1 except for a finite number. That is, χ ∈ ÂZ can be written
as χ(x)=

∏
k∈Z χk(xk), where all but finitely many elements are equal to one. In this

context, we call the elements of Â elementary characters.

Definition 3. Let χ ∈ ÂZ and (χi )i∈Z be its decomposition in elementary characters. The
support of χ is supp(χ)= {i ∈ Z : χi 6= 1}. Its rank is rank(χ)= |supp(χ)|.

Definition 4. (Fourier coefficients, or Fourier–Stieltjes transform) The Fourier coefficients
of a measure µ ∈M(AZ) are given by

µ̂[χ ] =

∫
AZ
χ dµ

for all characters χ ∈ ÂZ. For a character χ =
∏

k∈S χk (where S = supp(χ)), this can be
rewritten as a finite sum

µ̂[χ ] =
∑

u∈AS

∏
k∈S

χk(uk) · µ([u]S).

The Fourier coefficients of µ completely characterize it. They also behave well with
regard to convergence in (weak-*) topology.
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THEOREM 1. (Lévy’s continuity theorem) Let G be a locally compact abelian group and
let µ1, µ2, . . . µ∞ ∈M(G). Then

µn→ µ∞ in the weak-* topology ⇐⇒ for all χ ∈ Ĝ, µ̂n[χ ] → µ̂∞[χ ].

This theorem was first introduced in [15] (in French). It has been extended to locally
compact abelian groups in [20], and to more general settings which are out of the scope of
this article.

Definition 5. (Harmonically mixing measure) µ ∈M(AZ) is harmonically mixing if, for
all ε > 0, there exists R > 0 such that rank(χ) > R H⇒ µ̂[χ ]< ε.

Throughout this paper, we sometimes omit to specify the class of initial measures,
which is always the class of harmonically mixing measures.

PROPOSITION 3. Let A be any finite abelian group. Any Bernoulli or (n-step) Markov
measure on AZ with non-zero parameters is harmonically mixing.

This is in [22, Propositions 6 and 8 and Corollary 10].

3. Character-diffusivity

Let χ ∈ ÂZ and let F :AZ
→AZ be an abelian CA. Then χ ◦ F is a character

(composition of continuous group homomorphisms). One of the central ideas introduced
in [22] is to focus on the evolution of the rank of characters under the action of F in order to
establish randomization in density of harmonically mixing measures. They introduce the
following notion of diffusivity over characters. We call it character-diffusivity to clearly
distinguish it from the notion of diffusivity that we will introduce later.

Definition 6. (Character diffusion) Let F :AZ
→AZ be an abelian CA. We say that F

strongly diffuses a character χ ∈ ÂZ if rank(χ ◦ F t )→∞ and that it diffuses χ in density
if the convergence occurs along an increasing sequence of times of lower density one. We
say that F is strongly character-diffusive if it strongly diffuses every non-trivial character,
and we define character-diffusivity in density analogously.

Definition 7. A measure µ is strongly non-uniform if µ[χ ] 6= 0 for all characters χ ∈ ÂZ.

Example 1. A Bernoulli measure µ=⊗β whose parameters are all equal except one is
strongly non-uniform. Assume that β(a)= c for all a ∈A except for β(a′) 6= c. Let χk be
a non-trivial elementary character, i.e., a character of A.

µ[χk] =
∑
a∈A

β(a)χk(a)= (β(a′)− c)χk(0)+ c
∑
a∈A

χk(a)= β(a′)− c 6= 0

by hypothesis. It follows that, for every character χ =
∏

k χk , we have µ[χ ] =∏
k µ[χk] 6= 0, where we are using the fact that µ is a Bernoulli measure.
An example of a non-strongly non-uniform measure is any measure of the form λ× µ

on (A× B)Z, where λ is the uniform Bernoulli measure on AZ.

The following proposition completes [22, Theorem 12] by giving an equivalence
between character-diffusivity and randomization. It also shows that randomization is a
structural phenomenon, in the sense that it cannot happen on individual initial measures
without happening on a large class.
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Definition 8. A Bernoulli measure⊗β is non-degenerate if the support of β has non-trivial
intersection with at least two cosets of every proper subgroup of A.

PROPOSITION 4. Let F be an abelian CA. The following are equivalent:
(i) F is character-diffusive;
(ii) F randomizes the class of harmonically mixing measures;
(iii) F randomizes the class of non-degenerate Bernoulli measures; and
(iv) F randomizes some strongly non-uniform Bernoulli measure.
This equivalence holds for all three kinds of character-diffusivity and randomization:
that is, strong character-diffusivity/randomization, character-diffusivity/randomization
in density, and character-diffusivity for characters of support ⊂ U/randomization on
cylinders of support ⊂ U for any U⊂ Z.

Proof. (i)⇒ (ii) Assume that F is strongly character-diffusive. Let µ be a harmonically
mixing measure and let χ be any non-trivial character of AZ. Since F is strongly
character-diffusive, rank(χ ◦ F t ) −→

t→∞
∞. Since µ is harmonically mixing, it follows that

F tµ[χ ] = µ[χ ◦ F t
] −→

t→∞
0= λ[χ ]. Since this is true for any character χ , we have by

Lévy’s continuity theorem that F tµ −→
t→∞

λ.

For randomization in density, the proof is the same, where each convergence is taken
along a subsequence of upper density one.

For randomization for characters of support ⊂ U, the same argument shows that
F tµ[χ ] = µ[χ ◦ F t

] −→
t→∞

0= λ[χ ] for any non-trivial character χ with support in U.

There is a bijection between the characters of support ⊂ U and ÂU, and a conditional
measure µ(· | BU) can be seen as a measure of M(AU). Applying Lévy’s continuity
theorem to AU, it follows that F tµ(· |BU)→ λ(· |BU).

(ii)⇒ (iii): We prove that any non-degenerate Bernoulli measure µ=⊗β is harmonically
mixing. First note that, for any elementary character χ0 6= 1,

µ[χ0] =

∫
AZ
χ dµ=

∑
a∈A

χ0(a)β(a).

We claim that there exist a, b ∈A such that β(a), β(b) > 0 and χ0(a) 6= χ0(b). To see
this, let K ≤A be the kernel of χ0. Since χ0 6= 1, χ0(g) 6= 1 for some g ∈A, and thus
K <A. Then, by the assumption that β is non-degenerate, there exist a, b in the support
of β such that aK 6= bK . Thus β(a), β(b) > 0 and χ0(a) 6= χ0(b).

Now the existence of a, b shows that
∑

a∈A χ0(a)β(a) is a non-trivial convex
combination of points on the unit circle, so by the strict convexity of the unit circle, µ[χ0]

is a non-extremal point of the unit disk, that is, |µ[χ0]|< 1.
Define m =max{|µ[χ0]| : χ0 ∈ Â\1}< 1. For any character χ =

∏
i∈Z χi ,

|µ[χ ]| =

∣∣∣∣∏
i∈Z

µ[χi ]

∣∣∣∣≤ mrank(χ),

where the first equality comes from the fact that µ is a Bernoulli measure. This implies
that µ is harmonically mixing.
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(iii)⇒ (iv) See, e.g., the first measure in Example 1.

(iv)⇒ (i) Assume that F is not strongly character-diffusive and take a character χ 6= 1
such that rank(F t

◦ χ)9∞. This means that there exists C ∈ N and a subsequence ϕ
such that rank(χ ◦ Fϕ(t))≤ C . Since there is a finite number of elementary characters, we
have, for any strongly non-uniform Bernoulli measure µ,

|Fϕ(t)µ[χ ]| ≥ mC where m =min{|µ[χ0]| : χ0 ∈ Â}> 0.

Therefore F tµ[χ ]9 0, which implies that F tµ9 λ. We conclude by contraposition.
For randomization in density, carry out the same proof along a sequence of times with

positive upper density.
For randomization of cylinders of support⊂ U, we can carry out the same proof for any

character of support ⊂ U. �

Remark 1. The strongly non-uniform hypothesis is necessary to prevent the following kind
of counterexample. Take A= (Z/2Z)2, F ′ = F × Id, where F is a strongly randomizing
CA on (Z/2Z)Z (such as F2, as we prove later) and µ= ν × λ, where ν is any
harmonically mixing measure and λ is the uniform Bernoulli measure on (Z/2Z)Z. Then
F ′ strongly randomizes µ, but does not strongly randomize any measure whose second
component is non-uniform.

Definition 9. (Dependency function) To any abelian CA F :AZ
→AZ, we associate a

dependency function

for all (t, i) ∈ N× Z, 1F (t, i)=
{
A → A,
q 7→ F t (xq)i ,

where xq is the configuration worth q at position 0 and is 0 everywhere else.

Notice that, by linearity,

for all x ∈AZ and for all t ∈ N, F t (x)z =
∑
j∈Z

1F (t, z − j)(x j ), (1)

where only a finite number of terms are non-zero.
In the following lemma, we prove that the support of the image of a fixed character at

time t is entirely determined by the local dependency diagram.

LEMMA 2. Let F be an abelian CA, and let χ be a character whose support is included
in [0, m] for m ≥ 0. If there are (t1, z1) and (t2, z2) such that

for all z ∈ [0, m], 1F (t1, z1 + z)=1F (t2, z2 + z),

then
−z1 ∈ supp(χ ◦ F t1)⇔−z2 ∈ supp(χ ◦ F t2).
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Proof. By equation (1),

χ ◦ F t (x)=
∏
i∈Z

χi

(∑
j∈Z

1F (t, i − j)(x j )

)
=

∏
i∈Z

∏
j∈Z

χi ◦1F (t, i − j)(x j )

=

∏
j∈Z

(∏
k∈Z

χk+ j ◦1F (t, k)
)
(x j ),

where the last step is obtained by rewriting the sum: k = i − j . It follows that

−z1 ∈ supp(χ ◦ F t1)⇔
∏
k∈Z

χk−z1 ◦1F (t1, k) 6= 0

⇔

∏
k∈Z

χk−z2 ◦1F (t2, k) 6= 0

⇔−z2 ∈ supp(χ ◦ F t2),

where the second step uses the hypothesis of the lemma and the fact that χk−z1 = 0
whenever k − z1 /∈ [0, m]. �

Given an abelian CA F and t ∈ N, denote by d(t) the number of non-trivial
dependencies of F at time t by

d(t)= |{z ∈ Z :1F (t, z) 6= 0}| (the zero map).

Following [22, 23], we introduce isolated bijective dependencies which provide useful
lower-bounds on the rank of the image of characters under the action of F .

Definition 10. (Isolated dependency) For k ≥ 1, a k-isolated dependency is a pair
(t, z) ∈ N× Z such that:
(1) 1F (t, z) is a bijective dependency; and
(2) 1F (t, z + i)= 0 for 1≤ i ≤ k.
We denote by Sk(t) the set of k-isolated dependencies at time t (i.e., of the form (t, z)) and
sk(t)= |Sk(t)|.

This concept of k-isolated dependencies is also used in [24] to define dispersion mixing
measures and dispersive CAs. The main technique of [22] (proof of Theorem 15) and [23]
(V -separating sets) is essentially to use sk as a lower bound for the rank of characters under
the iteration of an abelian CA.

PROPOSITION 5. Let F be an abelian CA, let χ 6= 1 be a character and let k be the
diameter of supp(χ). Then

for all t ∈ N, sk−1(t)≤ rank(χ ◦ F t )≤ rank(χ) · d(t).

Proof. The rank being invariant by translation, we can suppose that supp(χ)⊂ [0, k − 1]
and that χ0 6= 1. By equation (1),

χ ◦ F t (x)=
k−1∏
i=0

∏
j∈Z

χi ◦1F (t, i − j)(x j )=
∏
j∈Z

( k−1∏
i=0

χi ◦1F (t, i − j)
)
(x j ).
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First,

j ∈ supp(χ ◦ F t )⇒ there exists i, χi ◦1F (t, i − j) 6= 1

⇒ there exists i ∈ supp(χ), 1F (t, i − j) 6= 0.

Therefore we get the upper bound rank(χ ◦ F t )≤ rank(χ) · d(t).
Second, if (t,− j) is k − 1-isolated, then j ∈ supp(χ ◦ F t ). Indeed,

(χ ◦ F t ) j =

k−1∏
i=0

χi ◦1F (t, i − j)= χ0 ◦1F (t,− j).

We deduce that sk−1(t)≤ rank(χ ◦ F t ). �

Example 2. By Propositions 4 and 5, having sk(t)−→t +∞ for all k is a sufficient
condition for randomization, but it is not necessary. For instance, take F ′ = F × (σ N

◦ F),
where F is any abelian CA that randomizes in density. By Corollary 1 below, F ′ is
randomizing in density. However, when N is large enough that F and σ N

◦ F have disjoint
neighborhoods, F ′ has no bijective dependency, and therefore sk(t)= 0 for all k and t .

On the other hand, having many bijective dependencies is not enough if they are not
well isolated. For example, one can check that H2 satisfies s1(t)= t − 2 but it is not
randomizing, as shown in §5.

4. Duality, diffusivity and solitons
In the last section, we saw that the iterated images of characters under the action of a CA
is key to understanding its action on probability measures. It turns out that the action of
abelian CAs on characters can be seen as a CA on the dual group, and that, furthermore,
this dual CA shares many properties with the original CA.

Remember that any character χ of ĜZ can be written as a finite product of cellwise
(elementary) characters: i.e., χ(x)=

∏
z∈N χz(xz) for some finite set N ⊂ Z and χz ∈ Ĝ.

To such a χ , we associate 9(χ), the configuration of ĜZ defined by

9(χ)(z)=

{
χz if z ∈N ,
1 otherwise.

Note that 9(ĜZ) is exactly the set of finite configurations of ĜZ.

Definition 11. (Dual CA) Let F be an abelian CA over GZ. It can be written as

F(x)z =
∑
i∈N

φi (xz+i ),

where N ⊂ Z is finite and φi are endomorphisms of G. We define F̂ over the finite
configurations of ĜZ by

F̂(9(χ))=9(χ ◦ F).

Since F̂ is uniformly continuous and shift-invariant on finite configurations, it can be
extended by continuity to a cellular automaton ĜZ

→ ĜZ; this is the dual CA of F , and is
an abelian CA for the group (Ĝ,×).
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More concretely, if χ(x)=
∏

z∈A χz(xz), then

F̂(9(χ))=

{
xz 7→

∏
i∈N χz−i (φi (xz)) if z ∈ A +N ,

1 otherwise.

Then, for any c ∈ ĜZ, we can define

F̂(c)z =
∏
i∈N

γi (cz−i ), (2)

where γi is the endomorphism of Ĝ defined by

γi (χ)= g 7→ χ ◦ φi (g).

When G = Fd
p, the dual of a CA is obtained (up to conjugacy) by applying a mirror

operation and transposing the matrix corresponding to each coefficient. Indeed, the map

G→ Ĝ
a 7→ χa

where χa : b ∈A 7→ e(2iπ/p)〈a,b〉,

where 〈a, b〉 denotes the scalar product of a and b seen as d-dimensional vectors,
is an isomorphism. Through that isomorphism, we have that χa ◦ M = χM t a for any
endomorphism M :A→A, and the result comes from equation (2).

In particular, our examples F2 and H2 are flip conjugate to their own dual since all their
coefficients are symmetric matrices. H2 is actually conjugate to its dual since it is left-right
symmetric.

We do not know whether an abelian CA F is always flip conjugate to its dual F̂ ;
however, we show in the remainder of this section that they are dynamically close enough
that properties like randomization or diffusion are preserved by duality.

LEMMA 3. Let 81 and 82 be two abelian CA over GZ. Then 8̂1 ◦82 = 8̂2 ◦ 8̂1. As a
consequence:
• F̂ t = (F̂)t for any t > 0;
• F̂ ◦ σ = F̂ ◦ σ−1; and
• if F is reversible, then F̂ is also reversible and F̂−1 = (F̂)−1.
Furthermore, ̂̂F = F up to a canonical isomorphism.

Proof. By definition of dual CAs, for any χ ∈ ĜZ,

8̂1 ◦82(9(χ))=9(χ ◦81 ◦82)= 8̂2(9(χ ◦81))= 8̂2 ◦ 8̂1(9(χ)).

Since 9(ĜZ) is dense in ĜZ, we deduce that 8̂1 ◦82 = 8̂2 ◦ 8̂1 on the whole space.

For the last point, it is well known that ̂̂GZ ' GZ through the canonical isomorphismψ :

g 7→ (χ 7→ χ(g)) (see, e.g., [4, Lemma 4.1.4]). Then we check that ̂̂F : ψ(g) 7→ ψ(g) ◦
F̂ = ψ(F(g)), so that ̂̂F ' F up to this isomorphism. �

In the following two technical lemmas and in the remainder of the section, we stress
when our results do not require the CA to be abelian, even though we will only apply them
to abelian CAs.
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LEMMA 4. Let F be a CA with quiescent state zero. Then for any finite configuration x,
rank(F(x))≤ |N | · rank(x).

In particular, if F is abelian and χ is a character, then rank(χ ◦ F)≤ |N | · rank(χ).

Proof. Since zero is quiescent, the only non-zero cells in F(x) belong to supp(x)+N .
It follows that rank(F(x))≤ |N | · rank(x). The second statement follows by applying the
result to F̂ , noticing that F and F̂ have the same neighborhood size by equation (2). �

The converse lemma holds for reversible CAs.

LEMMA 5. Let F be a reversible CA with quiescent state zero. There exists a constant
C > 0 such that, for any finite configuration x, rank(F(x))≥ C · rank(x).

In particular, if F is abelian, there exists C > 0 such that rank(χ ◦ F)≥ C · rank(χ)
for any character χ .

Proof. Apply Lemma 4 on F−1. The second point uses the last point of Lemma 3. �

Definition 12. A CA F with a quiescent state zero is strongly diffusive (respectively,
diffusive in density) if, for any finite configuration c, we have rank(F t (c))→∞
(respectively, on a subsequence of density one).

LEMMA 6. An abelian CA F is strongly character-diffusive (respectively, character-
diffusive in density) if and only if F̂ is strongly diffusive (respectively, diffusive in density).

Proof. F̂(9(χ))=9(χ ◦ F) and rank(χ)= rank(9(χ)). �

Definition 13. (Soliton) Let F be an abelian CA. A soliton is a finite configuration c 6= 0
such that F p(c)= σ q(c) for some p ≥ 1 and q ∈ Z.

Intuitively, having a soliton is the opposite of being diffusive (even in density). In the
remainder of the section, we will develop this intuition and prove a series of technical
results about solitons that will culminate in the characterization of randomization in density
in the next section.

First note that all the configurations in the orbit of a soliton have bounded rank.
Conversely, we can extract a soliton from any orbit of finite configurations whose rank
is bounded on a set of time steps of positive density.

PROPOSITION 6. Let F :AZ
→AZ be a surjective CA with a quiescent state zero. Assume

that F is not diffusive in density. Then F admits a soliton.

Proof. There is a finite initial configuration x and an increasing sequence (Tn)n∈N of
positive upper density such that rank(FTn (x)) is bounded. Without loss of generality,
assume that rank(FTn (x))= k for all n. Denote by i1(Tn), . . . , ik(Tn) the non-zero
coordinates at time Tn .

Now let m ∈ {1, . . . , k} be the maximum integer such that there exists an integer M
such that the subsequence

(Tϕ(n))n∈N = {n ∈ N : im(Tn)− i1(Tn)≤ M}
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FIGURE 2. The finite configuration defined by w is a soliton.

has positive upper density. In particular, (Tϕ(n))n∈N has positive upper density. We
distinguish two cases.

m = k: FTϕ(n)(x)[i1(Tϕ(n)),ik (Tϕ(n))] can take at most |
⋃M

j=0 A j
| =

∑M
j=0 |A| j different

values. By the pigeonhole principle, we can find two integers a < b such that

FTϕ(a)(x)[i1(Tϕ(a)),ik (Tϕ(a))] = FTϕ(b)(x)[i1(Tϕ(b)),ik (Tϕ(b))].

But this means that FTϕ(b)(x)= σ i1(Tϕ(b))−i1(Tϕ(a)) ◦ FTϕ(a)(x), so we have found a soliton.
m < k: First, by the same argument as above, FTϕ(n)(x)[i1(Tϕ(n)),im (Tϕ(n))] can only take a

finite number of values, so at least one of these words appear with positive density. Denote
by w the corresponding word and by (Tϕ′(n))n∈N the corresponding subsequence. We now
prove that the configuration

· · · 0 · 0 · 0 · w · 0 · 0 · 0 · · ·

is a soliton.
Take N ∈ N such that 1/N is a lower bound on the density of (Tϕ′(n))n∈N and let

r be the radius of F . By construction of m, the times Tϕ′(n), where im+1(Tϕ′(n))−
im(Tϕ′(n))≤ 2r N , have upper density zero. Therefore we extract from the sequence
(Tϕ′(n))n∈N a new subsequence (Tϕ′′(n))n∈N corresponding to times t , where im+1(t)−
im(t) > 2r N with the same upper density. In particular, we can find some n such that
T = Tϕ′′(n+1) − Tϕ′′(n) ≤ N .

As shown in Figure 2, only two disjoint areas can contain non-zero values in
FTϕ′′(n+1)(x):
• the interval [i1(Tϕ′′(n))− rT, im(Tϕ′′(n))+ rT ], which contains f T (02rT

· w · 02rT );
and

• the interval [im+1(Tϕ′′(n))− rT, ik(Tϕ′′(n))+ rT ], which contains f T (02rT
·

FTϕ′′(n)(x)[im+1(Tϕ′′(n)),ik (Tϕ′′(n))] · 0
2rT ).

Indeed, any cell outside these regions can be written as f T (02rT+1)= 0 since zero is
quiescent. Consider the different possibilities for the value of i1(Tϕ′′(n+1)).
• If i1(Tϕ′′(n+1)) < i1(Tϕ′′(n))− rT , then FTϕ′′(n+1)(x)i1(Tϕ′′(n+1))

= f T (02rT+1)= 0
which is a contradiction.
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• If i1(Tϕ′′(n+1)) > i1(Tϕ′′(n))+ rT , then FTϕ′′(n)(x)[i1(Tϕ′′(n))±rT ] is a non-zero word
whose image under f T is zero. This means that F is not preinjective (two different
configurations that differ on a finite subset of cells have the same image), so by the
Garden-of-Eden theorem [3, 10] it is not surjective, which a contradiction.

Therefore i1(Tϕ′′(n+1)) ∈ [i1(Tϕ′′(n))± rT ]. In particular, the interval I = [i1(Tϕ′′(n))−
rT, im(Tϕ′′(n))+ rT ] contains all i`(Tϕ′′(n+1)) for `≤ m. Using a similar argument,
im+1(Tϕ′′(n+1)) ∈ [im+1(Tϕ′′(n))± rT ], so that I does not contain any i`(Tϕ′′(n+1)) for
` > m.

From this we conclude that, for some constant C ,
FT (02rT

· w · 02rT )= 0C
· w · 02rT−C

and therefore we have found a soliton. �

The remainder of this section is dedicated to proving the following proposition.

PROPOSITION 7. Let F be an abelian CA. Then F has a soliton if and only if F̂ has a
soliton.

To prove this proposition, we need a series of lemmas. For an abelian CA F , a finite
fixed point is just a fixed point that is also a finite configuration. A finite fixed point is
non-trivial if it is not the configuration everywhere equal to zero.

LEMMA 7. Let F be an abelian CA and denote by X F the set of spatially periodic fixed
points

X F,n = {x : σ n(x)= x and F(x)= x}, X F =
⋃

n

X F,n .

F has a non-trivial finite fixed point if and only if X F is infinite. In this case, we actually
have |X F,n| = 2�(n).

Remark 2. This remark holds in dimension d if one replaces the infiniteness assumption
by |X F,n| = 2�(n

d ).

Proof. First suppose that F(x)= x , where x is a non-trivial finite configuration, and
denote by u a finite word containing the non-zero part of x . Let r be the radius of F
and let k = |u| + 2r . Consider the set of finite words

Wn =

w ∈An
: and

for all i, 0≤ i <
⌊

n
k

⌋
⇒ w[ki,k(i+1)−1] = 0k or w[ki,k(i+1)−1] = 0r u0r

wk·bn/kc,n = 0

.
Any periodic configuration made of concatenated copies of some word in Wn (except

for 0n) is a non-trivial fixed point and |Wn| = 2bn/kc. Therefore |X F,n| = 2�(n).
Conversely, suppose that X F is infinite. Then, since X F,n ⊂ X F,kn for k ∈ N+, n 7→

|X F,n| is not bounded from above. For some n, X F,n must contain at least two distinct
configurations x1 and x2 such that x1|[1,r ] = x2|[1,r ] and x1|[n−r+1,n] = x2|[n−r+1,n] by the
pigeonhole principle. It follows that the configuration

x : z ∈ Z 7→

{
0 if z ≤ 0 or z > n,

x1(z)− x2(z) otherwise
is a non-trivial finite fixed point. �
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LEMMA 8. Let G be an abelian group. For any endomorphism h : G→ G, define its dual
ĥ by ĥ(χ)= χ ◦ h for any character χ ∈ Ĝ. Then |ker(h)| = |ker(̂h)|.

Proof. We have χ ∈ ker(̂h)⇔ χ ◦ h = 1⇔ Im(h)⊂ ker(χ). Therefore the restriction

χ 7→ χ |(G/Im h)

is a bijection between ker(̂h) and ̂(G/Im h). Since | ̂(G/Im h)| = |G/Im h| = |ker h| by
Proposition 2, the proof is complete. �

LEMMA 9. Let F be an abelian CA over alphabet G. F has a non-trivial finite fixed point
if and only if F̂ has a non-trivial finite fixed point.

Proof. For any n ∈ N with n ≥ 1, let hn be the endomorphism of Gn defined as follows.
For any u ∈ Gn , let xu

∈ GZ be the (spatially) periodic point of period u, i.e., xu
i =

ui mod n for all i . For each u ∈ Gn , define

hn(u)= (F(xu)− xu)[0,n−1].

hn captures the action of the CA F − Id on spatially periodic configurations of period n.
In particular, |ker(hn)| = |X F,n|. Now consider its dual ĥn , which is an endomorphism of
Ĝn = (Ĝ)n . For any χ =

∏
1≤i≤n χi ,

ĥn(χ) : u 7→
n∏

i=1

χi (F(xu)− xu)i =

n∏
i=1

χi ◦ F(xu)i · (χi (xu)i )
−1

= (F̂(xχ ) · x1/χ )(xu)

by definition of F̂ , and where again we define the periodic point xχ ∈ ĜZ by xχi =
χi mod n . Therefore |ker(ĥn)| = |X F̂,n|, similarly as above.

Now, by Lemma 8, we have |ker(hn)| = |ker(ĥn)| and therefore |X F,n| = |X F̂,n|. We
conclude by Lemma 7. �

Proof of Proposition 7. Suppose that F has a soliton x , that is, F p(x)= σ q(x) for p ≥ 1
and q ∈ Z. Then x is a finite fixed point for the abelian CA σ−q

◦ F p. By Lemma 9, we
deduce that ̂σ−q ◦ F p also has a finite fixed point y. Using Lemma 3, we can rewrite this
as (F̂)p(y)= σ−q(y), which shows that y is actually a soliton of F̂ .

Applying the same reasoning, a soliton in F̂ implies a soliton in ̂̂F , and ̂̂F = F up to a
canonical isomorphism by Lemma 3. �

Example 3. Note that the smallest solitons of F and F̂ need not be of the same size. For
example, consider the CA F defined over the alphabet F2

2 by

F(x)z =
(

1 1
0 1

)
· xz +

(
0 0
0 1

)
· xz+1.

F acts like the identity on any configuration whose second components are all zero. In
particular, it admits solitons of rank one. However, its dual, obtained up to conjugacy by
mirroring and transposing the coefficients,

F̂(x)z =
(

0 0
0 1

)
· xz−1 +

(
1 0
1 1

)
· xz,
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has no soliton of rank one. Indeed, take any finite configuration x supported in [i, j] for
i ≤ j and such that xi 6= 0, x j 6= 0. Notice that

F(x)i =
(

(xi )1

(xi )1 + (xi )2

)
6= 0 and F(x) j+1 =

(
0

(x j )2

)
.

In particular, if (x j )2 6= 0, then x cannot be a soliton.
Now take any finite x of rank one, assuming that x0 6= 0. If (x0)2 6= 0, then x is not a

soliton by the previous argument. If (x0)2 = 0, then F̂(x) is a finite configuration of rank
one such that F̂(x)0 =

(
(x0)1
(x0)1

)
and is not a soliton.

Finally, it is easy to check that the configuration

y = · · ·
(

0
0

) (
0
1

) (
1
0

) (
0
0

)
· · ·

is a fixed point, and therefore a soliton, of F̂ .

5. Characterization of randomization in density
We are now ready to prove our first main result, which is a combinatorial characterization
of randomization in density by the absence of solitons.

THEOREM 2. Let F be an abelian CA. The following are equivalent:
(i) F randomizes in density any harmonically mixing measure;
(ii) F has no soliton;
(iii) F is diffusive in density; and
(iv) for some strongly non-uniform Bernoulli measure µ, the sequence (F tµ)t∈N admits

λ as an accumulation point.

Proof. Write the dual claims of (i), (ii), (iii) and (iv) for F̂ as ( j), ( j j), ( j j j), ( jv),
respectively. Then

(i)
Prop. 4
⇐⇒ ( j j j)

Prop. 6
⇐⇒ ( j j)

Prop. 7
⇐⇒ (ii)

Prop. 6
⇐⇒ (iii),

so the first three claims are equivalent, and are also equivalent to ( j j). Moreover, it is
clear that (i)⇒ (iv). We prove that (iv)⇒ ( j j). Suppose that ( j j) does not hold, and let
χ ∈ ĜZ be a soliton for F̂ . Solitons are finite non-zero configurations, so we can consider
χ ∈ ĜZ to be a non-trivial character satisfying that rank(F̂ t (χ)) is bounded from above
by some m. Since µ is strongly non-uniform and Bernoulli, there exists ε > 0 such that
µ[χ ′] ≥ εrank χ ′ . In particular, F tµ[χ ] = µ[F̂ t (χ)] ≥ εm for all t . Since λ[χ ] = 0, F tµ[χ ]

does not have λ as an accumulation point. �

Before giving some general consequences of this theorem and applying it to the
commutative case, we will use it on our examples.

Example 4. The CA H2 admits a soliton

· · ·

(
0
0

) (
0
1

) (
1
0

) (
0
0

)
· · ·

and therefore it is not randomizing in density.
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FIGURE 3. The direction of time is upward. (a) Any three cells in these relative positions in the space–time
diagram of F2 sum to zero (cancelling shape). (b) The space–time diagram of a soliton is zero except around a

space–time line, and we can always position a cancelling shape that does not sum to zero.

On the contrary, we show that F2 has no soliton and therefore is randomizing in density
(it is actually strongly randomizing; see §6.2). This is an alternative proof to the result
of [17], where it was proved through a delicate analysis of F2 using binomial coefficients
and Lucas’ lemma. Our proof is illustrated in Figure 3. It is easy to show by induction that

for all c ∈AZ for all n ∈ N for all z ∈ Z, F2n+1

2 (c)z + F2n

2 (c)z+2n + cz = 0 mod 2.

Suppose, by contradiction, that F2 has a soliton c such that F p(c)= σ q(c). Therefore
there is a constant M such that any non-zero cell of the space–time diagram (F t (c))t∈N
is at horizontal distance of at most M of the real line L = {(z, t) : pz + qt = 0}. In other
words, F t (c)z 6= 0⇒ |pz + qt |< pM . Now take n such that 2n > 2M and any |z| ≤ M
and distinguish these three cases.
q = 0 : Since |z − 2n

|> M , we have cz−2n = 0 and F2n+1

2 (c)z−2n = 0, so that F2n

2 (c)z = 0.
This is true for every z such that |z| ≤ M , so F2n

2 (c)= 0, which is a contradiction.
q =−p : Assume that p =−q = 1. cz+2n+1 = 0 and F2n

2 (c)z+2n+1+2n = 0, so that
F2n+1

2 (c)z+2n+1 = 0. At time 2n+1, this applies to every z such that |p(z + 2n+1)−

q(2n+1)| = |z| ≤ M , so F2n+1

2 (c)= 0, which is a contradiction.
Otherwise: F2n+1

2 (c)z = F2n

2 (c)z+2n = 0 when n is large enough, so that cz = 0 for all
|z| ≤ M , which is a contradiction.

Definition 14. (Positive expansiveness) A CA is positively expansive if there is some finite
W ⊆ Z such that, for any pair of distinct configurations x, y ∈AZ,

there exists t ∈ N there exists z ∈W, F t (x)z 6= F t (y)z .

More generally, for α ∈ R, we say that F is positively expansive in direction α if there is
some finite W ⊆ Z such that, for any pair of distinct configurations x, y ∈AZ,

there exists t ∈ N there exists z ∈W, F t (x)z+dαte 6= F t (y)z+dαte.
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See [6, 25] for further developments on directional dynamics in CAs.
In the next result, for a CA F :AZ

→AZ and a subalphabet B ⊂A such that F(BZ)⊆
BZ, the corresponding subautomaton of F is F ′ = F |BZ .

COROLLARY 1. Let F and G be abelian CA. Then:
• if F and G are randomizing, then so is F × G;
• if F is randomizing, then so are all its subautomata;
• if F is randomizing and reversible, then so is F−1; and
• if F has a direction of positive expansivity then it is randomizing,
where randomizing means randomizing in density any harmonically mixing measure.

Proof. This corollary follows from Theorem 2 by the following elementary observations
on solitons.
• A soliton in F × G implies a soliton in either F or G.
• A soliton in a subautomaton of F is a soliton for F .
• A soliton for F−1 is a soliton for F .
• A positively expansive CA cannot admit a soliton. Indeed, take a CA F with a direction

of positive expansiveness α and assume, for the sake of contradiction, that it admits a
soliton c: F p(c)= σ q(c). For any finite W ⊂ Z, take the two distinct configurations
x = 0 and y = σ k(c) for |k| large enough and sign(k)= sign(q/p − α), and check that
F t (x)z+dαte = F t (y)z+dαte = 0 for every t ∈ N and z ∈W . �

Remark 3. A CA with local rule f :Am
→A is bipermutive if m ≥ 2 and the maps

x 7→ f (x, a1, . . . , am−1) and x 7→ f (a1, . . . , am−1, x) are permutations of A for any
a1, . . . , am−1 ∈A. Since bipermutivity implies the existence of a direction of positive
expansivity [2], the above corollary implies that any bipermutive abelian CA randomizes
in density any harmonically mixing measure. This generalizes [23, Theorem 9], where the
authors consider abelian CA of the form

F =
∑
i∈N

φi ◦ σ
i ,

where |N | ≥ 2 and φi are commuting automorphisms. We do not need this hypothesis
here, and, for instance, we prove that the following CA over F2

2 is randomizing in density:
i.e.,

F(c)z =
(

1 1
0 1

)
· cz +

(
1 0
1 1

)
· cz+1.

6. Other forms of randomization
In this section, we consider other forms of randomization that have been less studied
in the literature. First, we prove that, in the case of abelian CAs whose coefficients
are commuting endomorphisms, only randomization in density can happen. Then we
provide examples of abelian CAs that exhibit strong randomization and randomization
for cylinders up to some fixed length.
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6.1. Abelian CAs with commuting coefficients. The case of abelian CAs with
commuting coefficients is in many regards similar to the case of scalar coefficients. These
CAs have more rigidity in their time evolution than general abelian CAs: the image of a
single cell at time t can be determined directly through the use of the binomial theorem
and modular arithmetic of binomial coefficients. In particular, when t is some power of the
order of the group, the number of bijective dependencies is bounded, which explains why
these CAs cannot randomize strongly.

LEMMA 10. Let p be a prime number and let l ≥ 0. Let (X ,+,×) be a commutative ring
of characteristic pl , i.e., such that, for any X ∈ X ,

pl
· X = 0,

where 0 is the neutral element for +.
Then, for any n ≥ 0 and any elements X i ∈ X , 1≤ i ≤ k, we have, in X ,( k∑

i=1

X i

)pn+l−1

=

( k∑
i=1

X pn

i

)pl−1

.

Proof. First, by the binomial theorem,( k∑
i=1

X i

)pn

=

(
X1 +

k∑
i=2

X i

)pn

= X pn

1 +

( k∑
i=2

X i

)pn

+ p · Y

for some Y because, by Kummer’s theorem, p divides
(pn

i

)
for 0< i < pn . By a direct

induction, we deduce that ( k∑
i=1

X i

)pn

=

k∑
i=1

X pn

i + p · Y ′

for some Y ′. Now, applying the binomial theorem again, we get( k∑
i=1

X i

)pn+l−1

=

( k∑
i=1

X pn

i + p · Y ′
)pl−1

=

( k∑
i=1

X pn

i

)pl−1

+

pl−1∑
j=1

(
pl−1

j

)
· p j
· (Y ′) j

·

( k∑
i=1

X pn

i

)pl−1
− j

=

( k∑
i=1

X pn

i

)pl−1

+ pl
· Z

because, by Kummer’s theorem, pl divides
(pl−1

j

)
· p j for any 1≤ j ≤ p. Then the desired

equality is shown since pl
· Z = 0. �

Now we prove that abelian CAs cannot randomize strongly and cannot randomize some
cylinders without randomizing in density.
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THEOREM 3. There is no strongly randomizing abelian CA with commuting
endomorphisms. Moreover, for any abelian group G, there exists an N ∈ N such that, for
any abelian CA F over G with commuting endomorphisms, the following are equivalent:
(i) F randomizes in density;
(ii) rank(F N (c))≥ 2 for any finite configuration c of rank one; and
(iii) F randomizes in density on cylinders of length one,
where, as usual, the class of initial measures is the set of harmonically mixing measures.

Proof. If p is a prime number, a p-group is a group G ′ where the order of every element
g ∈ G ′ is a power of p. By the decomposition theorem for finite abelian groups, they can
be written as a direct product of finite p-groups for distinct primes p. Using this fact
together with Corollary 1, it is enough to consider the case where G is a p-group (because
an abelian CA on G1 × G2, where G1 and G2 have relatively prime orders, is a Cartesian
product of abelian CAs on G1 and G2, respectively).

As usual, we write F as
F =

∑
i∈N

φi ◦ σ
i .

Consider the commutative ring generated by the φi and the shift map under addition and
composition. This ring has characteristic pl for some l because we considered a p-group
as the alphabet. By Lemma 10, we get

for all n ∈ N, F pn+l−1
=

(∑
i∈N

(φi )
pn
◦ σ i pn

)pl−1

=

∑
j∈N ′

(γ j )
pn
◦ σ j pn

, (3)

where
N ′ = {n1 + · · · + n pl−1 : ni ∈N }

and each γ j is a sum of compositions of some φi that do not depend on n. The number
of terms in the right-hand expression is bounded independently of n, so the number of
dependencies of F t is bounded on an infinite sequence of times and so F cannot be
strongly randomizing by Proposition 5 (it cannot even strongly randomize cylinders of
size one).

For the second part of the proposition, consider N = pn0+l−1 for some n0 such that
pn0 > |G|. This choice of N guaranties that, for any endomorphism h of G, we have
ker(h pn0

)= ker(h pn
) for any n ≥ n0 (because the sequence ker(hi ) increases strictly until

it stabilizes). We have the following alternatives.
(a) There is c of rank one such that rank(F N (c))= 0. In particular, F is not surjective.

We claim that there is some g ∈ G such that F−t ([g]) is empty for any large enough t .
From the claim, we deduce that F does not randomize cylinders of length one starting
from the uniform Bernoulli measure. We now prove the claim. Suppose that F−t ([g])
is never empty, whatever g and t . Then consider any finite word g1 · · · gk and take n
large enough so that pn > k. By equation (3) and by choice of n, we get that, for any
configuration c, F pn+l−1

(c)i depends only on c|i+Vn , where Vn ⊆ Z is such that 1+ Vn ,
2+ Vn, . . . , k + Vn are two-by-two disjoint sets. Therefore, from the assumption that
F−pn+l−1

([gi ]) 6= ∅ for any 1≤ i ≤ k and by linearity of F , we deduce that there is some c
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with F pn+l−1
(c) ∈ [g1 · · · gk]. Since the choice of g1 · · · gk was arbitrary, we proved that

F is surjective, which is a contradiction.
(b) rank

(
F N (c)

)
> 0 for any c of rank one, but there is d of rank one such

that rank(F N (d))= 1. By equation (3), there is some g ∈ G and a j ∈N ′ such that
g 6∈ ker(γ pn0

j ) but g ∈ ker(γ pn0

j ′ ) for all j ′ 6= j . As said before, the choice of n0 ensures

that, for any n ≥ n0, we have g 6∈ ker(γ pn

j ) but g ∈ ker(γ pn

j ′ ) for all j ′ 6= j . Hence, using

the formula for F pn+l−1
, we deduce that rank(F pn+l−1

(d))= 1 for any n ≥ n0. In that case,
F admits a soliton of size one.

(c) For any c of rank one, rank(F N (c))≥ 2. For the same reason as in the previous case,
we deduce that rank(F pn+l−1

(c))≥ 2 for any n ≥ n0. But equation (3) above shows that
the non-zero cells in F pn+l−1

(c′) belong to the set N ′n = { j pn
: j ∈N ′} for any c′ of rank

one. We deduce that, for any d of rank m and n large enough, F pn+l−1
(d) contains two

non-zero cells distant from each other by at least pn
− m cells. Therefore F does not have

any soliton and it randomizes harmonically mixing measures in density by Theorem 2.
To summarize, we have (c)⇒ (i), while (a) and (b) are both incompatible with (i). Since

(c) corresponds to (ii), we have shown that (i)⇔ (ii)(⇔ (c)). Since, clearly, (i)⇒ (iii),
we now prove that (iii)⇒ (c).

If F randomizes in density on cylinders of length one, then F is character-diffusive
on characters or rank one (by Proposition 5) which means that F̂ has no soliton of size
one. It is straightforward to check by equation (2) that an abelian CA with commuting
endomorphisms has a dual with commuting endomorphisms, and therefore the above
alternative (a)/(b)/(c) applies also to F̂ . In other words, F̂ satisfies (c), which implies that
it admits no solitons. This means, in turn, that F must satisfy (c) as well. The theorem
follows. �

Remark 4. In [23] the authors consider abelian CAs with integer coefficients (i.e.,
endomorphisms of the form a 7→ n · a); such a CA is called proper if, for any prime
divisor p of the order of the alphabet, there are at least two coefficients not divisible by p.
Theorem 6 of [23] shows that proper CAs are randomizing in density. This is a particular
case of the above theorem. Indeed, if F is proper and taking N from the theorem, it is easy
to check that F N is proper and that this is equivalent to rank(F N (c))≥ 2 for any finite
configuration of rank one.

6.2. Strong randomization. We now give examples of strongly randomizing abelian
CAs. They are all defined over the alphabet A= Z2

p, where p is a prime number. In this
section, we denote by π1 and π2 the projections on the first and second component of the
alphabet, respectively.

We also denote by n · g = g + · · · + g︸ ︷︷ ︸
n times

and 0 the neutral element of the group (AZ,+)

(i.e., the configuration everywhere equal to (0, 0)).

LEMMA 11. If two abelian CAs F and G over AZ commute, then, for any n ≥ 0,

(F + G)pn
= F pn

+ G pn
.

https://doi.org/10.1017/etds.2018.75 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.75


946 B. Hellouin de Menibus et al

Proof. Due to the structure of the group A= Z2
p, for any configuration c ∈AZ, we have

p · c = 0. Therefore, for any CA F , we have that p · F is the constant map equal to 0.
Now, from the binomial formula and from the fact that p divides

(p
n

)
for any 1< n < p,

we deduce that
(F + G)p

= F p
+ G p.

The lemma follows by an easy induction. �

Extending example F2 from §2, we now consider, for each prime p ≥ 2 and all c ∈AZ,

Fp(c)z = (π1(cz+1)+ π2(cz), π1(cz)),

G p(c)z = (π1(cz+1)+ π1(cz)+ π2(cz), π1(cz)).

In the remainder of the section, we prove that Fp and G p are strongly diffusive for any
prime p ≥ 2.

These CAs are reversible and are, in fact, also time symmetric, i.e., the product of two
involutions [8]. For instance the inverse of Fp is

F−1
p (c)z = (π2(cz), π1(cz)− π2(cz+1)).

Since they are reversible, we extend their dependency diagrams to negative times, which
means that 18(t, z) is defined for any (t, z) ∈ Z2, where 8 denotes Fp or G p.

Note that both Fp and its inverse can be defined with neighborhood {0, 1}. The same is
true for G p.

LEMMA 12. For any n ≥ 0, any t ∈ Z and any z ∈ Z,

1Fp (2pn
+ t, z)=1Fp (p

n
+ t, pn

+ z)+1Fp (t, z),

1G p (2pn
+ t, z)=1G p (p

n
+ t, pn

+ z)+1G p (p
n
+ t, z)+1G p (t, z).

Proof. First, it is straightforward to check that F2
p = (σ ◦ Fp)+ I (where I denotes

the identity map over AZ). Hence, using Lemma 11, we get the identity
F2pn

p = (σpn ◦ F pn

p )+ I . For every configuration c, t ∈ Z and z ∈ Z, we have
F2pn

+t
p (c)z = F pn

+t
p (c)pn+z + cz , which proves the Lemma.

The same proof applies to 1G p . �

LEMMA 13. Let 8 be either Fp or G p. For any t ∈ Z:
(1) 18(t, z) is the constant map equal to (0, 0) when z > 0 or z <−|t |; and
(2) 18(t, 0) is a bijection.

Proof. First, both8 and8−1 have neighborhood {0, 1}. So the first item is straightforward
by induction.

Second, by definition, 18(0, 0) is a bijection. We can check that

1Fp (1, 0) : (g, h) 7→ (h, g), 1G p (1, 0) : (g, h) 7→ (g + h, g),

1G p (2, 0) : (g, h) 7→ (h, g + h),

which are bijections. Applying Lemma 12 with n = 0, we get, by straightforward
induction, that 1Fp (t + 2, 0)=1Fp (t, 0) and 1G p (t + 3, 0)=1G p (t, 0). We have
proved the second item. �
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FIGURE 4. A representation of 1F2 (i, t) for i ∈ Z and t ∈ N. The direction of time is upward. Thick blue lines
indicate triangular zones T4,0 and its translations by ( j · 24,− j · 24) for j = 1, 2.

Much of the structure of18 can be understood when focusing on particular ‘triangular’
zones of Z2 at various scales. For k ≥ 0 and n large enough so that pn

− k > k, we define
the corresponding zone as

Tn,k = {(t, z) : k < t < pn
− k and − t < z < k}.

LEMMA 14. Let8 be either Fp or G p. Let k ≥ 0 and let n be such that pn
− k > k. Then,

for any (t, z) ∈ Tn,k and any j ≥ 1,

18(t, z)=18(t + j · pn, z − j · pn).

In particular, if χ is a character whose support is of diameter at most k, then, for any t
with k < t < pn

− k,

rank(χ ◦8t+ j ·pn
)≥ rank(χ ◦8t )+ 1.

The lemma is illustrated in Figure 4.

Proof. For the first assertion consider some (t, z) ∈ Tn,k . From Lemma 13, we have
that both 18(t − pn, z − pn) and 18(t, z − pn) are the constant map equal to (0, 0).
Therefore the following identities obtained from Lemma 12, i.e.,

1Fp (t + pn, z − pn)=1Fp (t − pn, z − pn)+1Fp (t, z),

1G p (t + pn, z − pn)=1G p (t − pn, z − pn)+1G p (t, z − pn)+1G p (t, z)

can, in both cases, be simplified to

18(t, z)=18(t + pn, z − pn).
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This proves the case when j = 1. The same idea shows the induction step on j : i.e.,

18(t + j · pn, z − j · pn)=18(t + ( j + 1) · pn, z − ( j + 1) · pn).

For the second assertion, apply Lemma 2 on the first assertion. We get that −z ∈
supp(χ ◦8t ) if and only if −z + j · pn ∈ supp(χ ◦8t+ j ·pn

). Furthermore, we also
have 0 ∈ supp(χ ◦8t+ j ·pn

) since 0 is a k-isolated bijective dependency by Lemma 13.
Accounting for both contributions, we get rank(χ ◦8t+ j ·pn

)≥ rank(χ ◦8t )+ 1. �

THEOREM 4. Fp and G p strongly randomize the harmonically mixing measures.

Proof. We prove that Fp and G p are strongly character-diffusive, and Proposition 4
implies the result.

Denote by 8 either Fp or G p. 8 is reversible and denote by C the diameter of the
neighborhood of8−1. By Lemma 5, rank(χ ◦8)≥ C · rank(χ) for any character χ . Since
8−t can be defined by a neighborhood of diameter C · t , rank(χ ◦8t )≥ C · t · rank(χ)
for any character χ . In particular, for any m ≥ 0, any T ≥ 0 and any character χ0 of rank
at least C · m · T , we have rank (χ0 ◦8

t )≥ m for 1≤ t ≤ T .
Let χ be any non-trivial character and let k be the diameter of its support. Denote by

R(t)= rank(χ ◦8t ). We are going to show that R(t)→∞, which implies the claim since
the choice of χ is arbitrary.

First, let n0 be large enough and let t0 be such that k < t0 < pn0 − k. By successive
applications of Lemma 14, we get

R(t0 + (p − 1)pn0 + (p − 1)pn0+1
+ · · · + (p − 1)pn0+m)≥ m.

Since pn0+m+1
=
∑m

j=0(p − 1)pn0+ j
+ pn0 , we deduce that

pn0+m+1
−

(
t0 +

m∑
j=0

(p − 1)pn0+ j
)
≤ pn0 − t0

so that as soon as m ≥ C · M · (pn0 − t0) it follows R(pn0+m+1)≥ M by Lemma 5.
Therefore

R(pn)→n ∞. (4)

Now define the predicate Pt0,n,m as the conjunction of the following conditions:
(1) k ≤ t0 ≤ pn

− k;
(2) for all t, t0 ≤ t ≤ pn

− k : R(t)≥ m; and
(3) R(pn

− k)≥ C · (m + 1) · (t0 + k).
First, since R(t)≥ 1 for any t (from Lemma 13), we have by equation (4) above and
Lemma 4 that Pk,n,1 holds for n large enough.

Furthermore, if Pt0,n,m , then Pt0+pn ,n′,m+1 for all large enough n′. Indeed, condition 1
is obviously true for n′ > n and condition 3 is true for any large enough n′ from (4) above
and Lemma 4. Finally, condition 2 is obtained from Lemma 14. For any j ≥ 1:
(1) for j · pn

+ t0 ≤ t ≤ ( j + 1) · pn
− k, R(t)≥ R(t − j · pn)+ 1≥ m + 1; and

(2) for ( j + 1) · pn
− k ≤ t ≤ ( j + 1) · pn

+ t0, we have R(t)≥ m + 1 because
R(( j + 1) · pn

− k)≥ R(pn
− k)≥ C · (m + 1) · (t0 + k).

We have shown that, for any m, there exists t0 such that, for any large enough n′, we
have Pt0,n′,m . This, in particular, implies that R(t)≥ m for all t ≥ t0. We conclude that
R(t)→∞. �
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6.3. Randomizing only up to fixed-length cylinders. We now define a family of CA that
randomize finite cylinders up to a certain length, but no further. The alphabet is G2, where
G is any finite abelian group. Define

IG(c)z = (−[π1(cz−1)+ π1(cz+1)+ π2(cz)], π1(cz)).

Notice that IZ2 = H2.

PROPOSITION 8. IG randomizes cylinders of length one, but not cylinders of length two.

LEMMA 15. For t > 0,

1IG (t, z)= (g, h) 7→


0 if |z|> t,
((−1)t g, 0) if |z| = t,
((−1)t g, (−1)t+1h) if |z|< t, t + z = 0 mod 2,
((−1)t h, (−1)t+1g) if |z|< t, t + z = 1 mod 2.

Proof. This is by straightforward induction. �

Now we use Proposition 4 in conjunction with the following proposition to prove the
announced result.

PROPOSITION 9. IG is strongly diffusive on characters of rank one, but not on characters
of length two.

Proof. Let χ be a character of rank one, i.e., χ(x)= χ0(x0) with χ0 6= 1. For t > 0,

χ ◦ I t
G(x)= χ0

( t∑
z=−t

1IG (t, z)(x−z)

)

=

t∏
z=−t

χ0 ◦1IG (t, z)(x−z),

where χ0 is non-trivial, and by the previous Lemma, 1IG (t, z) is an isomorphism
when |z|< t . We deduce that χ0 ◦1IG (t, z) is non-trivial whenever |z|< t and therefore
rank(χ ◦ I t

G(x))≥ 2t − 1→∞: IG strongly diffuses characters of rank one.
For the second point, take any elementary character η0 ∈ Ĝ and define another character

η : x 7→ η0(π1(x0)+ π2(x1)). Then, by a straightforward computation,

η ◦ IG(x)= η0(−[π1(x−1)+ π1(x1)+ π2(x0)] + π1(x1))

= η0(−π1(x−1)− π2(x0))= σ
−1
◦ η(x)−1,

which means that η is a soliton for F̂ of rank two. �

Now we introduce the CA IG,n , which consists of applying the local rule of IG on the
neighborhood {z−n, z0, zn}: i.e.,

IG,n(c)z = (−[π1(cz−n)+ π1(cz+n)+ π2(cz)], π1(cz)).

Intuitively, a space–time diagram for IG,n consists of n intertwined space–time diagrams
for IG .
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THEOREM 5. For any n ≥ 1, IG,n randomizes cylinders of length n, but does not
randomize cylinders of length n + 1.

The next lemma is obvious (by straightforward induction).

LEMMA 16.

1IG,n (t, z)=
{
1IG (t, z/n) if z = 0 mod n,
0 otherwise,

so that we can use Lemma 15. As in the previous case, we use Proposition 4 in conjunction
with the following proposition.

PROPOSITION 10. IG,n is strongly character-diffusive on characters of support ⊂ [0,
n − 1], but not on characters of support {0, n}.

Proof. Let χ be a non-zero character of support ⊂ [0, n − 1], that is, χ =
∏n−1

i=0 χi ;
without loss of generality assume that χ0 6= 1. For any t > 0,

χ ◦ I t
G,n(x)=

n−1∏
i=0

χi

( t∑
z=−t

1IG,n (t, z + i)(x−z)

)

=

t∏
z=−t

( n−1∏
i=0

χi ◦1IG,n (t, z + i)
)
(x−z).

Now, for any z such that z = 0 mod n, the corresponding term in the previous equation
is χ0 ◦1IG,n (t, z) by Lemma 16, and this term is an isomorphism when t < z < t by
Lemma 15. Therefore rank(χ ◦ I t

G,n)≥ 2bt/nc − 1→∞.
For the second point, take any non-trivial elementary character η0 ∈ Ĝ and define

another character η : x 7→ η0(π1(x0)+ π2(xn)). This is a soliton for F̂ of support {0, n}
by Lemma 16 and the same proof as that of Proposition 9. �

7. Open problems
Building upon the approach of [22, 23] we completely characterized randomization
in density for abelian CAs. Furthermore, we provided examples of other forms of
randomization, most notably strong randomization (in simple convergence), that can only
happen for abelian CAs whose coefficients are non-commuting endomorphisms.

As mentioned by several authors, the most important research direction for
randomization in CAs is to develop tools and techniques to go beyond the abelian case:
i.e., CAs with a non-abelian group structure or nonlinear CAs [13, 14]. There is some
experimental evidence pointing at nonlinear randomization candidates [11, 29]. The class
of bipermutive CAs, although it does not encompass all candidates, has some relevant
related work; the set of invariant well-behaved (i.e. Gibbs) measures is limited to the
uniform Bernoulli measure [14, Corollary 46] and it exhibits a topological analogue to
randomization [27]. Apart from the existence of examples, one can ask, in the general case,
whether randomization is a structural property (see Proposition 4), whether it is preserved
by elementary operations and whether it is implied by some topological properties such as
positive expansivity (see Corollary 1).
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We believe that it is worth considering several intermediate questions raised by the
present work.
• Is strong randomization of an abelian CA equivalent to strong randomization of its

dual?
• What is the importance of reversibility in the above examples of strong randomization?

Our proof relies on reversibility and the smoothness it implies on the evolution of the
rank of characters. Can a reversible abelian CA be randomizing in density but not
strongly randomizing? What are the examples of strongly randomizing non-reversible
abelian CAs?

• The notions of soliton and diffusivity can be defined for arbitrary CAs using diamonds
(as in the notion of pre-injectivity): a pair (x, y) such that 1(x, y)⊆ Z (the set
of positions where x and y differ) is finite. We can define a soliton as a diamond
(x, y) such that 1(F t (x), F t (y)) has a bounded diameter (independent of t). On the
contrary, diffusivity can be defined as the property of having |1(F t (x), F t (y))| →∞
for any diamond (x, y). What are the links with topological properties such as
positive expansivity, pre-expansivity, mixing or transitivity? Are there links with
randomization beyond abelian CAs? The results of [26] can be useful for that
line of research. For reference, positive pre-expansivity, introduced in [9], is the
property of being positively expansive on diamonds. A reversible CA can be positively
pre-expansive (but never positively expansive) like the example F2 of this paper.
Corollary 1 states that, for abelian CAs, a direction of positive expansivity implies
randomization in density; this implication actually holds for directions of positive pre-
expansivity.

• Theorem 3 gives a procedure for testing randomization in density for abelian CAs with
commuting coefficients because the constant N can be explicitly computed. Is there an
algorithm to decide the presence of a soliton in abelian CAs? What about solitons in
general CAs (again formalizing through diamonds as above)?
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