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Following Lutz’s approach to effective (constructive) dimension, we define a notion of

dimension for individual sequences based on Schnorr’s concept(s) of randomness. In

contrast to computable randomness and Schnorr randomness, the dimension concepts

defined via computable martingales and Schnorr tests coincide, that is, the Schnorr

Hausdorff dimension of a sequence always equals its computable Hausdorff dimension.

Furthermore, we give a machine characterisation of the Schnorr dimension, based on

prefix-free machines whose domain has computable measure. Finally, we show that there

exist computably enumerable sets that are Schnorr (computably) irregular: while every

c.e. set has Schnorr Hausdorff dimension 0, there are c.e. sets of computable packing

dimension 1, which is, from Barzdiņš’ Theorem, an impossible property for the case of

effective (constructive) dimension. In fact, we prove that every hyperimmune Turing degree

contains a set of computable packing dimension 1.

1. Introduction

Schnorr (Schnorr 1971) issued a fundamental criticism concerning the notion of effective

null sets introduced by Martin-Löf. He argued that, although we know how fast a Martin-

Löf test converges to zero, it is not effectively given, in the sense that the measure of the

test sets Un is not computable, but only enumerable from below, so, in general, we cannot

decide whether a given cylinder belongs to the nth level of some test.

Schnorr presented two alternatives, both clearly closer to what one would call a

computable approach to randomness. One is based on the idea of randomness as an

unpredictable event in the sense that it should not be possible to win in a betting game

(martingale) against a truly random sequence of outcomes. The other sticks to Martin-

Löf’s approach, but requires the tests defining a null set to be a uniformly computable

sequence of open sets having uniformly computable measure, not merely a sequence of

uniformly computably enumerable sets such that the nth set has measure less than 2−n.

Schnorr was able to show that both approaches yield reasonable notions of randomness,

that is, random sequences according to his concepts exhibit most of the robust properties

one would expect from a random object. However, his suggestions have some serious

drawbacks. They are harder to deal with technically, which is mainly due to the absence
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of universal tests. Besides, a machine characterisation of randomness like the elegant

coincidence of Martin Löf-random sequences with those incompressible by a universal

prefix-free machine is technically more involved and was only recently given in Downey

and Griffiths (2004).

Recently, Lutz (Lutz 2000a; 2000b; 2003) introduced an effective notion of Hausdorff

dimension. As (classical) Hausdorff dimension can be seen as a refinement of Lebesgue

measure on 2ω , in the sense that it further distinguishes between classes of measure 0, the

effective Hausdorff dimension of an individual sequence can be interpreted as a degree

of randomness of the sequence. This viewpoint is supported by a series of results due to

Ryabko (Ryabko 1984; 1986), Staiger (Staiger 1993; 2005), Cai and Hartmanis (Cai and

Hartmanis 1994) and Mayordomo (Mayordomo 2002), which establish that the effective

Hausdorff dimension of a sequence equals its lower asymptotic Kolmogorov complexity

(plain or prefix-free).

Lutz’s framework of martingales (gales) is very flexible with respect to the level of

effectivisation one wishes to obtain, see Lutz (2000a). This makes it easy to define a

version of algorithmic dimension based on computable martingales, computable dimension,

in analogy to computable randomness. This was done in Lutz (2000a), and was treated

briefly in Terwijn (2003).

In this paper we will study the Schnorr-style approach to algorithmic dimension in

more detail. We will define a notion of dimension based on Schnorr’s test concept.

We will see that the technical difficulties mentioned above also apply to dimension.

Furthermore, Schnorr dimension behaves in many respects like effective (constructive)

dimension, which was introduced in Lutz (2000b; 2003) – see also Reimann (2004) and

Reimann and Stephan (2005). However, we will also see that for dimension, Schnorr’s two

approaches coincide, in contrast to Schnorr randomness and computable randomness:

the Schnorr Hausdorff dimension of a sequence always equals its computable Hausdorff

dimension. Furthermore, it turns out that, with respect to Schnorr/computable dimension,

computably enumerable sets can exhibit a complex behaviour, to some extent. Namely, we

will show that there are c.e. sets of high computable packing dimension, which is impossible

in the effective case, due to a result in Barzdiņš (1968). In fact, every hyperimmune Turing

degree contains a set of computable packing dimension 1, and this set can be chosen to

be c.e. in the special case of a c.e. Turing degree. On the other hand, we prove that the

computable Hausdorff dimension of the characteristic sequence of a c.e. set is 0. Thus, the

class of computably enumerable sets contains irregular sequences – sequences for which

Hausdorff and packing dimension do not coincide.

The paper is structured as follows. In Section 2 we give a short introduction to the

classical theory of Hausdorff measures and dimension, as well as packing dimension. In

Section 3 we will define algorithmic variants of these concepts based on Schnorr’s test

approach to randomness.

In Section 4 we prove that the dimension concepts based on Schnorr tests, on the

one hand, and computable martingales, on the other hand, coincide, in contrast to

Schnorr randomness and computable randomness. We also present two basic examples

of sequences of non-integral dimension (Section 5). In Section 6 we derive a machine

characterisation of Schnorr/computable Hausdorff and packing dimension. Finally, in
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Section 7, we study the Schnorr/computable dimension of computably enumerable sets.

The main result here will be that on those sets computable Hausdorff dimension and

computable packing dimension can differ as largely as possible.

We will use fairly standard notation. 2ω will denote the set of infinite binary sequences.

Sequences will be denoted by upper case letters like A,B, C , or X,Y , Z . We will refer

to the nth bit (n � 0) in a sequence B by either Bn or B(n), that is, B = B0B1B2 . . . =

B(0)B(1)B(2) . . . .

Strings, that is, finite sequences of 0s and 1s, will be denoted by lower case letters from

the end of the alphabet, u, v, w, x, y, z along with some lower case Greek letters like σ and

τ. 2<ω will denote the set of all strings. ε denotes the empty string. The initial segment of

length n, A�n, of a sequence A is the string of length n corresponding to the first n bits of

A. More generally, if Z ⊆ �, we let A�Z denote the restriction of A to the elements of Z .

Formally, if Z = {z0, z1, . . . } with zn < zn+1,

A�Z (n) = A(zn).

In this way, A�n= A�{0,...,n−1}.

Given two strings v and w, the string v is called a prefix of w, v � w for short, if there

exists a string x such that vx = w, where vx is the concatenation of v and x. If w is strictly

longer than v, we write v � w, and we extend this notation in a natural way to pairs of a

string and a sequence. A set of strings is called prefix-free if no element of the set has a

prefix (other than itself) in the set.

Initial segments induce a standard topology on 2ω . The basis of the topology is formed

by the basic open cylinders (or just cylinders, for short). Given a string w = w0 . . . wn−1 of

length n, the basic open cylinder corresponding to w is defined by

[w] = {A ∈ 2ω : A�n= w}.

We extend this notation to sets of strings as follows: given C ⊆ 2<ω , we define

[C] =
⋃
w∈C

[w].

Throughout the paper we assume a familiarity with the basic concepts of computability

theory such as Turing machines, computably enumerable sets, computable and left-

computable (or left-c.e. or just c.e.) reals, and some central concepts of algorithmic

information theory, in particular, Kolmogorov complexity and the Kraft–Chaitin Theorem.

A standard reference for computability theory is Soare (1987), while a comprehensive

treatise of algorithmic information theory is Li and Vitányi (1997). The forthcoming book

Downey and Hirschfeldt (2006) will cover both areas.

2. Hausdorff measures and dimension

The basic idea behind Hausdorff dimension is to determine which ‘scaling factor’ best

reflects the geometry of a set. One devises a family of (outer) measures, the so-called

Hausdorff measures, which are generalisations of Lebesgue measure in the sense that

they introduce a parameter with which the open sets (or rather their diameters) used in
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a covering are scaled. These measures are linearly ordered by the scaling parameter, and

the Hausdorff dimension of a set picks out the parameter that induces the most ‘suitable’

measure.

Definition 2.1. Let X ⊆ 2ω .

(1) Given δ > 0, a set C ⊆ 2<ω is a δ-cover of X if

(∀w ∈ C) [2−|w| � δ] and X ⊆ [C].

(2) For s � 0, define

Hs
δ(X) = inf

{∑
w∈C

2−|w|s : C is a δ-cover of X

}
.

The s-dimensional Hausdorff measure of X is defined by

Hs(X) = lim
δ→0

Hs
δ(X).

Remark. Given a string w, the cylinder [w] has diameter 2−|w| according to a standard

metric compatible with the cylinder topology. Hence, the s-Hausdorff measure is obtained

by restricting the admissible covers to finer and finer diameters. This is a geometric

condition, and Hausdorff measures form an essential part of the theory of fractal geometry.

Note further that Hs(X) is well defined, since, as δ decreases, there are fewer δ-covers

available, hence Hs
δ is non-decreasing. However, the value may be infinite. It can be

shown that Hs is an outer measure and that the Borel sets of 2ω are Hs-measurable. For

s = 1, one obtains the Lebesgue measure on 2ω .

The outer measures Hs have an important property.

Proposition 2.2. Let X ⊆ 2ω . If, for some s � 0, Hs(X) < ∞, then Ht(X) = 0 for all t > s.

Proof. Let Hs(X) < ∞, t > s. If C ⊆ 2<ω is a δ-cover of X, δ > 0, we have∑
w∈C

2−|w|t � δt−s
∑
w∈C

2−|w|s,

so, taking infima, Ht
δ(X) � δt−sHs

δ(X). As δ → 0, the result follows.

This means that there exists a point s � 0 where the s-dimensional Hausdorff measure

drops from a positive (possibly infinite) value to zero. This point is the Hausdorff dimension

of the class.

Definition 2.3. For a class X ⊆ 2ω , we define the Hausdorff dimension of X by

dimH X = inf{s � 0 : Hs(X) = 0}.

It is not hard to show that the notion of Hausdorff dimension is well behaved: it is

monotone (that is, X ⊆ Y implies dimH(X) � dimH(Y)), and stable – if {Xi}i∈� is a

countable family of classes, then

dimH

(⋃
i∈�

Xi

)
= sup

i∈�
{dimH Xi}.
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Furthermore, it can be seen as a refinement of measure 0. If X has a positive (outer)

Lebesgue measure, then dimH(X) = 1 (as Lebesgue measure λ corresponds to H1). In

particular, H1(2ω) = λ(2ω) = 1. On the other hand, no X ⊆ 2ω can have a Hausdorff

dimension greater than 1, as Hs(X) = 0 for all s > 1. Hence, classes of non-integral

Hausdorff dimension are necessarily Lebesgue null classes.

We give two examples of classes of non-integral dimension.

Theorem 2.4.

(1) Let Z ⊆ � be such that limn |Z ∩ {0, . . . , n − 1}|/n = δ, and define

DZ = {A ∈ 2ω : A(n) = 0 for all n 	∈ Z}.

Then dimH DZ = δ.

(2) For s ∈ [0, 1], define Bs ⊆ 2ω as

Bs =

{
A ∈ 2ω : lim

n→∞

|{k < n : A(k) = 1}|
n

= s

}
.

Then dimH Bs = −[s log s + (1 − s) log(1 − s)].

The first assertion is a special case of a general behaviour of Hausdorff dimension under

Hölder transformations, see Falconer (1990). The second result is from Eggleston (1949).

For more on Hausdorff measures and dimension refer to Falconer (1990).

2.1. Packing dimension

Packing dimension can be seen as a dual to Hausdorff dimension. While Hausdorff

measures are defined in terms of coverings, that is, enclosing a set from outside, packing

measures approximate from the inside, by packing the set ‘as densely as possible’ with

disjoint sets of small size.

For this purpose, we say that a prefix-free set P ⊆ 2<ω is a packing in X ⊆ 2ω if for

every σ ∈ P there is an X ∈ X such that σ � X. Geometrically speaking, a packing in

X is a collection of mutually disjoint open balls with centres in X. If the balls all have

radius � δ, we call it a δ-packing in X.

A possible suggestion for a packing that is ‘as dense as possible’ is as follows: given

s � 0, δ > 0, let

Ps
δ(X) = sup

{∑
w∈P

2−|w|s : P is a δ-packing in X

}
. (1)

As Ps
δ(X) decreases with δ, the limit

Ps
0(X) = lim

δ→0
Ps

δ(X)

exists. However, this definition leads to problems concerning stability: taking, for instance,

the rational numbers in the unit interval, we can find denser and denser packings yielding

Ps
0(� ∩ [0, 1]) = ∞ for every 0 � s < 1, so this notion lacks countable additivity, in

particular, it is not a measure. This can be overcome by applying a Caratheodory-type
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process to Ps
0. Define

Ps(X) = inf

{∑
Ps

0(Xi) : X ⊆
⋃
i∈�

Xi

}
, (2)

where the infimum is taken over arbitrary countable covers of X. Ps is an (outer) measure

on 2ω , and it is Borel regular. Ps is called, in correspondence to Hausdorff measures, the

s-dimensional packing measure on 2ω . Packing measures were introduced in Tricot (1982)

and Taylor and Tricot (1985). They can be seen as a dual concept to Hausdorff measures,

and behave in many ways similarly to them. In particular, one may define the packing

dimension in the same way as the Hausdorff dimension.

Definition 2.5. The packing dimension of a set X ⊆ 2ω is defined as

dimP X = inf{s : Ps(X) = 0} = sup{s : Ps(X) = ∞}. (3)

It is not hard to see that the packing dimension of a set is always at least as large as

its Hausdorff dimension. Once more we refer to Falconer (1990) for details on packing

measures and dimension.

2.2. Martingales

It is also possible to characterise Hausdorff and packing dimension via martingales.

This fundamental observation was first made in Lutz (2000a; 2000b) in the case of the

Hausdorff dimension, and then in Athreya et al. (2004) for packing dimension.

Martingales have become a fundamental tool in probability theory. In Cantor space

2ω , they can be understood as simple betting games, which is reflected in the following

definition.

Definition 2.6.

(a) A betting strategy b is a function b : 2<ω → [0, 1] × {0, 1}.
(b) Given a betting strategy b and a positive real number α > 0, the martingale dαb :

2<ω → [0,∞) induced by b and α is inductively defined by dαb(ε) = α, where ε denotes

the empty string, and

dαb(wiw) = dαb(w)(1 + qw), (4)

dαb(w(1 − iw)) = dαb(w)(1 − qw) (5)

for w ∈ 2<ω and b(w) = (qw, iw). If α = 1, the martingale dαb is normed.

(c) A martingale d is a function {0, 1}∗ → [0,∞) that is induced by a betting strategy and

some number α > 0.

Martingales can be interpreted as capital functions of the accordant betting strategy,

when applied to a binary sequence: d(w) is equal to the player’s capital after bits

w(0), . . . , w(|w| − 1) have been revealed to him.

It is easy to check that every martingale satisfies a fairness condition:

d(w) =
d(w0) + d(w1)

2
for all w ∈ 2<ω.
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This means that the betting game underlying a martingale is fair in the sense that the

expected payoff is equal to the current capital.

Later we will use the fact that martingales are additive: if d1 and d2 are martingales,

so is d1 + d2. Furthermore, if (dn)n∈� is a countable sequence of martingales, then∑
n∈� 2−ndn(ε)

−1dn is a martingale too.

The notions of Hausdorff and packing measure zero on 2ω can be characterised

through martingales. The smaller s gets, the harder it is to cover a given set in terms of

an s-dimensional Hausdorff/packing measure. This is reflected by the following winning

condition for martingales.

Definition 2.7. Let s � 0, and d be a martingale.

(a) d is s-successful (s-succeeds) on a sequence B ∈ 2ω if

d(B �n) � 2(1−s)n for infinitely many n. (6)

(b) d is strongly s-successful (or s-succeeds strongly) on a sequence B ∈ 2ω if

d(B �n) � 2(1−s)n for all but finitely many n. (7)

The next theorem states that the relation between Hs-null sets and s-successful

martingales is indeed very close.

Theorem 2.8. Let X ⊆ 2ω . Then

dimH X = inf{s : some martingale d is s-successful on all B ∈ X}. (8)

dimP X = inf{s : some martingale d is strongly s-successful on all B ∈ X}. (9)

In the form presented here, Equation (8) was first proved in Lutz (2000a). However,

a close connection between Hausdorff dimension and winning conditions on martingales

had been remarked on in Ryabko (1993) and Staiger (1998). Equation (9) was given in

Athreya et al. (2004).

Note that if a martingale s-succeeds on a sequence A, for any t > s, we have

lim sup
n→∞

d(A�n)

2(1−t)n
= ∞. (10)

So, when it comes to dimension, we will, if convenient, use (10) and the original definition

interchangeably. Furthermore, a martingale that satisfies (10) for s = 1 is simply called

successful on A.

3. Schnorr null sets and Schnorr dimension

We now define a notion of dimension based on Schnorr’s test approach to randomness.

The basic idea is to extend the concept of a Schnorr test to Hausdorff measures and

show that an effective version of Proposition 2.2 holds. Then the definition of the Schnorr

Hausdorff dimension follows in a straightforward way. A definition of the Schnorr

packing dimension based on packing measures defined via coverings would be rather

involved. However, in the next section we will see that the Schnorr Hausdorff dimension

can be characterised via martingales. In fact, the Schnorr Hausdorff and computable
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Hausdorff dimensions coincide. Hence we can regard computable packing dimension,

defined in terms of strongly successful computable martingales, as the dual to the Schnorr

Hausdorff dimension.

As we are mostly interested in algorithmic notions of dimension, we only need to

consider rational valued dimensions s. In this way we do not have to worry about

problems of effectivity concerning real numbers.

Definition 3.1. Let s � 0 be a rational number.

(a) A Schnorr s-test is a uniformly c.e. sequence (Sn)n∈� of sets of strings that satisfies

the following conditions for all n:

(1) ∑
w∈Sn

2−|w|s � 2−n. (11)

(2) The real number
∑

w∈Sn 2−|w|s is uniformly computable in n; that is, there exists

a computable function f such that for each n, i,
∣∣f(n, i) −

∑
w∈Sn 2−|w|s∣∣ � 2−i.

(b) A class A ⊆ 2ω is Schnorr s-null if there exists a Schnorr s-test (Sn) such that

A ⊆
⋂
n∈�

[Sn].

To be compatible with the conventional notation, we say the Schnorr 1-null sets are

Schnorr null for short. The Schnorr random sequences are those that are (as a singleton in

2ω) not Schnorr null.

In Downey and Griffiths (2004), it is observed that, by adding elements, one can replace

any Schnorr 1-test by an equivalent one (that is, one defining the same Schnorr null sets)

in which each level of the test has measure exactly 2−n. We can apply the same argument

in the case of arbitrary rational s, and hence we may, if appropriate, assume that (11)

holds with equality. (In this case, condition (2) in Definition 3.1 is automatically satisfied.)

Note further that, for rational s, the sets Sn in a Schnorr s-test are actually uniformly

computable, since to determine whether w ∈ Sn, all we need to do is enumerate Sn until the

accumulated sum given by
∑

2−|w|s exceeds 2−n − 2|w|s (assuming the measure of the n-th

level of the test is in fact 2−n). If w has not been enumerated yet, it cannot be in Sn. The

converse, however, does not hold: if W ⊆ 2<ω is computable, this does not necessarily

imply that the measure of [W ] is computable.

One can also describe Schnorr s-null sets in terms of Solovay tests. Solovay tests were

introduced in Solovay (1975) and allowed for a characterisation of Martin-Löf null sets

via a single test set, instead of a uniformly computable sequence of test sets.

Definition 3.2. Let s � 0 be rational.

(a) A Solovay s-test is a c.e. set D ⊆ 2<ω such that∑
w∈D

2−|w|s � 1 .
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(b) A Solovay s-test is total if ∑
w∈D

2−|w|s

is a computable real number.

(c) A Solovay s-test D covers a sequence A ∈ 2ω if

(∃∞w ∈ D) [w � A].

In this case we also say that A fails the test D.

Theorem 3.3. For any rational s � 0, a class X ⊆ 2ω is Schnorr s-null if and only if there

is a total Solovay s-test that covers every sequence A ∈ X.

Proof.

(⇒) Let X be Schnorr s-null via a test (Un)n∈�. Let

C =
⋃
n�1

Un.

Obviously, C is a Solovay s-test that covers all of X, so it remains to show that C

is total. But in order to compute c =
∑

v∈C 2−|v|s with precision 2−n, it is enough to

compute, for i = 1, . . . , n + 1, the measure of Ui up to precision 2−(i+n+1).

(⇐) Let C be a total Solovay s-cover of X. Given n, compute c =
∑

v∈C 2−|v|s up to

precision 2−n−2, say as a value c̃. Now find a finite subset C̃ ⊆ C such that

c̃ − 2−n−1 �
∑
w∈C̃

2−|w|s � c̃ − 2−n−2.

Then C \ C̃ covers every sequence A ∈ X. Furthermore, we have∑
w∈C\C̃

2−|w|s � 3/2n+2 � 1/2n.

Hence, if we define Un = C \ C̃ , the (Un) will form a Schnorr s-test for X.

Note that the equivalence between Solovay and Schnorr s-tests does not extend to

Martin-Löf s-tests in general. For a Martin-Löf s-test we only require the first condition

(1) in Definition 3.1, but not the second one. Martin-Löf s-tests and the corresponding

dimension notions have been explicitly studied in Tadaki (2002), Reimann (2004) and

Calude et al. (2005). Implicitly, via martingales, they were already present in Lutz’s

introduction of effective dimension (Lutz 2000b). Solovay showed that a set X ⊆ 2ω is

covered by a Martin-Löf 1-test if and only if it is covered by a Solovay 1-test. However,

Reimann and Stephan (2005a) recently showed that for any rational 0 < s < 1 there exists

a sequence A that is not Martin-Löf s-null but is covered by a Solovay s-test.

3.1. Schnorr dimension

As in the classical case, for each class, the family of Schnorr s-measures possesses a critical

value.
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Proposition 3.4. Let X ⊆ 2ω . Then for any rational s � 0, if X is Schnorr s-null, it is also

Schnorr t-null for any rational t � s.

Proof. It is enough to show that if s � t, every Schnorr s-test (Un) is also a Schnorr

t-test. So we assume {Un} is a Schnorr s-test. Given any real α � 0 and l ∈ �, let

mn(α) :=
∑
w∈Un

2−|w|α and ml
n(α) :=

∑
w∈Un

|w|�l

2−|w|α.

It is easy to check that

ml
n(t) � mn(t) � ml

n(t) + mn(s)2
(s−t)l .

Now mn(s) is computable, as is 2(s−t)l , and 2(s−t)l goes to zero as l gets larger. Therefore,

we can effectively approximate mn(t) to any desired degree of precision.

The definition of the Schnorr Hausdorff dimension now follows in a straightforward

way.

Definition 3.5. The Schnorr Hausdorff dimension of a class X ⊆ 2ω is defined as

dimS
H X = inf{s � 0 : X is Schnorr s-null}.

For a sequence A ∈ 2ω , we write dimS
H A for dimS

H{A} and refer to dimS
H A as the

Schnorr Hausdorff dimension of A.

Note that the Schnorr Hausdorff dimension of any sequence is at most 1, since for any

ε > 0 the ‘trivial’ 1 + ε-test Wn = {w : |w| = ln}, ln � �n/ε�, will cover all of 2ω .

3.2. Schnorr packing dimension

Because of the more involved definition of packing dimension, it is not immediately clear

how we should define a Schnorr-type version of packing dimension. However, we will see

in the next section that, by building on Theorem 2.8, Schnorr Hausdorff dimension allows

an elegant characterisation in terms of martingales.

4. Schnorr dimension and martingales

Schnorr, in line with his unpredictability paradigm for algorithmic randomness, suggested

a notion of randomness based on computable martingales (Schnorr 1971). According

to this notion, which is nowadays referred to as computable randomness, a sequence is

computably random if no computable martingale succeeds on it.

Schnorr proved that a sequence is Martin-Löf random if and only if no left-computable

martingale succeeds on it. Therefore, one might be tempted to derive a similar relation

between Schnorr random sequences and computable martingales. However, Schnorr

pointed out that the increase in capital of a successful computable martingale can be

so slow that it cannot be computably detected. Therefore, he introduced order functions

(‘Ordnungsfunktionen’), which ensure an effective control of the growth of the capital

infinitely often.
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In general, any non-negative, real-valued, non-decreasing unbounded function g will

be called an order function. (It should be noted that, in Schnorr’s terminology, an

‘Ordnungsfunktion’ is always computable.)

Definition 4.1. Let g : � → � be a computable order function. A martingale is g-successful

on a sequence B ∈ 2ω if

d(B �n) � g(n) for infinitely many n.

Schnorr showed that Schnorr null sets can be characterised via computable martingales

successful against computable orders.

Theorem 4.2 (Schnorr). A set X ⊆ 2ω is Schnorr null if and only if there exists a

computable martingale d and a computable order function g such that d is g-successful

on all B ∈ X.

Observe that, in light of Theorem 2.8 (and the remark following (10)), a martingale

being s-successful means it is g-successful for the order function g(n) = 2(1−s)n. These

are precisely what Schnorr calls exponential orders, so much of effective dimension is

already, though apparently without explicit reference, present in Schnorr’s treatment of

algorithmic randomness (Schnorr 1971).

Definition 4.3. Given B ∈ 2ω , the computable Hausdorff dimension dimcomp
H B and the

computable packing dimension dimcomp
P B are defined as follows:

dimcomp
H B = inf{s : some computable martingale d is s-successful on B}.

dimcomp
P B = inf{s : some computable martingale d is strongly s-successful on B}.

Computable Hausdorff dimension was first explicitly defined in Lutz (2000a), and

computable packing dimension in Athreya et al. (2004).

A sequence is computably random if no computable martingale succeeds on it. Wang

(Wang 1999) showed that the concepts of computable randomness and Schnorr random-

ness do not coincide. There are Schnorr random sequences on which some computable

martingale succeeds. However, the differences vanish when it comes to dimension.

Theorem 4.4. For any sequence B ∈ 2ω ,

dimS
H B = dimcomp

H B.

Proof.

(�) Suppose a computable martingale d is s-successful on B. (We may assume that s < 1.

The case s = 1 is trivial. We may also assume that the d is normed.) It is enough to

show that for any t such that 1 > t > s we can find a Schnorr t-test that covers B.

We define

U
(t)
k =

{
σ : σ is minimal such that

d(σ)

2(1−t)|σ| � 2k
}
.

It is easy to see that the (U(t)
k )k∈� cover B. Since d is computable, the cover is

effective. To show that the measure of each U
(t)
k is at most 2−k , note that an easy
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induction based on the fairness property of martingales shows that for all prefix-free

sets V ⊆ 2<ω , ∑
σ∈V

d(σ)2|σ| � 1.

Therefore, ∑
σ∈U(t)

k

2(1−t)|σ|2k2|σ| � 1,

and hence ∑
σ∈U(t)

k

2−t|σ| � 2−k.

The only thing left to prove is that
∑

w∈U(t)
k

2−s|w| is a computable real number.

To approximate
∑

w∈U(t)
k

2−s|w| within 2−r , effectively find a number n such that

2(1−t)n � 2rd(ε). If we enumerate only those strings σ into U
(t)
k for which |σ| � n, we

may conclude for the remaining strings τ ∈ U
(t)
k that d(τ) � 2(1−t)n2k � 2r+kd(ε).

We now employ an inequality for martingales, which is sometimes referred to as

Kolmogorov’s inequality, but was first shown in Ville (1939). If d is a martingale, then

for every k > 0,

λ{B ∈ 2ω : d(B �n) � k for some n} �
d(ε)

k
,

where λ denotes the Lebesgue measure on 2ω . It follows that the measure induced by

the strings not enumerated is at most 2−(r+k).

(�) Suppose dimS
H B < s < 1. (Again the case s = 1 is trivial.) We show that for any t > s,

there exists a computable martingale d that is s-successful on B.

Let (Vk)k∈� be a Schnorr t-test for B. Since each Vk is computable, we may assume

each Vk is prefix-free. Let

dk(σ) =

{
2(1−s)|v| if σ � v for some v ∈ Vk,∑

σw∈Vk
2−|w|+(1−s)(|σ|+|w|) otherwise.

We verify that dk is a martingale. Given σ ∈ 2<ω , if there is a v ∈ Vk such that v � σ,

we have

dk(σ0) + dk(σ1) = 21+(1−s)|v|.

If v � σ, then dk(σ) = 2(1−s)|v|, so dk(σ0)+dk(σ1) = 2dk(σ). If v = σ, then, by definition

of dk and the fact that Vk is prefix-free, dk(σ) = 2(1−s)|σ|, and thus dk(σ0) + dk(σ1) =

2dk(σ) holds in this case too.

If such v does not exist,

dk(σ0) + dk(σ1) =
∑

σ0w∈Vk

2−|w|+(1−s)(|σ|+|w|+1) +
∑

σ1w∈Vk

2−|w|+(1−s)(|σ|+|w|+1)

=
∑
σu∈Vk

2(−|u|+1)+(1−s)(|σ|+|u|) = 2dk(σ).

https://doi.org/10.1017/S0960129506005469 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005469


Schnorr dimension 801

Besides,

dk(ε) =
∑
w∈Vk

2−|w|+(1−s)|w| =
∑
w∈Vk

2−s|w| � 2−k ,

so the function

d =
∑
k

dk

defines a martingale as well (using additivity). Finally, note that for w ∈ Vk , we have

d(w) � dk(w) = 2(1−s)|w|. So if B ∈
⋂

k[Vk], then d(B �n) � 2(1−s)n infinitely often, which

means that d is s-successful on all B ∈ X.

Since each dk(ε) � 2−k , the computability of d follows easily from the uniform

computability of each dk , which is easily verified based on the fact that the measure

of the Vk is uniformly computable. (Note that each σ can be in at most finitely many

Vk .)

An alternative proof of Theorem 4.4 could have been obtained by showing that a

sequence B is Schnorr s-null if and only if there exists a computable order function g such

that d(B �n) � 2(1−s)ng(n) infinitely often, that is, by transferring Schnorr’s characterisation

of Schnorr random sequences via computable martingales to the case of Hausdorff

measures. Then, using (10), Theorem 4.4 follows easily.

So, in contrast to randomness, the approaches to dimension via Schnorr tests and via

computable martingales yield the same concept.

In the following, we will use both names, dimS
H and dimcomp

H , stressing whether the

reasoning follows the test or martingale approach, respectively. Theorem 4.4 justifies

regarding the computable packing dimension as the dual to Schnorr Hausdorff dimension.

It follows from the definitions that for any sequence A ∈ 2ω , we have dimcomp
H A �

dimcomp
P A. Following Tricot (1982) and Athreya et al. (2004), we say sequences for which

the computable Hausdorff and computable packing dimensions coincide are computably

regular. It is easy to construct a non-computably regular sequence; however, in Section 7

we will see that such sequences already occur among the class of c.e. sets.

5. Examples of Schnorr/computable dimensions

The previous results allow us to exhibit two typical examples of Schnorr dimensions. They

can be seen as ‘pointwise’ versions of Theorem 2.4 and are Schnorr dimension analogues of

two canonical examples of sequences having non-integral effective (constructive) dimension

(Athreya et al. 2004; Reimann 2004). The first example is obtained by ‘inserting’ zeroes

into a sequence of dimension 1. Note that it easily follows from the definitions that every

Schnorr random sequence has Schnorr Hausdorff dimension one. On the other hand, it

is not hard to show that not every sequence of Schnorr Hausdorff dimension 1 is also

Schnorr random.

The second class of examples is based on the fact that Schnorr random sequences satisfy

the law of large numbers, not only with respect to Lebesgue measure (which corresponds

to the uniform Bernoulli measure on 2ω), but also with respect to other computable
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Bernoulli distributions. Given a sequence 	p = (pn)n∈� of real numbers, where pn ∈ (0, 1)

for all n, the Bernoulli measure µ	p is defined by setting

µ	p[σ] =
∏
σ(i)=1

pi
∏
σ(i)=0

1 − pi.

The sequence 	p is called the bias sequence of µ	p. The measure µ	p is computable if the bias

sequence is a uniformly computable sequence of real numbers.

One can modify the definition of Schnorr tests to obtain randomness notions for

arbitrary computable measures µ. Given a computable measure µ, a sequence is called

Schnorr µ-random if it is not covered by any µ-Schnorr test.

Theorem 5.1.

(1) Let S ∈ 2ω be Schnorr random and Z be a computable, infinite, co-infinite set

of natural numbers such that δZ = limn |{0, . . . , n − 1} ∩ Z |/n exists. Define a new

sequence SZ by

SZ �Z= S and SZ �Z= 0,

where we use 0 here to denote the sequence consisting of zeroes only. Then,

dimS
H SZ = δZ .

(2) Let µ	p be a computable Bernoulli measure on 2ω with bias sequence (p0, p1, . . . ) such

that limn pn = p. Then, for any Schnorr µ	p-random sequence B,

dimS
H B = −[p log p + (1 − p) log(1 − p)].

Part (1) of the theorem is straightforward (using for instance the martingale character-

isation of Theorem 4.4); part (2) is an easy adaption of the corresponding theorem for

effective (that is, Martin-Löf style) dimension (as, for example, in Reimann (2004)).

It is not hard to see that for the examples given in Theorem 5.1, the Hausdorff and

packing dimensions coincide, so they describe regular sequences. In Section 7, we will

see that there are highly irregular c.e. sets of natural numbers: while all c.e. sets have

computable Hausdorff dimension 0, there are c.e. sets of computable packing dimension 1.

6. A machine characterisation of Schnorr dimension

One of the most cogent arguments in favour of Martin-Löf’s approach to randomness

is the coincidence of the Martin-Löf random sequences with the sequences that are

incompressible in terms of prefix-free Kolmogorov complexity K. Furthermore, there

exists a fundamental correspondence between effective Hausdorff and packing dimension,

dim1
H and dim1

P, respectively, and Kolmogorov complexity: for any sequence A,

dim1
H A = lim inf

n→∞

K(A�n)

n
and dim1

P A = lim sup
n→∞

K(A�n)

n
.

The first equation was first proved explicitly in Mayordomo (2002), but much of it is

already present in earlier work on Kolmogorov complexity and Hausdorff dimension, such

as Ryabko (1984) and Staiger (1993). The second identity is from Athreya et al. (2004).
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Note that in both equations one could replace prefix-free complexity K by plain

Kolmogorov complexity C, since the two complexities differ only by a logarithmic factor.

To obtain a machine characterisation of Schnorr dimension, we have to restrict the

admissible machines to those with domains having computable measure. Recall that a

Turing machine is prefix-free if its domain is.

Definition 6.1. A prefix-free machine M is computable if∑
w∈dom(M)

2−|w| (12)

is a computable real number.

Note that, as in the case of Schnorr tests, if a machine is computable then its domain

is computable (but not vice versa). To determine whether M(w) ↓, we enumerate dom(M)

until the value of
∑

w∈dom(M) 2
−|w| is approximated with precision 2−N , where N > |w|. If

M(w) ↓, then w must have been enumerated by this point.

The definition of machine complexity follows the standard scheme. We restrict ourselves

to prefix-free machines.

Definition 6.2. Given a Turing machine M with prefix-free domain, the M-complexity of

a string x is defined as

KM(x) = min{|p| : M(p) = x},
where KM(x) = ∞ if there does not exist a p ∈ 2<ω such that M(p) = x.

We refer to the books Li and Vitányi (1997) and Downey and Hirschfeldt (2006) for

comprehensive treatments of machine (Kolmogorov) complexity. Furthermore, following

Downey and Griffiths (2004), we may assume that the measure of the domain of a

computable machine is 1. Namely, for each computable prefix-free machine M there

exists a prefix-free machine M̃ such that λ(dom(M̃)) = 1, and for all σ ∈ range(M),

KM(σ) = KM̃(σ) + O(1) (that is, there exists a constant c such that for all σ ∈ range(M),

KM(σ) and KM̃(σ) differ by at most c). This can be justified by adding ‘superfluous’ strings

to the domain and applying the Kraft–Chaitin Theorem.

Our machine characterisation of Schnorr dimension will be based on the following

characterisation of Schnorr randomness by Downey and Griffiths.

Theorem 6.3 (Downey and Griffiths 2004). A sequence A is Schnorr random if and only

if for every computable machine M,

(∃c) (∀n) KM(A�n) � n − c.

Building on this characterisation, we can go on to describe the Schnorr dimension as

asymptotic entropy with respect to computable machines.

Theorem 6.4. For any sequence A,

dimS
H A = inf

M
KM(A) where KM(A) = lim inf

n→∞

KM(A�n)

n
,

where the infimum is taken over all computable prefix-free machines M.
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Proof.

(�) Let s > dimS
H A. We show that this implies s � KM(A) for some computable machine

M, which yields dimS
H A � infM KM(A).

As s > dimS
H A, there exists a Schnorr s-test {Ui} such that A ∈

⋂
i[Ui]. Assume each

set in the test is given as Un = {σn,1, σn,2, . . . }. Note that the Kraft–Chaitin Theorem

is applicable to the set of axioms

〈�s|σn,i|� − 1, σn,i〉 (n � 2, i � 1).

Hence, there exists a prefix-free machine M such that for n � 2 and all i, we

have KM(σn,i) = �s|σn,i|� − 1. Furthermore, M is computable since
∑

n,i 2
−�s|σn,i|�−1 is

computable.

We know that for all n there is an in such that σn,in � A, and it is easy to see that the

length of these σn,in goes to infinity. Hence, there must be infinitely many m = |σn,in |
such that

KM(A�m) � �s|σn,in |� − 1 � sm,

which in turn implies that

lim inf
n→∞

KM(A�n)

n
� s.

(�) Suppose s > infM KM(A). So there exists a computable prefix-free machine M such

that s > KM(A). Define the set

SM = {w ∈ 2<ω : KM(w) < |w|s}.

We claim that this is a total Solovay s-cover for A. It is obvious that the set covers

A infinitely often, so it remains to show that∑
w∈SM

2−|w|s

is a computable real number less than or equal to 1. The latter follows from∑
w∈SM

2−|w|s <
∑
w∈SM

2−KM (w) � 1,

by Kraft’s inequality and the fact that M is a prefix-free machine. To show

computability, given ε, compute the measure induced by dom(M) up to precision

ε, so all strings not enumerated by that stage (call it t) will add in total at most ε to

the measure of dom(M), which means they will also add at most ε to
∑

w∈SM 2−|w|s,

and hence ∑
w∈SMt

2−|w|s �
∑
w∈SM

2−|w|s �
∑
w∈SMt

2−|w|s + ε,

since a v contributes to SM only if K(v) < |v|s. But, obviously, this only happens if

v ∈ dom(M).
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Hitchcock independently obtained a similar machine characterisation of Schnorr Haus-

dorff dimension (Hitchcock 2003). One can use a similar argument to obtain a machine

characterisation of the computable packing dimension.

Theorem 6.5. For any sequence A,

dimcomp
P A = inf

M
KM(A) where KM(A) = lim sup

n→∞

KM(A�n)

n
,

where the infimum is taken over all computable prefix-free machines M.

Proof.

(�) Let s > dimcomp
P A. We show that this implies s � KM(A) for some computable

machine M, which yields dimcomp
P A � infM KM(A).

So we assume d is a computable martingale that is strongly t-successful on A for

some t < s. For each n, consider the set

Un = {w ∈ {0, 1}n : d(w) � 2(1−t)n}.

Then A is covered by all but finitely many Un. Furthermore, the Un are uniformly

computable, as is the measure of each [Un]. It follows from Kolmogorov’s inequality

that |Un| � 2nt. Hence ∑
w∈Un

2−|w|s � 2n(t−s).

Since t − s < 0, we can choose an n0 such that
∑

n�n0

∑
w∈Un

2−|w|s � 1/2. Let

U =
⋃

n�n0
Un. We can build a Kraft–Chaitin set based on the axioms

〈�s|w|� − 1, w〉, w ∈ U.

Then there exists a prefix-free machine M such that for all w ∈ U, we have KM(w) �
s|w|. Furthermore, M is computable since

∑
w∈U 2−|w|s is computable. But for n � n0,

every prefix A�n is in U, and hence

lim sup
n→∞

KM(A�n)

n
� s.

(�) Suppose s > infM KM(A). So there exists a computable prefix-free machine M such

that s > KM(A). For each n, define the set

Un = {w ∈ {0, 1}n : KM(w) < |w|s}.

Again, A is covered by all but finitely many Un. For each n, define a martingale dn as

in the �-part of the proof of Theorem 4.4. The dn are uniformly computable since

the Un are. We use a fundamental result by Chaitin (Chaitin 1976): for any n, k ∈ �,

|{w ∈ {0, 1}n : K(w) � k}| � 2k−K(n)+O(1).

Since M is prefix-free, K � KM + O(1), and hence

|{w ∈ {0, 1}n : KM(w) � k}| � 2k−K(n)+O(1).
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It follows that for some constant c and each n,

dn(ε) =
∑
w∈Un

2−s|w| = |Un|2−sn � 2− K(n)+c.

So d =
∑

n dn is well defined, since
∑

n 2− K(n) is finite. A is covered by all but finitely

many Un, and for w ∈ Un, d(w) � dn(w) = 2(1−s)|w|, so d is strongly s-successful on

A.

7. Schnorr dimension and computable enumerability

Usually, when studying algorithmic randomness, interest focuses on left-computable real

numbers (also known as c.e. reals) rather than on c.e. sets (of natural numbers). The reason

is that c.e. sets exhibit a trivial behaviour with respect to most randomness notions, while

there are c.e. reals that are random, such as Chaitin’s Ω.

As regards left-computable reals, with respect to computability, so far all notions of

effective dimension show mostly the same behaviour as the corresponding notions of

randomness. For instance, it has been shown in Reimann (2004) and Terwijn (2003) that

every left-computable real of positive effective dimension is Turing-complete, a result that

was previously known to hold for left-computable Martin-Löf random reals. For Schnorr

dimension, a straightforward generalisation of a proof in Downey and Griffiths (2004),

which showed that every left-computable Schnorr random real is of high degree, shows that

the same holds true for left-computable reals of positive Schnorr Hausdorff dimension.

That is, if A is left-computable and dimS
H A > 0, then A′ ≡T 0′′.

As regards computably enumerable sets (of natural numbers), they are usually, in the

context of algorithmic randomness, of marginal interest, since they exhibit a rather non-

random behaviour. For instance, it is easy to see that no computably enumerable set can

be Schnorr random.

Proposition 7.1. No computably enumerable set is Schnorr random.

Proof. Every infinite c.e. set contains an infinite computable subset. So, given an infinite

c.e. set A ⊆ �, we choose some computable infinite subset B. Assume B = {b1, b2, . . . },
with bi < bi+1.

Define a Schnorr test {Vn} for A as follows: at level n, put all those strings v of length

bn + 1 into Vn for which

v(bi) = 1 for all i � n + 1.

Then, surely, A ∈ [Vn] for all n, and λ[Vn] = 2−n.

It is not clear how we can improve the preceding result to Schnorr dimension zero.

Indeed, defining coverings from the enumeration of a set directly might not work, because,

due to the dimension factor in Hausdorff measures, longer strings will be weighted higher.

Depending on how the enumeration is distributed, this might not lead to a Schnorr

s-covering at all.
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However, one can exploit the somewhat predictable nature of a c.e. set to define a

computable martingale that is, for any s > 0, s-successful on the characteristic sequence

of the enumerable set, thereby ensuring that each c.e. set has computable dimension 0.

Theorem 7.2. Every computably enumerable set A ⊆ � has Schnorr Hausdorff dimension

zero.

Proof. Given rational s > 0, we show that there exists a computable martingale d such

that d is s-successful on A.

First, we partition the natural numbers into effectively given, disjoint intervals In such

that |In| � |In+1|, for instance, |In| = 2|I0|+···+|In−1|. Set in = |In| and jn = i0 + i1 + · · · + in.

We use δ to denote the upper density of A on In, that is,

δ = lim sup
n→∞

|A ∩ In|
in

.

Without loss of generality, we may assume that δ > 0. For any ε > 0 with ε < δ there is

a rational number r such that δ − ε < r < δ. Given such an r, there must be infinitely

many nk for which

|A ∩ Ink | > rink .

We now define a computable martingale d by describing an accordant betting strategy as

follows. At stage 0, initialise with d(ε) = 1. At stage k + 1, assume d is defined for all τ

with |τ| � lk for some lk ∈ �. Enumerate A until we know, for some interval Ink with

jnk−1 > lk (that is, Ink has not been bet on before), that

|A ∩ Ink | > rink .

For all strings σ with lk < |σ| � jnk−1, bet nothing (that is, d remains constant here). Fix a

(rational) stake γ > 21−s −1. On Ink , bet γ on the mth bit being 1 (jnk−1 < m � jnk ) if m has

already been enumerated into A. Otherwise, bet γ on the mth bit being 0. Set lk+1 = jnk .

When betting against A, it is obvious that this strategy will lose at most �2ε�|Ink | times

on Ink . Thus, for all sufficiently large nk ,

d(A�lk+1
) � d(A�lk )(1 + γ)ink −�2ε�ink (1 − γ)�2ε�ink

= d(A�lk )(1 + γ)ink

(
1 − γ

1 + γ

)�2ε�ink
> 2(1−s)ink

(
1 − γ

1 + γ

)�2ε�ink
.

Choosing ε small enough and n large enough, we see that d is s-successful on A.

On the other hand, it is not hard to see that for every Schnorr 1-test there is a c.e. set

that is not covered by it. This means that the class of all c.e. sets has Schnorr Hausdorff

dimension 1. For effective Hausdorff dimension, Lutz (Lutz 2003) showed that for any

class X ⊆ 2ω ,

dim1
H X = sup{dim1

H A : A ∈ X}.
This means that effective dimension has a strong stability property. The class of c.e. sets

yields an example where stability fails for Schnorr dimension.
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In contrast to Theorem 7.2, and perhaps somewhat surprisingly, the upper Schnorr

entropy of c.e. sets can be as high as possible, namely, there exist c.e. sets with computable

packing dimension 1. This stands in sharp contrast to the case of effective dimension,

where J. M. Barzdiņš’ Theorem (Barzdiņš 1968) ensures that all c.e. sets have effective

packing dimension 0. Namely, if A is a c.e. set, there exists a c such that for all n, we have

C(A�n) � log n + c.

In fact, it can be shown that every hyperimmune degree contains a set of computable

packing dimension 1. As the proof of the theorem shows, this holds mainly because of

the requirement that all machines involved in the determination of Schnorr dimension are

total.

Before giving the proof, however, it should be mentioned that there are degrees that do

not contain any sequence of high computable packing dimension. This can be shown by

a straightforward construction.

Theorem 7.3. For any hyperimmune set B there exists a set A ≡T B such that

dimcomp
P A = 1.

Furthermore, if the set B is c.e., A can be chosen to be c.e. also.

Proof. For given B, it suffices to construct a set C �T B such that dimcomp
P C = 1, and

to let, for some computable set of places Z of sublinear density, the set A be a join of B

and C where B is coded into the places in Z in the sense that

A�Z= B and A�Z= C;

a similar argument works for the case of c.e. sets.

So fix any hyperimmune set B. Then there is a function g computable in B such that

for any computable function f there are infinitely many n such that f(n) < g(n). We now

partition the natural numbers into effectively given, pairwise disjoint intervals

� = I0 ∪ I1 ∪ I2 ∪ . . .

such that |I0| + . . . + |In| � |In+1| for all n; for instance, choose In such that |In+1| =

2|I0|+···+|In|, and let in = |In|. Furthermore, let M0,M1, . . . be a standard enumeration of

all prefix-free (not necessarily computable) Turing machines with uniformly computable

approximations Me[s].

For any pair of indices e and n, when∑
Me[g(n)](w)↓

2−|w| � 1 − 2−i〈e,n〉 , (13)

we let C have an empty intersection with the interval I〈e,n〉.

Otherwise, when (13) is false, any string of length i〈e,n〉 not output by Me at stage g(n)

via an Me-program of length at most i〈e,n〉 is Me-incompressible in the sense that the string

has Me-complexity of at least i〈e,n〉; we pick such a string σ and let C �I〈e,n〉= σ (if there

is no such string, the domain of the prefix-free machine Me contains exactly the finitely

many strings of length i〈e,n〉 and we do not have to worry about Me). Observe that C �T B

because g is computable in B.
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For any Me with domain of measure one, the function fe that maps n to the first stage

t such that ∑
Me[t](w)↓

2−|w| > 1 − 2−i〈e,n〉 (14)

is total, and, in fact, computable; hence there are infinitely many n such that fe(n) < g(n),

and for all these n, the restriction of C to I〈e,n〉 is Me-incompressible. To see that this

ensures computable packing dimension 1, suppose

dimcomp
P C < 1.

Then there exists a computable machine M, an ε > 0 and some nε ∈ � such that

(∀n � nε) [KM(C �n) � (1 − ε)n].

We define another total machine M̃ with the same domain as M: given x, we compute

M(x). If M(x) ↓, check whether |M(x)| = i0 + i1 + · · · + ik for some k. If it does, output

the last ik bits, otherwise output 0. Let e be an index of M̃. By choice of the ik , for all

sufficiently large n, the M̃-complexity of C �I〈e,n〉 can be bounded as follows:

KM̃(C �I〈e,n〉 ) � KM(C �I〈e,0〉∪...∪I〈e,n〉) � (1 − ε)(i〈e,0〉 + · · · + i〈e,n〉) � (1 − ε

2
)i〈e,n〉 .

This contradicts the fact that, by construction, there are infinitely many n such that the

restriction of C to the interval I〈e,n〉 is Me-incompressible, that is, M̃-incompressible.

In the case of a non-computable c.e. set B, it is not hard to see that we obtain a

function g as above if we let g(n) be equal to the least stage such that some fixed effective

approximation to B agrees with B at place n. Using this function g in the construction

above, the set C becomes c.e. because for any index e and for all n, when n is not in B,

the restriction of C to the interval I〈e,n〉 is empty, but when it is in B, we just wait for

the stage g(n) such that n enters B, then compute from g(n) the restriction of C to the

interval I〈e,n〉, and, finally, enumerate all the elements of C in this interval.
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