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Slip flow past a gas–liquid interface with
embedded solid particles
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We simulate shear flow past a stationary monolayer of spherical particles embedded
in a flat gas–liquid interface. This problem is relevant to the understanding of the
microhydrodynamics of particle-laden interfacial structures, including particle-laden
drops, bubbles and foams. The combination of the free-shear condition at the
gas–liquid interface and the no-slip condition at the particle surfaces gives rise
to a velocity slip at the particle-laden interface. We study the characteristics of the
flow near the monolayer, focusing on slip velocity, slip length and interfacial shear
stress. Two microstructures are compared: a square array, and a reticulated array
mimicking a percolating network of aggregated particles. We demonstrate that the
scaling laws for the dependence of the slip length on solid area fraction developed for
flow past superhydrophobic microstructured surfaces apply to the case of interfacial
particles. The calculated slip lengths are in general smaller that those reported for
microstructured superhydrophobic surfaces. This difference, which is due to the
significant protrusion of the spherical particles in the liquid, can be accounted for in
the case of the square array by an approximate argument. For a given area fraction,
the reticulated array yields a larger slip length than the square array. We analyse the
hydrodynamic forces acting on the particles, and the corresponding tangential stress
exerted by the bulk ‘subphase’.

Key words: colloids, drops, multiphase flow

1. Introduction
In applications and natural settings, gas–liquid interfaces are often found covered

with particulate material. Fouling of gas–liquid interfaces can occur in unsaturated
porous media or environmental bubbly flows, owing to the presence of fine grains and
biocolloids that adhere to the fluid interface (Weber, Blanchard & Syzdek 1983; Shang,
Flury & Deng 2009). In applications, rigid particles or globular proteins are often
added as surface-active agents to change the mechanical properties of the interface or
induce stabilisation against coalescence (Tambe & Sharma 1994; Binks 2002; Stancik,
Kouhkan & Fuller 2004).

As for molecular surfactants, the presence of the embedded solid particles alters the
boundary conditions at a fluid interface; for experimental evidence, see e.g. Hunter
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(a) (b) (c)

FIGURE 1. Examples of flow problems involving gas–liquid particle-laden interfaces where
significant particle–fluid velocity slip is expected: (a) a rising particle-coated bubble
(Weber et al. 1983); (b) liquid drainage in particle-laden thin films (Stancik et al. 2004;
Hunter et al. 2008; Bournival, Ata & Wanless 2015); and (c) formation of particle-coated
bubbles in a microfluidic device (Subramaniam, Abkarian & Stone 2005; Kotula & Anna
2012).

et al. (2008) and Kotula & Anna (2012); for a theoretical analysis, see Deemer &
Slattery (1978). These boundary conditions for the bulk fluid are to be applied to the
particle-laden fluid interface, i.e. the composite interface formed by the particles and
the fluid interface in which the particles are embedded. In the absence of mass transfer
effects, the no-penetration condition at the particle-laden interface is expected to hold
with good accuracy. However, the boundary condition for the velocity tangential to the
particle-laden fluid interface must be modified to account for the additional resistance
caused by the presence of the particles to the motion of the adjacent fluid layers.
This additional resistance is expected to be particularly significant when a significant
velocity difference occurs between the particle-laden fluid interface and the adjacent
fluid (figure 1).

In this paper we simulate shear flow past a gas–liquid interface containing a
monolayer of spherical particles, for the case in which the particle-laden fluid interface
is flat and the monolayer is stationary (or moving with constant velocity if a change
of reference frame is accounted for). All the simulations are carried out in the Stokes
flow limit. The simulation results allow one to gain insights into the dependence
of the slip length parameter appearing in a partial slip boundary condition for the
particle-laden interface on the macroscopic flow variables and particle distribution.
Such a boundary condition could be applied to problems related to froth flotation
(Subrahmanyam & Forssberg 1988), solid stabilised foams and emulsions (Horozov
2008; Martinez et al. 2008) and spray drying (Tsapis et al. 2005).

Recently, the statics and dynamics of particles embedded in fluid interfaces has been
subject to increasing interest. Singh & Joseph (2005) studied the equilibrium condition
for particles supported by surface tension at a horizontal fluid interface, as a function
of particle weight and contact angle. Under the effect of gravity, particles induce a
distortion of the fluid interface whose amplitude is proportional to the magnitude of
the particle weight. For particles in the size range of typical colloids (a < 10 µm),
the particle weight is orders of magnitude smaller than the capillary force on the
particle. As a consequence, the interface around the particle can be considered locally
flat and unaffected by the gravitational force acting on the particle. This notion can be
generalised to non-horizontal particle-laden interfaces. For curved particle-laden fluid
interfaces, the composite interface can be considered locally flat if the particle radius
is small in comparison to the radius of curvature of the particle-laden interface. For a
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locally flat interface, the degree of protrusion of a solid particle in the liquid phase is a
function of only the contact angle θc and the particle radius (Rapacchietta & Neumann
1977).

The drag forces on single spheres embedded in fluid–fluid interfaces has been
studied by several authors. For gas–liquid interfaces, the drag force is a monotonic
function of the degree of protrusion of the particle in the liquid phase (Petkov
et al. 1995; Danov, Dimova & Pouligny 2000; Fischer, Dhar & Heinig 2006). When
θc = 90◦, owing to symmetry, the drag on an isolated sphere in a uniform flow is
exactly half the Stokes drag for a fully immersed sphere. A particle embedded in a
gas–liquid interface and subject to a shear flow will also experience a hydrodynamic
torque and may rotate (Pozrikidis 2007). However, effects due to rotation, which
depend on the shear rate, are expected to be subdominant with respect to those
due to relative translation between the particle and the surrounding fluid; for small
particles contact line pinning may prevent rotation completely, and this is a situation
often found in practice (Dörr et al. 2016). Only a few studies have investigated the
hydrodynamics of multiple interfacial particles. These studies are typically concerned
with the dynamics of small clusters of particles (Singh & Joseph 2005; Dani et al.
2015), or the macroscopic effect of the collective motion of many particles on the
dynamics of liquid–liquid interfacial structures (Frijters, Günther & Harting 2012). To
the best of our knowledge, the interfacial drag on multiple particles subject to shear
flow and the characteristics of the slip flow for this flow configuration have not been
considered in the literature.

The flow past a stationary monolayer of spheres embedded in a gas–liquid interface
bears obvious similarities to flow past a microstructured superhydrophobic surface.
In both cases one can define a composite surface composed of free-slip and no-slip
‘patches’. From the point of view of continuum modelling, i.e. considering flow
variables on a scale much larger than the particles, the boundary condition at such a
composite surface is expected to be a linear combination of the boundary conditions
that are appropriate for the solid and fluid regions. Composite free-slip/no-slip
interfaces indeed have been successfully modelled through a Navier slip boundary
condition

λ〈γ̇ 〉s = 〈u〉s, (1.1)

where 〈γ̇ 〉s is the bulk shear rate at the interface, 〈u〉s is the interfacial slip velocity
and λ is the slip length. For superhydrophobic surfaces, the dependence of λ on
the geometry of the microstructure has been studied extensively (Rothstein 2010): λ
is a function of the size of the microstructural elements, the area fraction covered
by the solid and the arrangement of the microstructural elements in the slip plane
(Lauga & Stone 2003; Sbragaglia & Prosperetti 2007; Ybert et al. 2007; Ng &
Wang 2009). In this paper we investigate the suitability of boundary condition (1.1)
for flat particle-laden gas–liquid interfaces; results for flat interfaces are relevant to
flow situations in which the radius of curvature of the interface is much larger than
the characteristic particle radius. We characterise the slip flow past a monolayer of
stationary spherical particles for a specific contact angle, θc = 90◦, and investigate
the dependence of λ on relevant parameters for two cases: a square array, and a
reticulated array in which the particles are distributed according to a mesh-like
arrangement. These two cases are idealisations of two limiting cases found in practice
(Aveyard et al. 2000) of monolayers constituted by particles well dispersed in the
interface due to interparticle repulsion, and monolayers constituted by particles
forming two-dimensional percolating networks due to particle–particle attraction,
respectively.
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FIGURE 2. We simulate a stationary monolayer of particles half-immersed in a flat
gas–liquid interface. The fluid is sheared by a moving wall located at a distance d from
the monolayer and moving with constant velocity U. For large values of d our results
converge to the asymptotic limit in which the flow near the monolayer depends on the
macroscopic shear rate induced by the moving wall, but not on d directly.

The neutrally wetting case θc = 90◦ studied here has practical relevance. In
applications it is indeed desirable to have a contact angle close to 90◦, as this
limiting angle gives the strongest adhesion of the particle to the interface against
desorption in either of the two adjacent fluids (Binks & Horozov 2006).

2. Problem formulation

We model shear flow past a stationary monolayer of spherical particles of radius
a embedded in a flat air–liquid interface for a contact angle of 90◦ (figure 2). The
fluid is set in motion by a flat wall located at a distance d from the monolayer and
translating with velocity U with respect to the spheres. For large values of d, the
liquid can be considered to be bounded by the particle-laden interface only. In this
limit we obtain asymptotic results that depend on the macroscopic bulk shear rate,
and not on d directly.

To simulate the flow configuration described above, we employ an expedient that
allows us to use a fast solver for finite size particles in bulk flows to simulate
a particle-laden gas–liquid interface. We simulate the flow past a monolayer of
spherical particles completely embedded in the liquid and placed at the centre of a
two-dimensional channel. The channel walls translate parallel to the monolayer with
velocity U. Because the air–water free-shear interface is a plane of symmetry for the
flow, the flow below the monolayer with the fully immersed particles is identical to
the flow in which the particles are half-immersed in a liquid domain bounded from
the top by the air–water interface (Dörr & Hardt 2015). The use of this expedient
enables us to use a fast and accurate fixed-grid method for fully resolved particles,
Physalis (Zhang & Prosperetti 2005; Sierakowski 2016), to simulate at a reasonable
computational cost many particles embedded in a gas–liquid interface.

Following recent work on particles at interfaces (Dörr & Hardt 2015; Dörr et al.
2016), we neglect the rotation of the particles. This assumption holds when the
viscous dissipation due to the rotation of the particles is negligible in comparison
to the dissipation due to the particle–fluid velocity difference (Dörr et al. 2016) or
when the motion of the contact line is hindered due to pinning of the contact line

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

84
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.842


156 A. Vidal and L. Botto

at roughness elements or chemical heterogeneities (Dörr & Hardt 2015; Dörr et al.
2016). The maximum pinning force per unit length of contact line is approximately
equal to σ∆, where σ is the surface tension of the air–liquid interface and ∆ is
the difference between the cosines of the advancing and receding contact angles (De
Gennes 1985). The parameter ∆ is often not negligible (the difference between the
advancing and receding contact angles is often larger than 10◦; see e.g. Lewandowski
et al. (2010)) and this translates to finite torque due to pinning that scales as σa2.
The hydrodynamic torque on each particle is O(µγ̇ a3), where µ is the liquid viscosity
and γ̇ is the characteristic value of the shear rate near the particle monolayer. The
ratio of the torque due to pinning to the hydrodynamic torque is thus proportional
to the capillary number Ca = µγ̇ a/σ . Our results are valid in the limit Ca � 1,
in which the particle does not rotate and hydrodynamic stresses are too small to
appreciably deform the interface. Small capillary numbers are often found in practice:
for example, for a particle-covered bubble of radius R = 100 µm translating with a
velocity U∞ = 1 cm s−1, γ̇ ∼U∞/R= 100 s−1 and Ca∼ 10−6. The capillary number
for the entire drop based on the velocity scale U∞ is a factor R/a larger than Ca
(which is based on the velocity scale γ̇ a), but is still very small.

We consider plane monolayers of particle arrangements in a biperiodic configuration
for two situations: a square array, and a reticulated mesh-like array formed by
orthogonal chains of particles with one of the chains oriented parallel to the flow.

The problem is governed by two non-dimensional parameters: the non-dimensional
gap size d/a and the solid area fraction φs = Npπa2/L2, where Np is the number of
particles in the periodic cell of side L. For the simulation of the square array, we
simulate a single sphere and vary the area fraction by changing the lateral size of
the computational domain. For the reticulated array case, examined in § 3.4, Np varies
from 5 to 25.

A Cartesian coordinate system (x, y, z) is set at the centre of the computational
domain, with x parallel to the flow direction and z in the direction normal to the
monolayer. In the following, u will denote the flow velocity component in the x
direction.

The numerical method employed for the simulation, Physalis, couples a finite-
difference solution of the incompressible Navier–Stokes equation to a spectral solution
of the Stokes equation for the velocity, vorticity and pressure disturbances induced
by the sphere. The spectral solution is used only in the immediate neighbourhood of
the particle surfaces. The pressure and vorticity are expressed in terms of spherical
harmonics. To enforce the no-slip condition at the particle surfaces, an iterative
procedure is used to match the coefficients of the spherical harmonics expansion
to the finite-difference Navier–Stokes solution at a cage of computational points
surrounding the particle surface. For the simulations in the current paper, we use
the Navier–Stokes solver with the nonlinear convective term set to zero (i.e. all
the simulations are carried out in the Stokes flow limit). The results we report are
for steady-state conditions. Physalis has been extensively validated in laminar flows
(Zhang & Prosperetti 2005; Bluemink et al. 2008, 2010). It has been applied to a
shear flow over a porous medium surface composed of several layers of spheres (Liu
& Prosperetti 2011), a situation that bears some similarities with the flow simulated
in the current work.

The accuracy of the simulation was assessed through comparison with Faxén’s
power-series analytical solution for the drag force on a single sphere translating with
constant velocity between two parallel walls (Happel & Brenner 2012). Terms up to
O(d5/a5) were retained in the power series. Our numerical results for the drag force
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on a fully immersed sphere in a periodic domain converged to Faxén’s solution in
the limit φs→ 0. The relative error between the numerical solution – for small but
finite values of φs – and the analytical solution was found to be always less than 5 %,
and typically around 2.5 %. For example, for φs = 0.349 % the relative error between
the numerical solution and Faxén’s solution is 3.89 % and 2.57 % for d/a = 3 and
d/a= 15, respectively.

Owing to the use of a spectral solution close to the particle surface, the Physalis
method demonstrates good accuracy even in simulations in which a relatively small
number of nodes per particle diameter is used (Zhang & Prosperetti 2005; Bluemink
et al. 2008; Botto & Prosperetti 2012). For the simulations in this paper we used
either eight or 16 nodes per particle diameter. The smaller resolution was used for
relatively large gaps, d/a > 5, and small area fractions, φs < 0.15, for which the
flow velocity gradients are small. These values of the parameters correspond to large
domains for which computational cost and memory requirements were found to be
limiting factors. The simulations are carried out on a desktop PC equipped with an
NVIDIA GTX 970 graphic card (the version of Physalis used here, BlueBottle, has
the ability to exploit the GPU card of the PC).

Unless explicitly stated, all the quantities reported in this paper are normalised using
the particle size a and the wall velocity U as the characteristic length and velocity
scales, respectively.

3. Results and discussion
3.1. Square array: general features

We begin our analysis by examining the square array case. The periodic computational
domain of side L contains in this case a single sphere, and the area fraction can be
simply calculated as φs = πa2/L2. We are particularly interested in the area-averaged
streamwise velocity 〈u〉, defined as

〈u〉 = 1
L2

∫
u dx dy, (3.1)

and how this quantity changes in the direction normal to the monolayer. In (3.1) the
integral is extended over the region −L/2 6 x 6 L/2, −L/2 6 y 6 L/2.

In figure 3(a), the area-averaged velocity is plotted as a function of the coordinate
z normal to the monolayer for a fixed gap size, d = 3a. The velocity profile is
approximately linear in two limits: when φs�1 and when φs is close to the maximum
packing fraction φs,max = π/4' 0.78. For intermediate values of φs, the curvature of
the velocity profile has a maximum. This trend can be understood by applying
the averaging operator defined in (3.1) to the streamwise component of the fluid
momentum equation in the Stokes flow limit. The resulting averaged equation reads

d2〈u〉
dz2
= 1p
µL
, (3.2)

where 1p(z) is the difference between the pressure at the plane x=−L/2, averaged
over the line −L/2 6 y 6 L/2, and the corresponding average pressure at the plane
x = L/2. Expression (3.2) shows that the curvature of the average velocity profile
can be neglected when the streamwise pressure drop occurring over a distance L is
negligible.
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FIGURE 3. (a) Normalised area-averaged streamwise velocity versus coordinate normal to
the monolayer for d= 3a. (b,c) Normalised area-averaged streamwise velocity along lines
passing through the centre of each sphere (b) or through the midpoint between adjacent
spheres (c).

According to the Stokes equation, the pressure disturbance induced by the particle
determines the curvature of the velocity profile. When φs � 1, 1p ' 0 because
the pressure disturbance set up by each sphere evaluated at the boundaries of the
computational domain is small. Indeed, we will shortly see that in the dilute limit
the pressure disturbance induced by a particle looks like a pressure dipole, and in the
dilute limit we therefore expect 1p = O(µaU/L2) (Batchelor 2000), as for a single
sphere in uniform flow. The pressure disturbance 1p decreases linearly with φs as
φs→ 0, since φs ∝ 1/L2. On the other hand, when the monolayer is near maximum
packing, the monolayer behaves almost as a flat wall. In this case, 1p ' 0. For
intermediate values of φs, the inter-particle distance is simultaneously sufficiently
small for the pressure disturbance produced by each particle on the boundaries of the
computational domain to be significant, and sufficiently large for each particle not to
block significantly the flow velocity incident on the other particles. As a consequence,
the curvature has a maximum for intermediate values of φs.

To characterise how the velocity profile changes in the plane of the monolayer, we
show in figure 3(b,c) the profiles of u along lines perpendicular to the plane of the
monolayer and passing through the sphere centre, (x = 0, y = 0), and through the
midpoint between two spheres, (x= L/2, y= 0), respectively. Because of the fore–aft
symmetry of the Stokes equation, the velocity disturbances generated by two adjacent
spheres cancel out at the midpoint (x = L/2, y = 0). As a consequence, the velocity
profiles corresponding to the midpoint are linear for any value of φs. As φs is reduced,
the slope of the velocity profiles decreases. This trend gives a larger slip velocity. The
velocity profiles that correspond to the sphere centres (figure 3b) display significant
curvature for any φs, except perhaps at the highest value of the area fraction.

The error induced by approximating a liquid interface covered by a packed
monolayer of particles as a no-slip surface is due to two sources. First of all, a
packed monolayer contains free-slip surfaces even at maximum packing. Secondly,
owing to the convexity of the spheres, the packed monolayer is not flat. A more
accurate interpretation is considering the monolayer as a collection of bluff solid
protuberances over the no-shear plane z= 0. Each protuberance will locally block the
flow and therefore produce a significant pressure disturbance.

To illustrate the spatial extent and magnitude of the pressure disturbance set up by
each sphere in the monolayer, we show in figure 4(a,c) isocontours of the normalised
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FIGURE 4. Normalised pressure (a,c) and velocity (b,d) in the plane y=0 for φs=12.57 %
(a,b) and φs = 62.05 % (c,d). The gap size is d= 4a.

pressure in the plane parallel to the mean flow and perpendicular to the monolayer,
for two selected values of the area fraction, φs = 12.57 % and φs = 62.05 %. For
φs = 12.57 %, the pressure distribution bears a signature of the fore–aft symmetric
pressure dipole characteristic of uniform flow past a sphere (Batchelor 2000). As
the area fraction increases (figure 4b), the two pressure ‘lobes’ seen in figure 4(a)
move upwards, and occupy a smaller region near the top apex of the sphere. The
streamwise pressure drop caused by the sphere is smaller for φs = 62.05 % than
for φs = 12.57 %. This observation supports our suggestion that 1p decreases as φs
approaches the maximum packing fraction.

Figure 4(b,d) shows the velocity fields corresponding to figure 4(a,c), respectively.
Flow recirculation regions do not seem to occur between the spheres. Flow
recirculation between the spheres was evidenced in a simulation of pressure-driven
slip flow over a porous medium interface, where the simulations were carried out
using the same numerical method as used here (Liu & Prosperetti 2011). Flow
recirculation is instead not apparent in the simulation results reported by Danov et al.
(1995), who examined a single sphere straddling a fluid interface for a range of
contact angles. One could expect that, owing to the presence of a re-entrant ‘wedge
region’ between the particle surface and the free interface, recirculation would occur
for contact angles for which the sphere is mostly immersed in the liquid.

The slip velocity is plotted as a function of φs for different values of the gap size
d in figure 5(a), and as a function of d for different values of φs in figure 5(b).
Following other authors (Ybert et al. 2007; Ng & Wang 2009; Liu & Prosperetti
2011), we define the slip velocity 〈u〉s as the value of 〈u〉 at z= a. As expected 〈u〉
tends to a uniform velocity of magnitude U as φs→ 0. The rate at which this limit
is approached as φs changes depends on the gap size. As a consequence, the value
φs for which 〈u〉 is a significant fraction of U becomes smaller as d increases. For
instance, when d/a= 20, 〈u〉/U' 0.5 when φs' 1.5 %. When d/a= 1.5, 〈u〉/U' 0.5
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FIGURE 5. Normalised slip velocity versus (a) area fraction and (b) gap size.

when φs' 30 %. Since smaller gaps are associated with larger velocity gradients, this
dependence on d indicates a dependence of 〈u〉s on the shear rate.

The dependence of 〈u〉s on d is nonlinear, but approximates a linear relation
in the limit φs → 0 (figure 5b). The following argument shows that in the dilute
limit the slope of the 〈u〉s versus d curve is proportional to the gap size and
inversely proportional to the slip length. Approximating the flow past the monolayer
as a Couette flow past a flat partial slip surface, the macroscopic shear rate is
〈γ̇ 〉s ' (U − 〈u〉s)/d. Using this value in the Navier slip boundary condition (1.1)
gives 〈u〉s/U ' 1/[(d/λ)+ 1]. For φs � 1, λ becomes much larger than d and
therefore 〈u〉s/U = 1− (d/λ) with a small O(d/λ) error.

3.2. Scaling of slip length for square array
Figure 6 shows the slip length λ as calculated from the definition (1.1). Consistently
with the calculation of the slip velocity, the bulk shear rate at the interface 〈γ̇ 〉s =
d〈u〉/dz is evaluated at z = a. In the surface plot of figure 6(a), λ is plotted as a
function of both φs and d/a. Projections of figure 6 onto the λ–d and λ–φs planes
are shown in linear–linear plots in figure 6(b,c), respectively. The inset of figure 6(c)
shows the λ–φs relation in log–log scale.

The slip length is seen to increase for increasing gap sizes, eventually saturating
to an asymptotic value. A gap size d = 10a already gives a value of λ close to the
asymptotic limit.

In figure 6(c), the values of λ for different values of d are seen to lie practically
on the same curve, suggesting similar scaling laws for different gap sizes. The inset
shows that the relation λ–φs follows approximately a power law. To guess possible
scaling exponents, we have examined the literature on flows over microstructured
superhydrophobic surfaces. Ybert et al. (2007) developed a comprehensive theory
for the dependence of the slip length on the area fraction for superhydrophobic
surfaces. The theory was compared against literature data. Data for unconfined shear
flow past a superhydrophobic surface composed of vertical pillars of circular or
square cross-section could be fitted with good accuracy by a correlation of the form
λ/L = (A1/

√
φs) − B1, where L is the distance between the pillars, and A1 and B1

are constants. Ybert et al. (2007) proposed A1 = 0.325 and B1 = 0.44 (the analytical
expressions proposed by Davis & Lauga (2010) give coefficient values very close
to those indicated by Ybert et al. (2007)). In the dilute limit, i.e. in our case for
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FIGURE 6. (Colour online) (a) Normalised slip length versus area fraction and normalised
gap size. The plots in panels (b) and (c) are projections of the surface plot of panel
(a) onto the λ–d and λ–φs planes, respectively. The inset in panel (c) shows the λ–φs
relationship in log–log scale.

φs � (A1/B1)
2 ' 0.54, the correlation above reduces to λ/L ∼ 1/

√
φs, which is

equivalent to λ/a ∼ 1/φs. This scaling can be understood from the fact that in the
dilute limit the ratio of the hydrodynamic force on each pillar to the slip velocity is
expected to be practically independent of φs. The tangential stress on the monolayer
due to the bulk flow is proportional to the ratio of the hydrodynamic force and L2.
Since the tangential stress for a Newtonian fluid is proportional to the macroscopic
shear rate, then (1.1) yields λ∝ a/φs for φs� 1.

The argument above is expected to hold independently of the specific geometry of
the solid object in contact with the fluid interface. Therefore, it should be possible
to apply the scaling proposed by Ybert et al. (2007) to our case. This expectation
is confirmed in figure 7(a), where λ/a is plotted as a function of 1/φs for values of
φs corresponding to a relatively dilute monolayer. A linear correlation fits the data
remarkably well. From figure 7(a) it appears that a linear scaling holds for any value
of d. The log–log plot in the inset of figure 6(b) shows that the power-law exponent
has a small dependence on d for d 6 4a. However, differences between the exponents
corresponding to different values of d are approximately 10 % of the d = 20a case,
and therefore not noticeable if the data are plotted as in figure 7(a).
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FIGURE 7. (a) Normalised slip length versus φ−1
s . The continuous line is (3.2), developed

by Ybert et al. (2007) for flow past a superhydrophobic surface. The dashed line is (3.3),
where (3.2) has been rescaled by the ratio of the Stokes drag coefficient for a sphere to
that for a thin disk. (b) Normalised slip length versus (1− φs)

2/
√
φs showing the dense

limit φs = 35 %–70 % for d= 4a.

While the functional form proposed by Ybert et al. (2007) does fit our data well,
the prefactors are different. The function λ/a= (A1

√
π/φs)− (B1

√
π/φ1/2

s ), obtained
using the definition φs =πa2/L2, is plotted as a continuous line in figure 7(a), using
the coefficient values for A1 and B1 suggested by Ybert et al. This function is seen
to overpredict the magnitude of the slip length computed in our simulation.

There is a simple explanation for the difference between our result and that of
Ybert et al. (2007). The flow configuration considered by those authors can be
interpreted as shear flow past a monolayer of infinitely thin disks (representing the
top surfaces of the pillars composing the superhydrophobic surface). In our case
the spheres protrude significantly into the liquid. Several studies in the context of
superhydrophobic surfaces have shown that a larger protrusion produces smaller
slip lengths (Sbragaglia & Prosperetti 2007; Ng & Wang 2009; Kumar, Datta &
Kalyanasundaram 2016; Shelley et al. 2016). Therefore, a smaller slip length in the
current case of a sphere monolayer is not unexpected.

We can attempt a simple correction to (3.2) to account for the finite protrusion of
the spheres into the flow. For a given free-stream velocity, the hydrodynamic drag on
an infinitely thin disk in a uniform flow is 9π/16 times smaller than the drag on a
sphere having the same radius. Assuming that tangential stress due to the bulk flow
is approximately proportional to the slip velocity (we will confirm this hypothesis in
§ 3.3), it should be expected that, for sufficiently dilute systems, the slip length for
flow past a monolayer of spheres embedded in a gas–liquid interface is a factor of
9π/16 smaller than that predicted by (3.2). To verify this approximation, we plot the
function

λ

a
= A2

φs
− B2

φ
1/2
s

(3.3)

as a thick dashed line in figure 7(a). Here A2= (16π
√

π/9)A1 and B2= (16π
√

π/9)B1.
The values given by this corrected expression are remarkably close to our data,
suggesting that the difference between the data of Ybert et al. (2007) and ours can
be mainly attributed to the larger drag produced by the protruding spheres on the
flowing liquid as opposed to the flat top surfaces of the pillars.
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FIGURE 8. Tangential stress due to the bulk flow normalised by (a) the wall velocity U
or (b) the slip velocity 〈u〉s as a function of the solid area fraction. The inset in panel (b)
shows a zoom for small values of φs of the effective friction coefficient τa/(µ〈u〉sφs).

The scaling law discussed above holds for a relatively dilute limit (the data points
clearly discernible in figure 7(a) correspond to φs 6 4 %, while these corresponding to
the dense limits are clustered near the origin and are barely visible). In the dense
limit, the slip velocity results from a fraction 1 − φs of the plane z = a occupied
by the gas–liquid interfaces. Since the slip velocity in these regions is of the order
of 〈γ̇ 〉sL(1 − φs) (Ybert et al. 2007) and L ∝ φ−1/2

s , we expect λ ∼ a(1− φs)
2/
√
φs.

Figure 7(b) shows that the simulation data follow this scaling law with very good
accuracy.

3.3. Tangential stress due to the bulk flow: square array
In many situations of practical interest it would be useful to estimate the drag per unit
area on the particles due to the motion of the bulk fluid (or ‘subphase’, as it is often
called in the surfactants literature). We call the hydrodynamic drag on the particles
per unit area the tangential stress due to the bulk flow, and denote this quantity by τ .
In the current paper, τ for a square array is calculated as τ = Fx/L2, where Fx is the
x component of the hydrodynamic force acting on each sphere in the monolayer.

In figure 8(a), τ is normalised by using U as velocity scale. With this normalisation,
the normalised value of τ has a relatively strong dependence on both φs and d.
However, we note that the wall velocity is characteristic of the fluid velocity ‘seen’
by the particles only in the extremely dilute limit for which the velocity profile is
almost a plug flow. An improved parametrisation of the shear stress and pressure
exerted on each particle by the bulk flow is expected to be given by the slip
velocity 〈u〉s. In figure 8(b), τ is normalised by 〈u〉s. Using the slip velocity in the
normalisation causes the data to collapse onto a single curve for any value of d.

The fact that τ is practically proportional to the slip velocity suggests the
introduction of a non-dimensional friction coefficient τa/(µ〈u〉sφs) having only a
marginal dependence on d and φs. A linear fit to the data in figure 8(b) suggests a
non-dimensional friction coefficient of approximately 7. For small values of φs the
friction coefficient is smaller than 7 and non-constant (see inset), suggesting that the
relation between τ/〈u〉s and φs is linear only in an approximate sense.

In the limit φs → 0 and d → ∞, we expect Fx ' 3πµaU (i.e. half the Stokes
drag on a fully immersed sphere). Since 〈u〉s tends to U as φs→ 0 (figure 5a), and
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FIGURE 9. Normalised pressure (a) and viscous (b) contributions to τ .

by definition τ = F/L2 = Fφs/(πa2) for a square array, one might expect a friction
coefficient of approximately 3 in the limits φs→ 0 and d→∞. For small values of
φs the data do appear to converge to a friction coefficient of 3 as d increases (see inset
of figure 8b). However, the convergence is slow and for the values that we simulated
the friction coefficient is significantly larger than 3 even for the smallest values of
φs we considered. This fact may be due to the strong dependence of 〈u〉s on the
surface fraction (figure 5a). One would need to simulate truly negligible values of
φs, and therefore use extremely large computational domains, to recover the expected
asymptotic limit.

The expansion in spherical harmonics in Physalis enables one to easily compute
the pressure and viscous components of the hydrodynamic force on each sphere
with excellent accuracy (Zhang & Prosperetti 2005; Bluemink et al. 2010; Botto
& Prosperetti 2012). Upon normalisation, these force components yield τp and τv,
namely the pressure and viscous contributions to τ , respectively. Figure 9(a,b) shows
τp and τv as a function of φs for different values of d. As expected from the
analytical solution for Stokes flow past a sphere, which suggests that pressure and
viscous contributions to the drag are comparable, for φs� 1 the viscous and pressure
contributions to τ are comparable in magnitude. For intermediate and relatively large
values of φs, viscous stresses produce the dominant contribution to τ . For instance,
for d = 7a and φs > 0.5, τv is approximately one order of magnitude larger than τp.
The contribution τp is only significant for small gap sizes, particularly at the highest
values of the area fraction. This result confirms the intuitive notion that the largest
contribution to τ for a moderately dense monolayer originates from the shear forces
exerted by the fluid on the portion of the sphere surfaces where the streamwise fluid
velocity is larger.

For completeness, we also report in figure 10 the hydrodynamic force on each
particle in the square monolayer as a function of d for different values of φs. In
contrast to the previous figures in which the tangential stress due to the bulk flow
was reported, in figure 10 the force is not normalised by L2, and therefore the
dependence on φs is perhaps more clear. This graph could be useful to quantify how
the drag on a surface-active particle embedded at the boundary of a thin film between
a particle-laden interface and a wall changes as a function of the thickness of the
film.
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FIGURE 10. Hydrodynamic force on each sphere in the square array as a function of the
gap size.
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FIGURE 11. Schematic of a square array (a) and a reticulated array (b) for the same
value of the solid area fraction, φs = 43.63 %.

3.4. Reticulated array
The slip length depends on the specific microstructure of the monolayer. Two
categories of microstructures are particularly relevant to particle-laden interfaces:
well-dispersed systems, in which the particles are not in contact when φs is smaller
than the maximum packing fraction; and percolating networks, where the particles
form connected chains that span the boundaries of the interface (see e.g. Aveyard
et al. 2000). The square array case examined in the previous section belongs to the
first category. The percolating network case is examined in the current section. To get
initial insights into more realistic situations, in which the percolating networks are
disordered and are characterised by a variety of scales, in this section we simulate a
periodic mesh-like reticulated arrangement. One example of such an arrangement is
illustrated in figure 11(b).

The simulations for the reticulated array case are carried out by including in the
doubly periodic simulation box a variable number of spheres. The spheres form two
orthogonal rectilinear chains that intersect each other in the centre of the domain. One
of the chains is oriented along the flow direction.

Because of the need to consider several particles, simulating reticulated arrays
requires a significantly larger domain than for a square array, for a given area
fraction. To limit the number of simulations while allowing the exploration of the
relevant parameter space, the majority of the simulations presented in this section
are carried out for a fixed gap size, d = 7a. Preliminary tests confirm that this gap
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TABLE 1. Normalised slip length, λ/a, and normalised tangential stress due to the bulk
flow, τa/µU, for reticulated arrays characterised by different values of the area fraction
φs and mesh size L, for d/a= 7. The last two columns report the values of λ and τ for
a square array having the same solid area fraction as the corresponding reticulated array.

size is sufficiently large for the results to reasonably approximate the unbounded case
d=∞.

Table 1 summarises values of the slip length λ and tangential stress τ due to the
bulk flow for different values of L (and therefore of φs). The last two columns in
table 1 report the values of λ and τ for a square array having the same area fraction as
the corresponding reticulated array. These two quantities are denoted by the symbols
λsq and τsq, respectively.

Comparison of λ with λsq shows that, for a given surface coverage and particle size,
the reticulated array gives a significantly larger value of the slip length. The effect
of the specific microstructure (square array versus reticulated array) on λ becomes
more and more significant as φs decreases. The difference between τ and τsq is
comparatively small.

Why does the reticulated array give a larger slip length? The slip length is defined
as the ratio of 〈u〉s to 〈γ̇ 〉s. A difference in slip length can therefore be attributed
to: (i) differences in 〈u〉s; (ii) differences in 〈γ̇ 〉s; or (iii) the combined effect of both
quantities. Figure 12(a) compares values of 〈u〉s obtained with the reticulated array to
those obtained with the square array. The corresponding values of 〈γ̇ 〉s are shown in
figure 12(b).

It can be seen that the values of 〈u〉s given by the two microstructures are
comparable only for relatively large values of φs. For moderate and small values
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FIGURE 12. (a) Normalised slip velocity and (b) normalised bulk shear rate at the
interface as a function of solid area fraction for d/a= 7, comparing square and reticulated
arrays.
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FIGURE 13. Contours of normalised streamwise velocity, u/U, in the plane z = a for
(a) square array and (b) reticulated array. The solid area fraction in (a) and (b) is φs =
43.63 % and d/a= 7.

of φs, the reticulated array gives a significantly larger value of 〈u〉s than the square
array. Over a similar range of values of φs, the differences in the values of 〈γ̇ 〉s
corresponding to the two microstructures are relatively small (figure 12b). The
observed dependence of the slip length on the microstructure is thus mainly due to
changes in the slip velocity, while changes in the bulk shear rate at the interface play
a relatively marginal role.

A question arises as to why the slip velocity is larger in the case of the reticulated
array. Comparison of figure 11(a) with figure 11(b) shows that, for a given area
fraction, the reticulated array is characterised by larger connected regions not occupied
by particles. Because the flow in these regions is relatively unobstructed by the
particles, the slip velocity in these regions could be substantially larger than the slip
velocity in the interstices between the particles in the square array case. To verify this
hypothesis, we plotted isocontours of u in the plane z= a, comparing the reticulated
and square arrays (figure 13). The characteristic velocities in the open areas bounded
by chains in the reticulated array case are at least 50 % larger than those in the
interstices between particles in the square array case. These relatively large velocities
are spread over regions of linear size comparable to the mesh size L. In contrast, in
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FIGURE 14. Percentage contribution to the tangential stress due to the bulk flow τ for
each particle in a reticulated array, φs = 20.8 % and d = 7a. The horizontal chain in the
diagram is parallel to the flow direction.

the square array the smaller slip velocities are spread over regions of characteristic
linear dimension ` � L, where ` is the average inter-particle separation. We have
φs = (L/a− 1)πa2/L2 for the reticulated array and φs = πa2/`2 for the square array.
Therefore, the ratio L2/`2 of the interfacial areas occupied by high-velocity fluid
(reticulated array) to that occupied by low-velocity fluid increases with decreasing φs.
Since the slip velocity is an area-averaged quantity, larger local velocities spread over
larger areas will give a larger value of the slip velocity.

We also note that, despite significant differences in slip length between the
reticulated array and the square array, the interfacial shear stresses are comparable in
the two cases (cf. table 1).

Comparing the values of τ , we note that, despite significant differences in slip
length between the reticulated array and the square array, the values of the tangential
stress due to the bulk flow are comparable in the two cases (cf. table 1). A significant
difference between the square and reticulated arrays is that, while in the square array
each particle will contribute equally to τ , in the reticulated array different particles
can be subject to different hydrodynamic forces, and therefore the local tangential
stress will in general be non-uniform. To characterise the degree of non-uniformity
in τ , we show in figure 14 the fraction of the total value of τ contributed by each
particle. This fraction is calculated as the ratio of the hydrodynamic force on each
particle to the sum of the hydrodynamic forces exerted by all the particles within the
computational domain.

The chains of particles arranged perpendicular to the flow direction, or transverse
chains, carry the largest contribution to τ . In the case considered in figure 14, the
transverse chain contributes more than 66 % of the total value of τ . The hydrodynamic
force acting on the transverse chain is strongly non-uniform: the largest contribution,
12 %, is associated with the particles located near the midpoint of the transverse
chain (farthest away from the intersection point). The central particle, located at the
intersection between the longitudinal and transverse chains, contributes only 5.3 %

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

84
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.842


Slip flow past a gas–liquid interface with embedded solid particles 169

Simulation
Fitting curve
Davis & Lauga (2009)

Reticulated array
Square array

2

0

4

6

5 10 15 20 25 2 4 6 8 10

0.1

0.2

0.3

0.4

0

0.5(a) (b)

FIGURE 15. Normalised slip length versus (a) normalised mesh size and (b) normalised
gap size; reticulated array, d= 7a. The area fraction in panel (b) is 43.63 %. The dashed
line in panel (a) is (3.4) for A=−0.039 and B= 0.03.

of the total value of τ . In comparison, particles belonging to the longitudinal chain,
oriented along the flow direction, are subject to a relatively uniform bulk tangential
stress.

The natural choice of length scale to characterise the flow past the reticulated array
is the mesh size L. It is therefore expected that the slip length will scale as λ=Lf (φs),
where f (φs) is a function having relatively weak dependence on φs (and therefore on
L). In figure 15(a), the values of λ for the reticulated array are plotted as a function of
L. Over the range of values simulated, the slip length is seen to increase only slightly
faster than linearly with L, confirming a scaling of the type λ∼Lf (φs). Davis & Lauga
(2009) carried out an analysis of the slip length for a flat partial slip surface composed
of a mesh-like distribution of thin solid regions, obtaining a semi-empirical relation of
the form

λ

L
= A ln(φs)+ B, (3.4)

where A and B are constants. The values obtained by Davis & Lauga (2009) were
A=−0.107 and B= 0.003. Fitting the simulation data (dashed line in figure 15a), we
obtain A=−0.039 and B=0.03. As for the square array, the effect of the protuberance
of the no-slip region in the liquid gives a larger value of λ for a given value of φs

as compared to a flat partial slip surface. We have attempted a simple rescaling by a
factor of 9π/16 as done for a square array (see § 3.2) to account for the difference
between the results of Davis & Lauga (2009) and ours, but the results have not been
as satisfying as for the square array case. This is due to the fact that, for a percolating
network, hydrodynamic interactions between the particles are important even in the
dilute limit. Therefore, the ratio of the hydrodynamic force on a single sphere to that
of a single disk cannot represent a good rescaling factor.

The results above suggest that – in analogy with the case of superhydrophobic
surfaces – different scalings for the slip length hold depending on whether the solid
or the liquid are the continuous phase in the plane of the particle-laden interface. In
the reticulated network, the solid is the continuous phase, and the free-slip interface
is the dispersed phase. On the contrary, in the case of the square array, the solid
is the dispersed phase. When the solid is the dispersed phase and the fluid is the
continuous phase in the particle-laden interface, the particle radius is the characteristic
length scale, and the slip length scales as λ∝ a/φs (for sufficiently small φs). When
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the solid is the continuous phase, the mesh size L is the characteristic length, and
the influence of the particle radius enters only into a weak – potentially logarithmic
– dependence on the solid fraction.

4. Conclusions

We have presented numerical simulations for shear flow past a monolayer of
neutrally wetting spheres embedded in a liquid–gas interface. In our simulations the
shear flow is produced by a flat wall translating parallel to the monolayer. The results
are also applicable to situations in which the monolayer translates with respect to a
neighbouring wall, a situation that occurs for example in certain evaporating droplets
problems (Yunker et al. 2011).

To extract effective parameters for the particle-laden interface, we fitted the
simulation data to the predictions of a Navier slip boundary condition. The simulations
provide accurate values for the slip length as a function of the area fraction, the gap
size between the monolayer and the wall, and the microstructure of the monolayer.

The dependence of λ on φs follows scaling laws similar to those developed for shear
flow past superhydrophobic microstructured surfaces: λ ∼ a/φs for a dilute square
array, and λ ∼ Lf (φs) for a reticulated array, where f (φs) is a weak function of φs.
The slip length is smaller than for flow past superhydrophobic surfaces for the same
area fraction and microstructure. This feature can be explained by accounting for the
fact that most semi-empirical correlations for superhydrophobic surfaces are developed
for flat slip/no-slip surfaces, while in our case the spheres protrude significantly into
the flow. For a square array, a simple prefactor rescaling based on the ratio of Stokes
drag on a sphere to drag on a disk yields good agreement with the simulation data.

For a given area fraction, the slip length for a reticulated array is larger than for
a square array. This feature is associated with the presence in a reticulated array
of relatively large connected areas unoccupied by particles: the absence of particles
‘blocking’ the flow apparently leads to a larger slip velocity, and consequently to a
larger slip length.

The numerical method we employed enabled us to accurately compute the tangential
stress on the monolayer due to the bulk flow, i.e. the drag force per unit area due
to the ‘subphase’ and, for the case of the reticulated array, the contribution of each
sphere to this quantity. Values for the tangential stress could be useful, for instance,
to estimate whether chains of particles would break under the effect of strong
hydrodynamic forces. We calculate the tangential stress due to the bulk flow directly
from the hydrodynamic force acting on each particle and not from the macroscopic
shear rate, as usually done in studies on superhydrophobic surfaces.

In addition to providing insights into the flow in the neighbourhood of a sheared
monolayer of interfacial colloids, the results of this paper can be useful to estimate
effective resistance coefficients for particle-laden interfaces. For instance, the Stokes
drag on a spherical particle having a partial slip surface with slip length λ is given
by F = 6πµRV(1+ 2λ/R)/(1+ 3λ/R), where R and V are the sphere radius and
velocity, respectively (Luo & Pozrikidis 2008). Assuming that partial slip is produced
by surface-active particles, this expression can be combined with the appropriate
expressions for λ developed in this paper to calculate the rise velocity of a bubble
covered by colloids given the surface coverage by particles or, conversely, the
time-dependent surface coverage from the measured bubble velocity.

The slip length is not easily linked to the surface viscosity of the particle-laden
interface, as the two parameters model different physical aspects. However, a
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conceptual link between the two quantities exists. The tangential stress boundary
condition (Brenner 2013) states that the tangential stress exerted by the bulk subphase
on the particles balances the divergence of the surface stress tensor (the tangential
stress on the gas–liquid regions of the particle-laden interface is zero due to the
no-shear condition). The Navier slip (1.1) can be interpreted as a linear closure for
the tangential stress 'µ〈γ̇ 〉 on the monolayer in terms of the particle–fluid velocity
difference 〈u〉s. The surface viscosity and surface elasticity coefficients are instead
parameters for the Newtonian closures of the surface stress tensor in terms of the
surface deformation rate and surface deformation tensors. The surface viscosity,
the surface elasticity and the slip length therefore enter as parameters in the same
differential equation (the tangential stress boundary conditions). However, a simple
algebraic relation between these effective parameters cannot be found in general. The
description in terms of slip length complements, rather than replaces, the description
in terms of surface viscosity and surface elasticity.

The slip length approach is expected to be particularly useful when the relation
between the surface stress tensor and the interfacial deformation/deformation-rate
tensor is not known a priori. For instance, in the analysis of interfacial rheology
experiments (see e.g. Buttinoni et al. 2015) it is often assumed that the drag due to
the subphase is negligible. However, estimates for this potentially important quantity
are rarely reported. Equation (1.1) can be used to estimate the drag on the monolayer
due to the subphase as a function of the average area fraction covered by the
particles. The same equation provides a boundary condition for the bulk ‘subphase’
fluid velocity field.

We emphasise that the slip length and the surface viscosity model different
micromechanical aspects, and are related to different moments of the hydrodynamic
stress on each particle. The surface viscosity is an effective macroscopic property
of the particle–liquid ‘mixture’ that models the resistance to dilation and shearing
of an element of the composite interface (Brenner 2013); whereas the slip length is
associated with the locally uniform relative velocity between the particles and the
surrounding fluid. The surface viscosity is related to the hydrodynamic torque and
stresslet on each particle in the monolayer (Edwards & Wasan 1991; Lishchuk &
Halliday 2009); whereas the slip length is associated with the hydrodynamic drag on
the particles.

The current work, which focuses on a rather idealised situation, can be extended in
several directions. In our simulation the relative position between the particles does
not change as a result of the flow. This approximation is realistic when the tangential
stress due to the bulk flow is much smaller than the gradient in surface pressure
(i.e. the two-dimensional pressure due to interparticle forces of non-hydrodynamic
origin; see discussion in Gu & Botto (2016)). Large tangential stresses could lead,
after a transient, to a non-uniform particle concentration in the interface. An expected
effect, for example, is the compaction of the monolayer in the rear stagnation point
of a rising particle-covered bubble. Flow-induced compaction effects on flat interfaces
could be simulated with minor modifications of the computational set-up used in the
current study.

The simulation results presented here are limited to a 90◦ contact angle. They are
expected to hold as first approximations for contact angles not too different from 90◦.
Single-particle studies offer some insights into expected trends as a function of the
contact angle. Previous work (Danov et al. 2000) has shown that the hydrodynamic
drag is larger when the contact angle is such that the particle has a larger protrusion
into the liquid phase. For an isolated particle, the drag force on a particle for a
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flat interface can be expressed as F = 3πµaUK(θc), where K(θc) is a function of
the contact angle for which tables are available (Fischer et al. 2006). According
to the scaling laws developed in the current paper, one might expect that λ will be
approximately proportional to 1/K (at least in the relatively dilute limit): for variations
in the contact angle such that the particles will protrude more and more into the liquid
phase, we expect a reduction in the slip length. This expected behaviour assumes that
the fluid interface between the particles is perfectly flat; fluctuations in the interface
due to thermal motion could change this picture quite substantially, as discussed by
Boniello et al. (2015). For contact angles close to 0◦ or 180◦, one needs to consider
that the area fraction as defined in the current paper is not representative of the
surface coverage by the particles, as in these limiting cases the particles barely touch
the fluid interface.

While we have started to show evidence for some effects of the microstructure on
the slip length by comparing square arrays and mesh-like particle networks, more
realistic microstructures should be investigated. These include the regular hexagonal
structure of colloidal crystals at fluid interfaces (Irvine, Vitelli & Chaikin 2010) and
the fractal structure of percolating networks of aggregated interfacial colloids (Aveyard
et al. 2000; Poulichet & Garbin 2015).
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