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Gas turbine combustors are susceptible to thermoacoustic instability, which manifests
as large amplitude periodic oscillations in acoustic pressure and heat release rate. The
transition from a stable operation characterized by combustion noise to thermoacoustic
instability in turbulent combustors has been described as an emergence of order
(periodicity) from chaos in the temporal dynamics. This emergence of order in the
acoustic pressure oscillations corresponds to a loss of multifractality in the pressure
signal. In this study, we investigate the spatiotemporal dynamics of a turbulent flame
in a bluff-body stabilized combustor during the transition from combustion noise
to thermoacoustic instability. During the occurrence of combustion noise, the flame
wrinkles due to the presence of small-scale vortices in the turbulent flow. On the
other hand, during thermoacoustic instability, large-scale coherent structures emerge
periodically. These large-scale coherent structures roll up the wrinkled flame surface
further and introduce additional complexity in the flame topology. We perform
multifractal analysis on the flame contours detected from high-speed planar Mie
scattering images of the reactive flow seeded with non-reactive tracer particles. We
find that multifractality exists in the flame topology for all the dynamical states during
the transition to thermoacoustic instability. We discuss the variation of multifractal
parameters for the different states. We find that the multifractal spectrum oscillates
periodically during the occurrence of thermoacoustic instability at the time scale of
the acoustic pressure oscillations. The loss of multifractality in the temporal dynamics
and the oscillation of the multifractal spectrum of the spatial dynamics go hand in
hand.

Key words: fractals, turbulent reacting flows, vortex shedding

1. Introduction
Turbulent flow is ubiquitous in nature and is found across a wide range of systems

that span simple flows, such as a flow in a coffee cup, to cosmological flows. The
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presence and significance of eddies of different length scales in turbulent flows have
been studied extensively in the past few decades (Tennekes & Lumley 1972; Frisch &
Kolmogorov 1995; Davidson 2015). Turbulent kinetic energy from the eddies of large
length scales is transferred to lower but comparable length scales through nonlinear
interactions. Eventually, the energy is dissipated as heat at the Kolmogorov length
scales through viscous dissipation. This process of energy transfer across different
length scales is referred to as the energy cascade (Richardson 1922; Pope 2000).

The nonlinear interaction between the eddies of multiple scales causes the flow to
become chaotic (Aref 1983; McWilliams 1984). However, in some turbulent flows, we
can observe an emergence of order from chaos characterized by the evolution of large-
scale structures formed by the roll-up or merging of several small-scale structures.
These large-scale organized structures are referred to as coherent structures (Ho &
Nosseir 1981; McWilliams 1984).

Similar to the emergence of order from chaos in turbulent flows, other systems also
exhibit transition to order. Spontaneous transition from chaos to order in biological
systems, ecological systems etc., has been studied extensively using the theory of
self-organization (Ball 1999; Camazine et al. 2003). Cross & Hohenberg (1993)
present many examples of self-organization, both in temporal and spatial dynamics,
in hydrodynamic systems such as Rayleigh–Bénard convection, Taylor–Couette flow
etc.

Emergence of temporal order in systems which exhibit oscillatory instabilities often
manifests as an emergence of periodicity in the temporal fluctuations of the state
variable(s) of the system. Such an emergence of temporal order has been observed
in aeroacoustic (Rockwell & Naudascher 1979; Rockwell 1983), aeroelastic (Fung
1955) and thermoacoustic systems (Zukoski 1985; Poinsot et al. 1987). In such
systems, order emerges in the form of self-sustained periodic oscillations in their
state variable(s).

In general, order can also emerge in the spatial domain in thermodynamically
open systems, operating far from thermodynamic equilibrium. Emergence of such
spatiotemporal order is often through spontaneous self-organization, achieved by the
exchange of energy and matter with the external environment (Tiezzi et al. 2008).
Examples of systems that exhibit such self-organization include Belousov–Zhabotinsky
reaction, Bénard cells and droplet clusters (Tiezzi et al. 2008; Ciotti et al. 2011).

Such an emergence of order from chaos is observed in a turbulent thermoacoustic
system during the transition from the state of combustion noise to thermoacoustic
instability. The state of combustion noise corresponds to the stable operating regime
of the combustor (Strahle 1978), while thermoacoustic instability corresponds to the
unstable operating regime of the combustor. Thermoacoustic instability occurs due to
a positive feedback between the unsteady heat release rate and the acoustic pressure
oscillations and is characterized by large amplitude pressure oscillations which lead to
excessive structural vibrations (Lieuwen 2012; Juniper & Sujith 2018).

Recent studies indicate that the transition states prior to thermoacoustic instability
exhibit rich dynamic behaviour (Gotoda et al. 2011, 2015; Nair, Thampi & Sujith
2014; Unni & Sujith 2015; Pawar et al. 2017). A turbulent combustor exhibits the
characteristics of a complex system during these states (Juniper & Sujith 2018; Unni
et al. 2018). Results from these studies indicate that there is a gradual emergence
of periodicity from aperiodicity in the temporal dynamics (Nair et al. 2014) and an
emergence of order from disorder in the spatiotemporal dynamics during the transition
from combustion noise to thermoacoustic instability via intermittency (Mondal, Unni
& Sujith 2017; George et al. 2018; Premchand et al. 2019). During the occurrence of
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intermittency, bursts of high amplitude periodic fluctuations appear amidst epochs of
low amplitude aperiodic fluctuations in an apparently random manner.

The spatiotemporal dynamics of a turbulent combustor is largely influenced by
the coupling between the various subsystems such as the hydrodynamic field, the
reactive field (flame) and the acoustic field (Candel 1992). George et al. (2018)
showed that the emergence of order from chaos during thermoacoustic instability
is the result of interactions among the patterns formed in various subsystems. The
patterns formed are the standing wave pattern in the acoustic field, the large-scale
coherent structures in the flow field and the coherent patterns of the flame. They
suggested that interactions between these subsystems are mediated by the emerging
spatiotemporal patterns, leading to increased order or coherence in the combustion
dynamics. For instance, they showed that collective interaction of small-scale vortices
results in the formation of a large-scale vortex and leads to coherence in the flame.

Richardson’s (1922) description of turbulent flows states that flows consist of a
hierarchy of scales. Several studies showed that flow structures with multiple spatial
scales in turbulent flows exhibit the characteristics of self-similarity (Meneveau &
Sreenivasan 1986; Benzi et al. 1993). The self-similarity in turbulent flows has
been studied using the theory of fractal geometry. For example, Mandelbrot (1983)
suggested that turbulence involves several fractal facets. Fractal theory gives us a
simple, geometrical interpretation of the complexity in the system.

The complexity exhibited by many spatially extended systems is due to the presence
of multiple spatial and temporal scales. In such systems, a spectrum of fractal
dimensions is required to characterize their complexity (Murcio et al. 2015). Such a
system characterized by a set of fractal dimensions is referred to as a multifractal
system. If a fractal can be described using a single fractal dimension, then it is called
a monofractal. Otherwise, it is labelled as a multifractal (Engelking 1978; Pesin
2008). Examples of multifractal time series include human physiological signals
(Ivanov et al. 1999; Ihlen & Vereijken 2013), geoelectric signals (Telesca et al. 2003)
and seismic signals (Telesca et al. 2015). Multifractal description was first introduced
by Mandelbrot to study the fractal characteristics of turbulent flows (Mandelbrot
1974). Meneveau & Sreenivasan (1991) experimentally showed that the kinetic energy
dissipation field in a turbulent flow has a multifractal distribution which supports the
notion of a self-similar multiplicative fragmentation process occurring in the energy
cascade.

For a swirl-stabilized turbulent combustor, Gotoda et al. (2012) showed that the
acoustic pressure oscillations prior to lean blowout exhibit multifractal characteristics.
In addition, they also emphasized that multifractal analysis is indeed necessary to
capture the rich dynamics observed in the pressure oscillations near to the blowout.
For bluff-body stabilized and swirl-stabilized turbulent combustors, Nair & Sujith
(2014) reported that the unsteady pressure oscillations exhibit multifractality due
to the presence of fluctuations of multiple temporal scales during the occurrence
of combustion noise. Further, they showed that there is a loss of multifractality
in the unsteady pressure oscillations when the combustion dynamics transitions
from combustion noise to thermoacoustic instability. This loss of multifractality
was attributed to a reduction of multiple time scales to a few discrete time
scales associated with the formation of a large-scale coherent structure during the
occurrence of thermoacoustic instability. However, the above studies did not discuss
the multifractal characteristics associated with the flame dynamics.
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In the present work, we study multifractality of the flame topology as the
dynamical state of a turbulent thermoacoustic system transitions from combustion
noise to thermoacoustic instability via intermittency. We observe small-scale vortical
structures during the occurrence of combustion noise and a wide range of spatial
scales during the occurrence of thermoacoustic instability. We show that the turbulent
flame topology exhibits multifractality during the different dynamical states. Even
during the occurrence of thermoacoustic instability when there is an existence of
ordered temporal dynamics, the spatial topology of the flame is multifractal. We
show that periodic oscillations of the multifractal spectrum of the flame topology
result in the periodic oscillations of the heat release rate.

The paper is organized as follows: § 2 presents a background of the multifractal
formalism. Section 3 provides the details of the experimental set-up and the data
acquisition systems used in this study. Section 4 discusses the results from the
experimental study. Section 5 presents the key findings of the study. A comparison
of the turbulent spatial scales with other spatial scales in the system, methodology
to detect the flame contours, the estimation of the multifractal spectrum and the
uncertainties estimation in the calculation of multifractal parameters are elaborated in
the appendices A–D, respectively.

2. Multiplicative cascade processes and multifractality

Many natural processes such as cloud formation, nuclear chain reaction, turbulent
flows, redistribution of human population across the globe, biological evolution
etc., involve multiplicative cascade processes (Schertzer et al. 1997; Cheng 2014). A
multiplicative cascade process is characterized by iterative transformations of a system
resulting in the redistribution of a measure of the system across its topology. Here,
the measure is any quantifiable property of the system such as population density,
concentration of a species, energy density etc., that varies across the topology of
the system. A famous example of a multiplicative cascade process is the turbulent
energy cascade (Richardson 1922). The multiplicative cascade process often results
in a fractal or multifractal distribution of a measure across the topology of a system
(Martínez et al. 1990).

Fractals are geometric objects that are self-similar across different scales. Measures
such as length and area of a fractal are dependent upon the scale of the measurement.
A log–log plot of a measure of the fractal with the scale of the measurement gives
a straight line with a non-integer slope of negative fractal dimension. In systems
with heterogeneous distribution of measures such as the distribution of copper ore
in the earth’s crust (Mandelbrot 1989), distribution of rainfall and clouds across the
atmosphere (Lovejoy & Schertzer 1991), the scaling behaviour can vary from one part
of the system to another. For such systems, a single fractal dimension is inadequate
to explain the local scaling behaviours of the measure and a multifractal description
is needed to represent the complexity in the scaling. Often, in spatiotemporal systems,
the local fractal dimension could vary in space due to the localized irregularities in
the field, making them multifractal (Dauphiné 2013).

Classical statistical properties such as variance, skewness and kurtosis, represent
the statistical dispersion of a measure. However, these properties do not account for
the non-stationarity and the non-homogeneity in the distribution of a measure. In
multifractal analysis, it is possible to determine the irregularities and discontinuities
present in the spatial distribution of a measure. A multifractal spectrum represents
all such irregularities, large or small, across all scales of the measure, based on

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

19
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.19


Multifractal analysis of flame dynamics 888 A14-5

1.10
1.1 1.2 1.4å0

åmin å

f(
å)

Îåleft ÎårightW

åmax
1.5

1.15

1.20

1.25

D0

FIGURE 1. The singularity spectrum f (α) is plotted as a function of the singularity
exponent α. The singularity spectrum is obtained by performing multifractal analysis on
a typical flame image obtained in our experiments. The parameters D0, α0, 1αright, 1αleft
and W define the multifractal spectrum.

the scaling of different orders of moments of the distribution of the measure (Salat,
Murcio & Arcaute 2017). In this study we use a multifractal spectrum known as
the singularity spectrum, obtained using the box-counting method, to study the
multifractal characteristics of the flame topology.

In a multifractal field G, a measure (µ) which characterizes the topology of G
varies in space. A mathematical description of measure µ is explained in appendix C.
Consider a region of radius, ε around any point, x0 in G. The measure µ within the
region of radius ε has a power-law relation with ε, when the range of ε is sufficiently
small (Chhabra & Jensen 1989). Accordingly, the relation between µ and ε is given
as

µ(ε)∼ εα, (2.1)

where the scaling exponent α is known as the Lipschitz–Hölder exponent. The
exponent α represents the strength of the local scaling of the distribution of µ around
x0, otherwise known as the singularity exponent at x0. Since G is multifractal, α is
a function of x0. The distribution of α in G is characterized by f (α), which is the
fractal dimension (Hausdorff dimension) corresponding to the set of points in G with
a singularity exponent α. The fractal dimension f (α) for a given α is determined
based on the number of regions Nα(ε) of radius ε that form the set with the same α
and is given as,

Nα(ε)∼ ε
−f (α). (2.2)

In the present work, we compute α and f (α) following the method described by
Chhabra & Jensen (1989). The steps for the estimation of α and f (α) are explained
in appendix C. In our analysis, µ is selected as the normalized probability mass
distribution of the non-zero pixel intensity in the flame image (Giri et al. 2014).

The multifractal spectrum provides a mathematical description of multifractality in
terms of f (α) and α. Figure 1 shows the representative multifractal spectrum resulting
from the multifractal analysis on a flame image acquired in our experiments. The
shape and the position of the spectrum represents the range of fractal dimensions
required to describe the system and the relative dominance of each fractal dimension
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in determining its topology. For the case of monofractals, the multifractal spectrum
reduces to a point as α becomes constant everywhere.

The four parameters namely, the capacity dimension D0, the spectrum width W,
the most dominant singularity exponent α0 (value of α at which f (α) is maximum)
and the asymmetry parameter B are used to characterize the multifractal spectrum
(Telesca et al. 2003). The maximum value of f (α) is the capacity dimension (D0)
which quantifies the space-filling nature of the fractal. For example, a fractal curve
that lies in a two-dimensional (2-D) plane is said to be space-filling if the curve
is highly wrinkled and hence covers most of the area of the 2-D plane. The D0 of
such a 2-D fractal object lies in the interval between 1 and 2. A high value of D0
close to 2 indicates that the space is almost entirely occupied by the fractal (Lopes
& Betrouni 2009). Conversely, D0 reduces to 1 for a line segment. We further state
that the capacity dimension or the box-counting dimension (calculated using the box-
counting method) takes the same value as the Hausdorff dimension, when the fractal
satisfies the open set condition (Wagon 2010).

The width of the spectrum defined as W = αmax − αmin, represents the range of
scaling exponents found in the multifractal field G. The larger the value of W, the
wider the range of scaling exponents present in G. The most dominant singularity
exponent α0 represents the most probable singularity over the support of G (Goltz
1996; Giri et al. 2014). A high value of α0 indicates a higher probability of regions of
densely concentrated µ over the support of G. Conversely, a low value of α0 indicates
a high probability of regions of sparse distribution of µ over the support of G.

The asymmetry parameter B describes the skewness of the spectrum based on
1αright and 1αleft, where 1αright is given as αmax − α0 and 1αleft = α0 − αmin. The
asymmetry parameter is defined as B=1αright −1αleft. The spectrum is symmetric if
B= 0, left-skewed if B is negative and right-skewed if B is positive. A right-skewed
spectrum indicates more irregularity within the smaller spatial structures. Conversely,
a left-skewed spectrum indicates higher irregularity within the larger spatial structures.

In the present work, we estimate the values of D0, α0, W and B of the flame
contours. These flame contours are extracted from the Mie scattering images of the
reactive flow. The flame contains wrinkles which are heterogeneously distributed.
We study the spatial distribution of these wrinkles in the flame during the different
dynamical states. The above-mentioned multifractal parameters can be used to describe
the multifractal characteristics of the flame. The capacity dimension D0 represents the
space-filling nature of the flame inside the combustor. A high value of D0 indicates
that wrinkles in the flame occupy a larger area in the combustor. The most dominant
singularity exponent α0 represents how the distribution of wrinkles is present over the
flame. A high value of α0 indicates a heterogeneous concentration of wrinkles, with
certain regions having dense concentration compared to other regions. The width of
the spectrum demonstrates the range of scaling required to describe the distribution
of wrinkles in the flame. A larger value of W implies that a wider range of scaling
exponents is required to describe the distribution of wrinkles. The skewness indicates
the dominance of irregularities either for the smaller length scales or for the larger
length scales.

3. Experimental set-up

Experiments were performed on a turbulent combustor where the flame is stabilized
using a circular bluff-body, at high Reynolds numbers (Re > 18 000). The turbulent
combustor used for the present study is shown in figure 2. The turbulent combustor
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Pressure
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FIGURE 2. Schematic of the turbulent combustor used in this study. A piezoelectric
pressure transducer measures the acoustic pressure fluctuations (p′) whereas a
photomultiplier (PMT) records the global heat release rate (q̇). Mie scattering images of
seeding particles (TiO2), in a reactive flow are captured using a high-speed camera.

consists of a plenum chamber, a burner and a combustion chamber with extension
ducts. A central shaft of diameter 16 mm through the burner supports the bluff-body.
The central shaft is also used to deliver fuel into the combustion chamber through four
radial injection holes of diameter 1.7 mm. The fuel is injected 120 mm upstream of
the bluff-body. The bluff-body is a circular disk of diameter 47 mm and thickness
10 mm. The bluff-body is located at a fixed position of 35 mm from the backward
facing step of the combustor. A disk of 2 mm thickness with 300 holes of diameter
1.7 mm each, located 30 mm downstream of the location of fuel-injection acts as a
flashback arrestor. The combustion chamber consists of a sudden expansion from the
circular burner of diameter 40 mm into a square geometry of cross-section 90 mm
× 90 mm and length 1100 mm. A spark plug with a step-up transformer is mounted
near the dump plane for ignition of the fuel–air mixture. We use liquefied petroleum
gas (60 % butane and 40 % propane) as the fuel. A blow-down mechanism is used to
supply air from high-pressure tanks. The air is passed through a moisture separator
before it enters the plenum chamber.

The mass flow rates of air and fuel are controlled and measured using mass flow
controllers (Alicat Scientific, MCR Series) with an uncertainty of ± (0.8 % of reading
+0.2 %) of full scale. The Reynolds number for the reactive flow is computed using
the expression Re = 4ṁ/πµa(do − di), where ṁ = ṁa + ṁf is the mass flow rate of
the air–fuel mixture, do is the diameter of the burner, di is the diameter of the bluff-
body shaft and µa is the dynamic viscosity of the air–fuel mixture at the experimental
conditions (Holman 1989). Further, the total mass flow rate of air for the combustion
is given as ṁa= ṁs+ ṁm, where ṁs and ṁm are the mass flow rates of the seeded and
unseeded air streams, respectively. Corrections to Reynolds number due to the change
in viscosity for the varying air–fuel ratios are performed, the procedure for which can
be found in Wilke (1950). The Reynolds numbers for the reported experiments are
Re= 1.88× 104

± 574 (combustion noise), 2.2× 104
± 630 (intermittency) and 3.15×

104
± 889 (thermoacoustic instability). The required Reynolds number is achieved by

maintaining a constant fuel flow rate (30 standard litres per minute) and increasing
the air flow rate. In this study, we discuss the results obtained at different equivalence
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ratios (φ). The global equivalence ratio is calculated as (ṁf /ṁa)actual/(ṁf /ṁa)stoichiometry.
The uncertainty present in the equivalence ratio is ±0.02 based on the uncertainties
in the mass flow controllers.

To maintain a certain level of consistency in the environmental conditions,
experiments were performed when the acoustic damping rate is 19 s−1

± 15 %.
The unsteady pressure signals are acquired using piezoelectric pressure transducers
(PCB103B02, uncertainty ±0.15 Pa). This pressure transducer is mounted at a
distance of 25 mm from the dump plane of the combustor as shown in figure 2.
A photomultiplier (PMT) (Hamamatsu H10722-01) with an OH* filter (narrow
bandwidth filter centred at 310 nm and 12 nm full width at half maximum) mounted
in front of it, is used to capture the chemiluminescence intensity which is indicative
of the global heat release rate within the combustor (Hardalupas & Orain 2004). The
PMT is positioned such that the intensity of chemiluminescence from the entire flame
in the combustion chamber is captured. Both the pressure signal from the pressure
transducer and the global heat release rate from the PMT are acquired using an
analogue-to-digital card (NI-6143, 16 bit) for a duration of 3 s with a sampling rate
of 20 kHz. The acquisition of the pressure signals, PMT signals and camera images
is synchronized using a signal generator (Tektronix-AFG1022, 25 MHz).

We acquired simultaneous 2-D planar Mie scattering images, acoustic pressure and
global heat release rate measurements at different values of φ from stoichiometric
conditions to leaner conditions. Thermoacoustic instability is observed at leaner
conditions. For the 2-D planar Mie scattering technique, we use a single-cavity
double-pulsed Nd:YLF laser (Photonics) of operating wavelength 527 nm to illuminate
the seeding particles. The laser is operated at a repetition rate of 2 kHz in single
pulse mode. A laser sheet of 2 mm thickness is created by expanding the laser beam
using a spherical lens of focal length 600 mm and a plano-concave cylindrical lens
of focal length −15 mm. This laser sheet is transmitted through a rectangular quartz
window through the top plate of the duct into the combustion chamber.

We use TiO2 (Kronos make-product-1071) particles of approximate size 1 µm
to seed the flow. To have an adequate supply and uniform distribution of TiO2
in the flow, a portion of the main air is diverted through a fluidized bed seeder
where TiO2 particles are mixed well with the incoming air. Subsequently, air with a
homogeneous distribution of TiO2 particles re-enters the main flow upstream of the
plenum chamber. The mass flow rate of the seeded airflow (ṁs) is suitably adjusted
for different equivalence ratios to provide an optimal supply of seeding particles to
the flow. The supply of seeded air from the seeder into the experimental rig is shown
in figure 2. These TiO2 particles scatter light while they pass the plane illuminated
by the laser sheet and this light is captured by the high-speed camera. The gas
density changes across the flame, which in turn results in a density gradient of TiO2
particle across the flame. Thus, the strong gradient of TiO2 particle density in the
reactive flow indicates the topology of the flame (Stella et al. 2001). In the past,
many experimental studies have used similar Mie scattering technique to study flame
dynamics (Nair & Lieuwen 2007; Hong et al. 2013).

The illuminated light from seeding particles in the reactive field is imaged using a
high-speed camera (Photron SA4) which is synchronized with the Nd:YLF (527 nm)
laser at 2000 fps. The camera is equipped with a Zeiss 100 mm lens and a short
bandpass optical filter (527± 12 nm) to capture the scattered light from the seeding
particles. The resolution of the camera is set as 1024 × 736 pixels throughout the
experiments to capture the flame dynamics present in the top half of the combustor
(45 mm× 34 mm) between the dump plane and the bluff-body. Mie scattering images

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

19
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.19


Multifractal analysis of flame dynamics 888 A14-9

are acquired for a duration of 1.9 s for each experiment. Experiments are performed
for three different dynamical states namely, combustion noise (φ= 0.94), intermittency
(φ = 0.75) and thermoacoustic instability (φ = 0.6).

4. Results
In this section, we discuss the qualitative and quantitative differences in the

flame dynamics for the states of combustion noise, intermittency and thermoacoustic
instability by performing a multifractal analysis of the flame topology. The spatial
dynamics of the flame is influenced by vortices of different sizes that cause
flame roll-up. Based on the scale of the roll-up, we refer to them as small-scale,
medium-scale and large-scale. We identify the roll-up of the flame by the visual
observation of the Mie scattering images. The normalized diameters (with respect
to the combustor step size of 25 mm) of small-scale, medium-scale and large-scale
roll-ups/vortices referred to in the following sections are ∼0.08, ∼0.24 and ∼0.6,
respectively. The temporal statistics of the multifractal measures converge for 100
flame images. Hence, the values of the multifractal measures are obtained by
analysing 100 flame images for each dynamical state. The calculation of uncertainty
in the estimation of all multifractal measures for all dynamical states is discussed in
appendix D.

4.1. Multifractal analysis of the flame during combustion noise
The turbulent flow field in a backward-facing step combustor consists of a reattachment
mixing layer behind the step, which facilitates combustion. Within the mixing layer,
discrete small-scale vortical structures are present, which entrain and mix the incoming
reactants with the hot products from the reaction (Keller et al. 1982; Zukoski 1985;
Renard et al. 1999). This entrainment and mixing process helps to provide continuous
energy to ensure the ignition of the incoming reactants which, in turn, helps to
stabilize the flame inside the combustor. Figure 3(I) represents the Mie scattering
images during the occurrence of combustion noise (φ = 0.94) at different instants
of time (a–c). In this figure, from the roll-up of the flame, we can discern that
small-scale vortical structures exist (marked by purple circles) within the mixing
layer. George et al. (2018) showed that such small-scale vortical structures cause
spatial and temporal incoherence in the acoustic power production.

Figure 3(II) shows the contours of the flame in the region of interest marked
in figure 3(I-a). The flame contours are obtained after applying a suitable edge
detection technique described in appendix B. The flame undergoes wrinkling due to
the perturbation by small-scale vortices which is evident from figure 3(II). Further,
we see that these wrinkles are heterogeneously distributed along the flame. When
compared to figure 3(II-b), figures 3(II-a) and 3(II-c) show higher values of D0 which
can be attributed to the increased irregularities/wrinkling in the flame contour at those
time instants. Many studies have previously reported that a 2-D turbulent premixed
flame structure exhibits fractal behaviour during stable operation with a mean value
of D0 between 1.13 and 1.32 (North & Santavicca 1990; Gülder et al. 2000). To
obtain a quantitative description of the presence of wrinkles and their heterogeneous
distribution, we use multifractal analysis.

We show the temporal variation of D0, α0 and acoustic pressure fluctuations
(p′) along with global heat release rate fluctuations (q̇′) during the occurrence of
combustion noise in figure 4(a–c), respectively. Now, D0 fluctuates around a mean
value of 1.22 with maximum and minimum value of 1.31 and 1.17, respectively. The
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FIGURE 3. (I) Mie scattering images acquired during the occurrence of combustion noise
at φ = 0.94 (Re = 1.88 × 104) for different instants of time (a–c). The bluff-body is
represented by the red rectangle in (I). Small-scale roll-ups are marked with purple
circles. The normalized diameter of these small-scale roll-ups is ∼0.08. Edge detection is
performed on the selected region of interest which has a cross-sectional area of 21 mm×
21 mm, shown in (I) enclosed by the yellow square, to detect the flame contours. We
choose this region of interest to capture and compare the spatiotemporal dynamics that
occur at different dynamical states and to avoid the regions where substantial reflection
of laser light from the bluff-body and the combustor walls is present. Subsequently,
multifractal analysis is performed on the detected flame contours. The corresponding
values of D0 and α0 for each flame are shown in (II). Acoustic pressure fluctuations
corresponding to the images of (I) and (II) are shown in (III).

low value of D0, close to 1 indicates that the flame is not space-filling. In other
words, the flame contour fails to fill the area within the region of interest, marked
by the yellow square.

In figure 4(b), we can observe that α0 fluctuates around a mean value of 1.26 with
a maximum and a minimum value of 1.36 and 1.16, respectively. A higher value of
α0= 1.36 when compared to α0= 1.16 denotes the presence of a dense concentration
of wrinkles at certain parts of the flame contour. In other words, a higher value of
α0 indicates a more heterogeneous distribution of irregularity in the flame topology.
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FIGURE 4. Time trace of D0 (a), α0 (b) and the corresponding p′ (black line) along with
q̇′ (green line) (c) during the state of combustion noise is shown. The variation of f (α)
with respect to α at different instants of time (a–c) is shown in (d).

One such example is the flame in figure 3(II-a) which gives the value of α0 = 1.36.
Here, the region marked by the green square shows a part of the flame which is more
irregular compared to other parts of the flame. Comparison of figures 4(a) and 4(b)
shows that α0 follows a similar trend as D0 which indicates that the flame exhibits a
space-filling character along with an increase in the heterogeneity of the distribution
of wrinkles on the flame.

Next, we show the variation of the multifractal spectrum f (α) with respect to the
singularity strength α for the flame contours shown in figure 3(II) in figure 4(d). We
observe that all three spectra are right skewed. The right-skewed spectrum indicates
a dominant presence of small-scale wrinkles on the flame. The mean value of the
width of the multifractal spectrum W is approximately 0.28. To summarize, during the
occurrence of combustion noise, we obtain a right-skewed spectrum with the temporal
mean value of D0= 1.22, α0= 1.26 and W = 0.28. This indicates low space-filling by
the flame and a scattered distribution of small-scale wrinkles along the flame contour.
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4.2. Multifractal analysis of the flame during intermittency
During the state of intermittency, the flame exhibits two distinct spatiotemporal
dynamics. We either observe aperiodic wrinkling of the flame, or a periodic roll-up
of the flame. The aperiodic wrinkling of the flame is due to the inherent turbulent
fluctuations in the flow while the periodic roll-up is the result of an emergence of
large-scale coherent structures in the shear layer. Small aperiodic perturbations at the
flame root (anchoring point of the flame) propagate along the flame, causing aperiodic
oscillations up to the flame tip. These aperiodic oscillations along the flame further
result in aperiodic oscillations of the acoustic pressure fluctuations (Shanbhogue et al.
2009; Unni & Sujith 2017). The acoustic pressure oscillates aperiodically until the
amplitude of the perturbation exceeds a critical value.

Figure 5(I) shows the instantaneous Mie scattering images acquired during an
aperiodic epoch of intermittency (φ = 0.75). In figure 5(I), we observe vortices of
multiple spatial scales marked by purple circles. The spatial dynamics of the flame
during the aperiodic epochs of intermittency exhibits characteristics similar to that
of combustion noise (refer figure 3-I). However, the size of the roll-up ranging from
small-scale to medium-scale during the aperiodic epochs of intermittency is slightly
larger compared to the roll-up during the occurrence of combustion noise shown in
figure 3(I). In figure 5(II-a–c), we observe that medium-scale wrinkles coexist with
small-scale wrinkles.

The instantaneous Mie scattering images and the corresponding flame contours in
the region of interest during one acoustic cycle of a periodic epoch of intermittency
are shown in figure 6(I) and 6(II), respectively. We observe large-scale roll-up in
the flame, as seen in figure 6(II-b and II-c). Within the large-scale roll-up, there are
small-scale roll-ups caused by small-scale vortical structures, suggestive of collective
interaction (Ho & Nosseir 1981; George et al. 2018). During collective interaction,
small-scale vortices interact with each other, resulting in the self-organization and
order at a larger scale, forming a large-scale coherent structure. These large-scale
coherent structures along with small-scale vortical structures stretch the flame,
resulting in an increase in the flame surface area, which leads to more intense
chemical reactions (Kim et al. 2009).

The temporal variation of D0, α0 and p′ along with q̇′ corresponding to the
aperiodic and periodic epochs of intermittency is shown in figures 7(a–c) and 7(e–g),
respectively. In the case of the aperiodic epoch, D0 fluctuates around a mean value
of 1.19 with a maximum of 1.43 and a minimum of 1.08. This mean value of D0 is
slightly less than that observed for combustion noise. The lower value of D0 during
the aperiodic epoch of intermittency indicates that the flame undergoes relatively less
wrinkling and is relatively smoother and more regular compared to the flames seen
during the occurrence of combustion noise. From figure 7(b), we see that during the
aperiodic epochs of intermittency, α0 fluctuates around a mean value of 1.24 with
a maximum of 1.47 and minimum of 1.10. The mean value of α0 has also slightly
decreased from the state of combustion noise to the aperiodic epoch of intermittency.

On the other hand, during the periodic epochs of intermittency, the mean value of
D0 increases to 1.28 with an increase in the maximum and the minimum values to
1.58 and 1.12, respectively, as shown in figure 7(e). The overall increase in the value
of D0 is a result of enhanced space filling of the flame due to the presence of a
large-scale vortex structure and the small-scale vortical structures within it. The space-
filling nature of the flame due to increased wrinkling corresponds to larger mixing
of the reactants and hot radicals. The large-scale coherent structure breaks into small
structures by impinging on the bluff-body and produces a significant heat release rate
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FIGURE 5. Mie scattering images acquired during an aperiodic epoch of intermittency at
φ = 0.75 (Re= 2.2× 104) are shown in (I) for different instances (a–c). The roll-ups of
different spatial scales are marked with purple circles. The medium scale roll-up marked
in (I-a) is ∼0.24 normalized diameter in size. The region of interest marked by the yellow
square in (I-a) is different from the region of interest chosen for combustion noise. The
region of interest is shifted approximately 7 mm to the right to capture the largest scale of
the roll-up during periodic epochs of intermittency. The detected flame contours from the
Mie scattering images are shown in (II) along with the corresponding values of D0 and α0.
The time series of acoustic pressure fluctuations with a zoomed section of the aperiodic
epoch is shown in (III). The acoustic pressure fluctuations corresponding to these Mie
scattering images are marked in (III).

(q̇′). In addition, D0 oscillates periodically, which is due to the periodic emergence of
the large-scale coherent structure.

The mean value of α0 is 1.32 and it oscillates periodically between the maximum
and the minimum values of 1.62 and 1.11, respectively, as shown in figure 7( f ).
Also, α0 reaches its maximum value when the large-scale coherent structure is at its
maximum size (refer figure 6II-b). This high value of α0 suggests that the large-scale
coherent structure contains more regions of dense concentration of irregularities
in the flame contour caused by the small-scale vortices. Also, D0 and α0 increase
simultaneously. This indicates that the flame fills the space through wrinkles of
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FIGURE 6. Mie scattering images acquired during the occurrence of a periodic epoch
of intermittency at φ = 0.75 for different instances are shown in (I). The largest spatial
structure is captured within the region of interest marked by the yellow square in (I-b).
The corresponding flame contours are shown in (II) along with the corresponding values of
D0 and α0. The flame rolls-up to form large-scale coherent structures during the periodic
epochs of intermittency as seen in (II-b) and (II-c). The time series of acoustic pressure
fluctuations with a zoomed section of the periodic epoch is shown in (III). The acoustic
pressure fluctuations corresponding to these Mie scattering images are marked in (III).
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FIGURE 7. Time trace of D0, α0 and the corresponding p′ (black line) along with q̇′ (green
line) during the aperiodic and the periodic epochs of intermittency are shown in (a–c)
and (e–g), respectively. D0 and α0 fluctuate aperiodically during the aperiodic epochs of
intermittency while they oscillate periodically with a higher mean value during the periodic
epoch. The singularity spectra obtained at different instants of time during aperiodic and
periodic epochs of intermittency are shown in (d) and (h), respectively.

larger size along with an increase in the number of small-scale wrinkles within the
large-scale structure, suggestive of collective interaction. The multifractal spectra
calculated at different instances during the aperiodic epochs of intermittency for the
flame contours shown in figure 5(II) are shown in figure 7(d). Similar to the spectra
during the occurrence of combustion noise, these spectra are right-skewed, which is
indicative of irregularities dominant at the smaller scales, which demonstrates the
presence of small-scale wrinkles. The mean value of W is approximately 0.28, which
is the same value of W observed during the state of combustion noise.

The multifractal spectrum for the flame corresponding to the periodic epochs of
intermittency is shown in figure 7(h). In general, there is a rightward shift of the
multifractal spectrum for the periodic epochs of intermittency as compared to those
of the aperiodic epochs. The spectrum shifts to the right due to an increase in α0.
This increase in α0 implies a higher heterogeneity in the spatial dynamics, which is
due to the presence of a higher number of small-scale structures within the large-
scale structure. Further, the multifractal spectrum shifts periodically from left to right
and bottom to top during the periodic epochs of intermittency, which characterize the
periodic emergence of large-scale coherent structure. The bottom to top oscillation of
the multifractal spectrum corresponds to the periodic oscillation of the space-filling
character of the flame. In general, the multifractal spectra are right-skewed and the
mean value of W is also around 0.28 for the periodic epoch of intermittency.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

19
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.19


888 A14-16 M. Raghunathan and others

0

34(a)

(a) (b) (c)

(d) (e) (f)

(I)

(II)

(b) (c)

(d) (e) (f)

0 45 0 45 0 45

34

31

10

31

10
8 29 8 29 8 29

y 
(m

m
)

y 
(m

m
)

y 
(m

m
)

y 
(m

m
)

p� (k
Pa

)

a
b

d
e

f

c

D0 = 1.57 å0 = 1.63 D0 = 1.75 å0 = 1.81 D0 = 1.80 å0 = 1.85

D0 = 1.72 å0 = 1.77 D0 = 1.61 å0 = 1.65 D0 = 1.52 å0 = 1.59

0.085 0.097 0.109
t (s)

0.121

x (mm)

x (mm) x (mm) x (mm)

x (mm) x (mm)

4

0

-4

FIGURE 8. Mie scattering images acquired during one cycle of thermoacoustic instability
at φ = 0.6 (Re = 3.15 × 104) for different instants of time are shown in (I). The
large-scale roll-up (normalized diameter ∼0.6) observed in (II-b and II-c) is suggestive of
the presence of a large-scale coherent structure in the flow field. The selected region of
interest shown in (I-b), enclosed by a yellow square is the same as the region of interest
chosen for the case of combustion noise. The large-scale structure is captured within the
chosen region of interest. The flame contour from the Mie scattering images are shown
in (II) along with the estimated values of D0 and α0. The acoustic pressure fluctuations
corresponding to these Mie scattering images are marked in (III).
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4.3. Multifractal analysis of the flame during thermoacoustic instability
We present the instantaneous Mie scattering images acquired during one cycle of
thermoacoustic instability (φ = 0.6) in figure 8(I). The corresponding flame contours
in the region of interest are shown in figure 8(II). The spatial dynamics of the flame
during the occurrence of thermoacoustic instability exhibits similar characteristics
to that of the periodic epochs of intermittency. During this state, the unsteady heat
release rate fluctuations associated with the large-scale coherent structures strongly
interact with the acoustic field, which in turn, results in large amplitude periodic
pressure oscillations (Poinsot et al. 1987; Ken, Trouve & Daily 1991; Hong et al.
2013). The formation of the large-scale coherent structure and the subsequent roll-up
of the flame observed during one cycle of thermoacoustic instability can be observed
in figure 8-I(a–f ). The small-scale vortices present within the large-scale vortex cause
the flame to be highly wrinkled and irregular. This presence of wrinkles of multiple
length scales requires a broader range of scaling exponents to describe the flame
dynamics.

Figure 9(a) depicts the temporal variation of D0 during the occurrence of
thermoacoustic instability. The maximum and minimum values of D0 are 1.81 and
1.28, respectively, with a mean of 1.59. This suggests that the space-filling nature
of the flame is restricted to certain instants of the periodic cycle where the values
of D0 are high. The maximum value of D0 is higher than those observed during
combustion noise and intermittency. The overall increase in the value of D0 during
the occurrence of thermoacoustic instability indicates that the flame occupies a larger
area of the region of interest. This is due to the existence of large-scale roll up of the
flame and the presence of small-scale wrinkles within the large-scale roll up (refer
figure 8-II). In addition, we can also observe that the temporal modulation of D0 is
nearly periodic. This is due to the periodic emergence of the large-scale coherent
structures, similar to the periodic epochs of intermittency.

The temporal variation of α0 and the corresponding p′ and q̇′ are shown in
figures 9(b) and 9(c), respectively. The value of α0 oscillates around a mean value of
1.64. The maximum and minimum values of α0 are 1.87 and 1.31, respectively. The
range of D0 and α0 is larger compared to those during the occurrence of intermittency
and combustion noise. The instances of the occurrence of lowest and highest value
of α0 correspond to the occurrence of lowest and highest values of D0, respectively
(also seen for combustion noise and intermittency). This indicates that α0 is correlated
to D0. Both D0 and α0 reach their maximum values at the instant when the coherent
structure reaches its maximum size, before impingement on the bluff-body.

We show the variation of multifractal spectrum for different instants of time during
one acoustic cycle of thermoacoustic instability in figure 9(d) for the sequence of
flames shown in figure 8(II). The mean value of the width of the multifractal spectrum
is 0.35 during the occurrence of thermoacoustic instability, which is higher than the
mean value of W (0.28) observed for the other dynamical states. Even though the
multifractal spectrum is right-skewed for all flames, the skewness is less for flames
corresponding to the curves (b–d). This reduction in the skewness of the right half
of the spectrum for this set of flame contours suggests a lower irregularity at the
smaller scales. Further, along with D0 and α0, the multifractal spectrum also oscillates
periodically at the time scale at which coherent structures are formed in the flow field.
This periodic oscillation of multifractal spectrum of the flame topology corresponds to
the periodic oscillations in the heat release rate and the acoustic pressure fluctuations.

In our study, we compared the multifractal characteristics of flame contours obtained
on a 2-D plane during different dynamical states. We showed that the multifractal
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FIGURE 9. Time trace of D0 (a), α0 (b) and the corresponding p′ (black line) with q̇′
(green line) (c) during the occurrence of thermoacoustic instability is shown. Here, D0
and α0 oscillate periodically with the same time scale at which acoustic pressure oscillates.
The maximum value of q̇′ occurs after the breaking of a large-scale coherent structure into
small-scale structures and the subsequent release of heat. The variation of the multifractal
spectra at different instances during one acoustic cycle of thermoacoustic instability are
shown in (d).

spectrum remains almost constant during the state of combustion noise. On the
other hand, the multifractal spectrum oscillates periodically during the occurrence of
thermoacoustic instability. From the analysis of 2-D images of the flame, we can make
reasonable assumptions of the variation in the multifractal spectrum corresponding to
the three-dimensional (3-D) flame. During the occurrence of combustion noise, we
expect that small-scale structures exist throughout the 3-D flame. The value of D0 for
combustion noise would be lower than that obtained for thermoacoustic instability.
We expect that the difference between the measures obtained for combustion noise
and thermoacoustic instability would be larger when the 3-D flames are investigated.
This is because the addition of the azimuthal direction would result in an additional
scale for the state of thermoacoustic instability and increase D0. On the other hand,
α0 would remain nearly the same for a 3-D flame as observed for a 2-D flame,
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provided that the distribution of the small scale structures is invariant with respect
to the azimuthal direction. Based on the points listed above, we hypothesize that
the analysis of a 3-D flame would lead to similar conclusions while comparing the
different dynamical states.

In a multifractal analysis, the singularity exponent α is described based on the
distribution of a measure in the field. Thus, a change in the spatial distribution of
measure would result in additional singularity exponents in the system. For instance,
a non-axisymmetric flame would result in additional scales in the system and thereby
change the distribution of the measure and affect the multifractal spectrum.

Though the scaling nature may differ for an axisymmetric and non-axisymmetric
flame, the multifractal characteristics demonstrated by the flame during different
dynamical states are preserved. This is owing to the fact that the thermoacoustic
instability is characterized by the periodic emergence of large-scale coherent structures,
which results in periodic oscillations of the multifractal spectrum. Similarly, highly
unorganized small-scale structures govern the flame during the state of combustion
noise and results in a non-varying multifractal spectrum.

It is important to highlight how the multifractal analysis of the flame can be
applied to practical applications. Modelling the heat release rate of the turbulent
thermoacoustic system with existing computational methodologies such as direct
numerical simulation (known as DNS) and large eddy simulation (known as LES) is
difficult as it involves expensive computation and validation of the models. Obtaining
transfer functions (flame transfer function and flame describing function) to model
the heat release rate response is quite expensive as it requires inputs from rigourous
experiments. The observation of multifractality due to flame wrinkling during various
regimes of combustor operation indicates that multiplicative processes associated with
the turbulent reactive flow govern the heat release rate. The rules governing these
multiplicative processes are inherently very simple (Meneveau & Sreenivasan 1987;
Sreenivasan 1991). Thus, it may be instructive to model the heat release rate through
these multiplicative processes. A first approach would be to develop a heat release
rate model which depends on the capacity dimension (D0) of the flame for premixed
flamelets (Peters 2000). Doing so will implicitly introduce the effect of turbulence in
the acoustic wave equation, typically solved in thermoacoustic instability, through the
source term.

5. Conclusion
In a turbulent thermoacoustic system, Nair & Sujith (2014) showed a loss of

multifractality due to the reduction of multiple temporal scales of pressure fluctuations
to a few discrete temporal scales, when the thermoacoustic system transitions from
combustion noise to thermoacoustic instability. Interestingly, our study reveals that in
the spatial domain, multifractality is omnipresent as the dynamical state transitions
from combustion noise to thermoacoustic instability via intermittency. The increase
in the capacity dimension during the transition to thermoacoustic instability indicates
an increase in the space-filling nature of the flame. The space-filling nature of the
flame is periodic in time, which gives rise to periodic oscillations of the heat release
rate during thermoacoustic instability. We suggest that it is this periodic space-filling
nature of the flame, due to the flow-flame interaction, which results in the emergence
of spatiotemporal order and coherence in the acoustic power production during
thermoacoustic instability.

Further, at the onset of thermoacoustic instability, the periodic temporal evolution
of large-scale coherent structures manifests as periodic oscillations of the multifractal
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spectrum. During these periodic oscillations of the multifractal spectrum, we have
seen that both D0 and α0 oscillate periodically with time. We observe that both
D0 and α0 reach their maximum values at the instant when the coherent structure
reaches its maximum size, before impingement on the bluff-body. Thus, the flame
has the maximum surface area at this time. This maximum surface area is achieved
due to the presence of several small-scale vortices within the large-scale coherent
structure. George et al. (2018) suggested that the interaction of small-scale vortices
to form a large-scale vortex, termed as collective interaction, results in the emergence
of coherence in the acoustic power production at the onset of thermoacoustic
instability. We are able to describe the increase in the wrinkling of the flame using
fractal/multifractal measures, and relate it to the periodic heat release rate oscillations
that happen in this complex turbulent flow field.

It is worth noting that through the use of multifractal formalism we can relate
the loss of chaos and loss of multifractality in the time series of acoustic pressure
with the increasingly complex spatial topology of the flame during the transition to
thermoacoustic instability. As a final remark, developing a phenomenological model
which relates the complex spatial flame topology to the complex dynamics of the
acoustic pressure during the transition to thermoacoustic instability through a fractal or
multifractal formalism would enable us to capture the fundamental processes involved
in the problem.
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Appendix A. Comparison of spatial length scales

In general, there are different spatial scales present in the turbulent reactive flow,
ranging from the Kolmogorov’s length scale η to the largest eddy scale referred to as
the integral length scale l0. The different spatial scales associated with flame roll-up
observed across different dynamical states are small-scale flame roll-up (δ ∼ 2 mm),
medium-scale roll-up (M ∼ 6 mm) and large-scale roll-up (L∼ 15 mm) as described
in § 4.
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The flame roll-up contours are extracted from the 2-D Mie scattering images
acquired using the digital camera with spatial resolution of 20 pixels mm−1 and thus
1 pixel corresponds to lc = 0.05 mm. The extracted flame contours have a maximum
thickness lt ≈ 0.1 mm. Noting that δ/lt ≈ 20 and δ/lc≈ 40, the range of the extracted
flame roll-ups are sufficiently resolved in our analysis.

The integral length scale l0 is typically of the order of the characteristic length scale
of the system, which is the step size of the combustor (l0 ≈ ls = 25 mm). Assuming
Kolmogorov’s hypothesis of local isotropy holds, η is related to l0 as

η∼ l0 × Re−3/4. (A 1)

For the reported range of Reynolds number, Re = 1.88 × 104 to 3.15 × 104, and
l0 ≈ 25 mm, the Kolmogorov length scale is in the range η ∼ 0.01− 0.016 mm. By
comparing the small-scale flame roll-up (δ ∼ 2 mm) with Kolmogorov’s length scale
η∼ 0.01 mm and large-scale flame roll-up (L∼ 15 mm) with integral length scale l0,
we obtain η/δ∼ 200 and L/l0∼ 3/5. Thus, by substituting η and l0 in terms of δ and
L, respectively, equation (A 1) is modified as

L
δ
∼

3
1000

Re−3/4. (A 2)

The above expression gives an empirical relation between the largest and smallest
scales associated with flame roll-ups observed during different states of combustor
operation.

Appendix B. Edge detection technique to detect the flame contour from the Mie
scattering images

Proper identification of the flame contour is necessary for the multifractal analysis
(Shepherd, Cheng & Talbot 1992; Foroutan-pour, Dutilleul & Smith 1999). The
acquired Mie scattering images of the flame are converted into binary images to
obtain the flame contour. The raw Mie scattering images are converted into binary
images through the following steps.

(i) Background correction is performed to reduce background noise and high
reflection caused by the laser.

(ii) The greyscale images are initially binarized using Otsu’s thresholding method
with suitable threshold to give a preliminary flame boundary (Ostu 1979).

(iii) This flame boundary is then smoothed (Shepherd et al. 1992; Foroutan-pour
et al. 1999). Image smoothing is achieved by using a dilation function on the
binary image with an appropriate threshold (Gonzalez, Woods & Eddins 2004).
The dilation function operates on the binary image to enlarge the area of the
flame boundary. Subsequently, this step reduces the area represented by the
non-boundary regions close to the flame boundary.

(iv) The dilated image is then skeletonized to get a uniformly thin flame boundary
whose width occupies only one pixel (Lam, Lee & Suen 1992).

(v) Smaller and isolated circular objects could also be detected along with the flame
as a result of the previous steps. These isolated circular objects are then removed
by providing a threshold based on the area.

During the occurrence of thermoacoustic instability, multiple small-scale spatial
structures exist within the large-scale spatial structures. To capture the boundary of
all these spatial structures, the dilation threshold (step (iii)) is applied locally based
on the pixel intensities.
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Appendix C. Evaluation of singularity exponent (α) and the multifractal spectrum
( f (α))

Before examining the procedure for the evaluation of the singularity spectrum, let
us examine the concept of a measure. A measure (µ) can be thought of as a function
which takes in a set as the input variable and maps it to a non-negative real number.
This is denoted mathematically as µ : S → [0,∞) where S is the set. One can think
of the Lebesgue measure to understand this concept better. Given a set, the Lebesgue
measure is defined as the volume of this set. One is free to define the measure for a
set, provided it satisfies the following conditions.

(i) Non-negativity: measure has to be a non-negative real number, i.e., µ(T)>0∀T ∈
S.

(ii) Countable additivity: the measure of a countable union of disjoint sets is the sum
of the measure of each set, i.e., µ(

⋃n
i=1 Ti)=

∑n
i=1 µ(Ti).

In practice, the spatial field G (which is the flame contour in our study) is
considered as a set on which the measure µ is defined by satisfying the above
conditions. In our analysis, µ is selected as the normalized probability mass
distribution of the non-zero pixel intensity in the flame contours (Giri et al. 2014).
After detection of the flame contour, we calculate the probability distribution P of
the number of pixels intensities M present in each box of size ε that is needed to
cover the flame contour,

Pi(ε)=
Mi(ε)

N(ε)∑
i=1

Mi(ε)

. (C 1)

Here, N(ε) is the total number of boxes of size ε that contain the pixels. The measure
µ is given as

µi(q, ε)=
Pi(ε)

q

N(ε)∑
i=1

Pi(ε)
q

, (C 2)

where q is the order of moment of the measure. According to Chhabra & Jensen
(1989), the singularity exponent α and the multifractal spectrum f (α) are calculated
as

α(q)= lim
ε→0

N(ε)∑
i=1

µi(q, ε) ln Pi(ε)

ln ε
, (C 3)

f (α)= lim
ε→0

N(ε)∑
i=1

µi(q, ε) lnµi(q, ε)

ln ε
. (C 4)

For each value of q, we plot
∑
µi(q, ε) ln Pi(ε) versus ln ε and

∑
µi(q, ε) lnµi(q, ε)

versus ln ε. The slopes of the linear fit for these two plots provide the values of α
and f (α), respectively. The best linear fit is achieved for a specific range of q
(Puthenveettil, Ananthakrishna & Arakeri 2005). We apply the above-mentioned
algorithm to the image of a flame shown in figure 10(a).
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FIGURE 10. The detected flame contour from the Mie scattering image of the flame is
shown in (a). The range of f (α) calculated for different q values from −2 to 2 are shown
in (b). The different lines represent the linear fits for different values of q.

Figure 10(b) depicts the logarithmic variation of measure µ with box size ε used
to estimate f (α) for the flame shown in figure 10(a). In figure 10(b), we observe that
there is a deviation in the linear fitted curve plotted for q<−1. Similarly a deviation
is also observed for q greater than 2 (not shown here). In our work, the range of
q values is restricted to −1 6 q 6 2 in order to have a reasonable range of scaling
regime.

In the above described box-counting method, we did not use the Legendre
transformation to estimate f (α) and α. Other methods such as the wavelet transform
method use the Legendre transformation to calculate f (α) and α. The multifractal
spectrum calculated using Legendre transformation involves a higher uncertainty for
the negative q values (Chhabra & Jensen 1989; Veneziano, Moglen & Bras 1995).
Avoiding the usage of the Legendre transformation of τ(q) increases the accuracy of
the multifractal spectrum calculated from the box-counting method used here. In our
study, the dynamics of the flame front is suitably represented in a binary form. The
box-counting method estimates the multifractal spectrum in a more accurate manner
for binarized signals with less computational time (Lopes & Betrouni 2009). Thus,
the box-counting method is adopted in our current analysis.

Normant & Tricot (1991) reported that the box-counting technique is valid only
for statistically self-similar signals. However, it has been shown that natural objects
exhibit statistical self-similarity only for a finite range of scales [εmin εmax] considered
in the box-counting method (Beauvais & Montgomery 1997). By considering a finite
range of scales for which statistical self-similarity is preserved, the dynamics due to
other scales would be lost (Beauvais & Montgomery 1997; Tanner, Perfect & Kelley
2006). By considering all scales, the natural objects demonstrate that the space-filling
nature is preserved even in the absence of statistical self-similarity (Beauvais &
Montgomery 1997). In our study, we have a range of scales associated with the size
of flame roll-up as discussed in § 4. We need to take into account the entire range of
scales because of their physical relevance in relation to the size of the vortices. By
considering the entire range of scales in the box-counting analysis, the flame is not
statistically self-similar. However, the flame exhibits the space-filling nature when all
scales are taken into account. This space-filling nature supports the occurrence of an
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Ób = 0.015 Ób = 0.016 Ób = 0.017 Ób = 0.018(a) (b) (c) (d)

FIGURE 11. The extracted flame contours for different thresholds (a) εb= 0.015, (b) εb=

0.016, (c) εb= 0.017 and (d) εb= 0.018 are shown here. The flame contours extracted are
almost the same for all εb values.

Ób = 0.015
Ób = 0.016
Ób = 0.017
Ób = 0.018

0.013 0.015 0.017 0.0190.013 0.015 0.017
Ób Ób å

0.019 1.4 1.5 1.6 1.7 1.8 1.9

D0 å0

f(
å)

(a) (b) (c)
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1.8
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FIGURE 12. The variation of the capacity dimension D0 (a), the most dominant singularity
exponent α0 (b) and the multifractal spectrum (c) for different binarization thresholds are
shown. The multifractal parameters show almost the same value in the range of εb between
0.015 and 0.018.

intense field of heat release rate during the presence of large-scale coherent structure.
Thus, we continue to use the box-counting method considering all the flow scales for
the estimation of fractal dimension.

Appendix D. Uncertainties in the multifractal spectrum
Though the box-counting method has advantages in the estimation of the

multifractal spectrum for the binary images, there are uncertainties which arise
due to the improper selection of thresholds during the image-processing (Shepherd
et al. 1992; Foroutan-pour et al. 1999) and also due to the use of linear curve
fit to calculate the slope (Górski et al. 2012). At first, we examine uncertainties
associated with the usage of different thresholds in the extraction of the flame
contours. There are uncertainties associated with the usage of different thresholds
in the extraction of the flame contours. We binarize the Mie scattering image using
Otsu’s thresholding method (Ostu 1979) using an optimal binarization threshold.
In order to find the optimal threshold, we vary the binarization threshold εb from
0.01 to 0.02. The extracted flame contours for four different thresholds, εb = 0.015,
εb= 0.016, εb= 0.017 and εb= 0.018 are shown in figure 11(a–d), respectively. From
figure 11(a–d), we can observe that the extracted contours are nearly the same for
these εb values.

The multifractal parameters namely D0, α0 and the multifractal spectrum
corresponding to different threshold values of εb are shown in figure 12(a–c). From
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FIGURE 13. Time trace of D0 along with error bars during the occurrence of combustion
noise.

figure 12(a–c), we can observe that D0, α0 and the multifractal spectrum are almost
constant for the range of εb from 0.015 to 0.018. Thus, we use εb of 0.0165 for
the extraction of flame contours throughout the multifractal analysis for the state
of intermittency. The same procedure is followed for the analysis of flame images
captured during the state of combustion noise and thermoacoustic instability.

The optimal threshold for the dilation function is determined in the same manner as
that for obtaining the optimal threshold for Otsu’s binarization scheme. We find the
values of the threshold for which multifractal characteristics remain constant, and then
chose the appropriate threshold value.

The uncertainty in the estimation of f (α) and α due to the use of linear curve fit to
calculate the slope is explained as follows. The linear curve fitting algorithm optimizes
the constants of a fitting equation by minimizing the sum of the squares of deviations
of the actual (data) values from the values predicted by the equation. The uncertainty
is calculated from the difference between the actual data and the fitted data by using
the following equation (Coleman & Steele 2018):

Se =

2

√√√√√√
N(ε)∑
i=1

y2
− bp

N(ε)∑
i=1

y− bm

N(ε)∑
i=1

xy

N(ε)− 2
. (D 1)

Here, y is log(µ) and x is log(ε). The intercept and the slope of the fitted line are
given by bp and bm, respectively.

To find the goodness of the fitted values, we find their confidence interval. The
confidence interval for bm is given as

bm± tc
Se

2

√√√√N(ε)∑
i=1

x2
−N(ε)x̄2

, (D 2)

where tc is the set of values which depend upon on the percentage of the confidence
interval for which we calculate the goodness of the fitted values.

By considering a 90 % confidence interval, we calculate the uncertainty in the
estimation of D0 during the occurrence of combustion noise as shown in figure 13.
The same procedure is followed to calculate the uncertainty for all multifractal
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Dynamical states D0 α0

Combustion noise ±0.024 ±0.027
Aperiodic epochs of intermittency ±0.04 ±0.038
Periodic epochs of intermittency ±0.068 ±0.049
Thermoacoustic instability ±0.067 ±0.083

TABLE 1. Uncertainties in the calculation of parameters of the multifractal spectrum for
different dynamical states.

parameters used in our study and is tabulated in table 1. Low values of uncertainty
are obtained for D0 and α0.
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