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Abstract

We consider random rectangles in R
2 that are distributed according to a Poisson random

measure, i.e. independently and uniformly scattered in the plane. The distributions of
the length and the width of the rectangles are heavy tailed with different parameters.
We investigate the scaling behaviour of the related random fields as the intensity of
the random measure grows to infinity while the mean edge lengths tend to zero. We
characterise the arising scaling regimes, identify the limiting random fields, and give
statistical properties of these limits.

Keywords: Gaussian random field; generalised random field; Poisson point process;
Poisson random field; random balls model; random grain model; stable random field

2010 Mathematics Subject Classification: Primary 60G60
Secondary 60F05; 60G55

1. Introduction

1.1. Model

We use the following framework that is essentially the same as that used in [4], [5], and
[18]. Let B(x, u) denote the two-dimensional rectangular box in R

2 with centre at x and edge
lengths ui for i= 1, 2. We consider a family of rectangles (B(X(j),U(j)))j in R

2 (also referred
to as boxes) which are generated by a Poisson point process (X(j),U(j))j in R

2 ×R
2+. Let N be

a Poisson random measure with intensity measure given by n(dx, du)= λdxF(du), where the
intensity λ is a positive constant. The probability measure F on R

2+ is given by

F(du)= cFf1(u1) f2(u2) du1 du2, (1.1)

where cF > 0 is the normalising constant and fi(ui)∼ 1/uγi+1
i as ui→∞ for i= 1, 2 with

γi > 1. We assume for the sake of convenience that we have cF = 1 (because one could simply
think that cF is included in λ in the case of cF �= 1) and we write f (y)∼ g(y) if f (y)/g(y)→ 1.
Note that, for i= 1, 2, ∫

R+
ui fi(ui) dui <∞,

i.e. the expected length and the expected width (and thus area) of a box are finite.
We discuss random fields defined on certain spaces of signed measures. Let us denote by M2

the linear space of signed measures μ on R
2 with finite total variation ‖μ‖ := |μ|(R2)<∞,

where |μ| is the total variation measure of μ (see, e.g. [26, p. 116]). We are interested in the
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774 F. AURZADA AND S. SCHWINN

cumulative volume induced by the boxes and measured by μ ∈M2. Therefore, we define the
random field J := (J(μ))μ on M2 by

J(μ) :=
∫
R2×R2+

μ(B(x, u))N(dx, du).

Since our purpose is to deal with centred random fields, we introduce the notation
for the corresponding centred Poisson random measure Ñ :=N − n and centred integral
J̃(μ) := J(μ)−EJ(μ).

The goal of this paper is to obtain scaling limits for the random field J̃. By scaling, we mean
that the length and the width of the boxes are shrinking to zero, i.e. the scaled edge lengths are
ρui with scaling parameter ρ→ 0, and that the expected number of boxes is increasing, i.e. the
intensity λ of the Poisson point process is tending to infinity as a function of ρ. The precise
behaviour of λ= λ(ρ)→∞ is specified in the different scaling regimes below. Following the
notational convention from above, we denote by J̃ρ the centred random field corresponding
to the Poisson random measure Nρ with the modified intensity λρ := λ(ρ) and scaled edge
lengths, i.e. Fρ is the image measure of F by the change u 	→ ρu.

We mention that random germ–grain models have received significant attention in the
literature (cf. [3]–[8], [14], [18], [23], and [25]). In a nutshell, our paper extends the work
from Biermé et al. [4] and Kaj et al. [18] to a random boxes model where the size of a
grain depends on two differently heavy-tailed-distributed random variables instead of just one
random variable for the volume of the grain. To be more precise, the shape of the grains is
rectangular with a random length and a random width (mutually independent). Therefore, our
model differs from those in that the volume is given by the product of the length and the
width, and each box simultaneously gets a random length-to-width ratio. As a consequence,
the main novelty of this work is that our random boxes model leads to a greater number of
scaling regimes than other random balls models (e.g. [4], [5], and [18]). In particular, the so-
called Poisson-lines scaling regime with its distinctive graphical representation has not arisen
so far (see Section 2.3.2). The class of limiting random fields contains linear random fields that
are Gaussian, compensated Poisson integrals, and integrals with respect to a stable random
measure.

Next, we want to say a few words about the applications of random balls models. The
motivation comes from telecommunication networks models. A list of some references can
be found at the beginning of Chapter 3 of [23]. In dimension d= 1, the model applies to
the random variation in packet network traffic, where the traffic is generated by independent
sources over time. The quantity of interest is the limiting distribution of the aggregated traffic
as the time and the number of sources both tend to infinity (possibly with different rates).
These different rates can result in different scaling regimes of the superposed network traffic.
In some papers, the ‘traffic’ additionally has a weight, which can be interpreted as the amount
of required resources, the transmission power, or the file sizes (see, e.g. [5], [12], [17], and
[23]). Our model can be interpreted in the same way, when the length of the rectangle is
thought to be the transmission time and the width a weight representing, e.g. a transmission
rate. Alternatively, our random rectangles model could model a simplified two-dimensional
wireless network. Imagine that there are spatially uniformly distributed stations which are
equipped with emitters. In our case, the range for transmission (with constant power) of
each station is given by a rectangular area and the total power of emission is measured by
μ ∈M2.
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Scaling limits for a random boxes model 775

1.2. Related work

A basic reference on limit theorems of Poisson integrals is the book by Lifshits [23]. The
main references for us are [4] and [18].

Kaj et al. [18] studied the limits of a spatial random field generated by independently and
uniformly scattered random sets in R

d. The sets (also referred to as grains) have a random
volume but a predetermined shape. The size of a grain is given by a single heavy-tailed
distribution, i.e. scaling means that the intensity λ grows to infinity while the mean volume ρ
of the sets tends to zero. They obtained three different limits depending on the relative speed
at which λ and ρ are scaled. Furthermore, they provided statistical properties of the limits.

Biermé et al. [4] considered a random balls model of germ–grain type as well. The
predetermined shape of the grains is a ball, whose size depends on the scaling parameter ρ
and the random radius. The radius distribution has a power-law behaviour either in zero or at
infinity, i.e. they dealt with zooming in and zooming out. As a main result, they can construct
all self-similar, translation, and rotation invariant Gaussian fields through zooming procedures
in the random balls model.

Breton and Dombry [5] investigated weighted random balls models, in which the balls
additionally have random weights, whose law belongs to the normal domain of attraction of the
α-stable distribution with α ∈ (1, 2]. They obtained different limiting random fields depending
on the regimes and gave statistical properties.

An anisotropic scaling was examined by Pilipauskaitė and Surgailis [25]. They studied the
scaling limits of the random grain model on the plane with heavy-tailed grain area distribution.
The anisotropy was implemented by scaling the x- and y-directions at different rates. Therefore,
in the case of the grains being rectangles, the ratio of the edge lengths of all rectangles tends
either to zero or to infinity under the scaling. This property distinguishes their model from our
random boxes model, where each rectangle has a random length-to-width ratio that does not
change under the scaling.

Moreover, limits of random balls models have been well investigated in the literature (e.g.
[3], [6], [7], [8], [14]) and, in particular, limits of ‘teletraffic’ models (see [12], [13], [17], and
a list of further references in [23]).

Finally, we would also like to mention the notion of Poisson shot noise, which is related
to random balls models and for which many limit theorems are available. The Poisson shot
noise process generalises the compound Poisson process, where the summands (‘jump sizes’)
can consist of further stochastic processes. Usually, the underlying process is on the real line
that can be interpreted as time (see [10], [20], [21], and [22] for Poisson processes, and [15]
and [24] for further processes). Poisson shot noise fields on R

d are considered in [1], [2], [9],
and [11], where the summands are governed by a response function rather than consisting of
stochastic processes.

1.3. Overview

Let us outline different scaling regimes which result in different limits. As mentioned above,
the scaling regimes are defined by the joint behaviour of the scaling parameter ρ and the
intensity λρ of the Poisson point process as ρ→ 0. We distinguish the following regimes.

• High-intensity regime: λρργ1+γ2→∞.

• Intermediate-intensity regime: λρργ1+γ2→ a ∈ (0,∞).

• Low-intensity regime: λρργ1+γ2→ 0.
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The low-intensity regime has to be divided once more into three different subregimes. Here,
we assume without loss of generality that the tail of the distribution of the length is heavier
than that of the width, i.e. γ1 < γ2. Our naming of these subregimes is based on the limits and
on the objects that can be spotted in a graphical representation. We distinguish the following
subregimes.

• Gaussian-lines scaling regime: λρργ1+η→ a ∈ (0,∞) for a constant η ∈ (0, γ2) and,
thus, λρργ1→∞. With regard to the scaling limit, it is of no importance to take care of
the precise behaviour of λρργ2 (as long as λρργ1+γ2→ 0).

• Poisson-lines scaling regime: λρργ1→ a ∈ (0,∞) and, thus, λρργ2→ 0.

• Points scaling regime: λρργ1→ 0.

So far, we have additionally assumed that γ1 < 2. For 2< γ1 ≤ γ2, the length and the width of
the boxes have finite variances. In this case, there is only one scaling limit and we just require
that λρ→∞ as ρ→ 0, i.e. there is no further condition on the joint behaviour of ρ and λρ .

Let us comment on the parameter a in the intermediate-intensity regime, the Gaussian-lines
scaling regime, and the Poisson-lines scaling regime, respectively. For the sake of clarity, the
respective results will only be given for the value a= 1. For the general cases where a ∈ (0,∞)
not necessarily equals 1, we refer the reader to Remarks 4.1, 4.3, and 4.2 below, respectively.

The remainder of this paper is structured as follows. Section 2 contains the theorems of
convergence to the limiting random fields (subdivided into the different scaling regimes in
Sections 2.1, 2.2, and 2.3, respectively) and a comparison to the model where the length and the
width of the boxes have finite variances (Section 2.4). A comparison of the different regimes,
further facts on statistical properties of the limits, and a modified model with randomly rotated
boxes are given in Sections 2.5, 2.6, and 2.7, respectively. We collect some preliminaries in
Section 3 in order to prove the main results in Section 4.

2. Main results

The following results are theorems of convergence of the finite-dimensional distributions of
the centred and renormalised random field(

J̃ρ(μ)

nρ

)
μ∈M

to a limiting random field, where the corresponding space of signed measures M and the
function nρ := n(ρ) are respectively defined in the theorems below. We denote this convergence
by J̃ρ( · )/nρ M−→W( · ), where in each case the limiting random field (W(μ))μ is specified
there.

2.1. High-intensity regime

We look at the high-intensity regime where λρργ1+γ2→∞. First, we define the space of
signed measures Mγ1,γ2 where the theorem of convergence holds.

Definition 2.1. Let Mγ1,γ2 be the subset of M2 with the following property. For each
μ ∈Mγ1,γ2 , there exist constants C> 0 and αi with γi <αi ≤ 2 for i= 1, 2 such that, for all
u ∈R2+, ∫

R2
μ(B(x, u))2 dx≤C min (u1, uα1

1 ) min (u2, uα2
2 ). (2.1)

https://doi.org/10.1017/apr.2019.34 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.34


Scaling limits for a random boxes model 777

In order to proceed quickly to the results, we postpone a discussion of the space Mγ1,γ2 to
Section 3.1. Here, we only note that this subspace is closed under translation and dilation; cf.
Section 2.6.

The limiting random field is given by a centred Gaussian linear random field.

Theorem 2.1. Let γi ∈ (1, 2) for i= 1, 2, λρ→∞, and λρργ1+γ2→∞ as ρ→ 0. Then, we
have

J̃ρ( · )√
λρργ1+γ2

Mγ1,γ2−−−−→ Z( · )

as ρ→ 0, where (Z(μ))μ is the centred Gaussian linear random field with covariance function

CZ(μ, ν)=
∫
R2×R2+

μ(B(x, u))ν(B(x, u))
1

uγ1+1
1

1

uγ2+1
2

dx du. (2.2)

2.2. Intermediate-intensity regime

In the intermediate intensity regime where λρργ1+γ2→ a ∈ (0,∞), the space of signed
measures is identical with that in the high-intensity regime. The limiting random field consists
of compensated Poisson integrals.

Theorem 2.2. Let γi ∈ (1, 2) for i= 1, 2, λρ→∞, and λρργ1+γ2→ 1 as ρ→ 0. Then, we
have

J̃ρ( · ) Mγ1,γ2−−−−→ JI( · )
as ρ→ 0, where (JI(μ))μ is the linear random field of compensated Poisson integrals

JI(μ) :=
∫
R2×R2+

μ(B(x, u))ÑI(dx, du),

where the intensity measure is given by

nI(dx, du)= dx
1

uγ1+1
1

1

uγ2+1
2

du1 du2.

2.3. Low-intensity regime

The low-intensity regime is defined by λρργ1+γ2→ 0 with γ1 < γ2, which is divided once
more into three different subregimes. In these subregimes, we additionally have to assume that
the density function of the length of a box for small values is bounded, i.e. we assume that
there is some cf1 > 0 such that the inequality

f1(u1)≤ cf1

uγ1+1
1

(2.3)

holds for all u1 ∈R+. This technical assumption ensures the existence of a suitable majorant
for f1 in the proofs below. From now on, we treat the three subregimes separately.

2.3.1. Gaussian-lines scaling regime. We define the space of signed measures ML for the
Gaussian-lines scaling regime where λρργ1+η→ a ∈ (0,∞) for some η ∈ (0, γ2).

Definition 2.2. Let ML be the subset of M2 where

• each μ ∈ML has a density function fμ, i.e. μ(dx)= fμ(x) dx;
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• for each μ ∈ML, the density function fμ is bounded and decays at least exponentially
fast, i.e. there exist constants Cμ > 0 and cμ > 0 such that, for all x ∈R2,

| fμ(x)| ≤Cμe−cμ(|x1|+|x2|); (2.4)

• for each μ ∈ML, the pointwise convergence

1

ε

∫
B(x,(u1

ε ))
fμ(y)dy→

∫
[x1−u1/2,x1+u1/2]

fμ(y1, x2) dy1 (2.5)

as ε→ 0 holds for all (x, u1) ∈R2 ×R+.

We note that this subspace is closed under translation and dilation; cf. Section 2.6. For a
discussion about the properties of this space and the relation to Mγ1,γ2 , we refer the reader to
Section 3.1.

In the Gaussian-lines scaling regime, we require a further condition on the ‘lighter’ tail
index γ2, namely γ2 > 2. Consequently, the width of a box has a finite variance. The limiting
random field is a centred Gaussian linear random field.

Theorem 2.3. Let γ1 ∈ (1, 2), γ2 > 2, λρ→∞, and λρργ1+η→ 1 for some η ∈ (0, γ2) as
ρ→ 0. Then, we have

J̃ρ( · )
ρ1−η/2

ML−−→ Y( · )

as ρ→ 0, where (Y(μ))μ is the centred Gaussian linear random field with covariance function

CY (μ, ν)=
∫
R2×R2+

∫
[x1−u1/2,x1+u1/2]2

fμ( y1, x2) fν( y2, x2) dy
u2

2 f2(u2)

uγ1+1
1

dx du. (2.6)

2.3.2. Poisson-lines scaling regime. In the Poisson-lines scaling regime where λρρ
γ1→

a ∈ (0,∞), we provide the theorem of convergence to a random field consisting of compen-
sated Poisson integrals. The corresponding space of signed measures coincides with that from
the Gaussian-lines scaling regime.

Theorem 2.4. Let γ1 ∈ (1, 2), γ1 < γ2, λρ→∞, and λρργ1→ 1 as ρ→ 0. Then, we have

J̃ρ( · )
ρ

ML−−→ JL( · )

as ρ→ 0, where (JL(μ))μ is the linear random field of compensated Poisson integrals

JL(μ) :=
∫
R2×R2+

(
u2

∫
[x1−u1/2,x1+u1/2]

fμ(y1, x2) dy1

)
ÑL(dx, du), (2.7)

where the intensity measure is given by

nL(dx, du)= dx
1

uγ1+1
1

du1f2(u2) du2. (2.8)

https://doi.org/10.1017/apr.2019.34 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.34


Scaling limits for a random boxes model 779

FIGURE 1: Poisson-lines scaling regime.

In the Poisson-lines scaling regime, we have λρργ1→ a ∈ (0,∞) and λρργ2→ 0 as ρ→ 0.
This indicates a different behaviour for the length and the width of the boxes. For a graphical
representation, we ran simulations of the Poisson point processes for some small ρ and
appropriate λρ . We generated random Poisson points, where we chose Pareto distributions
for the length and the width of the boxes. Then, we plotted the boxes that are filled with black
colour, i.e. black rectangles. Two samples of the random boxes model in the Poisson-lines
scaling regime are given in Figure 1. Besides points, we spot horizontal lines in the sample on
the left-hand side. In the sample on the right-hand side, each box is just additionally randomly
rotated around the center point of itself (cf. Section 2.7 below for the definition of this modified
model).

2.3.3. Points scaling regime. In the points scaling regime where λρργ1→ 0, we investigate the
scaling behaviour of J̃ρ on the space of signed measures MP which is given as follows.

Definition 2.3. Let MP be the subset of M2 where

• each signed measure μ ∈MP has a continuous density function fμ, i.e. μ(dx)= fμ(x) dx;

• for each μ ∈MP, the density function fμ is bounded and decays at least exponentially
fast, i.e. there exist constants Cμ > 0 and cμ > 0 such that, for all x ∈R2,

| fμ(x)| ≤Cμe−cμ(|x1|+|x2|).

We note that this subspace is closed under translation and dilation; cf. Section 2.6. A further
discussion of the space is given in Section 3.1.

The limiting random field consists of integrals with respect to an α-stable random measure.
For α ∈ (1, 2), we denote by	α the independently scattered α-stable random measure with unit
skewness and Lebesgue control measure (cf., e.g. [27]). We define the random linear functional

Sγ1 (μ) :=
∫
R2

fμ(x)	γ1 (dx), μ ∈MP, (2.9)

by its characteristic function at 1, i.e.

E(eiSγ1 (μ))= exp

(
− σγ1

μ

(
1− iβμ tan

(
πγ1

2

)))
,
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where (excluding the trivial case ‖ fμ‖γ1 = 0)

σμ = ‖ fμ‖γ1 , βμ = ‖ fμ‖−γ1
γ1

(‖ fμ+‖γ1
γ1
− ‖ fμ−‖γ1

γ1
) (2.10)

and fμ+ :=max ( fμ, 0), fμ− :=−min ( fμ, 0).

Theorem 2.5. Let γ1 ∈ (1, 2), γ1 < γ2, λρ→∞, and λρργ1→ 0 as ρ→ 0. Then, we have

J̃ρ( · )
cγ1,γ2λ

1/γ1
ρ ρ2

MP−−→ Sγ1 ( · )

as ρ→ 0, where the linear random field of functionals (Sγ1 (μ))μ and the constant cγ1,γ2 are
defined in (2.9) and (4.8) below, respectively.

2.4. The finite-variance case

Finally, we want to investigate the scaling behaviour in the case where the area of a box
has a finite variance. We assume that the length and the width of the boxes have finite second
moments instead of heavy tails. Similar to above, let F be a probability measure on R

2+ given by

F(du)= f1(u1)f2(u2) du1 du2.

Furthermore, we define, for i= 1, 2,

vi :=
∫
R+

u2
i fi(ui) dui <∞. (2.11)

The following result shows that the centred and renormalised random field on the space
MP converges to a centred Gaussian linear random field. We emphasise that there does not
exist a diversity of regimes to distinguish in the finite-variance case, which is also the much
simpler case. Nevertheless, the proof of this result can be viewed as a ‘prototype proof’ for all
other regimes.

Moreover, we conjecture that the following theorem holds for a larger space of signed
measures than MP (but our proof cannot be adapted to this larger space). Actually, the limiting
random field is well defined for fμ ∈ L1(R2)∩ L2(R2).

Theorem 2.6. Let λρ→∞ as ρ→ 0. Then, we have

J̃ρ( · )
ρ2
√
λρv1v2

MP−−→ X( · )

as ρ→ 0, where vi is defined in (2.11) for i= 1, 2 and where (X(μ))μ is the centred Gaussian
linear random field with covariance function

CX(μ, ν)=
∫
R2

fμ(x)fν(x) dx. (2.12)

2.5. Comparison of the different regimes

First, we make a remark regarding the comparison of the different regimes among each
other. In each low intensity subregime, the different parameters γ1 and γ2 contribute in different
ways to the limit. This contrasts the limits in the high- and intermediate-intensity regimes,
where both parameters γ1 and γ2 are present in a homogeneous way in each limit. For example,
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in the points scaling regime the ‘heavier’ tail index γ1 for the length of a box appears primarily
in the limit, i.e. the ‘lighter’ tail index γ2 only enters into a constant (see Theorem 2.5). More
precisely, the limit Sγ1 (μ) is a γ1-stable random variable and the constant cγ1,γ2 given in (4.8)
below is the only quantity depending on the tail index γ2.

Second, we want to say a few words about the comparison to previous work. Two limiting
random fields in this paper have already arisen in identical form. The centred Gaussian linear
random field with covariance function given in (2.12) coincides with the corresponding one in
the finite-variance case of the random grain model where the size of a grain is given by a single
distribution (cf. Theorem 1 of [18]). Moreover, the limiting random field consisting of integrals
with respect to a stable random measure in the points scaling regime has also appeared there
(cf. Equation (13) of [18]). The index of stability is given by the index of the regularly varying
tail of the volume of a grain there and by the ‘heavier’ tail index γ1 for the length of a box in
our random boxes model. All other limiting random fields seem to be new.

2.6. Statistical properties

In the following paragraphs, we give some statistical properties of the different scaling
limits Z, JI, Y, JL, Sγ1 , and X on their respective spaces of signed measures. With regard to
these properties, we note that these subspaces are closed under translation and dilation. We
will omit the proofs of all these facts because they can be verified easily.

Covariance. The covariance functions of the Gaussian random fields Z, Y, and X are given
in (2.2), (2.6), and (2.12), respectively. The covariance function of JI in the intermediate-
intensity regime is exactly the same as in the high-intensity regime (see (2.2)), but the limit
JI is not a Gaussian random field. In the points scaling regime, the scaling limit Sγ1 (μ) is
γ1-stable and thus does not have a finite variance. We distinguish two cases in the Poisson-
lines scaling regime. If γ2 < 2, the compensated Poisson integral JL(μ) does not have a finite
variance. In contrast, if we assume that γ2 > 2, i.e. the width of a box has a finite variance, the
scaling limit JL(μ) has a finite variance as well and the covariance function coincides with that
in the Gaussian-lines scaling regime (see (2.6)).

Translation invariance. Let s ∈R2. We define the translation of a signed measure τsμ by
τsμ(A) :=μ(A− s) for any Borel set A. We call a random field W on MW translation invariant
(cf. Definition 3.1 of [4]) if we have

(W(τsμ))μ∈MW = (W(μ))μ∈MW

in finite-dimensional distributions for all s ∈R2 (MW has to be closed under translations τs).
All limiting random fields Z, JI , Y , JL, Sγ1 , and X are translation invariant on the respective
spaces of signed measures.

Dilation. For all a> 0, the dilation of a signed measure μa is given by μa(A) :=μ(a−1A) for
any Borel set A. We call a random field W on MW self-similar with index H (cf. Definition 3.3
of [4]) if we have

(W(μa))μ∈MW = (aHW(μ))μ∈MW

in finite-dimensional distributions for all a> 0 (MW has to be closed under dilations μa).
The limiting (Gaussian) random fields Z, Y, and X are self-similar with indices

H = (2− γ1 − γ2)/2, H =−γ1/2, and H =−1, respectively. In the points scaling regime, the
limit Sγ1 is self-similar with index H = 2/γ1 − 2. We emphasise that H is negative in these
cases. If the reader expects H to be positive, a reason may be found in the way of defining the
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dilation of a signed measure which, however, is common in the literature. We can also verify
that the random field JI in the intermediate intensity regime is not self-similar (cf. [18, p. 537]).

We call a random field W with EW = 0 on MW (which has to be again closed under dilation)
aggregate-similar (cf. Definition 3.5 of [4] and [16]) if there is a positive sequence (am)m≥1
such that we have

(W(μam))μ∈MW =
( m∑

k=1

Wk(μ)

)
μ∈MW

in finite-dimensional distributions for all m≥ 1, where (Wk)k≥1 are independent and identically
distributed (i.i.d.) copies of W.

We find that the random fields Z, Y , X, JI, and Sγ1 are aggregate-similar, where we
have am =m1/(2−γ1−γ2), am =m−1/γ1 , am =m−1/2, am =m1/(2−γ1−γ2), and am =m1/(2−2γ1),
respectively. Regarding the dilation in the Poisson-lines scaling regime, we mention that the
scaling limit JL does not fulfil aggregate-similarity. In fact, it fulfils the following property,
which is some kind of aggregate-similarity with dilation:

(JL(μam))μ∈ML =
( m∑

k=1

Jk
L,am

(μ)

)
μ∈ML

.

Here am =m1/(4−γ1) and (Jk
L,am

)k≥1 are i.i.d. copies of JL,am . The modification JL,am here is
also given by (2.7), but f2( · ) in (2.8) has to be replaced by a−1

m f2(am · ), i.e. the measure for the
width is dilated simultaneously.

2.7. Extension to randomly rotated boxes

A modification of the random boxes model consists in additionally endowing the rectangles
with independent and uniformly distributed orientations. A similar model was considered in
Section 3.3 of [18]. We introduce the Haar measure dθ on the group of rotations SO(2) in R

2

and consider the Poisson random measure N◦ρ on R
2 ×R

2+ × SO(2) with intensity measure
given by

n◦ρ(dx, du, dθ )= λρ dxFρ(du) dθ .

Then the centred Poisson integral

J̃◦ρ(μ) :=
∫
R2×R2+×SO(2)

μ(Bθ (x, u))Ñ◦ρ(dx, du, dθ )

is the object of interest, where Bθ (0, u) := θB(0, u) denotes the rectangle B(0, u) rotated by θ
and Bθ (x, u) for x �= 0 is defined by

Bθ (x, u) := x+ Bθ (0, u).

In order to obtain results for this modified random boxes model, we have to adapt the spaces
of signed measures slightly. In the following, we treat the high- and intermediate-intensity
regimes as an example.

Definition 2.4. Let M
γ1,γ2◦ be the subset of M2 where, for each μ ∈M

γ1,γ2◦ , there exist
constants C> 0 and αi with γi <αi ≤ 2 for i= 1, 2 such that, for all u ∈R2+,∫

R2×SO(2)
μ(Bθ (x, u))2 dx dθ ≤C min (u1, uα1

1 ) min (u2, uα2
2 ).
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Using this new subspace of signed measures, we get analogous theorems of convergence.
For the high-intensity regime, the limiting random field is again Gaussian.

Theorem 2.7. Let γi ∈ (1, 2) for i= 1, 2, λρ→∞, and λρργ1+γ2→∞ as ρ→ 0. Then, we
have

J̃◦ρ( · )√
λρργ1+γ2

M
γ1,γ2◦−−−−→ Z◦( · )

as ρ→ 0, where (Z◦(μ))μ is the centred Gaussian linear random field with covariance function

CZ◦ (μ, ν)=
∫
R2×R2+×SO(2)

μ(Bθ (x, u))ν(Bθ (x, u))
1

uγ1+1
1

1

uγ2+1
2

dx du dθ .

In the intermediate-intensity regime, the limiting field is again a compensated Poisson
random field.

Theorem 2.8. Let γi ∈ (1, 2) for i= 1, 2, λρ→∞, and λρργ1+γ2→ 1 as ρ→ 0. Then, we
have

J̃◦ρ( · ) M
γ1,γ2◦−−−−→ J◦I ( · )

as ρ→ 0, where (J◦I (μ))μ is the linear random field of compensated Poisson integrals

J◦I (μ) :=
∫
R2×R2+×SO(2)

μ(Bθ (x, u))ÑI(dx, du, dθ ),

where the intensity measure is given by

nI(dx, du, dθ )= dx
1

uγ1+1
1

1

uγ2+1
2

du1 du2 dθ .

Since the probability measure dθ on the group SO(2) is not affected by the scaling of the
edge lengths as ρ→ 0, we obtain for each regime the same type of limiting random field as
in the model without rotations. Moreover, we can proceed in the proofs as in Theorems 2.1
and 2.2. We just have to use the new subspace of signed measures in order to obtain the
analogous limiting random fields for this modified random boxes model. To keep the exposition
comprehensible, we will not enter into more details for the proofs in this paper and omit the
low-intensity regime, where the modified subspaces are more complicated and technical.

In addition, further extensions of our random boxes model are feasible. For example, it is
possible to allow nonnegative σ -finite measures F instead of restricting ourselves to probability
measures or to consider boxes (hyper-rectangles) in R

d with d≥ 3.

3. Preliminaries and technical tools

First, we define the function � by

�(v) := eiv − 1− iv for v ∈R, (3.1)

which we often require in order to represent characteristic functions. Moreover, note that we
use c and C from now on for constants which can differ from line to line as well as within a
line.
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3.1. Spaces of signed measures

We investigate the spaces of signed measures where the theorems of convergence in the
high-, intermediate-, and low-intensity regimes hold, respectively. The following proposition,
which we can prove easily, ensures the linearity of these subspaces.

Proposition 3.1. The subsets Mγ1,γ2 , ML, and MP are linear subspaces of M2.

Remark 3.1. The linear space Mγ1,γ2 , where the theorems of convergence in the high- and
intermediate-intensity regimes hold, is not yet the technically largest possible. We are able
to weaken the condition in (2.1) as follows. For each μ ∈Mγ1,γ2 , there exist some constants
C> 0, αi, and αi with 0<αi < γi <αi ≤ 2 for i= 1, 2 such that the inequality∫

R2
μ(B(x, u))2 dx≤C min (u

α1
1 , uα1

1 ) min (u
α2
2 , uα2

2 )

holds for all u ∈R2+.

Remark 3.2. In Theorems 2.1 and 2.2 in the high- and intermediate-intensity regimes, we
additionally assume that γ2 < 2 instead of just γ2 > γ1. The reason for that can be motivated
in a natural way: On the one hand, we have to require that there exists some α2 > γ2 in
Definition 2.1 in order to prove the theorems of convergence. On the other hand, we want
at least measures whose density functions have compact support to be contained in Mγ1,γ2 . As
a consequence, α2 ≤ 2 also has to be fulfilled. Therefore, both inequalities can only be satisfied
simultaneously for γ2 < 2.

Remark 3.3. We briefly comment on the characteristics of the spaces of signed measures in
the low-intensity subregimes (see Definitions 2.2 and 2.3). The assumption that each signed
measure has a density function is obviously necessary since the density function appears
explicitly in the limiting random fields. In contrast, we do not conjecture that the technical
assumption on the decay of the density function in (2.4) is necessary as well. Nevertheless, the
reason for restricting the density functions to functions that decay at least exponentially fast is
related to the maximal function of the signed measure given in (3.18) below. We have to ensure
that Lemma 3.4(ii) below holds in order to prove the theorems of convergence.

Next, we touch on the comparison of these spaces of signed measures for γi ∈ (1, 2) for
i= 1, 2. We observe that the space Mγ1,γ2 contains measures which do not have to have a
density. Therefore, there exist some μ ∈Mγ1,γ2 , but μ /∈Mk for k ∈ {L, P}. Conversely, we
obtain the following result.

Proposition 3.2. Let γi ∈ (1, 2) for i= 1, 2. We have Mk ⊆Mγ1,γ2 for k ∈ {L, P}.
Sketch of the proof. Note that the density function of a signed measure in Mk for k ∈ {L, P}

satisfies
| fμ(x)| ≤Cμe−cμ(|x1|+|x2|)

for all x ∈R2 for some Cμ > 0 and cμ > 0. We can compute that∫
R

( ∫
[x1−u1/2,x1+u1/2]

e−cμ|y1| dy1

)2

dx1 ≤ c min (u1, u2
1)

by a case distinction for 0≤ u1 ≤ 1 and u1 > 1. Using the product form, the validity of
inequality (2.1) follows. �
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In order to obtain signed measures which are contained in the spaces Mk for k ∈ {L, P}, we
can stick closely to the definitions of these spaces. For example, we can consider the measure
μ given by μ(dx) := e−|x1|e−|x2| dx.

3.2. Existence of the random fields

We deal with the existence of the random field J̃ of interest and all the limiting random
fields in the different scaling regimes. Using Lemma 12.13 of [19], we can verify that the
random fields J and J̃ exist because we have∫

R2×R2+
|μ(B(x, u))|n(dx, du)≤ λ‖μ‖

∫
R

2+
u1u2F(du)<∞.

Furthermore, by standard facts on Poisson integrals and Fubini’s theorem, the expected
value of J(μ) is finite and given by

EJ(μ)= λμ(R2)
∫
R+

u1f1(u1) du1

∫
R+

u2f2(u2) du2.

Using the function � defined in (3.1), the characteristic function of J̃(μ) is given by

E(eiJ̃(μ))= exp

( ∫
R

2+

∫
R2
�(μ(B(x, u)))λ dxF(du)

)
.

Lemma 3.1. We have, for all μ ∈Mγ1,γ2 ,∫
R2×R2+

μ(B(x, u))2 1

uγ1+1
1

1

uγ2+1
2

dx du<∞.

Proof. This follows directly from Definition 2.1 of the space Mγ1,γ2 by using the estimate
in (2.1) for the function ϕ defined by

ϕ(u) :=
∫
R2
μ(B(x, u))2 dx (3.2)

for u ∈R2+. �
In the following, we briefly note that all the limiting random fields obtained in

Theorems 2.1, 2.2, 2.3, 2.4, 2.5, and 2.6 are well defined.

• Using Lemma 3.1, we can easily check that the right-hand side of (2.2) is a symmetric,
positive-semidefinite function such that there is a centred Gaussian linear random field
Z with covariance function given by (2.2).

• The existence of JI follows from Lemma 12.13 of [19] and Lemma 3.1.

• The proof of Theorem 2.3 shows that σ 2 given in (4.17) is finite. Hence, it can serve to
construct the covariance function of a centred Gaussian linear random field Y .

• The existence of the compensated Poisson integral JL(μ) for μ ∈ML given in (2.7) can
be verified by Lemma 12.13 of [19]. We just have to show that∫

R2×R2+
min (|g(x, u)|, g(x, u)2)

1

uγ1+1
1

f2(u2) dx du<∞,
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where

g(x, u) := u2

∫
[x1−u1/2,x1+u1/2]

fμ(y1, x2) dy1.

This can be seen by a case distinction. Let us start with the following general
consideration. There is an ε > 0 such that

min (|v|, v2)≤min (|v|γ1−ε, |v|γ1+ε) (3.3)

with 1< γ1 − ε and γ1 + ε <min (γ2, 2). Furthermore, we observe that

min (|ab|γ1−ε, |ab|γ1+ε)
≤min (|a|γ1−ε(|b|γ1−ε + |b|γ1+ε), |a|γ1+ε(|b|γ1+ε + |b|γ1−ε)) (3.4)

=min (|a|γ1−ε, |a|γ1+ε)(|b|γ1−ε + |b|γ1+ε).

We use (3.3), (3.4), and assumption (2.4) from Definition 2.2 to obtain

min (|g(x, u)|, g(x, u)2)

≤min ((Cμg1(x1, u1)e−cμ|x2|)γ1−ε, (Cμg1(x1, u1)e−cμ|x2|)γ1+ε)
× (|u2|γ1−ε + |u2|γ1+ε), (3.5)

where

g1(x1, u1) :=
∫

[x1−u1/2,x1+u1/2]
e−cμ|y1| dy1. (3.6)

Since ∫
R+

(|u2|γ1−ε + |u2|γ1+ε)f2(u2) du2 <∞

due to γ1 + ε < γ2 and the asymptotic behaviour of f2, and since∫
R

e−cμ|x2|(γ1±ε) dx2 <∞,

it remains to show that∫
R×R+

min (g1(x1, u1)γ1−ε, g1(x1, u1)γ1+ε) 1

uγ1+1
1

dx1 du1 (3.7)

is finite. For 0≤ u1 ≤ 1, we obtain∫
R

g1(x1, u1)γ1+ε dx1 =
∫
R

( ∫
[x1−u1/2,x1+u1/2]

e−cμ|y1|dy1

)γ1+ε
dx1

≤ 2
∫
R+

( ∫
[x1−u1/2,x1+u1/2]

e−cμy1dy1

)γ1+ε
dx1

≤ 2
∫
R+

( ∫
[x1−u1/2,x1+u1/2]

e−cμ(x1−u1/2)dy1

)γ1+ε
dx1

= 2ecμu1(γ1+ε)/2uγ1+ε
1

∫
R+

e−cμ(γ1+ε)x1 dx1

≤Cuγ1+ε
1 .
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In the case of u1 ≥ 1, we observe that∫
R

g1(x1, u1)γ1−ε dx1

≤
∫

[−u1/2,u1/2]

( ∫
R

e−cμ|y1| dy1

)γ1−ε
dx1 + 2

∫
(u1/2,∞)

g1(x1, u1)γ1−εdx1

=
(

2

cμ

)γ1−ε
u1 + 2

cγ1−ε
μ

∫
(u1/2,∞)

(e−cμx1 (ecμu1/2 − e−cμu1/2))γ1−εdx1

≤C

(
u1 + (ecμu1/2 − e−cμu1/2)γ1−ε 1

cμ(γ1 − ε) e−cμ(γ1−ε)u1/2
)

≤C(u1 + (ecμu1/2)γ1−εe−cμ(γ1−ε)u1/2)

≤C(u1 + 1)

≤Cu1.

Finally, we can split the integral in (3.7) into two parts following this case distinction
and see that these are bounded by∫

(0,1]
Cuγ1+ε

1
1

uγ1+1
1

du1 <∞ and
∫

(1,∞)
Cu1

1

uγ1+1
1

du1 <∞,

respectively. Therefore, the existence of the compensated Poisson integral JL(μ) for
μ ∈ML is proven since the integral in (3.7) is finite. We note that in inequality (3.5)
the particular exponent γ1 − ε is not required for this proof and we could also replace
γ1 − ε by 1. However, we stick to the exponent γ1 − ε because we will need the estimates
here for later purposes, for instance, in the proof of Theorem 2.4.

• Since fμ ∈ Lγ1 (R2) for μ ∈MP, the random linear functional Sγ1 (μ) given in (2.9) is
well defined. We refer the reader to Chapter 3 of [27] for an extensive discussion.

• We can deduce from the proof of Theorem 2.6 that the integral in (2.12) is finite and
serves to construct the covariance function of a centred Gaussian linear random field X.

3.3. Further useful lemmas

We continue with some useful lemmas that we use in the proofs of the main results in
Section 4. These new lemmas are inspired by Lemma 2.4 of [4], and Lemmas 4 and 6 of [18].

Lemma 3.2. Let F be a measure on R
2+ according to (1.1) and to the asymptotic behaviour

specified there. Furthermore, let g be a continuous function on R
2+ such that there is a constant

C> 0 for some αi > γi for i= 1, 2 such that

|g(u)| ≤C min (u1, uα1
1 ) min (u2, uα2

2 ) (3.8)

for all u ∈R2+. Then, we have, as ρ→ 0,∫
R

2+
g(u)Fρ(du)∼ ργ1+γ2

∫
R

2+
g(u)

1

uγ1+1
1

1

uγ2+1
2

du.
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Proof. The idea of the proof is to split the integral
∫
R

2+ g(u)Fρ(du) into four parts and treat
the four integrals separately.

Let ε > 0 be given and define the constant c0 by

c0

∫
R

2+
|g(u)| 1

uγ1+1
1

1

uγ2+1
2

du=
∣∣∣∣ ∫

R
2+

g(u)
1

uγ1+1
1

1

uγ2+1
2

du

∣∣∣∣; (3.9)

where we note that ∫
R

2+
|g(u)| 1

uγ1+1
1

1

uγ2+1
2

du<∞

because of inequality (3.8) and that we have to treat the special case with∫
R

2+
g(u)

1

uγ1+1
1

1

uγ2+1
2

du= 0

slightly differently. Therefore, we can assume that c0 > 0.
Choose N =N(ε) such that, for all ui >N for i= 1, 2, we have

fi(ui)≤ 2

uγi+1
i

(3.10)

and ∣∣∣∣ f1(u1)f2(u2)− 1

uγ1+1
1

1

uγ2+1
2

∣∣∣∣≤ c0
ε

2

1

uγ1+1
1

1

uγ2+1
2

, (3.11)

which is feasible due to the power-law assumption on the measure F. We write R2+ =
⋃4

k=1 �k

with
�1 := (ρN,∞)2, �2 := (0, ρN]2,

�3 := (ρN,∞)× (0, ρN], �4 := (0, ρN]× (ρN,∞).
(3.12)

From now on, we discuss the four corresponding integrals separately.

1. Using (3.11), we obtain∣∣∣∣ ∫
�1

g(u)Fρ(du)− ργ1+γ2

∫
R

2+
g(u)

1

uγ1+1
1

1

uγ2+1
2

du

∣∣∣∣
≤
∫
�1

|g(u)|
∣∣∣∣ f1

(
u1

ρ

)
1

ρ
f2

(
u2

ρ

)
1

ρ
− ργ1+γ2

1

uγ1+1
1

1

uγ2+1
2

∣∣∣∣du

+ ργ1+γ2

∫
R

2+\�1

|g(u)| 1

uγ1+1
1

1

uγ2+1
2

du

≤ c0
ε

2
ργ1+γ2

∫
R

2+
|g(u)| 1

uγ1+1
1

1

uγ2+1
2

du

+ ργ1+γ2

∫
R

2+\�1

|g(u)| 1

uγ1+1
1

1

uγ2+1
2

du (3.13)

≤ c0ερ
γ1+γ2

∫
R

2+
|g(u)| 1

uγ1+1
1

1

uγ2+1
2

du
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for small enough ρ, where we also used the fact that the integral in (3.13) converges to
zero by the dominated convergence theorem. Hence, we can deduce together with the
definition of c0 in (3.9) that there exists some ρ1 > 0 such that, for all ρ < ρ1, we obtain∣∣∣∣

∫
�1

g(u)Fρ(du)

ργ1+γ2
∫
R

2+ g(u)(1/uγ1+1
1 )(1/uγ2+1

2 ) du
− 1

∣∣∣∣≤ ε.
2. We show that | ∫

�2
g(u)Fρ(du)| = o(ργ1+γ2 ). Indeed, using (3.8), we obtain∣∣∣∣ ∫

�2

g(u)Fρ(du)

∣∣∣∣≤C
∫ ρN

0

∫ ρN

0
uα1

1 uα2
2 f1

(
u1

ρ

)
f2

(
u2

ρ

)
1

ρ2
du1 du2

=Cρα1+α2

∫ N

0

∫ N

0
uα1

1 uα2
2 f1(u1)f2(u2) du1 du2

≤Cρα1+α2 Nα1+α2 ,

where we recall that
∫∞

0

∫∞
0 f1(u1)f2(u2) du1 du2 = 1 according to (1.1) and the as-

sumption that cF = 1 there. Since α1 + α2 > γ1 + γ2, the assertion of 2 follows upon
ρ→ 0.

3. We show that | ∫
�3

g(u)Fρ(du)| = o(ργ1+γ2 ). We obtain, for N satisfying (3.10),∣∣∣∣ ∫
�3

g(u)Fρ(du)

∣∣∣∣≤ ∫ ∞
ρN

∫ ρN

0
|g(u)| f2

(
u2

ρ

)
1

ρ
du2f1

(
u1

ρ

)
1

ρ
du1

≤C
∫ ∞
ρN

∫ ρN

0
min (u1, uα1

1 ) min (u2, uα2
2 )f2

(
u2

ρ

)
1

ρ
du2

ργ1

uγ1+1
1

du1

≤Cργ1

∫ ∞
ρN

min (u1, uα1
1 )

1

uγ1+1
1

du1

∫ ρN

0
uα2

2 f2

(
u2

ρ

)
1

ρ
du2

=Cργ1ρα2

∫ N

0
uα2

2 f2(u2) du2

≤Cργ1+α2 Nα2

≤ εργ1+γ2

for sufficiently small ρ since γ1 + α2 > γ1 + γ2.

4. Proceeding analogously to 3, we show that | ∫
�4

g(u)Fρ(du)| = o(ργ1+γ2 ).

Finally, we are able to deduce the assertion of the lemma using the results from the four parts
above. �

The following lemma is also inspired by Lemma 2.4 of [4].

Lemma 3.3. Let F be a measure on R
2+ according to (1.1) and to the asymptotic behaviour

specified there. Furthermore, let (gρ) be a family of continuous functions on R
2+ with

lim
ρ→0

ργ1+γ2 gρ(u)= 0

for all u ∈R2+ and
ργ1+γ2 |gρ(u)| ≤C min (u1, uα1

1 ) min (u2, uα2
2 )
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for some constants C> 0 and αi > γi for i= 1, 2 for all u ∈R2+. Then, we have

lim
ρ→0

∫
R

2+
gρ(u)Fρ(du)= 0. (3.14)

Proof. The assumptions on gρ ensure that, for all ρ > 0,∫
R

2+
ργ1+γ2 |gρ(u)| 1

uγ1+1
1

1

uγ2+1
2

du<∞,

that there is an integrable majorant, and that we obtain

lim
ρ→0

∫
R

2+
ργ1+γ2 |gρ(u)| 1

uγ1+1
1

1

uγ2+1
2

du= 0 (3.15)

by the dominated convergence theorem.
Due to the power-law assumption on F, we can choose N > 0 such that, for all ui >N for

i= 1, 2, we have

fi(ui)≤ 2

uγi+1
i

. (3.16)

We use the same definition of the domains �k for k= 1, . . . , 4 as in (3.12) and continue
discussing the corresponding four integrals separately. First, using (3.16), we obtain∣∣∣∣ ∫

�1

gρ(u)Fρ(du)

∣∣∣∣≤ ∫ ∞
ρN

∫ ∞
ρN
|gρ(u)| f1

(
u1

ρ

)
1

ρ
f2

(
u2

ρ

)
1

ρ
du1 du2

≤
∫ ∞

0

∫ ∞
0

ργ1+γ2 |gρ(u)| 2

uγ1+1
1

2

uγ2+1
2

du1 du2.

Therefore, we obtain, together with (3.15),

lim
ρ→0

∫
�1

gρ(u)Fρ(du)= 0.

Using the second assumption on gρ and (3.16), we can check that∣∣∣∣ ∫
�k

gρ(u)Fρ(du)

∣∣∣∣→ 0

as ρ→ 0 for k= 2, 3, 4 by proceeding analogously to the corresponding parts in the proof of
Lemma 3.2. Combining all four partial results, we can deduce (3.14). �

We introduce for a signed measure μ ∈Mk for k ∈ {L, P} the local averages mμ(x, u) by

mμ(x, u) := 1

u1u2

∫
B(x,u)

fμ(y) dy (3.17)

and the maximal function m∗μ by

m∗μ(x) := sup
u∈R2+

1

u1u2

∫
B(x,u)
| fμ(y)| dy. (3.18)

Similar to Lemma 4 of [18], we obtain the following facts.
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Lemma 3.4. Let ni(ρ)→ 0 as ρ→ 0 for i= 1, 2.

(i) For μ ∈MP, we have

lim
ρ→0

mμ

(
x,

(
n1(ρ)u1

n2(ρ)u2

))
= fμ(x) for all (x, u) ∈R2 ×R

2+.

(ii) Let β > 1. For μ ∈Mk for k ∈ {L, P}, there is a function g ∈ Lβ (R2) such that
m∗μ(x)≤ g(x) for all x ∈R2.

Proof. (i) The assertion is true because the function fμ is continuous and because there
exists, for all δ > 0, some small enough ρ0 > 0 such that the set B(x,

(n1(ρ)u1
n2(ρ)u2

)
) is contained in

the �∞-ball with centre x and radius δ for all ρ < ρ0.

(ii) We only require assumption (2.4) on μ ∈Mk for k ∈ {L, P}. We obtain

m∗μ(x)≤Cμ sup
u∈R2+

1

u1u2

∫
B(x,u)

e−cμ|y1|e−cμ|y2| dy

=Cμ
∏

i=1,2

sup
ui∈R+

1

ui

∫
[xi−ui/2,xi+ui/2]

e−cμ|yi| dyi, (3.19)

and study the supremum in (3.19) by a case distinction. Let xi > 0. We estimate

sup
ui>0

1

ui

∫
[xi−ui/2,xi+ui/2]

e−cμ|yi| dyi

≤ sup
0<ui/2≤xi

1

ui

∫
[xi−ui/2,xi+ui/2]

e−cμ|yi| dyi + sup
ui/2≥xi

1

ui

∫
[xi−ui/2,xi+ui/2]

e−cμ|yi| dyi,

and treat the two terms in the last line separately. For 0< ui/2≤ xi, we obtain

1

ui

∫
[xi−ui/2,xi+ui/2]

e−cμ|yi|dyi = 1

ui

1

cμ
(e−cμ(xi−ui/2) − e−cμ(xi+ui/2))

= e−cμxi

cμ

ecμui/2 − e−cμui/2

ui

≤ e−cμxi

cμ

ecμxi − e−cμxi

2xi
(3.20)

≤ 1

2cμxi
,

where we used the fact that the function

h(ui) := ecui − e−cui

ui

is increasing for ui ≥ 0 in (3.20). This can be seen by

h(ui)= 1

ui

( ∞∑
k=0

(cui)k

k! −
∞∑

k=0

(− cui)k

k!
)
= 1

ui

∞∑
l=0

2(cui)2l+1

(2l+ 1)! =
∞∑

l=0

2c(cui)2l

(2l+ 1)!
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because the last term is increasing in ui. For ui/2≥ xi, we observe that

1

ui

∫
[xi−ui/2,xi+ui/2]

e−cμ|yi| dyi ≤ 1

2xi

∫
R

e−cμ|yi| dyi ≤ 1

cμxi
.

Combining the estimates, we obtain

sup
ui>0

1

ui

∫
[xi−ui/2,xi+ui/2]

e−cμ|yi| dyi ≤ 2

cμxi
.

The corresponding estimate with |xi| for xi < 0 follows directly because of symmetry.
Furthermore, we can bound the supremum in (3.19) by

sup
ui>0

1

ui

∫
[xi−ui/2,xi+ui/2]

e−cμ|yi| dyi ≤ sup
ui>0

1

ui

∫
[xi−ui/2,xi+ui/2]

1 dyi = 1.

Hence, we are able to conclude that m∗μ(x)≤ g(x) for all x ∈R2, where g is defined by

g(x) :=Cμ
∏

i=1,2

min

(
1,

2

cμ|xi|
)
,

and we see that gβ is integrable with respect to x for any β > 1. �
Remark 3.4. We briefly point out why the continuity condition of the density function fμ is
essential in the point scaling regime, in particular in Lemma 3.4(i). If the boxes B(x,

(n1(ρ)u1
n2(ρ)u2

)
)

had been nicely shrinking sets in the sense of [26, p. 140], the condition fμ ∈ L1(R2) would have
been sufficient instead of requiring continuity (see Theorem 7.10 of [26]). In short, the crucial
point for shrinking sets in order to be a sequence of nicely shrinking sets is that each set must
occupy at least a certain portion of some spherical neighbourhood. For example, a shrinking
grain in the random balls model, where the size of a grain (with predetermined shape) depends
only on a single distribution, is nicely shrinking. In contrast, the boxes B(x,

(n1(ρ)u1
n2(ρ)u2

)
) in the

proof of Theorem 2.5, where we apply Lemma 3.4(i), are not nicely shrinking sets because the
length-to-width ratio of the boxes tends to infinity there. Hence, we assume in Definition 2.3
that the density function fμ is continuous such that Lemma 3.4(i) holds.

Lemma 3.5. For each μ ∈M2, the functions

u 	→
∫
R2
�(μ(B(x, u))) dx and u 	→

∫
R2
μ(B(x, u))2 dx

are continuous on R
2+.

Proof. The idea and the steps of the proof are identical to those in the proof of Lemma 6 of
[18]. Therefore, we only point out the difference. We start to proceed as there and then obtain

d(u, v) :=
∫
R2
|μ(B(x, u))−μ(B(x, v))| dx≤ ‖μ‖|B(0, u)�B(0, v)|

for u, v ∈R2+, where B(0, u)�B(0, v) denotes the symmetric difference of the sets B(0, u) and
B(0, v). Since the sets are just rectangles, we can deduce that limu→v d(u, v)= 0 for all v ∈R2+
and complete the proof together with the other parts. �

https://doi.org/10.1017/apr.2019.34 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.34


Scaling limits for a random boxes model 793

4. Proofs of the main results

Due to the linearity of the mapping μ 	→ J̃ρ(μ) as well as the linearity of the limiting
random fields Z, JI , Y , JL, Sγ1 , and X, the convergence of the finite-dimensional distributions
of the centred and renormalised versions of Jρ is equivalent to the convergence of the one-
dimensional distributions. This can be seen using the Cramér–Wold device. Therefore, we have
to only deal with the convergence of the characteristic function (without loss of generality
at 1) E exp (i J̃ρ(μ)/nρ). The strategy of the following proofs is similar to [4] and [18]. As
mentioned above, we use c and C for constants which can differ from line to line and we often
make use of the function � defined in (3.1).

4.1. Intermediate-intensity regime

Proof of Theorem 2.2. We recall the characteristic function of J̃ρ(μ):

E(eiJ̃ρ (μ))= exp

( ∫
R

2+

∫
R2
�(μ(B(x, u)))λρ dxFρ(du)

)
.

The characteristic function of JI(μ) is given by

E(eiJI (μ))= exp

( ∫
R2×R2+

�(μ(B(x, u)))
1

uγ1+1
1

1

uγ2+1
2

dx du

)
.

First, we define the function ϕ̃ by

ϕ̃(u) :=
∫
R2
�(μ(B(x, u))) dx for u ∈R2+.

We note that ϕ̃ is continuous due to Lemma 3.5. Using |�(v)| ≤ v2/2 and (2.1), there are
constants C> 0 and αi with γi <αi ≤ 2 for i= 1, 2 such that

|ϕ̃(u)| ≤C min (u1, uα1
1 ) min (u2, uα2

2 ).

Now, we apply Lemma 3.2 with g := ϕ̃ to obtain∫
R

2+
ϕ̃(u)Fρ(du)∼ ργ1+γ2

∫
R

2+
ϕ̃(u)

1

uγ1+1
1

1

uγ2+1
2

du.

Using this and the scaling λρργ1+γ2→ 1 shows the assertion. �
Remark 4.1. In the general case, let us say λρργ1+γ2→ a2−γ1−γ2 ∈ (0,∞) with a> 0 as
ρ→ 0, the limiting compensated Poisson integral equals JI(μa), where μa( · ) :=μ(a−1 · ).
In order to see this, we can apply Theorem 2.2 to J̃′ρ( · ) where λ′ρ := λρ/a2−γ1−γ2 . Then the
result follows after an appropriate substitution.

4.2. High-intensity regime

Proof of Theorem 2.1. For the sake of simplicity, we introduce

ϕρ(u) :=
∫
R2
�

(
μ(B(x, u))

nρ

)
dx for u ∈R2+,

with nρ :=√λρργ1+γ2 and recall that the characteristic function of J̃ρ(μ)/nρ is given by

exp

( ∫
R

2+
ϕρ(u)λρFρ(du)

)
.
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The goal is to show the convergence of this characteristic function to

exp

(
− 1

2

∫
R2×R2+

μ(B(x, u))2 1

uγ1+1
1

1

uγ2+1
2

dx du

)
,

which corresponds to a centred Gaussian random variable. The covariance function given in
(2.2) can then be obtained by the linearity of Z.

Since, by assumption, nρ→∞ as ρ→ 0, we know that �(μ(B(x, u))/nρ) can be
approximated by − 1

2 (μ(B(x, u))/nρ)2. To be more precise, we write∫
R

2+
ϕρ(u)λρFρ(du)=−1

2

∫
R

2+
ϕ(u)

λρ

n2
ρ

Fρ(du)+
∫
R

2+
�ρ(u)Fρ(du), (4.1)

where ϕ is given in (3.2) and

�ρ(u) := ϕρ(u)λρ + 1

2
ϕ(u)

λρ

n2
ρ

= λρ
∫
R2

(
�

(
μ(B(x, u))

nρ

)
+ 1

2

(
μ(B(x, u))

nρ

)2)
dx.

Using Lemma 3.2 together with (2.1), the first integral on the right-hand side of (4.1) converges
to ∫

R
2+
ϕ(u)

1

uγ1+1
1

1

uγ2+1
2

du.

Here, we again refer to Lemma 3.5 for the continuity of ϕ.
It remains to show that the second integral on the right-hand side of (4.1) converges to zero.

For this purpose, we show that �ρ satisfies the assumptions on gρ in Lemma 3.3.
First, we can show that the estimates |�(v)+ v2/2| ≤ |v|3 and∫

R2
|μ(B(x, u))|3 dx≤ ‖μ‖2

∫
R2
|μ(B(x, u))| dx≤ ‖μ‖3u1u2

hold. Therefore, we obtain

|ργ1+γ2�ρ(u)| =
∣∣∣∣n2
ρ

λρ
�ρ(u)

∣∣∣∣≤ ‖μ‖3nρ
u1u2→ 0

as ρ→ 0, which shows that the first assumption of Lemma 3.3 is satisfied. Using |�(v)| ≤ v2/2
and (2.1), the second assumption is also satisfied because we obtain

ργ1+γ2 |�ρ(u)| =
∣∣∣∣n2
ρ

λρ
�ρ(u)

∣∣∣∣
≤ n2

ρ

∫
R2

(∣∣∣∣�(μ(B(x, u))

nρ

)∣∣∣∣+ 1

2

(
μ(B(x, u))

nρ

)2)
dx

≤ n2
ρ

∫
R2

(
μ(B(x, u))

nρ

)2

dx

=
∫
R2
μ(B(x, u))2 dx

≤C min (u1, uα1
1 ) min (u2, uα2

2 ). �
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4.3. Low-intensity regime

4.3.1. Points scaling regime.

Proof of Theorem 2.5. In a first step, we prove that

lim
ρ→0

E exp

(
i

J̃ρ(μ)

λ
1/γ1
ρ ρ2

)
= exp

(
cγ1

2

∫
R2

∫
R+
�(u1fμ(x))

1

uγ1+1
1

du1 dx

)
,

where c2 is defined in (4.4) below. In a second step, we show that the right-hand side is the
characteristic function of an integral with respect to a stable random measure.

Step 1. We recall that the characteristic function of J̃ρ(μ)/(λ1/γ1
ρ ρ2) can be written as

exp

( ∫
R

2+

∫
R2
�

(
1

λ
1/γ1
ρ ρ2

∫
B(x,u)

fμ(y) dy

)
λρ dx Fρ(du)

)
. (4.2)

We use the definition of mμ(x, u) in (3.17) and the density of the scaled measure F from (1.1)
to obtain∫

R
2+

∫
R2
�

(
1

λ
1/γ1
ρ ρ2

∫
B(x,u)

fμ(y)dy

)
λρ dx Fρ(du)

=
∫
R

2+

∫
R2
�

(
u1u2

λ
1/γ1
ρ ρ2

mμ(x, u)

)
λρ f1

(
u1

ρ

)
1

ρ
f2

(
u2

ρ

)
1

ρ
dx du

=
∫
R2×R2+

�

(
u1mμ

(
x,

(
λ

1/γ1
ρ ρu1/u2

ρu2

)))
λ

1+1/γ1
ρ

u2
f1

(
λ1/γ1
ρ

u1

u2

)
f2(u2) dx du, (4.3)

where we substituted first u2 = ρũ2 and then u1 = λ1/γ1
ρ ρũ1/̃u2 in the last line. We note that

lim
ρ→0

mμ

(
x,

(
λ

1/γ1
ρ ρu1/u2

ρu2

))
= fμ(x)

because of Lemma 3.4(i) and that

λ
1+1/γ1
ρ

u2
f1

(
λ1/γ1
ρ

u1

u2

)
= λ

1+1/γ1
ρ

u2
f1

(
λ1/γ1
ρ

u1

u2

)(
λ1/γ1
ρ

u1

u2

)γ1+1−γ1−1

= f1

(
λ1/γ1
ρ

u1

u2

)(
λ1/γ1
ρ

u1

u2

)γ1+1 uγ1
2

uγ1+1
1

→ uγ1
2

uγ1+1
1

as ρ→ 0 because of λ1/γ1
ρ →∞ and the asymptotic behaviour of f1. Therefore, the integrand

in (4.3) converges to

�(u1fμ(x))
1

uγ1+1
1

uγ1
2 f2(u2).

If we can also find an integrable majorant of the integrand in (4.3), we obtain

lim
ρ→0

∫
R

2+

∫
R2
�

(
1

λ
1/γ1
ρ ρ2

∫
B(x,u)

fμ(y) dy

)
λρ dxFρ(du)

= cγ1
2

∫
R2

∫
R+
�(u1fμ(x))

1

uγ1+1
1

du1 dx
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by the dominated convergence theorem, where c2 is defined by

c2 :=
( ∫

R+
uγ1

2 f2(u2) du2

)1/γ1

. (4.4)

In order to find such a majorant, we can show that

|�(v)| ≤ 2 min (|v|, v2), (4.5)

and we note that there is an ε > 0 with 1< γ1 − ε < γ1 + ε < 2 such that (3.3) and (3.4) hold.
For all ρ < ρ0 with small enough ρ0, the integrand (see (4.3)) is therefore dominated by

2 min (|u1|γ1−ε, |u1|γ1+ε)(|m∗μ(x)|γ1−ε + |m∗μ(x)|γ1+ε)
cf1

uγ1+1
1

uγ1
2 f2(u2), (4.6)

where we also used the technical assumption in (2.3). Finally, we can see that (4.6) is integrable
because of Lemma 3.4(ii) and 1< γ1 − ε.

Step 2. We deal with the integral∫
R2

∫
R+
�(u1fμ(x))

1

uγ1+1
1

du1 dx. (4.7)

We split the integration over R2 into {x : fμ(x)≥ 0} and {x : fμ(x)< 0}, and note that �(0)= 0.
We recall that fμ+ :=max ( fμ, 0) and fμ− :=−min ( fμ, 0). The substitution ũ1 = u1 fμ(x)
shows that (4.7) equals

dγ1‖ fμ+‖γ1
γ1
+ d̄γ1‖ fμ−‖γ1

γ1
,

where d̄γ1 is the complex conjugate of dγ1 := ∫
R+ (�(u1)/uγ1+1

1 ) du1. We obtain

dγ1 =
�(2− γ1)

γ1(γ1 − 1)
cos

(
πγ1

2

)(
1− i tan

(
πγ1

2

))
due to [27, p. 170]. Therefore, we can finally conclude that

lim
ρ→0

log E exp

(
i

J̃ρ(μ)

cγ1,γ2λ
1/γ1
ρ ρ2

)
= cγ1

2

(
dγ1

∥∥∥∥ fμ+
cγ1 c2

∥∥∥∥γ1

γ1

+ d̄γ1

∥∥∥∥ fμ−
cγ1 c2

∥∥∥∥γ1

γ1

)
=−(‖ fμ+‖γ1

γ1
+ ‖ fμ−‖γ1

γ1
)+ i tan

(
πγ1

2

)
(‖ fμ+‖γ1

γ1
− ‖ fμ−‖γ1

γ1
)

=−σγ1
μ

(
1− iβμ tan

(
πγ1

2

))
,

where

cγ1,γ2 := cγ1 c2, cγ1 :=
(
− �(2− γ1)

γ1(γ1 − 1)
cos

(
πγ1

2

))1/γ1

, (4.8)

c2 is given in (4.4), and σμ, βμ are given in (2.10). �
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4.3.2. Poisson-lines scaling regime.

Proof of Theorem 2.4. We recall the characteristic function of J̃ρ(μ)/ρ given in (4.2). We
proceed as in the proof of Theorem 2.5. Using the definition of mμ(x, u) in (3.17) and the
density of the scaled measure F from (1.1), we obtain∫

R
2+

∫
R2
�

(
1

ρ

∫
B(x,u)

fμ(y) dy

)
λρ dxFρ(du)

=
∫
R

2+

∫
R2
�

(
u1u2

ρ
mμ(x, u)

)
λρ f1

(
u1

ρ

)
1

ρ
f2

(
u2

ρ

)
1

ρ
dx du

=
∫
R2×R2+

�

(
u1u2mμ

(
x,

(
u1

ρu2

)))
λρ

ρ
f1

(
u1

ρ

)
f2(u2) dx du, (4.9)

where we substituted u2 = ρũ2 in the last line. We note that, due to (2.5) in Definition 2.2 of
the space ML,

lim
ρ→0

u1u2mμ

(
x,

(
u1

ρu2

))
= u2

∫
[x1−u1/2,x1+u1/2]

fμ(y1, x2) dy1

(pointwise for all (x, u) ∈R2 ×R
2+) and that

λρ

ρ
f1

(
u1

ρ

)
= λρ
ρ

f1

(
u1

ρ

)(
u1

ρ

)γ1+1(
ρ

u1

)γ1+1

= f1

(
u1

ρ

)(
u1

ρ

)γ1+1

λρρ
γ1

1

uγ1+1
1

→ 1

uγ1+1
1

as ρ→ 0 because of 1/ρ→∞, the asymptotic behaviour of f1, and the fact that λρργ1→ 1.
Therefore, the integrand in (4.9) converges to

�

(
u2

∫
[x1−u1/2,x1+u1/2]

fμ(y1, x2) dy1

)
1

uγ1+1
1

f2(u2).

If we can also find an integrable majorant of the integrand in (4.9), we obtain

lim
ρ→0

∫
R

2+

∫
R2
�

(
1

ρ

∫
B(x,u)

fμ(y) dy

)
λρ dxFρ(du)

=
∫
R2×R2+

�

(
u2

∫
[x1−u1/2,x1+u1/2]

fμ(y1, x2) dy1

)
1

uγ1+1
1

f2(u2) dx du (4.10)

by the dominated convergence theorem. Using the estimates in (4.5) and (3.3), an extended
version of (3.4) and the technical assumption in (2.3), we see that the integrand in (4.9) is
dominated by

2 min (|u1|γ1−ε, |u1|γ1+ε)(|u2|γ1−ε + |u2|γ1+ε)(|m∗μ(x)|γ1−ε + |m∗μ(x)|γ1+ε)
cf1

uγ1+1
1

f2(u2)

(4.11)
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for all ρ < ρ0 with small enough ρ0. Here, we have to choose ε > 0 such that 1< γ1 − ε,
γ1 + ε < 2, as well as γ1 + ε < γ2. These conditions together with Lemma 3.4(ii) ensure that
(4.11) is integrable.

Since the characteristic function E(eiJL(μ)) of the limit JL(μ) is given by the exponential of
(4.10), the convergence of the characteristic function is proven. �
Remark 4.2. In the general case, let us say λρργ1→ a2−γ1 ∈ (0,∞) with a> 0 as ρ→ 0,
we obtain J̃ρ(μ)/(aρ)→ JL(μa), where we recall that μa( · ) :=μ(a−1 · ). In order to prove
this, we note that we obtain (4.10) with the additional factor a2−γ1 for the logarithm of the
characteristic function of the limit in the general case. Then, we can deduce the result after an
appropriate substitution.

4.3.3. Gaussian-lines scaling regime.

Proof of Theorem 2.3. We recall the characteristic function of J̃ρ(μ)/ρ1−η/2, which, after
the substitution u2 = ρũ2, equals

exp

( ∫
R2×R2+

�

(
μ(B(x,

( u1
ρu2

)
))

ρ1−η/2

)
λρ

ρ
f1

(
u1

ρ

)
f2(u2) dx du

)
.

The goal is to show for some σ 2 > 0 the convergence of this characteristic function to
exp (− σ 2/2), which corresponds to a centred Gaussian random variable.

To be more precise, we write∫
R2×R2+

�

(
μ(B(x,

( u1
ρu2

)
))

ρ1−η/2

)
λρ

ρ
f1

(
u1

ρ

)
f2(u2) dx du

=−1

2

∫
R2×R2+

u2
2

(
μ(B(x,

( u1
ρu2

)
))

ρu2

)2

ρη
λρ

ρ
f1

(
u1

ρ

)
f2(u2) dx du (4.12)

+
∫
R2×R2+

�ρ(u, x)
λρ

ρ
f1

(
u1

ρ

)
f2(u2) dx du, (4.13)

where

�ρ(u, x) :=�
(
μ(B(x,

( u1
ρu2

)
))

ρ1−η/2

)
+ 1

2

(
μ(B(x,

( u1
ρu2

)
))

ρ1−η/2

)2

. (4.14)

First, we discuss the integral in (4.13) in the case of γ2 > 3. Due to |�(v)+ v2/2| ≤ |v|3, we
can bound (4.14) and can thus bound the integrand by

ρ3η/2u3
2

( |μ(B(x,
( u1
ρu2

)
))|

ρu2

)3
λρ

ρ
f1

(
u1

ρ

)
f2(u2)

≤ ρη/2u3
2

(
Cμ
ρu2

∫
B(x,( u1

ρu2
))

e−cμ|y1|e−cμ|y2| dy

)3

λρρ
η−1cf1

(
ρ

u1

)γ1+1

f2(u2)

≤Cρη/2u3
2g1(x1, u1)3g2(x2)3 1

uγ1+1
1

f2(u2) (4.15)

for ρ < ρ0 with small enough ρ0, where g1 is given in (3.6) and

g2(x2) :=min

(
1,

2

cμ|x2|
)

.

https://doi.org/10.1017/apr.2019.34 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.34


Scaling limits for a random boxes model 799

Here, we used assumption (2.4) from Definition 2.2, the technical assumption in (2.3), and the
fact that λρργ1+η→ 1. Furthermore, we used

sup
ρ>0

1

ρu2

∫
[x2−ρu2/2,x2+ρu2/2]

e−cμ|y2| dy2 ≤ g2(x2)

from the proof of Lemma 3.4(ii). By (4.15), we see that the integrand in (4.13) has an integrable
majorant since we assumed that γ2 > 3, and because g3

2 is integrable with respect to x2 and
g1(x1, u1)3/uγ1+1

1 is also integrable (in order to check this, we just have to follow the lines
below (3.7)). Moreover, the majorant converges to zero because of ρη/2→ 0.

In the case of 2< γ2 ≤ 3, we note that there is an ε > 0 such that 2< γ2 − ε < 3 as well as
|�(v)+ v2/2| ≤ |v|γ2−ε. The last-mentioned estimate can be deduced from Lemma 1 of [18]
by a case distinction (cf. (3.3)). Similar to above, we can bound the integrand in (4.13) by

ρ(γ2−ε)η/2
( |μ(B(x,

( u1
ρu2

)
))|

ρ

)γ2−ε λρ
ρ

f1

(
u1

ρ

)
f2(u2)

≤ ρ(γ2−ε−2+2)η/2uγ2−ε
2

( |μ(B(x,
( u1
ρu2

)
))|

ρu2

)γ2−ε λρ
ρ

cf1

(
ρ

u1

)γ1+1

f2(u2)

≤Cρ(γ2−ε−2)η/2uγ2−ε
2 (g1(x1, u1)g2(x2))γ2−ελρργ1+η 1

uγ1+1
1

f2(u2)

≤Cρ(γ2−ε−2)η/2uγ2−ε
2 g1(x1, u1)γ2−εg2(x2)γ2−ε 1

uγ1+1
1

f2(u2) (4.16)

for ρ < ρ0 with small enough ρ0. Using γ1 < γ2 − ε, we can see by (4.16) that the integrand
in (4.13) has an integrable majorant because gγ2−ε

2 and g1(x1, u1)γ2−ε/uγ1+1
1 are integrable

(with the same reasons as above) and that it converges to zero because of γ2 − ε− 2> 0.
Therefore, we obtain in both cases that the integral in (4.13) converges to zero by the dominated
convergence theorem.

Next, we deal with the integral in (4.12) and show that it converges to

σ 2 :=
∫
R2×R2+

u2
2

( ∫
[x1−u1/2,x1+u1/2]

fμ(y1, x2) dy1

)2 f2(u2)

uγ1+1
1

dx du. (4.17)

The convergence of the integrand can be seen similar to above using Definition 2.2 of the
space ML, the asymptotic behaviour of f1, and the fact that λρργ1+η→ 1. A majorant of the
integrand is given by

Cu2
2g1(x1, u1)2g2(x2)2 1

uγ1+1
1

f2(u2),

which is integrable for γ2 > 2. Applying the dominated convergence theorem, the convergence
of the characteristic function is proven. By linearity, the covariance function given in (2.6)
follows from (4.17). �
Remark 4.3. In the general case, let us say λρργ1+η→ a2 ∈ (0,∞) with a> 0 as ρ→ 0, the
limit is a centred Gaussian linear random field which is given by (Y(aμ))μ, where aμ has
the density afμ and the variance of Y(aμ) is just a2σ 2. This can be seen since we obtain the
additional factor a2 in (4.17).
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4.4. The finite-variance case

Proof of Theorem 2.6. We use the definition of mμ(x, u) in (3.17) to obtain, for the
logarithm of the characteristic function of J̃ρ(μ)/(ρ2

√
λρv1v2),∫

R
2+

∫
R2
�

(
1

ρ2
√
λρv1v2

∫
B(x,u)

fμ(y) dy

)
λρ dxFρ(du)

=
∫
R

2+

∫
R2
�

(
u1u2

ρ2
√
λρv1v2

mμ(x, u)

)
λρ dxFρ(du)

=
∫
R

2+

∫
R2
�

(
u1u2√
λρv1v2

mμ

(
x,

(
ρu1

ρu2

)))
λρ dxF(du),

where we substituted u2 = ρũ2 and u1 = ρũ1 in the last line. We note that

lim
ρ→0

mμ

(
x,

(
ρu1

ρu2

))
= fμ(x)

because of Lemma 3.4(i). Due to the estimate |�(v)+ v2/2| ≤ |v|3 and λρ→∞, we obtain

lim
ρ→0

�

(
u1u2√
λρv1v2

mμ

(
x,

(
ρu1

ρu2

)))
λρ =−u2

1u2
2 fμ(x)2

2v1v2
.

Furthermore, we use |�(v)| ≤ v2/2 and the definition of m∗μ(x) in (3.18) to obtain

�

(
u1u2√
λρv1v2

mμ

(
x,

(
ρu1

ρu2

)))
λρ ≤

u2
1u2

2m∗μ(x)2

2v1v2
.

Since the right-hand side can serve as an integrable majorant, we can apply the dominated
convergence theorem and obtain

lim
ρ→0

E exp

(
i

J̃ρ(μ)

ρ2
√
λρv1v2

)
= exp

(
− 1

2

∫
R2

fμ(x)2 dx

)
,

which is the characteristic function of a Gaussian random variable. Finally, we can conclude
that the limiting random field is a centred Gaussian linear random field with covariance
function given in (2.12). �
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