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We consider in this article an urn and ball problem with replacement, where balls
are with different colors and are drawn uniformly from a unique urn. The num-
bers of balls with a given color are independent and identically distributed random
variables with a heavy tailed probability distribution—for instance a Pareto or a
Weibull distribution. We draw a small fraction p � 1 of the total number of balls.
The basic problem addressed in this article is to know to which extent we can infer
the total number of colors and the distribution of the number of balls with a given
color. By means of Le Cam’s inequality and the Chen–Stein method, bounds for
the total variation norm between the distribution of the number of balls drawn with
a given color and the Poisson distribution with the same mean are obtained. We
then show that the distribution of the number of balls drawn with a given color
has the same tail as that of the original number of balls. Finally, we establish
explicit bounds between the two distributions when each ball is drawn with fixed
probability p.
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1. INTRODUCTION

We consider the following urn and ball scheme with replacement: An urn contains a
random number of balls with different colors. We draw a small fraction p � 1 of the
total number of balls. A ball that has been drawn is replaced in the urn. The problem
considered in this article consists of estimating the number of colors together with
the distribution of the number of balls with a given color by using information from
sampled balls. This problem is motivated by the analysis of packet sampling in the
Internet (see Chabchoub, Fricker, Guillemin, and Robert [5] for details).

To address the above problem, we analyze the nonnormalized distribution of the
number of balls drawn with a given color. More specifically, let Wj (respectively, W+

j )
denote the number of colors with a number of sampled balls equal to (respectively,
equal to or greater than) j. Denoting by K̃ the number of colors seen when drawing
balls, the quantities Wj/K̃ and W+

j /K̃ are equal to the proportions of colors, which at
the end of the trial comprise exactly or at least j balls, respectively.

The numbers of balls with various colors are assumed to be independent and
identically distributed (i.i.d.) random variables and the number K of colors is large.
In addition, the distribution of the number of balls with a given color has a heavy tailed
probability distribution of the Pareto or Weibull type. Finally, balls are uniformly
drawn. This means that for each i = 1, . . . , K , if there are vi balls with color i, the
probability of drawing a ball with this color is vi/V , where V = v1 + · · · + VK is the
total number of balls in the urn.

The above model is defined as the “uniform model.” It will be compared to the case
when balls are drawn independently of each other with probability p. This latter model
will be referred to as the probabilistic model. We show that the results obtained in both
models are close to each other when p is very small. However, there are some subtle
differences between the two models, notably with regard to the achievable accuracy
in the identification of the original statistics. It turns out that the probabilistic model
is simpler to analyze than the uniform model but yields less accurate results. This is
due to the fact that we cannot exploit the fact that the number of colors is very large.

One of the main results of this article concerns the analysis of the validity of the
following simple scaling rule: The distribution of the original number vi of balls with
color i could be estimated by that of the random variable ṽi/p, where ṽi is the number
of sampled balls with color i. When each ball is drawn with a fixed probability, it is
known that this rule is valid for tails of the distributions as soon as they are heavy
tailed. See Asmussen, Klüppelberg, and Sigman [3] and Foss and Korshunov [7],
where this asymptotic equivalence is proved in a quite general framework. Our main
contribution in this article is to obtain, for j ≥ 2, an explicit bound on the quantity∣∣∣∣ P(ṽ ≥ j)

P(v ≥ j/p)
− 1

∣∣∣∣.
In the context of packet sampling on the Internet, explicit expressions are especially
important for the estimation of the sizes of flows in Internet traffic. In this setting, the
variable j is taken to be large but cannot be too large so that the event {ṽ = j} occurs
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sufficiently often to obtain reliable statistics. Henceforth, the dependence on j should
be made explicit. See Chabchoub et al. [5] for a discussion.

The organization of this article is as follows: The notation and the basic results
used here (Le Cam’s inequality and the Chen–Stein method) are presented in Section 2.
The mean values of the random variables Wj and W+

j are computed in Section 3. The
approximation of the distribution of W+

j by a Poisson distribution and the validity of
the scaling rule are investigated in Section 4. We compare in Section 5 the original
distribution of the number of balls with a given color to the rescaled distribution of the
number of sampled balls with the same color. Some concluding remarks with regard
to packet sampling are presented in Section 6.

2. NOTATION AND BASIC RESULTS

2.1. Definitions and Assumptions

We consider an urn containing vi balls with color i for i = 1, . . . , K . The quantities
vi are independent random variables with a common heavy tailed distribution. In the
following we will consider two families of heavy tailed distributions for the number
v of balls with a given color:

Pareto distributions: The distribution of v is given by

P(v > x) = (b/x)a, x ≥ b, (1)

with the shape parameter a > 1 and the location parameter b > 0. The mean of
v is ab/(a − 1).

Weibull distributions: The distribution of vi is given by

P(v > x) = exp(−(x/η)β), x ≥ 0, (2)

with the skew parameter β ∈ (0, 1) and the scale parameter η > 0. The mean of
v is (η/β)�(1/β), where � is the classical Euler’s Gamma function.

The total number of balls in the urn is V = ∑K
i=1 vi. We draw only a fraction p of

this total number of balls. Each ball is drawn at random: A ball with color i is drawn
with probability vi/V . After drawing the pV balls, we have ṽi balls with color i. Of
course, only those colors with ṽi > 0 can be seen. The quantity K̃ = ∑K

i=1 1{ṽi>0} is
the number of colors seen at the end of a trial.

In the following, we will be interested in the asymptotic regime when the number
of colors K → ∞ while the fraction p → 0. Note that by the law of large numbers,
V → ∞ a.s. (the total number of balls in the urn is very large).

The random variables that we consider in this article to infer the original statistics
of the number of balls and colors are the variables Wj and W+

j , j ≥ 0, defined as
follows.
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Definition 1 (Definition of Wj): The random variable Wj is the number of colors with
j balls at the end of a trial and is given by

j ≥ 0, Wj = 1{ṽ1=j} + 1{ṽ2=j} + · · · + 1{ṽK =j},

where ṽi ≥ 0 is the number of balls drawn with color i (which can be equal to zero).

Definition 2 (Definition of W+
j ): The random variable W+

j is the number of colors
with at least j balls at the end of a trial. The random variables W+

j are formally
defined by

j ≥ 0, W+
j = 1{ṽ1≥ j} + 1{ṽ2≥ j} + · · · + 1{ṽK ≥ j}.

Note that we have

∀j ≥ 0, W+
j =

∑
�≥ j

W�.

The averages of the random variables Wj are in fact the key quantities we will
use in the following to infer the original numbers of balls per color.

2.2. Le Cam’s Inequality and Chen–Stein Method

Le Cam’s inequality gives the distance in total variation between the distribution
of a sum of i.i.d. Bernoulli random variables and the Poisson distribution with the
same mean (see Barbour, Holst, and Janson [4]). Note that if V and W are two ran-
dom variables taking integer values, the distance in total variation (tv) between their
distributions is defined by

‖P(W ∈ ·) − P(V ∈ ·)‖tv
def.= sup

A⊂N

|P(W ∈ A) − P(V ∈ A)|

= 1

2

∑
n≥0

|P(W = n) − P(V = n)|.

Theorem 1 (Le Cam’s Inequality): If the random variable W = ∑
i Ii, where the

random variables Ii are i.i.d. Bernoulli random variables, then

‖P(W ∈ ·) − P(QE(W) ∈ ·)‖tv ≤
∑

i

P(Ii = 1)2, (3)

where for λ > 0, Qλ is a Poisson random variable with mean λ, that is, for all n ≥ 0,

P(Qλ = n) = λn

n! e−λ.

When the random variables Ii appearing in Theorem 1 are not independent but
satisfy a specific condition, referred to as monotonic coupling, it is still possible to
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obtain a bound on the distance between the distribution of the sum W = ∑
i Ii and the

Poisson distribution with mean E(W).

Definition 3 (Monotonic Coupling): The variables Ii are said to be negatively related
when there exist some random variables Ui and Vi such that the following hold:

(1) Ui
dist.= W and 1 + Vi

dist.= (W | Ii = 1);

(2) Vi ≤ Ui.

The main result of the Chen–Stein method is given by Theorem 2 (see Barbour
et al. [4]).

Theorem 2: If the monotonic coupling condition is satisfied, then the following
inequality holds:

‖P(W ∈ ·) − P(QE(W) ∈ ·)‖tv ≤ 1 − Var(W)

E(W)
. (4)

When the monotonic coupling condition is satisfied, in order to prove the Poisson
approximation, it is sufficient to show that the ratio of the variance to the mean value
of W is close to 1; this is a very weak condition to prove in practice.

It should be noted (see Robert [8]) that relation (4) can be used not only when
E(W) takes bounded values so that W is approximately a Poisson random variable
but also when E(W) is large. In this case the Chen–Stein method yields a central limit
theorem: If N is a standard Normal distribution,∥∥∥∥P

(
W − E(W)√

Var(W)
∈ ·

)
− P(N ∈ ·)

∥∥∥∥
tv

≤
∥∥∥∥P

(
W−E(W)√

Var(W)
∈ ·

)
−P

(
QE(W)−E(W)√

Var(W)
∈ ·

)∥∥∥∥
tv

+
∥∥∥∥P

(
QE(W)−E(W)√

Var(W)
∈ ·

)
−P(N ∈ ·)

∥∥∥∥
tv

,

where Var(W) is the variance of the random variable W .
By using relation (4), we have∥∥∥∥P

(
W − E(W)√

Var(W)
∈ ·

)
− P(N ∈ ·)

∥∥∥∥
tv

≤ 1 − Var(W)

E(W)
+

∥∥∥∥P

(
QE(W)−E(W)√

Var(W)
∈ ·

)
−P(N ∈ ·)

∥∥∥∥
tv

.

If the ratio E(W)/Var(W) is close to 1, then the first term on the right-hand side of
the above relation is negligible. In addition, the classical central limit theorem for
Poisson distributions implies that when E(W) is large, the second term is negligible
too. Therefore, we have W ∼ E(W) + √

Var(W)N with a bound on the error.
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3. COMPUTATION OF MEAN VALUES

3.1. Bounds for Mean Values

By using Le Cam’s inequality, we can establish the following result for the mean value
of the random variables Wj.

Proposition 1 (Mean Value of Wj): If there are V balls and K colors in the urn, for
j ≥ 0, the mean number E(Wj) of colors with j balls at the end of a trial satisfies the
relation ∣∣∣∣E(Wj)

K
− Qj

∣∣∣∣ ≤ E

(
min( pv, 1)

v

V

)
, (5)

where Q is the probability distribution defined for j ≥ 0 by

Qj = E

(
( pv)j

j! e−pv

)
,

p is the sampling rate, and v is distributed as the number of balls with a given color.

Proof: We have

ṽi = Bi
1 + Bi

2 + · · · + Bi
pV ,

where Bi
� is equal to 1 if the �th ball drawn from the urn has color i, which occurs

with probability vi/V , the quantity V being the total number of balls in the urn.
Conditionally on the values of the set F = {v1, . . . , vK}, the variables (Bi

�, � ≥ 1)

are independent Bernoulli variables. For 1 ≤ i ≤ K , Le Cam’s inequality (3) therefore
gives the relation ∥∥P(ṽi ∈ · | F ) − P(Qpvi ∈ ·)∥∥tv ≤ p

v2
i

V

and relation (4), which can also be used in this case, yields

∥∥P(ṽi ∈ · | F ) − P(Qpvi ∈ ·)∥∥tv ≤ vi

V
.

By integrating with respect to the variables v1, . . . , vK , these two inequalities give the
relation

‖P(ṽi ∈ ·) − Q‖tv ≤ E

(
min ( pv, 1)

v

V

)
. (6)

Since E(Wj) = ∑K
i=1 P(ṽi = j), by summing on i = 1, . . . , K we obtain

∣∣E(Wj) − KQj

∣∣ ≤ KE

(
min ( pv, 1)

v

V

)
and the result follows. �
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By using the fact that E(W+
j ) = ∑K

i=1 P(ṽi ≥ j), we can deduce from Eq. (6) the
following result.

Proposition 2 (Mean Value of W+
j ): If there are V balls and K colors in the urn, the

mean number E(W+
j ) of colors with at least j ≥ 0 balls at the end of an arbitrary trial

satisfies the relation ∣∣∣∣∣∣
E(W+

j )

K
−

∑
�≥ j

Q�

∣∣∣∣∣∣ ≤ E

(
min ( pv, 1)

v

V

)
, (7)

where the probability distribution Q is defined in Proposition 1.

We immediately deduce from Propositions 1 and 2 the following corollary by
using the fact that V ≥ K .

Corollary 1 (Asymptotic Mean Values): The relations

lim
K→∞

1

K
E(Wj) = Qj and lim

K→∞
1

K
E(W+

j ) =
∑
�≥ j

Q�

hold.

Note that if balls are drawn with probability p independently of each other (prob-
abilistic model), we have ṽi = ∑vi

�=1 B̃i
�, where the random variables B̃i

� are Bernoulli
with mean p. By adapting the above proofs, we find∣∣∣∣E(Wj)

K
− Qj

∣∣∣∣ ≤ p. (8)

3.2. Asymptotic Results for Specific Probability Distributions

3.2.1. Pareto distributions. Let us first assume that the number of balls of a
given color follows a Pareto distribution given by Eq. (1). Then we have the following
result when the number of colors goes to infinity.

Proposition 3: If v has a Pareto distribution as in Eq. (1), then for all j > a, the
relations

lim
K→+∞

E(Wj+1)

E(Wj)
= 1 − a + 1

j + 1
+ O(( pb) j−a), (9)

lim
K→+∞

E(Wj)

K
= a( pb)a �( j − a)

j! + O(( pb) j), (10)

lim
K→+∞

E(W+
j )

K
= ( pb)a �( j − a)

( j − 1)! + O

(
( pb) j

1 − pb

)
(11)

hold.
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Proof: For j > a,

Qj = E

(
( pv) j

j! e−pv

)

= aba pa

j!
∫ +∞

pb
uj−a−1e−u du

= a( pb)a �( j − a)

j! − a
( pb) j

j!
∫ 1

0
u j−a−1e−pbu du. (12)

Therefore, by using the relation �(x + 1) = x�(x), we get the equivalence

Qj+1

Qj
= j − a

j + 1
+ O(( pb)j−a),

which gives Eqs. (9) and (10) by using Corollary 1. For the mean value of W+
j , Eq. (12)

gives the relation

lim
K→+∞

E(W+
j )

K
= a( pb)a

∑
n≥ j

�(n − a)

n! + O

(
( pb) j

1 − pb

)

= a( pb)a
∑
n≥0

�(n + j − a)�(n + 1)

�( j + n + 1)

1n

n! + O

(
( pb) j

1 − pb

)

= a( pb)a �( j − a)

j! F( j − a, 1; j + 1; 1) + O

(
( pb) j

1 − pb

)
,

where F(a, b; c; z) is the hypergeometric function satisfying

F(a, b; c; 1) = �(c)�(c − a − b)

�(c − a)�(c − b)

(see Abramowitz and Stegun [1]), and Eq. (11) follows. �

The shape parameter a can be estimated via relation (11) by

a = lim
K→∞ j

(
1 − E(W+

j+1)

E(W+
j )

)
+ O

(
( pb) j

1 − pb

)
(13)

for all j > a. This gives a means of estimating the shape parameter a. When observing
sampled balls, we have in fact only access to the quantity E(K̃) of the number of
sampled colors. Although this has no impact for the estimation of a, this correcting
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term is important when estimating b from Eq. (11). It is straightforward that

K̃ =
K∑

i=1

1{ṽi>0} = K − W0,

and then when K → ∞,

E(K̃) ∼ K(1 − Q0) = K
(
1 − E(e−pv)

)
.

Since

1 − E(e−pv) = p
∫ ∞

0
e−pxP(v > x) dx = bp + (bp)a�(1 − a, bp), (14)

where �(a, x) is the incomplete Gamma function defined by �(a, x) = ∫ ∞
x ta−1e−t dt,

we can use the above equations together with Eq. (11) in order to estimate b and then
K . It is also worth noting that 1 − E(e−pv) ∼ bp when a > 1 and bp → 0.

3.2.2. Weibull distributions. We assume in this subsection that the number
of balls with a given color follows a Weibull distribution. In this case, we have the
following result, which follows from a simple variable change and the expansion of
exp(−xβ) in power series of xβ or exp(−px) in power series of x; the proof is omitted.

Proposition 4: If v has a Weibull distribution with skew parameter β and scale
parameter η, then, for 0 < β < 1,

lim
K→+∞ E(Wj+1) = β

j!
∞∑

n=0

(−1)n

( pη)(n+1)β

�((n + 1)β + j)

n! (15)

and for β > 1,

lim
K→+∞ E(Wj+1) = ( pη) j

j!
∞∑

n=0

(−pη)n

n! �

(
(n + j)

β
+ 1

)
. (16)

Note that E(Wj) can be written in the form

E(Wj) = 1

j!
β

( pη)β

∫ ∞

0
u j+β−1e−u+tuβ

du,

with t = −1/( pη)β . The above integral is known in the literature to be of the Faxen’s
type and can be expressed by means of the Meijer G-function, when β is a rational
number; see Abramowitz and Stegun [1].

Contrary to the case of a Pareto distribution for the initial distribution of balls
of a given color, there is no simple relations giving the parameters β and η from the
mean values E(Wj), j ≥ 1. In fact, we will prove in the following that P(ṽ ≥ j) has a
Weibull tail also. This eventually gives a means of identifying the parameters.
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4. POISSON APPROXIMATIONS

In the previous section, we have established bounds for the mean values of the random
variables Wj and W+

j . To obtain more information on their distributions, we intend to
use the Chen–Stein method. For a fixed environment (viz. fixed values of the quan-
tities vi for i = 1, . . . , K), these random variables appear as sums of nonindependent
Bernoulli random variables. A preliminary analysis of the Bernoulli random variables
appearing in the expression of Wj reveals that it does not seem possible to invoke a
monotonic coupling argument. It is well known (see [4] for details) that the situation
is more favorable with the random variables W+

j and we can specifically prove that if
F is the set F = {vi, 1 ≤ i ≤ K}, then the total number W+

j of colors with at least j
balls at the end of the trial satisfies the relation

∥∥∥P(W+
j ∈ · |F )−P(QE(W+

j |F )∈· )
∥∥∥

tv
≤E

(
1−Var(W+

j | F )

E(W+
j | F )

)
. (17)

Indeed, given the random variables vi, the model is equivalent to a standard urn and
ball problem consisting of putting pVi balls into K urns, a ball falling into urn i with
probability pi = vi/Vi. The number of balls in urn i is the number of balls with color i in
the original urn and ball problem. Even in the case when the quantities pi are different,

the variables I+
i, j

def= 1{ṽi≥ j} are negatively related so that Theorem 2 can be used. See
Barbour et al. [4, p. 24 and Coroll. 2.C.2] for a definition and the main inequality in
this domain. Chapter 6 of [4] is entirely devoted to related occupancy problems.

The rest of this section is devoted to the estimation of the bound in Equ. (17). We
first establish the following lemma.

Lemma 1: For a fixed environment F = {vi, 1 ≤ i ≤ K}, the distance in total variation
between the distribution of W+

j and the Poisson distribution QE(W+
k | F ) satisfies the

inequality

lim
K→+∞ ‖P(W+

j ∈ · | F ) − P(QE(W+
k | F) ∈ ·)‖tv ≤ m2,j( p)

mj( p)
+ p

E(v)

m′
j( p)2

mj( p)
, (18)

where mj( p) and m2,j( p) are the first two moments of the random variable defined by

Xj( p) =
∑
�≥ j

( pv)�

�! e−pv, (19)

and the prime sign denotes the derivative with respect to p.

Proof: For F fixed, the number Wj of colors with j ≤ pV balls at the end of the trial
is such that

E(Wj|F ) =
K∑

i=1

(
pV

j

) (vi

V

) j (
1 − vi

V

)pV−j
.
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By using the fact that
1

V
= 1

KE(v)
+ o

(
1

K

)
a.s.

for large K , straightforward calculations show that

E(Wj|F ) =
K∑

i=1

( pvi)
j

j! e−pvi

(
1 − j( j − 1)

2pKE(v)
+ 2jvi − pv2

i

2E(v)K

)
+ o

(
1

K

)

=
K∑

i=1

(
( pvi)

j

j! e−pvi − p

2E(v)K

d2

dp2

(
e−pvi

( pvi)
j

j!
))

+ o

(
1

K

)
. (20)

By summing up the above terms and checking that the o(1/K) term remains valid,
since the sum can be written as

∑K
i=1 f (vi)e−pvi/K2, where f is a polynomial, we have

for j ≥ 1 and 0 < p < 1,

E(W+
j |F ) =

∑
�≥ j

E(W�|F )

=
K∑

i=1

Xi, j( p) − p

2E(v)K

K∑
i=1

X ′′
i, j( p) + o

(
1

K

)
,

where

Xi, j(x) =
∑
�≥ j

(xvi)
�

�! e−xvi .

For the variance, if Ii, j is 1 if color i has exactly j balls at the end of the trial and
zero otherwise, then Wj = ∑K

i=1 Ii, j and, for j �= �,

E(WjW�|F ) =
∑

1≤i �=m≤K

E(Ii, jIm,� | F )

and

E(W2
j |F ) = E(Wj|F ) +

∑
1≤i �=m≤K

E(Ii, jIm, j|F ).

For j and � such that j + � ≤ pV ,

E(Ii, jIm,�|F ) = ( pV)!
j!�!( pV − j − �)!

(vi

V

) j (vm

V

)�
(

1 − vi + vm

V

)pV−j−�

.

The quantity on the right-hand side of the above equation can be expanded as

e−p(vi+vm)p j+�v j
i v�

m

j!�! − p

2V

e−p(vi+vm)v j
i v�

m

j!�! ci,m( j, �) + o

(
1

K

)
,
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where

ci,m( j, �) = p j+�−2( j + �)( j + � − 1) − 2( j + �)(vi + vm)p j+�−1 + (vi + vm)2p j+�

is such that

e−p(vi+vm)v j
i v�

m

j!�! ci,m( j, �) = d2

dp2

e−p(vi+vm)v j
i v�

m

j!�! .

Since

(W+
j )2 =

⎛
⎝∑

�≥ j

W�

⎞
⎠

2

=
∑

��=k≥ j

WkW� +
∑
�≥ j

W2
� ,

E((W+
j )2|F ) − E(W+

j |F ) =
∑

1≤i �=m≤K

∑
�,k≥ j

E(Ii,kIm,� | F )

=
∑

1≤i �=m≤K

(
Xi, j( p)Xm, j( p) − p

2E(v)K
(Xi, jXm, j)

′′( p)

)

+ o

(
1

K

)
,

and

1 − Var(W+
j |F )

E(W+
j |F )

= E(W+
j |F ) − E((W+

j )2|F ) + E(W+
j |F )2

E(W+
j |F )

.

The right-hand side of this equation can be expanded as

1∑K
i=1 Xi, j + O(1)

⎛
⎝−

∑
1≤i �=m≤K

Xi, j( p)Xm, j( p) + p

2E(v)K

∑
1≤i �=m≤K

(Xi, jXm, j)
′′( p)

+
(

K∑
i=1

Xi, j( p) − p

2E(v)K

K∑
i=1

X ′′
i, j( p)

)2
⎞
⎠ + o

(
1

K

)
,

which can be rewritten as

1∑K
i=1 Xi, j + O(1)

⎛
⎝ ∑

1≤i≤K

X2
i, j( p) + p

2E(v)K

⎛
⎝ ∑

1≤i �=m≤K

(Xi, jXm, j)
′′( p)

−2
K∑

i=1

Xi, j( p)

K∑
i=1

X ′′
i, j( p)

))
+ O(1)
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using that

∑
i �=m

Xi, jXm, j =
(∑

i

Xi, j

)2

−
∑

i

X2
i, j.

By the law of large numbers, we have that, almost surely,

lim
K→+∞

1

K

K∑
i=1

X2
i, j( p) = E(X2

j ( p)) = m2,j( p),

lim
K→+∞

1

K2

K∑
i �=m

(Xi, jXm, j)
′′( p) = (m2

j )
′′( p),

together with

lim
K→+∞

1

K

∑
i=1

Xi, j( p) = mj( p) and lim
K→+∞

1

K

K∑
i=1

X ′′
i, j( p) = m′′

j ( p).

Hence,

lim
K→∞ 1 − Var(W+

j |F )

E(W+
j |F )

= m2,j( p) + p[(m2
j )

′′( p)/2 − mj( p)m′′
j ( p)]/E(v)

mj( p)
a.s.

= m2,j( p) + pm′
j( p)2/E(v)

mj( p)
a.s.

and the result follows. �

To illustrate the fact that the bound in Eq. (18) is tight when p → 0 and v has
finite moments of any order, let us note that, provided the corresponding moments
are finite,

lim
p→0

mj( p)

pj
= v j

j! . (21)

Moreover,

lim
p→0

m2,j( p)

p2j
= E(v2j)

j!2 and lim
p→0

m′
j( p)

p j−1
= E(v j)

( j − 1)! .

Thus, the limit when K tends to +∞ of the bound given by Eq. (18) is equivalent to

jp j−1

( j − 1)!
E(v j)

E(v)

when p tends to zero. If j ≥ 2, this term tends to zero when p → 0.
By using Lemma 1, we are now able to state a limit result for the distribution of

the random variables W+
j .
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Proposition 5: The inequality

lim
K→+∞ sup

y∈R

∣∣∣∣∣∣∣P
⎛
⎜⎝W+

j − E(W+
j )√

E(W+
j )

≤ y

⎞
⎟⎠ −

∫ y

−∞
e−u2/2

√
2π

du

∣∣∣∣∣∣∣ ≤ m2,j( p)

mj( p)
+ p

E(v)

(m′
j( p))2

mj( p)

(22)
holds.

Thus, for j ≥ 2 and for small p, this gives the following approximation:

W+
j ∼ E(W+

j ) +
√

E(W+
j ),

where G is a standard normal random variable. It should be noted nevertheless that
Eq. (22) appears as a central limit result, but because of the scaling in 1/

√
E(W+

j )

instead of 1/
√

Var(W+
j ), the bound on the right-hand side is not zero as K gets large.

From the proof of Lemma 1, we obtain only an upper bound, which depends on the
distance between E(W+

j ) and Var(W+
j ).

Proof: From Lemma 1, we have∥∥∥∥∥∥∥P

⎛
⎜⎝W+

j − E(W+
j )√

E(W+
j )

∈ · | F

⎞
⎟⎠ − P

⎛
⎜⎝QE(W+

j |F ) − E(W+
j |F )√

E(W+
j |F )

∈ ·
⎞
⎟⎠

∥∥∥∥∥∥∥
tv

≤ m2,j( p)

mj( p)
+ p

E(v)

m′
j( p)2

mj( p)
.

From Eq. (20), we have that

lim
K→∞

1

K
E(W+

j | F ) = E(Xj( p)) =
∑
�≥ j

Q� = mj( p),

where the quantities Q� are defined in Proposition 1. In addition, from Corollary 1,
E(W+

j ) ∼ Kmj( p) when K → +∞. The result then follows by applying the central
limit theorem for Poisson distributions and by deconditioning with respect to F . �

To conclude this section, let us notice that when balls are drawn with probability
p independently of each other, we do not have to condition on the environment and
we have

∥∥∥P(W+
j ∈·)−P(QE(W+

j ) ∈ ·)
∥∥∥

tv
≤

E

(∑v
k=j

(v
k

)
pk(1 − p)v−k1{v≥ j}

)2

E

((v
j

)
p j(1 − p)v−j1{v≥ j}

) .

It is worth noting that the results are independent of the number of colors and that
we do not need take K → ∞ to obtain a bound for the distance in total variation.
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In addition, when E(Wj) become large, then it is possible to obtain a central-limit-type
approximation similar to Proposition 5.

5. COMPARISON WITH ORIGINAL DISTRIBUTIONS

5.1. Uniform Model

In this section, we compare the distribution of the number ṽ of balls drawn with a
given color with that of the original number v of balls with a given color. We are
particularly interested in giving a sense to the heuristic stating that v and ṽ/p have
distributions close to each other.

Proposition 6: Under the condition that the random variable v has a Weibull or
Pareto distribution, we have

lim
j→∞ lim

K→∞
E(W+

j )

KP(v ≥ j/p)
= 1.

Proof: From Corollary 1, we know that E(Wj)/K → Qj when K → ∞. Since

Qj = E

(
( pv) j

j! e−pv

)
=

∞∑
�=1

( p�) j

j! e−p�P(v = l),

we can show that if v has a Weibull or Pareto distribution, then Qj ∼ P(v = j/p)/p
when j → ∞. Indeed, the above sum can be rewritten as

1

j!
∞∑

�=1

e fj(�)P(v = �),

where fj(�) = −p� + j log( p�), which attains its maximum at point j/p with
f ′′
j ( j/p) = −p2/j. If the random variable v is Weibull or Pareto and j/p is sufficiently

large, then P(v = �)/P(v = j/p) − 1 ∼ 0 uniformly on j for � in the neighborhood of
j/p. It follows that

Qj ∼ 1

j!P(v = j/p)e fj( j/p)

∞∑
�=−∞

e−�2(p2/2j).

For a > 0 converging to zero,

∞∑
�=−∞

e−a�2 =
∞∑

�=−∞

∫ +∞

0
1{u>a�2}e−u du

∼ 2
∫ +∞

0

√
u

a
e−u du
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= 2
∫ +∞

0

u2

√
a

e−u2/2 du

=
√

π

a

and by Stirling formula j! ∼ √
2π j j+(1/2)e−j for large j, so that Qj ∼ P(v = j/p)/p.

It is then easy to deduce that
∑

�≥ j Qj ∼ P(v ≥ j/p) for large j. �

Proposition 6 implies that P(ṽ ≥ j) is such that P(ṽ ≥ j) ∼ P(v ≥ j/p) when the
number of colors is large. This means that the tail of the distribution of the random
variable v can be obtained by rescaling that of the number ṽ of sampled balls with
a given color. When v has a Pareto distribution, Eq. (13) can still be used for large j
to estimate the shape parameter a. The estimation of the probability 1 − E(e−pv) of
sampling a color and the scale parameter b can also be estimated from the tail by using
the expression of that probability as a function of b and a as in Eq. (14). The same
method applies for Weibull distributions.

5.2. Probabilistic Model

From now on, we consider the probabilistic model and we establish stronger results
on the distance between P(ṽ ≥ j) and P(v ≥ j/p), where ṽ is the number of balls with
a given color at the end of a trial. For this sampling mode, it was not possible to
prove a similar result to Corollary 1, but Berry–Essen’s theorem [6] can be used to
establish a stronger result for the comparison between ṽ and v. In [5], it is specifi-

cally proved that if we define the function hj(x) = x2/4p2
(√

1 + 4jp/x2 − 1
)2

for

x ∈ R and j > 0, then

∣∣∣P(ṽ ≥ j) − P

(
v ≥ hj

(√
p(1 − p)G

)
∨ k

)∣∣∣ ≤ cE

(
1√
v
1{v≥ j}

)
,

where G is a standard Gaussian random variable, for real numbers a ∨ b = max(a, b),
and c = 3( p2 + (1 − p)2)/

√
p(1 − p). For small p, the constant c ∼ 3/

√
p. The above

bound is very loose for small p and becomes accurate only for very large values of j.
This is why we go further in this article by establishing a tighter bound for the ratio
P(ṽ ≥ j)/P(v ≥ j/p).

Let (Bn) be some sequence of i.i.d. Bernoulli random variables (P.V.S)
with parameter p and v some independent r.v. on N. Take some α ∈]1/2, 1[.
Let ṽ = ∑v

l=1 Bl.

Theorem 3: For α ∈ (1/2, 1), we have for all j ≥ 1,

P(ṽ ≥ j)

P(v ≥ j/p)
= A( j) + B( j),
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where

A1( j) ≤ A( j) ≤ A2( j),

with

A1( j) =
(

1 − exp

(
− p

2
(
1 + (j/p)α−1

) (
j

p

)2α−1
))

P (v ≥ j/p + �( j/p)α� + 1)

P(v ≥ j/p)
,

A2( j) = P (v ≥ j/p − �( j/p)α�)
P(v ≥ j/p)

,

and where B( j) is a positive quantity such that

B( j) ≤ e−( p/2(1−p))( j/p)2α−1 P(v ≥ j)

P(v ≥ j/p)
.

Proof: We have

P(ṽ ≥ j) = P

(
v∑

�=1

B� ≥ j

)
= T1 + T2,

where

T1 = P

(
v∑

�=1

B� ≥ j, j ≤ v ≤ j/p − �( j/p)α� − 1

)
,

T2 = P

(
v∑

�=1

B� ≥ j, j/p − �( j/p)α� ≤ v

)
.

Let us first recall the following inequality for the sum of independent Bernoulli
random variables B�, � ≥ 1 [9]: For x ∈ [0, 1 − p],

P

(
n∑

�=1

B� − np ≥ nx

)
≤ e−(nx2/A(x)), (23)

where

A(x) = 2p(1 − p) + 2

3
x(1 − 2p) − 2

9
x2. (24)

It follows that for j ≤ v ≤ j/p,

P

(
v∑

�=1

B� ≥ j

)
≤ e−( j−pv)2/vA( j/v−p).

It is easily checked that the function v → vA(( j/v) − p) is increasing in the interval
[j, j/p] and that for all v ∈ [j, j/p]

vA

(
j

v
− p

)
≤ 2j(1 − p).
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Hence, for v ∈ [j, j/p],

P

(
v∑

�=1

B� ≥ j

)
≤ e−( j−pv)2/2j(1−p)

and for v ∈ [j, j/p − �( j/p)α� − 1],

P

(
v∑

�=1

B� ≥ j

)
≤ e−( p/2(1−p))( j/p)2α−1

.

This implies that

T1 ≤ P

(
v∑

�=1

B� ≥ j, j ≤ v ≤ j/p − �( j/p)α� − 1

)

≤ P

(
j/p−�( j/p)α�−1∑

�=1

B� ≥ j

)
P(v ≥ j)

= e−p/2(1−p)( j/p)2α−1
P(v ≥ j).

For the term T2, we first note that

T2 ≤ P (v ≥ j/p − �( j/p)α�) .

Then we clearly have

T2 ≥ P

(
v∑

�=1

B� ≥ j, j/p + �( j/p)α� + 1 ≤ v

)

and then

T2

P(v ≥ j/p)
≥ P

(
j/p+�( j/p)α�+1∑

�=1

B� > j

)
P(v ≥ j/p + �( j/p)α� + 1)

P(v ≥ j/p)
.

Chernoff bound implies for v = j/p + �( j/p)α� + 1

P

(
v∑

�=1

B� ≤ j

)
≤ exp

(
− ( pv − j)2

2pv

)

≤ exp

(
− p

2(1 + ( j/p)α−1)

(
j

p

)2α−1
)

.
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It follows that

T2

P(v ≥ j/p)
≥

(
1 − exp

(
− p

2(1 + ( j/p)α−1)

(
j

p

)2α−1
))

× P(v ≥ j/p + �( j/p)α� + 1)

P(v ≥ j/p)

and the proof is done. �

The above result can be applied to specific distributions for v, namely Pareto and
Weibull distributions, in order to show that the tails of the probability distribution
functions of ṽ and pv are the same. This is the analogue of Proposition 6 for the
probabilistic model.

Corollary 2: If v has either of

1. a Pareto tail distribution with parameter a > 1 such that for x ≥ 0, P(v ≥
x) = L(x)x−a, where L is a slowly varying function; that is, for each t > 0,

lim
x→+∞

L(tx)

L(x)
= 1

2. a Weibull tail distribution with β ∈]0, 1/2[ such that for x ≥ 0, P(v ≥ x) =
L(x)e−δxβ

for some δ > 0 and L a slowly varying function,

then

lim
j→+∞

∣∣∣∣ P(ṽ ≥ j)

P(v ≥ j/p)
− 1

∣∣∣∣ = 0.

Proof: For condition 1,

P(v ≥ j)

P(v ≥ j/p)
= L( j)

L( j/p)

j−a

( j/p)−a
= L( j)

L( j/p)
pa −−−−→

j→+∞ p−a

and

P(v ≥ j/p + ε( j/p)α)

P(v ≥ j/p)
= L((j/p)(1 + ε( j/p)α−1))

L( j/p)
(1 + ε( j/p)α−1)−a,

which tends to 1 when j tends to +∞. This implies that the quantities A1( j) and A2( j)
appearing in Theorem 3 tends to 1 and B( j) tends to zero when j → ∞.
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For condition 2,

P(v ≥ j)

P(v ≥ j/p)
= L( j)

L( j/p)
e−δjβ (1−p−β ) −−−−→

j→+∞ 0

and it is straightforward that

P(v ≥ j/p + ε( j/p)α)

P(v ≥ j/p)
= L(j/p(1 + ε( j/p)α−1))

L(j/p)
e−δ( j/p+ε( j/p)α)β+δ( j/p)β

= L( j/p(1 + ε( j/p)α−1))

L(j/p)
e−δβε( j/p)α+β−1(1+o(1)),

which tends to 1 if α + β < 1. Let β ∈]0,1[. It is sufficient to find α ∈]1/2,1[ such
that α + β < 1. Necessarily 1 − β > α > 1/2; thus, β < 1/2 and for such a β, such
an α exists. �

6. CONCLUDING REMARKS ON SAMPLING AND PARAMETER
IDENTIFICATION

We have established in this article convergence results for the distribution of the
number of balls with a given color under the assumption that there is a large number
of colors in the urn, that the number of balls with a given color has a heavy tailed
distribution independent of the color, and that only a small fraction p of the total
number of ball is sampled. We have considered two ball sampling rules. The first
one states that the probability of drawing a ball with a given color depends on the
relative contribution of the color to the total number of balls and that a drawn ball
is immediately replaced in the urn. With the second rule, each ball is selected with
probability p independently of the others. The two rules do not give the same results,
even if they coincide when p → 0 (see [5] for details).

From a practical point of view, we have shown that it is possible to identify the
original distribution of the number of balls with a given color by using the tail of the
distribution of the number of balls with a a given color drawn from the urn. A stronger
result holds for Pareto when the number of colors is very large (see Proposition 3).
This result is robust in practice because it does not rely on the asymptotics of the tail
distribution (in Proposition 3, assertions hold for all j > a).

The determination of the original number of balls per color is valid when the
number of balls follows a unique distribution of Pareto or Weibull type. This could
be used in the context of packet sampling on the Internet. In practice, however, the
number of packets in flows is in general not described by a unique “nice” distribution
but can only be locally approximated by a series of Pareto distributions (see [2] for
a discussion). More sophisticated techniques are then necessary to infer the original
statistics of flows.
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