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Abstract In this paper we generalize the notion of the C-numerical range of a matrix to operators in
arbitrary tracial von Neumann algebras. For each self-adjoint operator C, the C-numerical range of such
an operator is defined; it is a compact, convex subset of C. We explicitly describe the C-numerical ranges
of several operators and classes of operators.

Keywords: II1 Factors; Numerical Range; Generalized Numerical Range

2010 Mathematics subject classification: Primary 46L10; 47C15; 47A12; 15A60

1. Introduction

A rich invariant of an operator is its numerical range. Given a Hilbert space H and
a bounded linear operator T : H → H, the numerical range of T is the set of complex
numbers

W1(T ) = {〈Tξ, ξ〉H | ξ ∈ H, ‖ξ‖H = 1}.
The Hausdorff-Toeplitz Theorem (see [16] for a short and delightful proof; see references

therein for historical background) states that the numerical range of an operator is always
a convex subset. Furthermore, when restricting to finite dimensional H, the numerical
range of a matrix is compact and can be used to obtain several interesting structural
results, such as that a matrix of trace zero is always unitarily equivalent to a matrix with
zeros along the diagonal.

The numerical range of a matrix is often substantially larger than the spectrum and
yields cruder information about the matrix. For example, if N is a normal matrix, then
W1(N) is the convex hull of the eigenvalues of N . Therefore, precise information about
the eigenvalues of N cannot be obtained from W1(N).

In [17], Paul Halmos proposed a generalization of the numerical range of a matrix. For
each ξ ∈ C

n with ‖ξ‖2 = 1 and T ∈ Mn(C), we have

〈Tξ, ξ〉Cn = Tr(TPξ),
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where Tr is the (unnormalized) trace and Pξ ∈ Mn(C) is the rank one projection onto
Cξ. Thus, for T ∈ Mn(C) and k ∈ {1, . . . , n}, the k-numerical range of T is defined as

Wk(T ) =
{

1
k

Tr(TP ) | P ∈ Mn(C) a projection of rank k
}
.

C. A. Berger showed, using the Hausdorff-Toeplitz Theorem and the fact that W1(T ) is
convex, that each Wk(T ) is a convex set (see [17, Solution 211]). Operators’ k-numerical
ranges have been extensively studied and much is known. For example [13, Theorem 1.2]
shows that

Wk(T ) =
1
k
{Tr(TX) | 0 ≤ X ≤ In,Tr(X) = k}.

It is clear that the set on the right-hand-side of the above equation is a convex set,
yet this did not produce an new proof of Berger’s result as [13, Theorem 1.2] relied on
Berger’s result. These k-numerical ranges provide substantially more information about
a matrix than the numerical range alone. Indeed, if N ∈ Mn(C) is a normal matrix with
eigenvalues {λj}nj=1 listed according to their multiplicities, then, by [13, Theorem 1.5],
the k-numerical range of N is the convex hull of the set⎧⎨⎩1

k

∑
j∈K

λj | J ⊆ {1, . . . , n}, |J | = k

⎫⎬⎭ .
By varying k, these sets provide enough information to determine the eigenvalues of N
and, thus, to determine N up to unitary equivalence.

In [36], Westwick analyzed a generalization of the k-numerical ranges of a matrix
which was later further generalized by Golberg and Straus in [15]. Given two matrices
C, T ∈ Mn(C), the C-numerical range of T is defined to be the set

WC(T ) = {Tr(TU∗CU) | U ∈ Mn(C) a unitary}. (1.1)

It is not difficult to see that if Ck ∈ Mn(C) is a matrix with 1/k along the diagonal
precisely k times and zeros elsewhere, then WCk

(T ) = Wk(T ). Thus, the C-numerical
ranges are indeed generalizations of the k-numerical ranges.

Using ideas from [19], Westwick in [36] demonstrated that if C ∈ Mn(C) is self-adjoint,
then WC(T ) is a convex set. However, Westwick also showed that if C = diag(0, 1, i) ∈
M3(C), then WC(C) is not convex. Based on [36] and [15], in [33] Poon gave another
proof that the C-numerical ranges are convex for self-adjoint C ∈ Mn(C). Poon’s work
gave an alternate description of the C-numerical range based on a notion of majorization
for n-tuples of real numbers. This notion of majorization is the one appearing in a classical
theorem of Schur ([34]) and Horn ([23]) characterizing the possible diagonal n-tuples of
a self-adjoint matrix based on its eigenvalues.

As the notion of majorization has an analogue in arbitrary tracial von Neumann alge-
bras, the goal of this paper is to examine C-numerical ranges in arbitrary von Neumann
algebras. In light of the example of Westwick given above, we will restrict our attention
to self-adjoint C. Furthermore, we note that analogues of the k-numerical ranges inside
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diffuse von Neumann algebras have been previously studied in [1–4]. Consequently, the
results contained in this paper are a mixture of generalizations of results from [1–4],
new proofs of results in [1–4], and additional results. This paper contains a total of six
sections, including this one, and is structured as follows.

Section 2 begins by recalling a notion of majorization for elements of L∞[0, 1]. The
generalization of C-numerical ranges to tracial von Neumann algebras is then obtained
by applying majorization to eigenvalue functions of self-adjoint operators. After many
basic properties of C-numerical ranges are demonstrated, several important results, such
as the fact that C-numerical ranges are independent of the von Neumann algebra under
consideration, are obtained. Of importance are the results that C-numerical ranges are
always compact, convex sets of C and, if one restricts to type II1 factors, one can define C-
numerical ranges using the closed unitary orbit of C instead of the notion of majorization.
In addition, we demonstrate the C-numerical range of T is continuous in both C and T ,
and we demonstrate results from [1–4] that follow immediately from this different view.

Section 3 is dedicated to describing the C-numerical ranges of self-adjoint operators
via eigenvalue functions. This is particularly important for Section §4 which demon-
strates a method for computing C-numerical ranges of operators based on knowledge of
C-numerical ranges of self-adjoint operators. This is significant as numerical ranges of
matrices are often difficult to compute (see [27] for the 3 × 3 case).

Section 5 computes α-numerical ranges (i.e. the generalization of the k-numerical range
of a matrix) for several operators. Although computing the k-numerical ranges of a matrix
is generally a hard task, there are several interesting examples of operators in II1 factors
whose α-numerical ranges can be explicitly described. In particular, we demonstrate the
existence of normal and non-normal operators whose α-numerical ranges agree for all α.

Section 6 concludes the paper by examining the relationship between α-numerical
ranges and conditional expectations of operators onto subalgebras. In particular, we
demonstrate that a scalar λ is in the α-numerical range of an operator T in a II1 factor
if and only if there exists diffuse abelian von Neumann subalgebra A such that the trace
of the spectral projection of the expectation of T onto A corresponding to the set {λ} is
at least α.

2. Definitions and basic results

In this section we generalize the notion of the C-numerical range of a matrix to tracial von
Neumann algebras (for self-adjoint C) thereby obtaining more general numerical ranges
than those considered in [1–4]. The C-numerical range of an operator is a compact,
convex set defined using a notion of majorization for eigenvalue functions of self-adjoint
operators and is described via an equation like equation (1.1) inside II1 factors. Many
properties of C-numerical ranges will be demonstrated including continuity results and
lack of dependence on the von Neumann algebra considered.

Throughout this paper, (M, τ) will denote a von Neumann algebra M possessing a
normal, faithful, tracial state, with τ such a state. We will call such a pair a tracial von
Neumann algebra. Furthermore, Proj(M) will denote the set of projections in M and Msa

will be used to denote the set of self-adjoint elements of M.
To begin, we will need a concept whose origin is due to Hardy, Littlewood, and Pólya.
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Definition 2.1 (see [18]). Let f, g ∈ L∞[0, 1]. It is said that f majorizes g, denoted
g ≺ f , if∫ t

0

g∗(x) dx ≤
∫ t

0

f∗(x) dx for all t ∈ [0, 1] and
∫ 1

0

g(x) dx =
∫ 1

0

f(x) dx,

where g∗ and f∗ are the nonincreasing rearrangements of g and f (see Definition 3.3).

Note if g ≺ f and h ≺ g, one clearly has h ≺ f .
We now review an analogue of eigenvalues for self-adjoint operators in tracial von

Neumann algebras that was introduced by Murray and von Neumann [31]. For this section
and the rest of the paper, given an normal operator N in a von Neumann algebra, we will
use 1X(N) to denote the spectral projection of N corresponding to a Borel set X ⊆ C.

Definition 2.2. Let (M, τ) be a diffuse, tracial von Neumann algebra and let T ∈ M
be self-adjoint. The eigenvalue function of T (also called its spectral scale) is defined for
s ∈ [0, 1) by

λT (s) = inf{t ∈ R | τ(1(t,∞)(T )) ≤ s}.
A related notion we will use is that of the spectral distribution of a normal elementN ∈ M,
which is the Borel probability measure X 
→ τ(1X(N)) supported on the spectrum of N .

It is elementary to verify that the eigenvalue function of T is a bounded, non-increasing,
right continuous function from [0, 1) to R. By [32 Theorem 1], if M is represented on a
Hilbert space H, then we have

λT (s) = sup
e
{〈Tξ, ξ〉 | ξ ∈ H, ‖ξ‖ = 1, eξ = ξ},

where the supremum is taken over all projections e ∈ M such that τ(1 − e) ≤ s. The
following results are easily proved.

Proposition 2.3. Let T ∈ M. Then

(i) if a ≥ 0, then λaT (s) = aλT (s) for all s ∈ [0, 1),

(ii) if a ≤ 0, then λaT (s) = aλT (1 − s) for all but at most countably many s ∈ (0, 1),

(iii) if a ∈ R, then λaI+T (s) = a+ λT (s) for all s ∈ [0, 1).

The following result is seemingly folklore, and a proof may be found in [6, Proposition
2.3].

Proposition 2.4. Let (M, τ) be a diffuse, tracial von Neumann algebra and let T ∈ M
be self-adjoint. Then there is a projection-valued measure eT on [0, 1) valued in M such
that τ(eT ([0, t))) = t for every t ∈ [0, 1) and

T =
∫ 1

0

λT (s) deT (s).

In particular τ(T ) =
∫ 1
0
λT (s) ds.
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Remark 2.5. Note the von Neumann algebra generated by {eT ([0, t))}t∈[0,1) is isomor-
phic to a copy of L∞[0, 1] inside M in such a way that T corresponds to the L∞-function
s 
→ λT (s) and τ restricts to integration against the Lebesgue measure m.

Using the above definitions, we may now define the main objects of study in this paper.

Definition 2.6. Let (M, τ) be a tracial von Neumann algebra and let C ∈ Msa. The
C-numerical range of an element T ∈ M is the set

VC(T ) := {τ(TX) | X ∈ Msa, λX ≺ λC}.

Remark 2.7. Thereom 2.14 gives an equivalent characterization of VC(T ) that is
analogous to the classical definition (1.1) in the case of matrices.

Remark 2.8. It is not difficult to verify that if (M, τ) is a tracial von Neumann
algebra, if T, S ∈ Msa with T positive, and if λS ≺ λT , then S must be positive. In
addition, it is not difficult to show that if P ∈ M is a projection with τ(P ) = α ∈ [0, 1],
then

{X ∈ Msa | λX ≺ λP } = {X ∈ M | 0 ≤ X ≤ IM, τ(X) = α}.
In analogy, for α ∈ (0, 1] and T ∈ M, we define the α-numerical range of T to be the set

Ṽα(T ) :=
1
α
{τ(TX) | X ∈ M, 0 ≤ X ≤ IM, τ(X) = α}.

Thus, we have Ṽα(T ) = (1/α)VP (T ), where P is as described above. The α-numerical
ranges were originally studied (through a multivariate analogue for commuting n-tuples
of self-adjoint operators) in the papers [1–4] and the 1/α factor is included so that if
0 < α < β ≤ 1 then Ṽβ(T ) ⊆ Ṽα(T ).

The following contains a collection of important properties of C-numerical ranges that
mainly follow from properties of eigenvalue functions contained in [11,12,32]. Note for
two subsets X,Y of C and ω ∈ C, we define

ωX = {ωz | z ∈ X},
ω +X = {ω + z | z ∈ X}

and

X + Y = {z + w | z ∈ X,w ∈ Y }.

Proposition 2.9. Let (M, τ) be a tracial von Neumann algebra, let T, S ∈ M, and let
C,C1, C2 ∈ Msa. Then

(i) VC(T ) is a convex set for all T ∈ M,

(ii) VC(T ∗) equals the complex conjugate of VC(T ),

(iii) VC(Re(T )) = {Re(z) | z ∈ VC(T )} and VC(Im(T )) = {Im(z) | z ∈ VC(T )},
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(iv) VC(T + S) ⊆ VC(T ) + VC(S),

(v) VC(zIM + wT ) = zτ(C) + wVC(T ) for all z, w ∈ C,

(vi) VC(U∗TU) = VC(T ) for all unitaries U ∈ M,

(vii) VC1(T ) ⊆ VC2(T ) whenever λC1 ≺ λC2 , and

(viii) VaC+bIM
(T ) = aVC(T ) + bτ(T ) for all a, b ∈ R.

Proof. For part (2.9), notice that if X1,X2 ∈ Msa are such that λX1 , λX2 ≺ λC , then

λtX1+(1−t)X2 ≺ tλX1 + (1 − t)λX2 ≺ λC

for all t ∈ [0, 1] by [12, Lemma 2.5(ii)] and [12, Theorem 4.4(ii)], where we have used
Proposition 2.3 in order to assume all three operators are positive. Hence it trivially
follows that

{X ∈ Msa | λX ≺ λC}
is a convex set; thus, VC(T ) is convex (being the image under a linear map of a convex
set).

Except for parts (2.9) and (2.9), the other parts are trivial computations. To see part
(2.9), note λU∗CU = λC for all unitaries U ∈ M and all C ∈ Msa. Part (2.9) follows easily
from the properties in Proposition 2.3. �

Our next goal is to show the very useful property that the C-numerical ranges of an
operator do not depend on the ambient von Neumann algebra. To do so, we recall the
following result, which is a consequence of any of [25, Theorem 3], [20, Theorem 4.5] and
[21, Theorem 2.1].

Theorem 2.10. Let (M, τ) be a tracial von Neumann algebra, let N be a von Neumann
subalgebra of M, and let EN : M → N be the trace-preserving conditional expectation of
M onto N. Then λEN(X) ≺ λX for all X ∈ Msa.

Proposition 2.11. Let (M, τ) be a tracial von Neumann algebra and let C ∈ Msa.
For T ∈ M let VC(T ) denote the C-numerical range as given in Definition 2.6. Let N be
a von Neumann subalgebra of M such that T ∈ N. Then

VC(T ) = {τ(TX) | X ∈ Nsa, λX ≺ λC}. (2.1)

In particular, VC(T ) does not depend on the diffuse tracial von Neumann algebra
considered.

Proof. The inclusion ⊇ in (2.1) is clear. For the reverse inclusion, let EN : M → N
denote the trace-preserving conditional expectation of M onto N. If X ∈ Msa is such that
λX ≺ λC , then EN(X) ∈ N, λEN(X) ≺ λX ≺ λC by Theorem 2.10, and

τ(TEN(X)) = τ(EN(TX)) = τ(TX).

This proves (2.1). �
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By Proposition 2.11, we may compute the C-numerical ranges in any tracial von
Neumann algebra we like. In particular, as every tracial von Neumann algebra embeds
in a trace-preserving way into a type II1 factor, we may restrict our attention to type II1
factors when considering C-numerical ranges. By doing so, we will obtain an alternate
description of C-numerical ranges that is a direct analogue of equation (1.1) and produces
many corollaries. We begin with the following.

Definition 2.12. Let A be an arbitrary C∗-algebra and let U(A) denote the unitary
group of A. For T ∈ A, the unitary orbit of T is the set

U(T ) = {U∗TU | U ∈ U(A)}

and the (norm-)closed unitary orbit of T is the set O(T ) = U(T )
‖·‖

.

Remark 2.13. Notice if T, S ∈ M are self-adjoint operators then λT ≺ λS and λS ≺
λT if and only of λT (s) = λS(s) for all s ∈ [0, 1). By Definition 2.2, these are equivalent
to T and S having the same spectral distribution. It is well-known that these are all
equivalent to T ∈ O(S), provided M is a type II1 factor.

Notice that if A is a finite dimensional C∗-algebra, then U(T ) = O(T ). In general,
O(T ) is the correct object to consider when studying infinite dimensional C∗-algebras. In
particular, we will use O(T ) to generalize equation (1.1) to type II1 factors. In particular,
the work of [15,33] proves the following result when M is a matrix algebra.

Theorem 2.14. Let (M, τ) be a type II1 factor and let C ∈ Msa. Then for all T ∈ M,

VC(T ) = {τ(TX) | X ∈ Msa,X ∈ O(C)}.

To prove Theorem 2.14, we will need two results. The first is the following connection
between majorization of eigenvalue functions and convex hulls of unitary orbits.

Theorem 2.15 (see [5, 7, 20, 22, 24–26]). Let (M, τ) be a factor and letX,T ∈ Msa.
Then the following are equivalent:

(1) λX ≺ λT ;

(2) X ∈ conv(U(T ))
‖ · ‖

and

(3) X ∈ conv(U(T ))
w∗

.

The second result required to prove Theorem 2.14 is the following technical result,
whose proof is contained in the proof of [10, Theorem 5.3] and follows by simple
manipulations of functions.

Proposition 2.16 ([8, Theorem 5.3]). Let (M, τ) be a type II1 factor and let A,C ∈
M be self-adjoint operators such that λA ≺ λC and A /∈ O(C). Then there exists a non-
zero projection P ∈ M and an ε > 0 such that λA+S ≺ λC for all self-adjoint operators
S ∈ M satisfying ‖S‖ < ε, S = PS = SP , and τ(S) = 0.
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Proof of Theorem 2.14. Fix C ∈ Msa and T ∈ M. Then

{τ(TX) | X ∈ Msa,X ∈ O(C)} ⊆ VC(T )

by Remark 2.13 and Definition 2.6.
For the other inclusion, fix X ∈ Msa with λX ≺ λC and define

QX,C = {Y ∈ Msa | τ(TY ) = τ(TX), λY ≺ λC}.
Since the linear map Z 
→ τ(TZ) is weak∗-continuous, by Theorem 2.15 QX,C is a non-
empty (as X ∈ QX,C), convex, weak∗-compact subset. Hence, by the Krein–Milman
Theorem, QX,C has an extreme point, say A.

We will show A ∈ O(C) to complete the proof. To see this, suppose to the contrary
that A /∈ O(C). Since A ∈ QX,C , λA ≺ λC so by Proposition 2.16 there exists a non-zero
projection P ∈ M and an ε > 0 such that λA+S ≺ λC for all self-adjoint operators S ∈ M
with ‖S‖ < ε, S = PS = SP and τ(S) = 0.

Consider the linear map

ψ : {S ∈ Msa | S = PS = SP, τ(S) = 0} → C

defined by ψ(S) = τ(TS). By dimension requirements, there exists a S ∈ ker(ψ) \ {0}.
By scaling, we obtain a non-zero S ∈ Msa such that ‖S‖ < ε, S = PS = SP , τ(S) = 0,
and τ(TS) = 0. By construction A± S ∈ QX,C and, since

A =
1
2
(A+ S) +

1
2
(A− S),

we obtain a contradiction to the fact that A was an extreme point of QX,C . �

With Proposition 2.11 and Theorem 2.14 complete, we obtain several important corol-
laries. In fact, [1] went to great lengths to obtain a (multivariate) version of the following
result, for which our techniques provide a quicker proof.

Corollary 2.17. Let (M, τ) be a type II1 factor, let T ∈ M, and let α ∈ (0, 1]. Then

Ṽα(T ) =
1
α
{τ(TP ) | P ∈ Proj(M), τ(P ) = α}.

Corollary 2.18. Let (M, τ) be a tracial von Neumann algebra, let T ∈ M, and let
C ∈ Msa. Then VC(T ) is a compact set.

Proof. By Proposition 2.11 we may assume that M is a type II1 factor. Hence Theorem
2.10 implies that

VC(T ) =
{
τ(TX)

∣∣∣X ∈ conv(U(T ))
w∗ }

.

As conv(U(T ))
w∗

is weak∗-compact and τ is a weak∗-continuous linear functional, we
obtain that VC(T ) is compact. �

Corollary 2.19. Let (M, τ) be a tracial von Neumann algebra and let T,C ∈ Msa.
Then VC(T ) = VT (C).
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Proof. By Proposition 2.11 we may assume that M is a type II1 factor. As U(T ) is
(norm-)dense in O(T ) and U(C) is (norm-)dense in O(C), we obtain that

{τ(TU∗CU) | U ∈ M, U a unitary}
is dense in both VC(T ) and VT (C) by Theorem 2.14. Hence VC(T ) = VT (C) as both sets
are compact by Corollary 2.18. �

Another important corollary is the continuity of the C-numerical range of T as both
C and T vary. For this discussion, recall that for compact subsets X and Y of C, the
Hausdorff distance between X and Y is defined to be

dH(X,Y ) = max
{

sup
x∈X

dist(x, Y ), sup
y∈Y

dist(y,X)
}
.

Proposition 2.20. Let (M, τ) be a tracial von Neumann algebra and let T ∈ M. If
C1, C2 ∈ Msa, then

dH(VC1(T ), VC2(T )) ≤ ‖T‖ ‖C1 − C2‖ .
In particular, the map C 
→ VC(T ) is a continuous map from Msa (equipped with the
operator norm) to the compact, convex subsets of C equipped with the Hausdorff distance.

Proof. To begin we may assume that M is a type II1 factor by Proposition 2.11. Note
for all X ∈ O(C1) and ε > 0 there exists an X ′ ∈ O(C2) such that

‖X −X ′‖ ≤ ε+ ‖C1 − C2‖
and thus

|τ(TX) − τ(TX ′)| ≤ ‖T‖ ‖X −X ′‖ ≤ ‖T‖ ‖C1 − C2‖ + ε ‖T‖ .
As one may also interchange the roles of C1 and C2, the result follows by Theorem
2.14. �

Proposition 2.21. Let (M, τ) be a tracial von Neumann algebra, let T, S ∈ M, and
let C ∈ Msa. Then

dH(VC(T ), VC(S)) ≤ ‖C‖ ‖T − S‖ .
Thus, for any fixed C ∈ Msa, the map T 
→ VC(T ) is continuous from M (equipped with
the operator norm) to the compact, convex subsets of C equipped with the Hausdorff
distance.

Proof. To begin we may assume that M is a type II1 factor by Proposition 2.11. For
all X ∈ O(C), note that

|τ(TX) − τ(SX)| ≤ ‖T − S‖ ‖X‖ = ‖T − S‖ ‖C‖ .
Hence the result follows by Theorem 2.14. �
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Corollary 2.22. Let (M, τ) be a tracial von Neumann algebra and let T, S ∈ M. If
T and S are approximately unitarily equivalent, that is S ∈ O(T ), then VC(T ) = VC(S)
for all C ∈ Msa.

Proof. The result follows from part (2.9) of Proposition 2.9 and Proposition 2.21. �

3. C-numerical ranges of self-adjoint operators

In this section, we will use eigenvalue functions to describe VC(T ) when C, T ∈ Msa.
This will be of use in the subsequent section when developing a method for computing
C-numerical ranges of an arbitrary operator T .

To begin our description of VC(T ) for all C, T ∈ Msa, we will assume that C and T
are positive operators. From the description of such VC(T ), Proposition 2.9 will yield
descriptions of VC(T ) for all C, T ∈ Msa.

Theorem 3.1. Let (M, τ) be a tracial von Neumann algebra and let T,C ∈ M be
positive. Then

VC(T ) =
[∫ 1

0

λT (s)λC(1 − s) ds,
∫ 1

0

λT (s)λC(s) ds
]
.

Remark 3.2. Note if T,C ∈ Msa with C positive, then we still have

VC(T ) =
[∫ 1

0

λT (s)λC(1 − s) ds,
∫ 1

0

λT (s)λC(s) ds
]

by Proposition 2.9 and the fact that λaIM+T (s) = a+ λT (s) for all s ∈ [0, 1) and a ∈ R.
Taking C to be a projection of trace α, this yields (see Remark 2.8)

Ṽα(T ) =
[

1
α

∫ 1

1−α
λT (s) ds,

1
α

∫ α
0

λT (s) ds
]

(3.1)

To begin the proof of Theorem 3.1, we note by Remark 2.5 and Proposition 2.11 that we
may assume M = L∞[0, 1] equipped with the trace given by integration against Lebesgue
measure m and that T = λT as a function on [0, 1].

To understand C-numerical ranges inside L∞[0, 1], we need to understand which
functions have the same eigenvalue functions. This returns us to the work of Hardy,
Littlewood, and Pólya.

Definition 3.3 (Hardy et al. [18, §10.12]). For a real-valued function f ∈ L∞[0, 1],
the non-increasing rearrangement of f is the function

f∗(s) = inf{x | m({t | f(t) ≥ x}) ≤ s} for all s ∈ [0, 1).

Comparing to Definition 2.2, we immediately see that if f ∈ L∞[0, 1], then λf = f∗.
Furthermore, if f = 1E is a characteristic function, then f∗ = 1[0,m(E)). We begin the
demonstration of Theorem 3.1 by proving some preliminary observations.
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Lemma 3.4. Suppose w ∈ R
n is such that w1 + · · · + wm ≥ 0 for all m ∈ {1, . . . , n}.

Suppose a1 ≥ a2 ≥ · · · ≥ an ≥ 0. Then
∑n
k=1 akwk ≥ 0

Proof. Setting an+1 = 0, we have

n∑
k=1

akwk =
n∑
k=1

(ak − ak+1)
k∑
j=1

wj ≥ 0.

�

Lemma 3.5. Let f, g ∈ L∞[0, 1] be non-increasing, positive, right continuous functions
where g is a step function. Then∫ 1

0

f(x)g(x) dx = sup
{∫ 1

0

f(x)h(x) dx
∣∣∣∣ h∗ = g

}
∫ 1

0

f(1 − x)g(x) dx = inf
{∫ 1

0

f(x)h(x) dx
∣∣∣∣ h∗ = g

}
.

Proof. By the assumptions on g, there exists 0 = x0 < x1 < · · · < xn = 1 and a1 >
a2 > · · · > an ≥ 0 such that

g =
n∑
k=1

ak1[xk−1,xk).

Suppose h ∈ L∞[0, 1] is such that h∗ = g. It will suffice to show∫ 1

0

f(x)g(x) dx ≤
∫ 1

0

f(x)h(x) dx, (3.2)∫ 1

0

f(1 − x)g(x) dx ≥
∫ 1

0

f(1 − x)h(x) dx. (3.3)

By the definition of the non-increasing rearrangement (also see Remark 2.13), there exists
disjoint Borel subsets {Xk}nk=1 of [0, 1] such that m (

⋃n
k=1Xk) = 1, m(Xk) = xk − xk−1

for all k, and

h =
n∑
k=1

ak1Xk
.

Define y, z ∈ R
n by

yk =
∫
Xk

f, zk =
∫

[xk−1,xk]

f.

Since f is nonincreasing and m(Xk) = xk − xk−1, we have

m∑
k=1

(zk − yk) ≥ 0, (m ∈ {1, . . . , n}).
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Invoking Lemma 3.4, we get∫ 1

0

f(x)g(x) dx−
∫ 1

0

f(x)h(x) dx =
n∑
k=1

ak(zk − yk) ≥ 0.

This implies (3.2).
Now (3.3) follows from (3.2). Indeed, letting γ =

∫ 1
0
g(x) dx =

∫ 1
0
h(x) dx, we have

‖f‖∞γ −
∫ 1

0

f(1 − x)g(x) dx =
∫ 1

0

(
‖f‖∞ − f(1 − x)

)
g(x) dx

≤
∫ 1

0

(
‖f‖∞ − f(1 − x)

)
h(x) dx

= ‖f‖∞γ −
∫ 1

0

f(1 − x)h(x) dx.

�

Proof of Theorem 3.1. As remarked above, we may assume M = L∞[0, 1] and
T = λT under this identification. Since the map X 
→ λX is operator-norm to L∞[0, 1]-
norm continuous, and since T 
→ VC(T ) and C 
→ VC(T ) are operator-norm to Hausdorff
distance continuous, we may assume without loss of generality that T and C have finite
spectrum. Consequently, there exists 0 = x0 < x1 < · · · < xn = 1, t1 ≥ t2 > · · · > tn ≥ 0,
and c1 ≥ c2 ≥ · · · ≥ cn ≥ 0 such that

T =
n∑
k=1

ak1[xk−1,xk) and λC =
n∑
k=1

ck1[xk−1,xk).

As λC ∈ M and

τ(TλC) =
∫ 1

0

λT (x)λC(x) dx

by definition, we clearly have
∫ 1
0
λT (x)λC(x) dx ∈ VC(T ). Similarly, letting f(x) = λC

(1 − x), we have f ∈ M, f∗ = λC and

τ(Tf) =
∫ 1

0

λT (x)λC(1 − x) dx.

Thus, we have
∫ 1
0
λT (x)λC(1 − x) dx ∈ VC(T ). Since VC(T ) is a compact, convex subset

of R (as C and T are positive), to complete the proof, it suffices so show that

sup(VC(T )) =
∫ 1

0

λT (x)λC(x) dx and inf(VC(T )) =
∫ 1

0

λT (x)λC(1 − x) dx.

Suppose that g ∈ M is such that λg ≺ λC (thus g is positive). We desire to show that
τ(Tg) ≤ τ(TλC). Let N be the von Neumann subalgebra of M generated by the projec-
tions {1[xk−1,xk)}nk=1 and let EN : M → N be the trace-preserving conditional expectation
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onto N. By Theorem 2.10, h = EN(g) ∈ N is a positive operator with finite spectrum such
that λh ≺ λg ≺ λC and τ(Th) = τ(Tg). Hence it suffices to show τ(Tg) ≤ τ(TλC) for all
g ∈ M with finite spectrum and λg ≺ λC .

For such a g, we may without loss of generality assume g = g∗ by Lemma 3.5. Conse-
quently, we may assume there exists 0 = x′0 < x′1 < · · · < x′m = 1, a1 ≥ a2 ≥ · · · ≥ am ≥
0, c′1 ≥ c′2 ≥ · · · ≥ c′n ≥ 0, and b1 ≥ b2 ≥ · · · ≥ bm ≥ 0 such that

T =
m∑
k=1

a′k1[x′
k−1,x

′
k), λC =

m∑
k=1

c′k1[x′
k−1,x

′
k), and g =

m∑
k=1

bk1[x′
k−1,x

′
k).

Since g ≺ λC , we obtain that
q∑

k=1

bk(x′k − x′k−1) ≤
q∑

k=1

c′k(x
′
k − x′k−1) (3.4)

for all q with equality when q = m. Therefore, setting a′m+1 = 0, we have

τ(T (λC − g)) =
m∑
k=1

a′k(c
′
k − bk)(x′k − x′k−1)

=
m∑
q=1

q∑
j=1

(
a′q − a′q+1

)
(c′j − bj)(x′j − x′j−1).

Since a′q − q′q+1 ≥ 0 for all q and
∑q
j=1(c

′
j − bj)(x′j − x′j−1) ≥ 0 by (3.4), we obtain

τ(T (λC − g)) ≥ 0 as desired.
The proof that

inf(VC(T )) =
∫ 1

0

λT (x)λC(1 − x) dx

follows from similar arguments. �

4. A method for computing C-numerical ranges

In this section, we will use Theorem 3.1 together with some additional arguments to
develop a method for computing VC(T ) for general T ∈ M. This will enable us to show
that if one knows all α-numerical ranges of an operator T , one also knows all C-numerical
ranges of T .

Given an operator T , the main idea is to reduce the computation of the C-numerical
range of T to the C-numerical ranges of the real parts of rotations of T , which are
described in terms of eigenvalue functions by Theorem 3.1. This is motivated by [28] (or
see the English translation [29]). To begin, we will require the following functions.

Notation 4.1. For a non-empty, bounded subset E ⊆ C, let

sup(Re(E)) = sup{Re(z) | z ∈ E}
and define gE : [0, 2π) → R by

gE(θ) = sup(Re(eiθE)).
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Proposition 4.2. For a non-empty, compact, convex set K ⊆ C, the function gK
completely determines K. Concretely,

K = {z ∈ C | Re(eiθz) ≤ gK(θ) for all θ ∈ [0, 2π)}.

Proof. Let Ψ(K) denote the set on the right-hand-side of the above equation. Since
gw+K(θ) = Re(eiθw) + gK(θ) for all w ∈ C, we have

Ψ(w +K) = w + Ψ(K).

Thus, we may assume without loss of generality that 0 ∈ K.
By definition, it is clear that K ⊆ Ψ(K). For the other inclusion, suppose w ∈ Kc.

Choose a line separating w from K (for example, the line that bisects the line segment
from w to the point of K closest to w). This line is the solution set in C of the equation
Re(e−iθz) = c for some θ ∈ [0, 2π) and some c ≥ 0. Thus, the line Re(z) = c separates
eiθK from eiθw. Since 0 ∈ K, we have that 0 ≤ gK(θ) < c < Re(eiθw), so w /∈ Ψ(K). �

Example 4.3. For a, b ∈ R with a, b > 0, consider the solid ellipse

K =
{
x+ iy

∣∣∣∣x, y ∈ R,
x2

a2
+
y2

b2
≤ 1
}
.

The parametrization of the boundary of K in polar coordinates is defined by the map

θ 
→ a cos(θ) + ib sin(θ),

and from this it is elementary to verify that

gK(θ) =
√
a2 cos2 θ + b2 sin2 θ.

As the C-numerical ranges of an operator are compact, convex subsets of C, in order
to determine them it suffices to describe the functions gVC(T )(θ). Furthermore, it suffices
to describe VC(T ) for C positive by part (2.9) of Proposition 2.9 (otherwise we translate
C to be a positive operator C ′, compute VC′(T ), and then translate back).

Method 4.4. Given a tracial von Neumann algebra (M, τ), T ∈ M, and a positive
C ∈ M, by combining Propositions 3.1 and 4.2 we obtain a method of computing VC(T ),
provided we can obtain sufficient information about the distributions of the operators
Re(eiθT ) for θ ∈ [0, 2π). Indeed, by Theorem 3.1 (or, more specifically, Remark 3.2), we
have

gVC(T )(θ) =
∫ 1

0

λRe(eiθT )(s)λC(s) ds.

Thus, Proposition 4.2 implies that

VC(T ) =
{
z ∈ C

∣∣∣∣Re(eiθz) ≤
∫ 1

0

λRe(eiθT )(s)λC(s) ds for all θ ∈ [0, 2π)
}
.

In particular, the above method works provided we can describe λC and λRe(eiθT ) for
all θ ∈ [0, 2π).
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Method 4.5. We now show how to find VC(T ) for arbtrary C ∈ Msa and T ∈ M in
terms of the the spectral distribution of C and the collection of α-numerical ranges(

Ṽα(Re(eiθT ))
)
α∈(0,1], θ∈[0,2π)

(4.1)

Recall (see Remark 2.8) that the α-numerical range Ṽα(S) is equal to 1
αVP (S) where

P ∈ M is a projection of trace α.
By part (2.9) of Proposition 2.9, VC(T ) = −rτ(T ) + VC+rIM

(T ) for every r ∈ R, so it
will suffice to show how to find VC(T ) in terms of the spectral distribution of C and
collection (4.1) when C is positive. Let M be an integer greater than ‖C‖. For each
integer n ≥ 1, let

Cn =
nM∑
k=1

k

n
1[ k−1

n , k
n )(C),

where 1[(k−1)/n,k/n)(C) denotes the spectral projection of C for the indicated interval.
Note that Cn converges in norm to C as n→ ∞. By Proposition 2.20, VC(T ) is the limit
in Hausdorff metric of VCn

(T ), as n→ ∞, and, thus, it will suffice to show how each
VCn

(T ) can be described in terms of the collection (4.1).
Method 4.4 describes VCn

(T ) in terms of the function

θ 
→ gVCn (T )(θ) =
∫ 1

0

λRe(eiθT )(s)λCn
(s) ds.

But

λCn
=

nM∑
j=1

j

n
1[1−xj ,1−xj−1),

where xj = τ(1[0, j
n )(C)). Thus,

gVCn (T )(θ) =
nM∑
j=1

j

n

∫ 1−xj−1

1−xj

λRe(eiθT )(s) ds.

But for any 0 ≤ α ≤ β ≤ 1 and any X ∈ Msa, by equation (3.1) in Remark 3.2, we have∫ β
α

λX(s) ds = β sup
(
Ṽβ(X)
)
− α sup

(
Ṽα(X)
)
.

This completes the description of how VC(T ) can be determined from the spectral scale
of C and the family (4.1).

5. Further Examples

Method 4.5 shows how the α-numerical ranges determine all C-numerical ranges. In this
section, we compute the α-numerical ranges of several operators. Although computing
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the k-numerical ranges of a matrix is generally a hard task, there are several interesting
examples of operators in II1 factor whose α-numerical ranges can be explicitly described.

We begin by noting the following.

Proposition 5.1. Let (M1, τ1) and (M2, τ2) be tracial von Neumann algebras, let

T1 ∈ M1, and let T2 ∈ M2. If T1 and T2 have the same ∗-distributions, then Ṽα(T1) =
Ṽα(T2) for all α ∈ (0, 1].

Proof. By Proposition 2.11, we may assume, without loss of generality, that Mk =
W ∗(Tk) for k = 1, 2. Since T1 and T2 have the same ∗-distributions, there exists a trace-
preserving isomorphism of W ∗(T1) and W ∗(T2) that sends T1 to T2. This clearly implies
Ṽα(T1) = Ṽα(T2) for all α ∈ (0, 1], by Definition 2.6. �

Recall from the introduction that the k-numerical range of a normal matrix N ∈
Mn(C) with eigenvalues {λj}nj=1 is

Wk(N) = conv

⎛⎝⎧⎨⎩ 1
k

∑
j∈K

λj

∣∣∣∣∣∣ J ⊆ {1, . . . , n}, |J | = k

⎫⎬⎭
⎞⎠ .

The following generalizes this result to normal operators with finite spectrum in a tracial
von Neumann algebra.

Proposition 5.2. Let (M, τ) be a tracial von Neumann algebra, let N ∈ M be a
normal operator such that σ(N) = {λk}nk=1, and let wk = τ(1{λk}(N)) for each k ∈
{1, . . . , n}. Then for each α ∈ (0, 1], we have

Ṽα(N) =

{
1
α

n∑
k=1

λktk

∣∣∣∣∣ 0 ≤ tk ≤ wk,
n∑
k=1

tk = α

}
.

Proof. Using Proposition 5.1, we may without loss of generality assume M = L∞[0, 1]
and

N =
n∑
k=1

λk1Xk
,

where {Xk}nk=1 are disjoint Borel measurable sets such that
⋃n
k=1Xk = [0, 1] and

m(Xk) = wk for all k (m the Lebesgue measure).
Consider the surjection

ψ : {X ⊆ [0, 1] | X Borel,m(X) = α} →
{

(t1, . . . , tn)

∣∣∣∣∣ 0 ≤ tk ≤ wk,
n∑
k=1

tk = α

}
defined by

ψ(X) = (m(X ∩X1), . . . ,m(X ∩Xn)).

If X ⊆ [0, 1] is Borel measurable with m(X) = α, then

τ(N1X) =
∫
X

n∑
k=1

λk1Xk
(s) ds =

n∑
k=1

λktk
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where (t1, . . . , tn) = ψ(X). Since every P ∈ Proj(L∞[0, 1]) is of the form P = 1X where
X ⊆ [0, 1] and τ(P ) = m(X), the result follows, using Corollary 2.17. �

For our next example, recall that a Haar unitary is a unitary element U whose spectral
distribution is Haar measure on the unit circle, or, equivalently, such that τ(Uk) = 0 for
all integers k ≥ 1.

Example 5.3. Let (M, τ) be a tracial von Neuman algebra, let U ∈ M be a Haar
unitary, and let D denote the closed unit disk. For every λ ∈ C with |λ| = 1, λU and U
have the same spectral distribution. Therefore, Proposition 5.1 implies

Ṽα(U) = Ṽα(λU) = λṼα(U)

for every α ∈ (0, 1] and λ ∈ C with |λ| = 1. Since each Ṽα(U) is a compact, convex set,
this implies

Ṽα(U) = r(α)D,

where r : (0, 1] → [0, 1] is such that r(α) = sup{Re(z) | z ∈ Ṽα(U)} = sup Ṽα(Re(U))
where the last equality is part (2.9) of Proposition 2.9.

To compute r(α), note that by Proposition 5.1 we may assume that U = (s 
→ eis) ∈
L∞[−π, π], so Re(U) = (s 
→ cos(s)) and, arguing as in the proof of Theorem 3.1, we
deduce that

r(α) =
1

2πα

∫ πα
−πα

cos(s) ds =
1
πα

sin(πα).

Thus

Ṽα(U) =
1
πα

sin(πα)D

for all α ∈ (0, 1].

The above example exhibits a method for computing α-numerical ranges, provided
there exists sufficient symmetry.

Corollary 5.4. Let (M, τ) be a diffuse tracial von Neumann algebra and suppose
T ∈ M is such that

Ṽα(T ) = eiθṼα(T ) for all θ ∈ [0, 2π). (5.1)

Then Ṽα(T ) is the closed disk centered at the origin of radius rα(T ), where

rα(T ) =
1
α

∫ α
0

λRe(T )(s) ds = sup Ṽα(Re(T )).

Recall that the ∗-distribution of an element T ∈ M is the collecton of its ∗-moments,
τ(T ε(1) · · ·T ε(n)) over all n ≥ 1 and all ε(1), . . . , ε(n) ∈ {1, ∗}. Of course, the hypothe-
sis (5.1) of the above corollary is satisfied whenever the ∗-distribution of T is the same
as the ∗-distribution of eiθT for all θ ∈ R.

Using Method 4.4, we may compute the α-numerical ranges of several interesting
operators.
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Example 5.5. Consider the infinite tensor view of the hyperfinite II1 factor

R =
⊗
n≥1

M2(C)

and consider the Tucci operator [35]

T =
∑
n≥1

1
2n

(I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−1 times

⊗Q⊗ I2 ⊗ · · · )

where Q = [ 0 1
0 0 ]. This operator is quasinilpotent and generates R. To compute Ṽα(T ) for

every α ∈ (0, 1], we first notice that T and eiθT are approximately unitarily equivalent
via the unitaries

Un,θ =
[

1 0
0 e−iθ

]
⊗
[

1 0
0 e−iθ

]
⊗ · · · ⊗

[
1 0
0 e−iθ

]
⊗ I2 ⊗ I2 ⊗ · · ·,

as U∗
n,θ(e

iθT )Un,θ approximate T in norm. Therefore, Corollary 2.22 and Corollary 5.4
imply

Ṽα(T ) = rα(T )D

where D denotes the closed unit disk and rα(T ) may be computed by as

rα(T ) = sup(Ṽα(Re(T ))).

Let

A0 = Re(Q) =
1
2

[
0 1
1 0

]
.

Then

Re(T ) =
∑
n≥1

1
2n

(I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−1 times

⊗A0 ⊗ I2 ⊗ · · · ).

However, since 2A0 is unitarily equivalent to

A =
[

1 0
0 −1

]
,

we obtain that Re(T ) is approximately unitarily equivalent to

S =
1
2

∑
n≥1

1
2n

(I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−1 times

⊗A⊗ I2 ⊗ · · · ).

Thus, Corollary 2.22 implies
rα(T ) = sup(Ṽα(S)).

Notice
2∑

n=1

1
2n

(I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−1 times

⊗A⊗ I2 ⊗ · · · ) = diag
(

3
4
,
1
4
,−1

4
,−3

4

)
.
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Furthermore,

3∑
n=1

1
2n

(I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−1 times

⊗A⊗ I2 ⊗ · · · ) = diag
(

7
8
,
5
8
,
3
8
,
1
8
,−1

8
,−3

8
,−5

8
,−7

8

)
.

This pattern continues and thus we see that the spectral scale of S is

λS(s) =
1
2
(1 − 2s).

Thus,

rα(T ) =
1
2α

∫ α
0

(1 − 2s) ds =
1
2
(1 − α)

so

Ṽα(T ) =
1
2
(1 − α)D.

It is not very difficult to construct a normal operator N satisfying Ṽα(N) = Ṽα(T ) for
all α ∈ (0, 1], namely, having the same numerical ranges as the quasinilpotent operator
T . Indeed, considering the radially symmetric distribution ν on the unit disk such that
ν(rD) = 1 −√

1 − r2 for 0 < r < 1, one can show that the marginal distribution of ν
is uniform measure on [−1, 1]. It follows that the normal operator N whose spectral
distribution is ν satisfies λRe(N)(s) = 1

2 (1 − 2s) for all s ∈ [0, 1) and this implies Ṽα(N) =
Ṽα(T ) for all α ∈ (0, 1].

Example 5.6. Recall a (0, 1)-circular operator is an element Z of a tracial von
Neumann algebra of the form

Z =
1√
2
(X + iY ),

where X and Y are freely independent (0, 1)-semicircular operators. As the ∗-distribution
of Z is the same as the ∗-distribution of eiθZ for all θ ∈ R, Corollary 5.4 implies that

Ṽα(Z) = rα(Z)D

where rα(Z) = sup(Ṽα(Re(Z))). Since the spectral distribution of Re(Z) = 1√
2
X is given

by the semicircular law
1
π

1[−
√

2,
√

2](x)
√

2 − x2,

we obtain that

rα(Z) =
1
π

∫ √
2

h(α)

x
√

2 − x2 dx =
1

3πα
(
2 − h(α)2

)3/2
,

where h(α) ∈ [−√
2,
√

2
)

is such that

1
π

∫ √
2

h(α)

√
2 − x2 dx = α.
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Thus, h is the inverse with respect to composition of the monotone decreasing function
f :
[−√

2,
√

2
]→ [0, 1] given by

f(y) =
1
π

∫ √
2

y

√
2 − x2 dx =

1
2
− 1

2π
y
√

2 − y2 − 1
π

arcsin
(
y√
2

)
.

We note the asymptotic expansions

f(
√

2 − x) =
27/4

3π
x3/2 − 1

5π23/4
x5/2 +O(x7/2) (as x→ 0+),

h(α) =
√

2 − (3π)2/3

27/6
α2/3 − (3π)4/3

5(223/6)
α4/3 +O(α2) (as α→ 0+),

rα(Z) =
√

2 − 35/3π2/3

5(27/6)
α2/3 +O(α) (as α→ 0+).

For comparison, a (0, 1)-circular element has norm 2 and spectrum equal to the disk
centred at the origin of radius 1. Note that, since the push-forward measure of the spec-
tral distribution of the normalized Lebesgue measure on the disk of radius

√
2 onto

the real axis produces the semicircular law (1/
√

2)X, Z is an easy example of a non-
normal operator such that there exists a normal operator N with Ṽα(Z) = Ṽα(N) for
all α ∈ (0, 1].

Example 5.7. The quasinilpotent DT-operator S was introduced in [8] as one of an
interesting class of operators in the free group factor L(F2), that can be realized as limits
of upper triangular random matrices. As the name suggests, its spectrum is {0}, and it
satisfies ‖S‖ =

√
e and τ(S∗S) = 1/2. In [9], it was shown that S generates L(F2) and

that S has many non-trivial hyperinvariant subspaces. Moreover, Re(S) = 1
2X, where

X is a (0, 1)-semicircular operator and the ∗-distribution of S is the same as that of
eiθS for all θ ∈ R. Thus, the method of Corollary 5.4 applies, exactly as in Example 5.6,
to yield

Ṽα(S) = rα(S)D,

where rα(S) = 1√
2
rα(Z), where rα(Z) is the function as defined in Example 5.6. Note

that the normal measure whose distribution is uniform measure on the disk of radius
1/
√

2 has the same α-numerical ranges as the quasinilpotent operator S.

Example 5.8. As a generalization of Example 5.6, consider the operator

T = cos(ψ)X + i sin(ψ)Y

where ψ ∈ (0, π2 ) and X and Y are freely independent (0, 1)-semicircular operators.
In particular, the case ψ = π

4 produces the circular operator studied in Example 5.6.
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These elliptic variants of circular operators were studied by Larsen in [30], where he
showed

• ‖T‖ = 2,

• the spectrum of T is
{
z ∈ C

∣∣∣ Re(z)2

cos4(ψ) + Im(z)2

sin4(ψ)
≤ 4
}

,

and

• the Brown measure of T is uniform distribution on its spectrum.

To determine Ṽα(T ), we apply Method 4.4. Note that Re(eiθT ) is

cos(ψ) cos(θ)X − sin(ψ) sin(θ)Y,

which is (0, b(θ)2)-semicircular where

b(θ) =
√

cos2(ψ) cos2(θ) + sin2(ψ) sin2(θ).

Thus the spectral distribution of Re(eiθT ) is the same as the spectral distribution of√
2 b(θ)Re(Z), where Z is the (0, 1)-circular operator from Example 5.6. Hence

gṼα(T )(θ) =
√

2 rα(Z)b(θ).

Therefore, by Proposition 4.2 and Example 4.3, we find

Ṽα(T ) =
{
z ∈ C

∣∣∣∣ Re(z)2

cos2(ψ)
+

Im(z)2

sin2(ψ)
≤ 2rα(Z)2

}
.

It is curious, although not surprising, that the eccentricity of the ellipse bounding Ṽα(T ) is
(except in the circular case ψ = π/4) different from the eccentricity of the ellipse bounding
the spectrum σ(T ).

To complete this section, we note the following interpolation result that generalizes [14,
Corollary 1]. This enables one to obtain knowledge pertaining to one α-numerical range
based on others. We note that further results in [14] also have immediate generalizations
to α-numerical ranges.

Proposition 5.9. Let (M, τ) be a diffuse, tracial von Neumann algebra and let T ∈ M.
If 0 < α < β < γ ≤ 1, then

α(γ − β)
β(γ − α)

Ṽα(T ) +
γ(β − α)
β(γ − α)

Ṽγ(T ) ⊆ Ṽβ(T ).
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Proof. Let λ ∈ Ṽα(T ) and let μ ∈ Ṽγ(T ). By definition, there exist positive contrac-
tions X,Y ∈ M such that τ(X) = α, τ(Y ) = γ,

λ =
1
α
τ(TX), and μ =

1
γ
τ(TY ).

Let

Z =
γ − β

γ − α
X +

β − α

γ − α
Y ∈ M.

It is clear that Z is a positive operator such that

Z ≤ γ − β

γ − α
IM +

β − α

γ − α
IM = IM

and

τ(Z) =
γ − β

γ − α
α+

β − α

γ − α
γ = β.

Finally,

α(γ − β)
β(γ − α)

λ+
γ(β − α)
β(γ − α)

μ =
1
β

γ − β

γ − α
τ(TX) +

1
β

β − α

γ − α
τ(TY ) =

1
β
τ(TZ) ∈ Ṽβ(T ),

completing the proof. �

Remark 5.10. One may ask whether set equality must occur in Proposition 5.9.
Taking T ∈ M to be a Haar unitary, Example 5.3 implies that this question asks (by
letting γ = 1) whether

1 − β

π(β − αβ)
sin(πα)D + 0 =

1
πβ

sin(πβ)D

holds for all 0 < α < β < 1. As this is clearly not the case, equality need not hold in
Proposition 5.9. However, one may use [3] to demonstrate that equality does hold in
Proposition 5.9 when T is an n× n matrix, α = k/n, and γ = (k + 1)/n for some k ∈
{1, . . . , n}.

6. Numerical ranges and diagonals

In this our final section, we desire description of when a scalar belongs to the α-numerical
range of an operator based on the possible ‘diagonals’ of an operator. Our characteriza-
tion is similar to that for k-numerical ranges of matrices found in [13, Theorem 2.4].
Unfortunately, we do not obtain true ‘diagonals’ as we do not know if one can guarantee
A in the following technical lemma (whose proof is a generalization of a matricial result)
is a MASA.
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Lemma 6.1. Let (M, τ) be a type II1 factor and let T ∈ M be such that τ(T ) = 0.
Then there exists a diffuse abelian von Neumann subalgebra A of M such that EA(T ) = 0,
where EA : M → A is the normal conditional expectation.

Proof. Notice that 0 ∈ Ṽ1(T ) ⊆ Ṽ 1
2
(T ). Hence there exists a projection P ∈ M such

that τ(P ) = 1
2 and τ(TP ) = 0. Then, of course, τ(T (IM − P )) = 0. By repeating this

argument in PMP and (IM − P )M(IM − P ), we obtain four projections {Pk}4
k=1 such

that Pk commutes with P and IM − P , τ(Pk) = 1
4 , and τ(TPk) = 0 for all k. By

continuing to repeat the first argument on each compression and by taking the von Neu-
mann algebra generated by these projections, the desired diffuse abelian von Neumann
subalgebra of M is obtained. �

Proposition 6.2. Let (M, τ) be a type II1 factor, let T ∈ M, and let α ∈ (0, 1]. Then

λ ∈ Ṽα(T ) if and only if there exists a diffuse abelian von Neumann subalgebra A of
M such that τ(1{λ}(EA(T ))) ≥ α, where EA : M → A is the normal, trace preserving
conditional expectation.

Proof. Suppose A a diffuse abelian von Neumann subalgebra of M such that
β := τ(1{λ}(EA(T ))) ≥ α. Thus

λ = τ(EA(T )1{λ}(EA(T ))) = τ(T1{λ}(EA(T ))) ∈ Ṽβ(T ) ⊆ Ṽα(T ).

(See Remark 2.8.)
For the converse direction, suppose λ ∈ Ṽα(T ). By part (2.9) of Proposition 2.9, we

may without loss of generality assume that λ = 0. Since 0 ∈ Ṽα(T ), by Corollary 2.17
there exists a projection P of trace α such that 1

ατ(TP ) = 0. Hence τPMP (PTP ) = 0
where τPMP is the trace for PMP . By Lemma 6.1 there exists a diffuse abelian
von Neumann subalgebra A0 of PMP such that EA0(PTP ) = 0. If A′ is any diffuse
abelian von Neumann subalgebra of (IM − P )M(IM − P ), then A = A0 ⊕A′ ⊆ M is a
diffuse abelian von Neumann subalgebra containing P such that EA(T )P = 0. Hence
τ(1{λ}(EA(T ))) ≥ α as desired. �
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