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Electrophoresis in dilute polymer solutions

Gaojin Li1 and Donald L. Koch1,†
1Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University,

Olin Hall, Ithaca, NY 14853, USA

(Received 30 May 2019; revised 14 September 2019; accepted 1 November 2019)

We analyse the electrophoresis of a weakly charged particle with a thin double layer
in a dilute polymer solution. The particle velocity in polymer solutions modelled
with different constitutive equations is calculated using a regular perturbation in the
polymer concentration and the generalized reciprocal theorem. The analysis shows
that the polymer is strongly stretched in two regions, the birefringent strand and the
high-shear region inside the double layer. The electrophoretic velocity of the particle
always decreases with the addition of polymers due to both increased viscosity and
fluid elasticity. At a small Weissenberg number (Wi), which is the product of the
polymer relaxation time and the shear rate, the polymers inside the double layer
contribute to most of the velocity reduction by increasing the fluid viscosity. With
increasing Wi, viscoelasticity decreases and shear thinning increases the particle
velocity. Polymer elasticity alters the fluid velocity disturbance outside the double
layer from that of a neutral squirmer to a puller-type squirmer. At high Wi, the strong
extensional stress inside the birefringent strand downstream of the particle dominates
the velocity reduction. The scaling of the birefringent strand is used to estimate the
particle velocity.

Key words: viscoelasticity

1. Introduction
Electrophoresis refers to the motion of charged colloidal particles or macromolecules

in a liquid electrolyte subjected to an external electric field (Saville 1977; Russel,
Saville & Schowalter 1989). When the particle is immersed in the electrolyte, an
electrical double layer develops around the particle surface, consisting of an immobile
layer of surface charge and a diffuse cloud, called the Debye layer, that is enriched
in counter-ions. Under the applied field, the particle motion is determined by the
balance of three forces, i.e. the electric force, the viscous drag and the retardation
force, the last of which accounts for the extra drag due to the ion cloud moving in
the direction opposite to the particle motion. Electrophoresis plays an important role
in colloid science (Russel et al. 1989), bio-analysis (Kostal, Katzenmeyer & Arriaga
2008) and many other applications in microfluidic devices (Chang & Yeo 2010). For
example, gel electrophoresis or capillary electrophoresis, which separates molecules
such as DNA, RNA or proteins based on their size and charge in polymer solutions,
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has been developed into an indispensable technique in biochemistry (Southern
1975; Barron, Soane & Blanch 1993). Electrophoretic deposition techniques with
non-aqueous solvents and polymer binders have been widely used in manufacturing
of complex-shaped ceramics and glasses, solid oxide fuel cells and hybrid materials
(Besra & Liu 2007). Despite these important applications, there have been few
studies on the effects of polymer viscoelasticity on electrophoresis. Some previous
studies have discussed DNA electrophoresis using scaling theories for entangled
polymer molecules (Barron et al. 1993; Duke & Viovy 1994), but the detailed
electrohydrodynamics of electrophoresis in a polymer solution has not yet been
considered.

One of the key questions about electrophoresis is the dependence of particle
velocity on the physical properties involved in the problem, such as the strength of
the applied field, fluid viscosity, zeta potential and particle size. There has been a
long history of calculating the electrophoretic velocity of a particle using theories with
increasing complexity and numbers of factors in consideration. In the limit of zero
double-layer thickness, Smoluchowski (1903) derived the dimensional (represented by
the superscript ∗) speed of a spherical particle as

U∗ =
εε0E∗ζ ∗

µ
, (1.1)

where E∗ is the strength of the electric field, ζ ∗ is the zeta potential, and ε, ε0 and µ
are the dielectric constant, the vacuum permittivity and the viscosity of the electrolyte.
Equation (1.1), which holds for a particle of uniform zeta potential, was later proved
to be universally valid for particles of any size, shape and orientation relative to the
applied field, as long as the double-layer thickness is much smaller than the particle
size (Morrison 1970). Sellier (1999) showed it applies to a collection of particles of
arbitrary size, shape and equal zeta potential.

Under the Debye–Hückel assumption (ζ ∗e/kT � 1, where kT/e is the thermal
voltage), Henry (1931) studied the electrophoresis of a sphere with an arbitrary
double-layer thickness. If the double layer is much thicker than the particle size, the
velocity is two-thirds that given by (1.1). Both Smoluchowski’s and Henry’s solutions
assumed the diffusive ion cloud around the particle is in equilibrium and follows a
Boltzmann distribution. For a moderately charged particle (ζ ∗e/kT ∼O(1)), for which
the Debye–Hückel approximation is no longer valid while surface conduction is still
negligible, the large counter-ion concentration near the particle surface generates a
strong non-uniform tangential current inside the double layer, which leads to a normal
ion flux that deforms the double layer and eventually affects the particle velocity. The
analysis considering this effect was performed in a weak applied field by O’Brien
& Hunter (1981) and was extended to particles of arbitrary shape (O’Brien 1983)
and of high zeta potential (Schnitzer & Yariv 2012a). The particle velocity shows a
non-monotonic variation with the zeta potential, consistent with numerical simulations
(Wiersema, Loeb & Overbeek 1966; O’Brien & White 1978).

In recent years, the topic has been extended to consider the effects of boundaries
(Yariv 2006), nonlinear particle velocity due to the higher-order terms in the weak
field expansion (Schnitzer et al. 2013), strong fields (Schnitzer & Yariv 2012b),
oscillating electric fields (Mangelsdorf & White 1992; Sawatzky & Babchin 1993)
and soft particles (Ohshima 2013). More numerical simulations of electrophoresis of
a single particle can be found in a recent review by Zhou & Schmid (2015). The
electrophoresis of a single particle is important because it serves as a basis for many
electrokinetic phenomena, such as electroacoustics and electrorheology (Saville 1977).
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In many electrokinetic applications, the fluids are non-Newtonian. In electrophoretic
separations, uncrosslinked polymer solutions (Barron et al. 1993) or crosslinked
gel matrices (Woolley & Mathies 1994) are used to introduce a molecular-weight
dependence to DNA’s electrophoretic mobility. Electro-osmotic flow of non-Newtonian
fluids is also found in some microfluidic devices (Chang & Yeo 2010) and in
polymer electrolytes for batteries (Wei et al. 2018). Electro-osmotic flows with
shear-rate-dependent viscosity and viscoelasticity have both been analysed in previous
studies, and references can be found in a recent review by Zhao & Yang (2013). It
is worth noting that, since polymer elasticity does not affect the unidirectional flow,
the major effect of a non-Newtonian fluid in these flows is due to the shear-thinning
viscosity (Afonso, Alves & Pinho 2009; Zhao & Yang 2009).

For electrophoresis in a polymeric electrolyte, previous studies used the Debye–
Büche–Brinkman model to study the effects of the porous structure of a polymer
gel on the particle velocity (Debye & Bueche 1948). Other studies have considered
non-Newtonian suspending fluids and emphasized the effects of shear-dependent
viscosity. Based on Newton’s second law for a particle moving in a fluid with a
nonlinear friction coefficient, Vidybida & Serikov (1985) suggested that net motion
of a spherical particle under an oscillating electric field is possible in non-Newtonian
fluids. Numerical simulations by Hsu, Hung & Yu (2004), Lee, Chen & Hsu (2005)
and Hsu, Yeh & Ku (2006) show that the mobility of a particle increases in a
shear-thinning Carreau fluid, and this effect is more pronounced for a thinner double
layer (Hsu et al. 2006). Khair, Posluszny & Walker (2012) analytically studied
the electrophoresis of a particle with a thin double layer in a Carreau fluid. Their
analysis shows that shear-thinning/thickening viscosity increases/decreases the particle
velocity with effects arising from flows both inside and outside the double layer. The
non-Newtonian rheology leads to a size-dependent particle velocity, in contrast to the
results for a Newtonian fluid. As we will see later, at low Wi= λU∗/a, where λ is the
polymer relaxation time and a is the particle radius, the shear-thinning viscosity of a
polymer solution has the same effects on the electrophoretic particle. Its contribution
mainly comes from the double layer because of the high local shear rate. However,
at high Wi, the polymers are strongly deformed and the particle velocity is mainly
affected by polymer elasticity.

The electrokinetic flow around a spherical particle is strongly influenced by
viscoelasticity due to two factors. First, there are large changes of shear rate as
a polymer enters and leaves the high-shear region of the double layer so that the
time history of the flow in a Lagrangian frame will have a large effect. Second,
polymers are strongly deformed near the stagnation points at the front and back of
the sphere, modifying the flow field in these regions. The rear stagnation point leads
to a region of high polymer stress known as a ‘birefringent strand’, which has been
widely studied in the motion of a particle/bubble in a polymer solution driven by a
body force (Harlen 1990; Harlen, Rallison & Chilcott 1990; Arigo et al. 1995; Fabris,
Muller & Liepmann 1999). It causes a large local extensional viscosity (Harlen et al.
1990), increases the drag on the particle and leads to an extended wake behind
the particle (Arigo et al. 1995; Fabris et al. 1999). Harlen (1990) and Harlen et al.
(1990) studied the birefringent strand downstream of a stagnation point by treating
it as a distribution of stokeslets to calculate the extra stress exerted by the polymer.
With a fitting parameter, which characterizes the strength of the polymer stress, their
results accurately reproduced the downstream velocity profile and the drag coefficient
measured in experiments and simulations. Two types of stagnation points were
discussed in their work. Near an isolated stagnation point, such as on the slip surface
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of a bubble, the strain rate is approximately constant and the birefringent strand starts
from the stagnation point. On a no-slip surface, the polymer is undeformed at the
stagnation point and the strand starts at a point downstream where the local strain
rate exceeds the critical value. Becherer, van Saarloos & Morozov (2008, 2009) also
studied the scaling of the width and extension of the strand as well as its singularity
in two-dimensional purely elongational flows.

In this work, we will see that the birefringent strand behind an electrophoretic
particle has many similarities to the previous studies. The polymer flow near the rear
stagnation point outside and inside the double layer resembles the extensional flow
around a bubble and solid sphere, respectively. The unique aspect of viscoelastic
electrokinetic flows around a sphere is that polymers can also be strongly stretched
by a shear flow inside the double layer. Compared to an extensional stretch, for
which polymer deformation increases abruptly when the local strain rate is above a
critical value, polymer stretch in a shear flow grows more smoothly with increasing
shear rate. If the double-layer thickness is small enough, full polymer extension in
the shear flow could occur earlier than that due to the extensional flow.

The interaction of particles with viscoelastic fluids has been considered in many
previous studies, including the gravity-driven motion of a sphere in a viscoelastic fluid
(Leslie & Tanner 1961; Chilcott & Rallison 1988; Harlen 1990; Harlen et al. 1990),
migration of a particle in wall-bounded shear flow of a second-order fluid (Ho &
Leal 1976), the motion of a sphere normal to a wall (Ardekani, Rangel & Joseph
2007), the interactions of two spheres (Ardekani, Rangel & Joseph 2008; Khair &
Squires 2010) and the rheology of a dilute particle suspension in a polymeric fluid
(Koch & Subramanian 2006; Rallison 2012; Koch, Lee & Mustafa 2016; Yang &
Shaqfeh 2018; Einarsson, Yang & Shaqfeh 2018), etc. In many studies, the generalized
reciprocal theorem (Cox 1965; Ho & Leal 1974) has been applied to calculate the drag
or stresslet without the need to derive the fluid velocity at higher orders. Based on a
perturbation in Wi, Chilcott & Rallison (1988) derived the formula for the drag on a
sphere of arbitrary viscosity ratio to the fluid. To explore the behaviour of polymers
at finite Wi, Koch et al. (2016) conducted a perturbation in the polymer concentration
and calculated the particle stresslet by a numerical integration along the undisturbed
streamlines. Weak coupling between polymer deformation and the fluid velocity for a
dilute polymer solution was also applied in simulations (Wapperom & Renardy 2005;
Moore & Shelley 2012). Such techniques will be employed in this study for both
asymptotically small and finite Wi.

In recent years, the interaction of self-propelled particles with polymeric fluids
has attained great interest in order to understand the motion of micro-organisms and
self-propelled colloids in complex fluids (Zhu, Lauga & Brandt 2012; Li, Karimi &
Ardekani 2014; Datt et al. 2017; Natale et al. 2017). These studies typically neglect
the detailed swimming mechanisms of the particles, for example, the metachronal
waves on the ciliated surface of Volvox and the self-generated gradients of chemical
species or temperature that drive diffusiophoresis or thermophoresis (Howse et al.
2007). Instead, they use the squirmer model (Lighthill 1952; Blake 1971) with a
prescribed slip velocity on the surface of the particle that is not affected by the
polymer. Squirmer motions in a fluid with weak viscoelasticity (Datt & Elfring
2019) or non-uniform viscosity (Shoele & Eastham 2018) have been studied using
the generalized reciprocal theorem. However, in view of the high shear rates in
the region where the slip is generated, polymers should affect the effective slip
velocity seen by the outer flow field. Similar to other types of phoretic particles,
an electrophoretic particle creates an outer flow consistent with the squirmer model
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and the slip velocity can be understood in terms of the flow generated in the thin
double layer. In particular, an electrophoretic particle with a uniform zeta potential
in a Newtonian fluid is a neutral-type squirmer, i.e. the far field of the particle
motion does not have a contribution due to a stokeslet dipole. As we will see later,
the polymer deformation inside the double layer is very important. In a weakly
viscoelastic fluid, the leading-order effect of the polymer comes solely from the inner
region and the polymer elasticity changes the particle into a puller-type squirmer. At
high Wi, the strong polymer stretching inside the double layer significantly affects the
particle velocity. While the polymeric effects in the bulk region always reduce the
particle velocity, those arising inside the double layer can either increase or decrease
the velocity depending on Wi.

In this work, we present a theoretical framework to calculate the electrophoretic
velocity of a spherical particle in a viscoelastic fluid, based on a perturbation in the
polymer concentration c. In § 2, we describe the governing equations of the problem.
Next, § 3 discusses the O(c) modification of the slip velocity due to polymers inside
the double layer and the procedure to find the fluid and particle velocities. In § 4, we
discuss a different method, i.e. using the generalized reciprocal theorem, to find the
particle’s electrophoretic velocity and avoid solving the polymer-induced perturbation
to the fluid velocity. To understand how the polymer affects electrophoresis, we then
discuss the polymer deformation outside and inside the double layer in §§ 5 and 6,
respectively. We analyse the evolution of polymer deformation along the symmetry
axis of the particle as well as on its slip and no-slip surfaces and estimate the length
and radius of the birefringent strand. These results are later used to predict the scaling
of the particle velocity. In § 7, we consider the problem for Wi � 1 and use the
two methods in §§ 3 and 4 to derive the O(Wi) fluid velocity and the O(Wi2) non-
trivial particle velocity. Finally, § 8 shows the particle velocity at high Wi through a
numerical realization of the generalized reciprocal theorem.

2. Governing equations
We consider a spherical solid particle of radius a in a binary electrolyte solution

with valences ±z, dielectric constant ε and solvent viscosity µ. The particle is
insulating with a uniform zeta potential, so no calculation for the particle interior is
needed. The polymer concentration c= µp/µ� 1, where µp and µ are the polymer
and solvent contributions to the zero-shear-rate viscosity, respectively. In what follows,
lengths are normalized by a, velocities by the electrophoretic velocity U∗= εε0E∗ζ ∗/µ
in a Newtonian fluid, times by a/U∗, stresses by µU∗/a, potentials by ψ0 = kT/ze,
electric fields by ψ0/a, and ion concentrations by the far-field concentration n∞.
Here, ε0 is the vacuum permittivity, kT is the Boltzmann temperature, and e is the
elementary charge. The governing equations for the steady incompressible Stokes
flow, the electric field and the ion concentration are, respectively, the Stokes, Poisson
and Nernst–Planck equations:

Eζ (∇ · σ +∇ · τ )+∇2ψ∇ψ = 0, ∇ · u= 0, (2.1a)
2∇2ψ =−κ2(n+ − n−), (2.1b)

EζPe(u−U) · ∇n± =∇ · (∇n± ± n±∇ψ). (2.1c)

We adopt a reference frame with a moving particle and the fluid at rest at infinite
separation from the particle throughout the paper. In this reference frame, n± are
unsteady. However, for a steady electrophoretic velocity, n± are stationary in a
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884 A9-6 G. Li and D. L. Koch

reference frame moving with the particle, and this observation allows us to replace
the time derivative in (2.1c) by a convective term associated with the motion of the
centre of mass of the particle. Here E = E∗a/ψ0, ζ = ζ ∗/ψ0, σ = −pI + 2S is the
Newtonian stress, p is pressure, I is the identity matrix, S = (∇uT

+ ∇u)/2 is the
strain-rate tensor, u is fluid velocity, U is particle velocity, τ is polymer stress, ψ is
electric potential, n± are the concentrations of positive and negative ions, and κ is the
inverse of the double-layer thickness, with κ2

=2z2e2n∞a2/(εε0kT). The Péclet number
Pe=U0a/D is independent of particle dimensions and electrolyte concentration, where
U0 = εε0(kT)2/(z2e2µa) is a thermal velocity derived by balancing the characteristic
Maxwell stress εε0(ψ0/a)2 and the viscous stress µU0/a. For simplicity, we consider
equal cation and anion diffusivities, D = D+ = D−. In typical aqueous solutions
Pe= 0.5 (Saville 1977), although it can be smaller in a viscous electrolytic solution
where the ions do not satisfy the Stokes–Einstein relationship (Wei et al. 2018).
In this study, Pe does not affect the electrophoresis because the ion distribution is
uniform in the bulk region and the convection in the double layer is negligible at
small zeta potential.

For the polymer stresses, we consider several different continuum models to
investigate the effects of finite extensibility and shear thinning. The continuum model
is valid for an electrolyte with a small salt concentration (∼1 mM) and polymers of
relatively small molecular weight (∼104), where the radius of gyration of the polymer
(∼1 nm) is smaller than the double-layer thickness (∼10 nm). For a polymer solution,
the general form for the polymer stress can be written as

τ =
c

Wi
F(A), (2.2)

where the Weissenberg number Wi= λU∗/a is defined as the polymer relaxation time
times the characteristic shear rate U∗/a. Here A is the polymer conformation tensor
governed by the constitutive equation

O
A =

1
Wi

G(A), (2.3)

where
O
A denotes the upper-convected derivative,

O
A =

∂A

∂t
+ u · ∇A−∇uT

· A− A · ∇u. (2.4)

For different models, F(A) and G(A) are (Bird & Wiest 1995)

Oldroyd-B: F(A)= A− I, G(A)= I − A,

Giesekus: F(A)= A− I, G(A)= I − A− α(A− I)2,

FENE-P: F(A)= f A− bI, G(A)= bI − f A,

FENE-CR: F(A)= f A− f I, G(A)= f I − f A.

 (2.5)

The Oldroyd-B model has a shear viscosity and normal stress coefficients that are
independent of shear rate, which allows one to study the effects of fluid viscoelasticity
in the absence of shear thinning. It describes well Boger fluids, which are dilute
solutions of high-molecular-weight polymers in viscous Newtonian fluids. However,
above a critical Weissenberg number, the Oldroyd-B model predicts an infinite
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extensional viscosity and becomes unphysical in an extensional flow. This issue
is resolved in the three other models. The Giesekus model has an anisotropic
relaxation rate of the polymers as well as a shear-thinning viscosity. In it, α is
the mobility factor representing the anisotropic hydrodynamic drag on the polymer
molecule and must lie between 0 and 1/2 to ensure a linearly stable solution and
positive definite conformation tensor for a steady shear flow (Schleiniger & Weinacht
1991). For the FENE (finitely extensible nonlinear elastic) models, the polymer is
restricted by a finite extensibility. In them, L is the maximum length of the polymer,
f = L2/(L2

− tr(A)), and b = L2/(L2
− 3). The FENE-P model has a shear-thinning

viscosity, while the FENE-CR model has a constant viscosity. The Giesekus model is
often used for entangled polymer solutions and worm-like micelles (Helgeson et al.
2009), whereas FENE models are for dilute solutions. For α= 0 and L→∞, all the
models recover the Oldroyd-B model.

The boundary conditions at the particle surface include no slip, Gauss law and zero
ion fluxes, i.e.

at r= 1: ur =U cos θ, uθ =−U sin θ, −
∂ψ

∂r
= q,

∂n±

∂r
± n±

∂ψ

∂r
= 0, (2.6a−d)

where q = zeQ/(4πaεε0kT) is the normalized surface charge density for a particle
of total charge Q, U is the dimensionless particle speed, and θ is the polar angle
measured from the direction of the particle velocity. In the Debye–Hückel limit, q=
ζκ , with ζ being the potential on the particle surface (Russel et al. 1989). Far away
from the particle, the boundary conditions are

as r→∞: ur = 0, uθ = 0, ψ =−Er cos θ, n± = 1, A= I, (2.7a−d)

where the ion concentration, fluid and polymer are undisturbed, and the potential
recovers the applied field. The force balance on the particle provides the condition
for calculating the particle velocity U, i.e. the sum of Newtonian, polymer and
Maxwell stresses on the particle surface vanishes,∫

r=1

[
Eζ (σ + τ )+∇ψ∇ψ − 1

2∇ψ · ∇ψ I
]
· n dA= 0, (2.8)

where n is the outward unit normal vector on the particle surface.

3. Regular perturbation in polymer concentration
We seek a regular perturbation solution for low polymer concentration c� 1. Since

the polymer deformation does not directly affect the ion distribution or electric field,
we only expand the velocity, stresses and polymer conformation tensor: u=u(0)+ cu(1),
p = p(0) + cp(1), σ = σ (0)

+ cσ (1), A = A(0)
+ O(c) and τ = cτ (1) + O(c2). Note that

the leading-order term in τ is O(c) as shown in (2.2). At the leading order, the
result is the classical electrophoresis problem in a Newtonian fluid, which uses a
singular perturbation in 1/κ to solve the electroneutral bulk region and the double
layer. Detailed discussion can be found in the literature (see Russel et al. (1989)).
Here, we briefly summarize the results.

The inner solution in the double layer is derived in terms of the boundary layer
coordinate y = κ(r − 1). For κ � 1, the local balance of diffusive and migrating
fluxes of ions normal to the particle surface leads to a Boltzmann distribution of ion
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concentration. Under the Debye–Hückel approximation (ζ� 1) and weak applied field
(E� 1), the solutions are

n± = 1∓ ζe−y, ψ = ζe−y
−

3
2 E cos θ, (3.1a)

u(0)r =U(0) cos θ +
3
κ
(1− y− e−y) cos θ, (3.1b)

u(0)θ =−U(0) sin θ + 3
2(1− e−y) sin θ, (3.1c)

p(0) = 1
2κ

2ζ 2e−2y. (3.1d)

The dimensionless particle velocity is

U(0)
= 1. (3.2)

For the outer solution in the bulk region, Poisson’s equation (2.1b) yields an
electro-neutrality condition n+= n− and the Nernst–Planck equation (2.1c) reduces to
Laplace’s equation ∇2ψ = 0, leading to the solutions

n+ = n− = 1, ψ =−E
(

r+
1

2r2

)
cos θ. (3.3a,b)

The fluid velocity is

u(0)r =
1
r3

cos θ, u(0)θ =
1

2r3
sin θ, (3.4a,b)

and p(0) = 0. This fluid velocity corresponds to a neutral squirmer (Blake 1971) or a
source dipole. Away from the particle, the velocity decays as u∼ 1/r3 instead of 1/r2

due to the absence of the stokeslet dipole for typical pusher or puller swimmers. For
ζ� 1, Henry (1931) calculated the particle velocity for arbitrary κ . Here, we consider
the bulk region and the double layer separately to compare the effects of the polymer
in the two regions.

We now consider the equations at order c. The polymer stress τ (1) is a function of
A(0), which is determined by the leading-order fluid velocity u(0),

τ (1) =
1

Wi
F(A(0)) (3.5)

and
(u(0) −U(0)) · ∇A(0)

−∇u(0)T · A(0)
− A(0)

· ∇u(0) =
1

Wi
G(A(0)), (3.6)

with a boundary condition A(0)
= I in the far field and the requirement that the inner

and outer solutions match. The term −U(0)
· ∇A(0) in (3.6) accounts for the time

dependence of the polymer configuration in the rest frame associated with the motion
of the particle’s centre of mass. For the current problem, A(0)rφ = A(0)θφ = 0 because the
flow is axisymmetric, while A(0)rr , A(0)rθ and A(0)θθ are coupled.

Polymer deformation does not directly affect the ion distribution or electric field,
but it perturbs the fluid velocity in the Stokes equation

∇ · σ (1)
+∇ · τ (1) = 0, ∇ · u(1) = 0, (3.7a,b)
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where σ (1)
= −p(1) + ∇u(1)T + ∇u(1). As we will see later from the scaling analysis,

all the non-zero components of τ (1) are needed to determine the particle velocity.
The boundary conditions for the fluid in the bulk region are

at r→∞: p(1) = 0, u(1)r = 0, u(1)θ = 0, (3.8a)

at r= 1: u(1)r =−U(1) cos θ, u(1)θ =U(1) sin θ + u(1)s , (3.8b)

where disturbance decays in the far field. The second condition includes the O(c)
particle migration velocity and the slip velocity at the edge of the double layer. The
tangential slip velocity u(1)s is obtained from the outer limit of the inner solution. The
O(c) particle velocity U(1) is determined by the force balance on the particle,∫

r=1
(σ (1)
+ τ (1)) · n dA= 0. (3.9)

To derive the slip velocity, we first simplify the momentum equation in the double
layer,

−
∂p(1)

∂y
+
∂τ (1)rr

∂y
= 0, (3.10a)

−
∂p(1)

∂θ
+ κ2 ∂

2u(1)θ
∂y2
+ κ

∂τ
(1)
rθ

∂y
+

1
sin θ

∂(τ
(1)
θθ sin θ)
∂θ

− τ
(1)
φφ cot θ = 0. (3.10b)

Integrating (3.10b) from y= 0 to ∞ with the no-slip condition u(1)θ = 0 at y= 0, the
slip velocity u(1)s ≡ u(1)θ |y→∞ satisfies

u(1)s =
−1
κ

∫
∞

0

(
δτ

(1)
rθ +

y
κ

(
∂δτ (1)rr

∂θ
−

1
sin θ

∂(δτ
(1)
θθ sin θ)
∂θ

+ δτ
(1)
φφ cot θ

))
dy, (3.11)

where δτ = τ − τ |y→∞ and τ |y→∞ matches the inner limit of the outer solution.
To summarize, the O(c) particle velocity is calculated using the following four

steps: (1) Use (3.5) and (3.6) to find the polymer stress in both the inner and outer
regions. (2) Calculate the slip velocity from the polymer stress in the inner region
using (3.11). (3) Solve the momentum equation (3.7) in the outer region. (4) Use
the force balance condition to find the particle velocity U(1). The implementation of
this procedure, which allows us to find the modification of polymer stress on the
particle’s slip velocity and also derives the fluid velocity, is complex and requires a
numerical simulation for arbitrary Wi. Later, in § 7, we will use it to determine the
slip velocity and the velocity field to O(Wi) for Wi� 1. However, the perturbation
to the particle velocity is O(Wi2) for Wi� 1. Determining this term as well as the
finite-Wi behaviour using the procedure outlined above would require a numerical
calculation. Instead, we will use the generalized reciprocal theorem to simplify the
calculation.

4. Generalized reciprocal theorem
The generalized reciprocal theorem provides a more convenient way to calculate

the particle velocity than directly solving (3.5)–(3.9) when the flow field is not of
interest. For particles in viscoelastic fluids, the generalized reciprocal theorem was
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used to study the motion of passive particles (Ho & Leal 1976; Leal 1979; Chilcott &
Rallison 1988), the stress of a dilute suspension of particles in a complex fluid (Koch
& Subramanian 2006; Rallison 2012; Koch et al. 2016), the swimming motion of an
active particle (Lauga 2014) and the stresslet induced by an active particle swimming
in a quiescent fluid (Lauga & Michelin 2016) and an arbitrary imposed flow (Elfring
2017). This theorem states that the O(c) electrophoresis problem (u(1), σ (1)) and a
comparison problem (û, σ̂ ) are related by the following identity (Cox 1965; Ho &
Leal 1974):∮

A
u(1) · (n · σ̂ ) dA+

∫
V

u(1) · (∇ · σ̂ ) dV=
∮

A
û · (n ·σ (1)) dA+

∫
V

û · (∇ ·σ (1)) dV, (4.1)

where V is the control volume and n is the unit normal vector pointing into the control
volume. The control surface A= Ap + A∞ includes both the particle surface Ap and a
bounding surface A∞ far from the particle. The particle surface Ap can either be the
no-slip surface where the velocity u(1)=U(1), with the control volume including both
inner and outer regions, or it can be the ‘slip’ surface where u(1) = U(1)

+ u(1)s , with
a control volume that includes only the outer region. The comparison problem is the
translational motion of a rigid, uncharged solid sphere in a Stokes flow that satisfies

∇ · σ̂ = 0, ∇ · û= 0. (4.2a,b)

The velocity on the sphere surface is û= Û= cos θ er− sin θ eθ , and the fluid velocity
is

û=
(

3
2r
−

1
2r3

)
cos θ er −

(
3
4r
+

1
4r3

)
sin θ eθ . (4.3)

On the left-hand side of (4.1), the surface integral at infinity vanishes because u(1)
and σ̂ both decay as 1/r2 as r→∞. On the particle surface,

∮
Ap

u(1) · (n · σ̂ ) dA =

−(3/2)Û ·
∮

Ap
u(1) dA using the fact that the stress on the surface of a translating

particle in a Stokes flow is a constant n · σ̂ =−(3/2)Û. The volume integral is zero
since ∇ · σ̂ = 0 for the comparison problem. On the right-hand side, the surface
integral equals Û ·

∮
Ap

n · σ (1) dA, again with no contribution from the far field due to
the fast decay of û and σ (1) as r→∞. Applying (3.7) and the divergence theorem to
the volume integral, one obtains

∫
V û · (∇ ·σ (1)) dV= Û ·

∮
Ap

n · τ (1) dA+
∫

V ∇û : τ (1) dV .
In the end, equation (4.1) is simplified as

3Û
2
·

∫
Ap

u(1) dA=−
∫

V
∇û : τ (1) dV − Û ·

∫
Ap

n · (σ (1)
+ τ (1)) dA, (4.4)

where the last term vanishes due to the force-free condition (3.9). We consider two
different forms of (4.4) to compare the effects of polymers in the inner and outer
regions.

In the first expression, the control volume includes both the inner region Vin and
the outer region Vout, Ap is the no-slip surface of the particle and u(1) = U(1) on Ap.
The particle velocity is

U(1)
=−

1
6π

∫
Vout

∇û : τ (1) dV −
1

6π

∫
Vin

∇û : δτ (1) dV. (4.5)
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In the second expression, the control volume only includes the outer region Vout, Ap

is the particle’s ‘slip’ surface and u(1) =U(1)
+ u(1)s on Ap. The particle velocity is

U(1)
=−

1
6π

∫
Vout

∇û : τ (1) dV +
1

4π

∫
Ap

u(1)s sin θ dA. (4.6)

In both expressions, we refer to the first and second terms as U(1)
out and U(1)

in ,
respectively, to indicate the regions where they arise. Notice that the stress δτ (1) =
τ (1) − τ (1)|y→∞ in Vin omits the matching stress since it has been accounted for in
Vout. To validate the equivalence of the two expressions for U(1)

in , one can expand
∇û in the expression in (4.5) in a Taylor series in the small parameter 1/κ where
r= 1+ y/κ and keep the leading-order terms to obtain

U(1)
in = −

1
6π

∫
Vin

∇û : δτ (1) dV

= −
1

2κ

∫ π

0
sin θ dθ

∫
∞

0
dy
(
δτ

(1)
rθ sin θ +

y
κ
(−2δτ (1)rr + δτ

(1)
θθ + δτ

(1)
φφ ) cos θ

)
,

(4.7)

which is identical to U(1)
in in (4.6) using the slip velocity (3.11). Using the generalized

reciprocal theorem, one can directly calculate the particle velocity in terms of the
polymer stress using (4.5) or (4.6).

5. Polymer deformation in the bulk region

As we have already shown, polymer deformation affects the particle velocity in both
the bulk region and the double layer, or equivalently by modifying the slip velocity.
Before calculating the particle velocity, it is important to understand how a polymer
deforms as it flows around the particle. We will focus on the polymer deformation
on some special streamlines, i.e. the axis of symmetry as well as the particle’s slip
and no-slip surfaces. In this section, we will discuss polymer deformation in the bulk
region, and, in the next section, we will discuss polymer deformation in the double
layer.

On the particle’s slip surface, the flows are biaxial and uniaxial elongational near
the front (r = 1, θ = 0) and rear (r = 1, θ = π) stagnation points, respectively.
The elongation rate of the local flow is ε̇ = 3. Polymers located exactly at the
two stagnation points would stay there for an infinitely long time. Without finite
extensibility or nonlinear relaxation, this would lead to infinite stretch above a critical
Weissenberg number. For the Oldroyd-B model, the conformation tensors at the
front/rear stagnation points of the slip surface are

Arr =
1

1± 6Wi
, Arθ = 0, Aθθ = Aφφ =

1
1∓ 3Wi

. (5.1a−c)

Hereafter, we omit the superscript in A(0) since no higher-order terms for polymer
concentration are needed. With increasing Wi, Arr first diverges at the rear stagnation
point at Wi= 1/6, then Aθθ and Aφφ diverge at the front stagnation point at Wi= 1/3.
This issue can be resolved by restricting the extensibility of the polymers or including
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nonlinear relaxation. We first consider the Giesekus model. The conformation tensors
at the two stagnation points are

Arr = 1+
−1∓ 6Wi+

√
1± 12Wi(1− 2α)+ 36Wi2

2α
, Arθ = 0,

Aθθ = Aφφ = 1+
−1± 3Wi+

√
1∓ 6Wi(1− 2α)+ 9Wi2

2α
.

 (5.2)

For α� 1, the approximate solution at the front stagnation point is

Arr '
1

1+ 6Wi
, Aθθ = Aφφ '

{
1/(1− 3Wi), for Wi< 1/3,
(3Wi− 1)/α, for Wi> 1/3.

(5.3a,b)

At the rear stagnation point,

Arr '

{
1/(1− 6Wi), for Wi< 1/6,
(6Wi− 1)/α, for Wi> 1/6.

, Aθθ = Aφφ '
1

1+ 3Wi
. (5.4a,b)

On the particle’s slip surface, the polymer has the largest deformation at the front and
rear stagnation points. It is of order 1 at low Wi, and of order Wi/α at high Wi.

Along the symmetry axis, Arθ = 0 and Aθθ = Aφφ , and the components of the
conformation tensor are decoupled. Even though Arr and Aθθ are both O(Wi/α)
near the stagnation points for Wi > 1/3, their evolution is very different along the
downstream and upstream symmetry axes. Figure 1(a,b) shows the distribution of Aθθ
and Arr for the Giesekus model along the upstream (θ = 0) and downstream (θ = π)
symmetry axes. The O(1) terms, i.e. Arr upstream and Aθθ downstream, are similar
to each other. They decrease monotonically as the polymer approaches the particle
and their evolution is not affected by α. On the other hand, the O(Wi/α) terms,
i.e. Aθθ upstream and Arr downstream, are very different. The region of large Aθθ is
much shorter than the region of large Arr. The upstream strong polymer deformation
is in a disk-like region because of the local compressional flow, while the axial
stretching of the polymer decays slowly downstream of the particle and forms a long
birefringent strand. At different α, Arr/(Wi/α) collapses at the same Wi, meaning that
the evolution of the birefringent strand follows a universal law.

Along the upstream symmetry axis the equation for Aθθ is

3
r4

Aθθ +

(
1−

1
r3

)
dAθθ
dr
=

1
Wi
(Aθθ − 1)+

α

Wi
(Aθθ − 1)2, (5.5)

and along the downstream axis the equation for Arr is

6
r4

Arr −

(
1−

1
r3

)
dArr

dr
=

1
Wi
(Arr − 1)+

α

Wi
(Arr − 1)2. (5.6)

The four terms are the stretching, convection, linear and quadratic relaxations,
respectively. In figure 1(c,d), we compare the contribution of each term along the
axes. In the far field (r & 102), the polymer deformation is weak along both axes
and the polymer is in quasi-equilibrium with the linear relaxation balancing the
stretching. In this region, Aθθ = 1 + 3Wi/r4 and Arr = 1 + 6Wi/r4. Very close to the
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FIGURE 1. (a,b) Distributions of polymer conformation tensor of a Giesekus model
along the (a) upstream (θ = 0) and (b) downstream (θ = π) axes of the particle.
(c,d) Contributions of different terms in the constitutive equation to (c) Aθθ along the
upstream axis and (d) Arr along the downstream axis.

particle surface, the two results are also similar, with convection being negligible
and the strong polymer stretching primarily balanced by the quadratic relaxation. The
polymers behave very differently at moderate r upstream and downstream of the
sphere. Along the upstream axis, the polymer deformation drastically decreases in
a short distance away from the particle surface; then it is mainly balanced by the
convection term for r < 10. In contrast, polymer deformation along the downstream
axis decays much slower. With increasing r, polymer stretching first becomes less
important due to the fast decay of the strain rate ∼ 1/r4, and the other three terms are
all important for r< 10. Further increasing r, nonlinear relaxation becomes negligible
and polymer deformation follows an exponential decay over a large range of distances
downstream before undergoing a final power-law decay.

Figure 2(a) shows the distribution of Arr along the downstream axis of symmetry
for different Wi. At Wi= 0.1, Arr ∼O(1) at r= 1 and it almost immediately decreases
with the power law Arr∼ 1+ 6Wi/r4. At higher Wi, Arr∼ (6Wi− 1)/α is large at r= 1.
Using this initial condition in (5.6), neglecting the polymer stretching and assuming
a constant fluid velocity yield an approximate solution

Arr ∼ 1+ α−1

[(
1+

1
6Wi− α

)
e(r−1)/Wi

− 1
]−1

, (5.7)
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FIGURE 2. Distribution of Arr along the downstream axis of symmetry at different (a) Wi
and (b) α. Here r1 and r3 are the boundaries between the three regions with different
approximate fits for Arr; and r2 is the location where Arr − 1 becomes O(1).

which agrees well with the exact solution for Arr > α
−1 as shown in figure 2(a). A

more complete description of numerical results for the polymer conformation evolution
can be expressed in terms of three regions. For r. r1, the decay of the polymer stress
is roughly fitted by a power law, Arr ∼ r−q with q∼ 1.8, and the length of this region
increases with Wi. Further increasing r, nonlinear relaxation becomes small and the
balance between convection and the linear relaxation leads to an exponential decay

Arr ∼ 1+ α−1e−(r−1)/Wi, (5.8)

in the range of r1 . r . r3. Assuming Arr ∼ Wiα−1r−q for r . r1 and balancing the
second and last terms in (5.6), we estimate that Arr decays to O(α−1) at r1 ∼ Wi q.
For Wi = 10, r1 ∼ 18 is consistent with figure 2(a) and it is independent of α as
confirmed in figure 2(b). In the second region, Arr exponentially decays to O(1) at
r2∼Wi ln(α−1). Eventually, Arr becomes weak enough and follows a power-law decay
starting at r3. Balancing the convection and the relaxation terms, we find that r3 should
satisfy r4

3/(αWi)∼ er3/Wi. For Wi= 10, this yields r3 ∼ 270 consistent with figure 2(a).
We consider the polymer deformation on the particle’s slip surface in order to

estimate the radius of the birefringent strand. The birefringent strand will be defined
to be the region where the radial component of the polymer conformation, Arr, is
greater than one-half its maximum value Arr(θ =π). Figure 3(a) shows the distribution
of Arr, Arθ and Aθθ as a function of θ at r= 1. On the slip surface, Aθθ stays O(Wi/α)
over a large area at the front side of the particle, independent of Wi and α. In
comparison, Arr is O(Wi/α) only near θ = π, and the region becomes narrower at
large Wi and smaller α, indicating that the birefringent strand becomes thinner as the
maximum polymer deformation increases. The Arθ value is small until the polymer
approaches the rear stagnation point; then it increases to around Arθ ∼ Wi/α1/2 and
decreases to zero at θ = π. We use the value of Arr to estimate the thickness of the
birefringent strand. To obtain an analytical approximation for Arr valid in the region
of moderately strong stretching 1� Arr �Wi/α, we neglect the nonlinear term and
consider the polymer stretching for the Oldroyd-B model. At r = 1, the governing
equation for Arr satisfies

6 cos θ Arr +
3
2

sin θ
dArr

dθ
+

1
Wi
(Arr − 1)= 0. (5.9)
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FIGURE 3. (a) Distribution of polymer conformation tensor on the particle’s ‘slip’ surface
(r= 1) for a Giesekus model. (b) Evolution of Arr as a function of θ near r= 1 derived
from different models. (Inset) Comparison of strand radius estimated from (5.11) with the
Giesekus and Oldroyd-B models.

In the region close to the rear stagnation point, i.e. for π− θ� 1, Arr grows as

Arr ∼
8

9Wi
(1− θ/π)−4+2/(3Wi). (5.10)

We define the radius of the strand to be 1θh=π− θh, where θh is the angle at which
Arr reaches half its peak value, which is Arr(θ =π)≈ 3Wi/α for the Giesekus model.
Thus, the approximate strand radius is

1θh ∼ (αWi−2)1/(4−2/(3Wi)). (5.11)

The scaling of the strand radius 1θh ∼ α
1/4 at high Wi is the same as that derived

by Harlen (1990). Figure 3(b) shows the evolution of Arr with θ on the slip surface
for Wi = 10 and α = 10−5 for the Giesekus and Oldroyd-B models. The inset is a
plot of the strand radius 1θh versus Wi. The radius of the strand for the Oldroyd-B
model is defined by the location where Arr= 3Wi/α. Equation (5.11) provides a slight
overestimate of 1θh because it does not account for the gradual manner in which
nonlinear relaxation attenuates the polymer deformation. However, it correctly captures
the scaling of 1θh with Wi for a Giesekus model at large Wi. This scaling and the
results for the polymer evolution along the downstream axis will be used to estimate
the O(c) particle velocity at high Wi in § 8.

Now, we consider the FENE-P and FENE-CR models. Near the stagnation points,
the component of the conformation tensor along the stretching direction is the same
for the two models, while the components in other directions are more subtle. At
the front stagnation point, for Wi < 1/3, Aθθ ∼ 1/(1 − 3Wi) and Arr ∼ 1/(1 + 6Wi),
and for Wi> 1/3, Aθθ ∼ (3Wi− 1)L2/(6Wi) for both models, while Arr ∼ 1/(9Wi) for
FENE-P and 1/3 for FENE-CR. At the rear stagnation point, for Wi < 1/6, Arr ∼

1/(1 − 6Wi) and Aθθ ∼ 1/(1 + 3Wi), and for Wi > 1/6, Arr ∼ (6Wi − 1)L2/(6Wi)
for both models, while Aθθ ∼ 1/(9Wi) for FENE-P and 2/3 for FENE-CR. Different
from the Giesekus model, for which the polymer stretch continuously increases with
Wi, the FENE models have a finite maximum mean-square polymer extent of order
L2. Figure 4 shows the evolution of Arr along the downstream symmetry axis in a
FENE-CR fluid. The result for the FENE-P model would be indistinguishable from
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FIGURE 4. Distribution of Arr along the downstream axis for the FENE-CR model.

the FENE-CR in this plot. Compared to the Giesekus model shown in figure 2(a),
the FENE model does not have the power-law decay region close to the particle. For
Wi>1/6, Arr approximately follows an exponential decay Arr=L2e−(r−1)/Wi; it becomes
O(1) at r2∼ 2Wi ln L2 and the power-law decay ∼ r−4 starts when r4

3L2/Wi∼ e(r3−1)/Wi.
These results are very similar to the Giesekus model with α−1 being replaced by L2.

Figure 5(a) shows the conformation tensor as a function of θ on the slip surface
for the FENE models. Similar to the Giesekus model, Aθθ decreases smoothly from
O(L2) at θ = 0 to O(1) at θ =π (results not shown here), while Arr and Arθ stay O(1)
until the polymer approaches the rear stagnation point. At θ =π, Arr reaches a plateau
of order L2, and Arθ scales approximately as L ln L for large L.

To estimate the radius of the strand for the FENE models, one can directly
apply (5.9) with Arr(π = 0) = 1/(9Wi) or 1/3 to find 1θh ∼ (L2Wi)−1/[4−2/(3Wi)] for
FENE-P and 1θh = L−1/[2−1/(3Wi)] for FENE-CR, respectively. The two models have
different strand radii because their initial polymer conformations before entering the
local extensional flow region are different. The initial polymer conformation can be
approximated by its value at the front stagnation point θ = 0, where Arr∼ 1/(9Wi) and
1/3 for FENE-P and FENE-CR, respectively. Harlen (1990) analysed the extension
of a FENE dumbbell polymer in an extensional flow using a local approximation
and derived the same scaling as the FENE-CR model. These scalings are compared
with the numerical results for L = 100 in figure 5(b). The radius of the strand for
the Oldroyd-B model is defined by the location where Arr = L2/2. At high Wi, the
birefringent strand has a major effect on the particle velocity. Therefore, we will later
use the analysis of the strand in this section to estimate the scaling of the particle
velocity.

6. Polymer deformation in the double layer
In this section, we consider the polymer deformation inside the double layer, in

which both the extensional flow near the stagnation points and the high shear rate lead
to strong polymer extension. The polymer enters the double layer from y→∞ at θ =0
in a pre-stretched state, continuously deforms and convects around the particle, and
eventually leaves the double layer at θ =π. Both the pre-stretched and final states of
the polymer match the inner limit of the outer solution at the edge of the double layer.
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FIGURE 5. (a) Variation of Arr and Arθ with θ on the particle’s ‘slip’ surface near the
rear stagnation point for the FENE models. (b) The radius of the birefringent strand as a
function of Wi for FENE-P, FENE-CR and Oldroyd-B models.
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(b) downstream axis for a Giesekus model inside the double layer. The dashed and solid
black lines in the inset of (b) show Arr= 1+ 6Wi(1− e−y) and the solution for an Oldroyd-
B fluid.

Figure 6 shows the polymer conformation tensor along the upstream and downstream
symmetry axes for a Giesekus model. The polymer deformation is zero at y = 0, it
monotonically increases with y and reaches its maximum value at the edge of the
double layer. This result is similar to that for flow past an uncharged rigid sphere, for
which the birefringent strand starts at a location downstream of the rear stagnation
point (Chilcott & Rallison 1988; Harlen 1990). For y� 1 on the downstream axis,
the polymer stretching due to the velocity gradient balances the linear relaxation and
Arr ' 1+ 6Wi(1− e−y). The results for the FENE models show similar behaviour as
the Giesekus model (results not shown here).

The above analysis shows that the polymer is strongly stretched along the local
extensional axes near the upstream and downstream stagnation points, i.e. Arr ∼O(1)
and Aθθ ∼O(Wi/α) near θ =0, and Arr∼O(Wi/α) and Aθθ ∼O(1) near θ =π. At other
angular positions, the coupling between Arr, Arθ and Aθθ in the polymer stretching
term indicates that Aθθ ∼ κArθ ∼ κ

2Arr, which is clearly different from the scalings
near the stagnation points. To simplify the analysis, we consider the polymer on the
particle’s no-slip surface (y = 0), where the convection vanishes and the polymer is
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FIGURE 7. (a) The conformation tensor for the Giesekus model at θ =π/2 and y= 0 as
a function of Wi κ . The solid and dashed lines represent equations (6.1) and (6.2). (b) The
variation of the conformation tensor on the particle’s no-slip surface.

deformed by a local high shear rate κ ∂uθ/∂y = 3κ sin θ/2. For Wi κ � α−1/2, the
polymer deformation is not affected by the nonlinear relaxation and the conformation
tensor for a Giesekus model scales as

Arr ' 1, Arθ '
3
2 Wi κ sin θ, Aθθ ' 1+ 9

2(Wi κ sin θ)2, (6.1a−c)

which is the same as the polymer stretching in a local simple shear flow with a shear
rate 3κ sin θ/2. The polymer is undeformed in the velocity gradient direction and shear
flow causes a first normal stress difference. On the other hand, for Wi κ� α−1/2, the
nonlinear relaxation becomes important and the scaling becomes

Arr ' 2(3Wi κ sin θ)−1/2α−1/4, Arθ ' α
−1/2, Aθθ ' (3Wi κ sin θ)1/2α−3/4. (6.2a−c)

This scaling is exact as Wi→∞, for which the polymer stretching due to the shear
flow is balanced by the nonlinear relaxation. Figure 7(a) shows these two scalings
for the Giesekus model at θ = π/2 and y = 0 compared with the numerical results.
For Wi κ > α−1/2, the nonlinear relaxation modulates the polymer deformation in
different directions: the polymer is less stretched along the flow direction and it is
compressed in the velocity gradient direction. Figure 7(b) shows the distribution of the
conformation tensor as a function of θ at y= 0. In contrast to its fore–aft asymmetric
profile on the slip surface in the outer region (see figure 3), the conformation tensor
on the no-slip surface is symmetric about θ = π/2. For Wi κ < α−1/2, polymer
deformation varies smoothly on the particle’s surface. For Wi κ > α−1/2, Arr and Arθ

have plateaus in the middle and vary quickly near the stagnation points. This again
reveals the effects of nonlinear relaxation on strong polymer deformation by a shear
flow.

For the FENE models, the results are the same as (6.1) for Wi κ� L. For Wi κ� L,
the conformation tensor is

FENE-P: Arr '

( √
2L

3Wi κ sin θ

)2/3

, Arθ '
√

Arr/2L, Aθθ ' L2,

FENE-CR: Arr = 1, Arθ ' L/
√

2, Aθθ ' L2.

 (6.3)
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Inside the double layer, full polymer extension can occur not only in the extensional
flow region near the stagnation point, but also in the high-shear regions near θ =π/2
where the local shear rate is O(κ). This is one of the key features of electrophoresis
in a viscoelastic fluid. With the above analysis of the polymer deformation, we now
calculate the particle velocity.

7. Particle velocity at low Weissenberg number
For Wi ζ � 1, an analytical expression for the particle velocity and the flow field

can be derived. We expand the O(c0) conformation tensor A in terms of Wi, i.e. A=
A(0)
+Wi A(1)

+Wi2A(2)
+Wi3A(3) and the polymer stress τ (1)=A(1)

+Wi A(2)
+Wi2A(3).

Note the superscript on A here represents the order of Wi. Solving (3.6) to successive
orders for the Giesekus model, one derives

A(0)
= I, A(1)

= 2S(0), A(2)
=−

O
A(1)
− αA(1)2,

A(3)
=−

O
A(2)
− α(A(1) · A(2)

+ A(2) · A(1)),

 (7.1)

where A(0) is the equilibrium polymer conformation, A(1) is the Newtonian response
of the polymer and higher-order terms represent the non-Newtonian polymer stress.

The above equations represent an incompressible third-order fluid for the polymer
stress (Bird, Armstrong & Hassager 1987)

τ (1) = A(1)
+ a1

O
A(1)
+ a2A(1)2

+ b1

O
O
A(1)

+ b2(
O
A(1)
· A(1)

+ A(1)
·

O
A(1))+ b3(A

(1)
: A(1))A(1)

+ b4I, (7.2)

with a1=−Wi, a2=−Wiα, b1=Wi2, b2= 2Wi2α and b3=Wi2α(α+ 1/2). The last
term is the isotropic stress component and b4 is a function of A(1). In the momentum
equation, the contribution of A(1) is the same as the Newtonian viscous stress with an
increased fluid viscosity equal to 1 + c. Owing to fore–aft symmetry, A(2) does not
affect the particle velocity (Chilcott & Rallison 1988), so one has to consider A(3).
Integrating equation (3.11) and using (7.2), the slip velocity is found to be

u(1)s ' −
3
2

sin θ +
9(22− 5α)Wi

32
sin 2θ

−
27Wi2

64
(11 sin θ + 63 sin 3θ)+

9α(3− 2α)κ2

8
Wi2 sin3 θ, (7.3)

where in the last term, we neglected the contribution from the outer region due to the
shear-thinning effect and only retained the O(κ2) term from the inner region.

The complete outer solution for a squirmer in a Giesekus fluid at small Wi can be
found in Datt & Elfring (2019). From (4.5), we get the O(c) particle speed

U(1)
'−1−

2187
2860

Wi2
+

3α(3− 2α)κ2

5
Wi2. (7.4)

In the above equation, the first term is due to the polymer contribution to the
zero-shear-rate viscosity acting inside the double layer, the second term is due to
polymer elasticity, and the last term is related to the shear-thinning effect. It is
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worth mentioning that, in a simple shear flow of a Giesekus fluid at low Wi, the
viscosity of the fluid is µ ∼ 1 + c[1 − 2(b2 − b3)γ̇

2
] = 1 + c[1 − α(3 − 2α)Wi2

]

(Bird et al. 1987), which shows a great resemblance to the third term in (7.4)
except for the numerical factor. The polymer zero-shear-rate viscosity and the elastic
effect of the polymer reduce the particle velocity, while shear thinning increases
it. The velocity contributions from the inner and outer regions are, respectively,
U(1)

in ' −1 + 9Wi2/10 + 3α(3 − 2α)κ2Wi2/5 and U(1)
out ' −1737Wi2/1430. The outer

solution U(1)
out recovers the result derived in Datt & Elfring (2019) after multiplying by

8/27 to account for the different normalization of velocity used in their work. The
increased viscosity and shear-thinning effects only come from the inner region, while
the elastic contributions arise in both regions. For α& 243/(572κ2), the shear-thinning
effect overcomes the elastic effect, and U(1) increases with Wi; otherwise, it decreases.
This behaviour will be seen in our numerical results in § 8.

To find the flow field, we need to directly solve the momentum equation (3.7) with
the slip velocity (7.3). Here we consider the flow field only up to order Wi; the
solutions are

u(1)r =
1
r3

cos θ −
9(22− 5α)Wi

64

(
1
r2
−

1
r4

)
(1+ 3 cos 2θ), (7.5a)

u(1)θ =−
1

2r3
sin θ +

9(22− 5α)Wi
32

1
r4

sin 2θ, (7.5b)

p(1) =−
9(22− 5α)Wi

32r3
(1+ 3 cos 2θ)+

9Wi
2r8

(2+ cos 2θ). (7.5c)

The first term in the velocity is due to the zero-shear-rate polymer viscosity and has
the same form as u(0). The second term is induced by the slip velocity of order Wi in
(7.3). These two terms are modifications of the slip velocity by polymers and would
not appear if one were to assume a specified slip velocity. The polymer stress in the
outer region does not affect the fluid velocity and it only induces a pressure field. In
the pressure field, the first term is induced by the slip velocity of order Wi, and the
second term, which is proportional to 1/r8, is caused by the polymer stress in the bulk
region. If we compare (7.5) to the squirmer model, it can be found that the flow field
is puller-like (Blake 1971), i.e. the thrust is generated in the front of the sphere and
the fluid velocity, which decays as 1/r2 in the far field, is inwards in the front and
back of the sphere and outwards at the sides. The strong shear flow in the double layer
at the sides of the particle leads to strongly stretched, tangentially aligned polymers
(large Aθθ in figure 7). These polymers pull fluid inwards from the front and back of
the particle and push it outwards at the sides to create a puller flow. The ratio between
the second and first modes of the puller is β = 3(22− 5α)cWi/8.

8. Particle velocity at moderate Weissenberg number
At moderate Weissenberg number, we apply the generalized reciprocal theorem

and numerically calculate the integral (4.5) to derive the particle velocity. Following
Koch et al. (2016), the volume integral is performed along streamlines to avoid
interpolation. The streamlines are determined by the leading-order fluid velocity u(0)
in (3.4) and (3.1b,c). If we define P=

∫
∇û : τ (1) dt to be a time integral along the

streamline, it is easy to show that

∇û : τ (1) =
dP
dt
=∇ · (u(0)P), (8.1)
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where the second equality is true for a steady incompressible flow. Here û is the
fluid velocity of the comparison problem, which is the translational motion of a rigid
sphere in a Stokes flow given in (4.3). Applying the divergence theorem and using the
fact that there is no flow across streamlines, the volume integral in (4.5) over a large
streamtube around the particle can be transformed into a surface integral on a circular
area A downstream. The particle velocity due to the polymer outside the double layer,
U(1)

out, is written as

U(1)
out = −

1
6π

∮
A

(
(u(0) · n)

∫ t1

t0

∇û : τ (1) dt
)

dA

= −
1
4

∫ Rmax

0
R dR

∫ t1

t0

1
r4
(2 sin θ τ (1)rθ − (r

2
− 1) cos θ(2τ (1)rr − τ

(1)
θθ − τ

(1)
φφ )) dt.

(8.2)

In the above equation, the undistorted polymers enter each streamtube at t0 and leave
the tube at t1. The time integral calculates the polymers’ cumulative effects on the
particle velocity along each streamline. In our calculation, the streamtube starts from
z= 100 upstream and ends at z=−200 downstream, where z is the location along the
particle velocity direction and the sphere is centred at z= 0. The radius of the circular
area A at the downstream exit of the tube is Rmax = 100. We use a non-uniform grid
size along the R direction with refinement near the symmetry axis of the sphere to
capture the birefringent strand. The typical grid size in the refined region is dR =
2× 10−5, and the time step is dt= 5× 10−5.

For U(1)
in , the particle velocity due to the polymer inside the double layer, instead of

directly calculating the integral inside the double layer and the conformation tensor at
r = 1 from the outer solution, we use a uniformly valid velocity field to first derive
U(1) using the same equation (8.2) for the outer region and then subtract U(1)

out. The
uniformly valid velocity field, obtained by summing the inner and outer solutions and
subtracting the matching solution, is

u(0)r =

(
1
r3
−

3
κ
(e−y
− 1)

)
cos θ, (8.3a)

u(0)θ =
(

1
2r3
−

3
2

e−y

)
sin θ −

3
2κ
(2− 2e−y

+ ye−y) sin θ. (8.3b)

Although u(0)θ is only known to O(1), we include an O(1/κ) term that allows the
continuity equation to be satisfied on the outer length scale. Figure 8(a) shows the
O(c) particle velocity calculated using the composite velocity (8.3) and the exact
solution derived based on Henry’s solution (Henry 1931). The velocity given by (8.3)
agrees well with the exact solution when κ is large. In figure 8(b), the numerical
result gives U(1)

=−1.00274 at Wi= 0 because of the error in the composite velocity,
while it agrees well with the asymptotic solution (7.4) for small Wi after a vertical
shift.

In the Giesekus model, non-zero α causes both shear thinning and nonlinear
relaxation of the polymers. Figure 9(a,b) shows the O(c) particle velocity in a
Giesekus fluid for different α at small Wi. As Wi→ 0, the O(c) particle velocity
U(1)
→ −1 because of the polymer viscosity acting inside the double layer. With

increasing Wi, the shear-thinning effect reduces the polymer viscosity and polymer
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FIGURE 8. (a) Comparison of the O(c) particle velocity U(1) calculated based on
the composite velocity (8.3) and Henry’s solution for the Giesekus model, α = 10−2.
(b) Comparison between the numerical and the small-Wi asymptotic solutions for the
Giesekus model, κ = 103. The asymptotic solution has a vertical shift to match the
numerical result at Wi= 0.
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FIGURE 9. The O(c) particle velocity U(1) as a function of Wi for the Giesekus model,
κ = 103.

elasticity comes into play. Then U(1) may either increase or decrease with increasing
Wi depending on the value of α. On the other hand, U(1)

out becomes increasingly
negative as Wi increases, and the effect is most dramatic above the critical
Weissenberg number, Wi = 1/6, as the birefringent strand forms. Further increasing
Wi, U(1)

out slowly increases with Wi, because the birefringent strand becomes thinner
and produces less drag on the particle. At high Wi, the contribution of U(1)

in is less
important than U(1)

out for large α > κ−2, where the maximum polymer extension is
O(Wi/α). For α < κ−2, the maximum polymer extension is limited by the thickness
of the double layer and U(1)

in becomes comparable with U(1)
out. Depending on Wi and

α, U(1)
in can be either positive or negative.

Figure 10(a) shows the contribution of each component of the polymer conformation
tensor to the particle velocity U(1)

in . For Wi< 1/6, Arθ makes the dominant contribution
to the particle velocity, and its effect decreases with Wi due to shear thinning. For
Wi . 3, Arr increases the particle velocity, and at higher Wi, it decreases the velocity.
The contribution of Aθθ and Aφφ to the particle velocity is small compared to the other
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two terms, because the strong polymer stretching by the shear flow inside the double
layer does not directly influence the drag on the particle. Figure 10(b) shows the
contribution of each component of the polymer conformation tensor to U(1)

out. At small
Wi, all components roughly cancel each other and U(1)

out ∼ 0. Once Wi is greater than
the critical value, 1/6, the contribution of Arr quickly increases and dominates over
all other terms. The stress component, Arr, always reduces U(1)

out and its contribution is
non-monotonic with increasing Wi, due to the trade-off between the increase of length
and decrease of radius of the birefringent strand with increasing Wi.

Figure 11(a) shows the particle velocity versus Wi at different α on a log scale. The
O(c) particle velocity scales as U(1)

∼ α−1/2 at high Wi. This scaling can be derived
from the scalings of the birefringent strand in § 5. Inside the birefringent strand, Arr
decays as Arr∼Wiα−1r−1.8 and then exponentially decays, and the radius of the strand
is 1θh∼α

1/4Wi−1/2. Using (8.2) and noting that ∇û decays as 1/r2, the particle speed
scales as

U(1)
∼1θ 2

h

∫
∞

1

1
r2

Arr

Wi
dr∼ α−1/2Wi−1. (8.4)

In figure 11(b), the particle velocity roughly scales as U(1)
∼Wi−2/3 at large Wi. Its

difference from the predicted scaling ∼Wi−1 may be attributed to several assumptions
made in the scaling analysis. In particular, it was assumed that the change in particle
velocity resulted entirely from Arr contributions arising in the portion of a birefringent
strand of constant radius for which Arr ∼ α

−1e−r/Wi.
For the FENE models, figure 12 shows the particle velocity as a function of Wi

for different L. For FENE-P and FENE-CR fluids the U(1)
out values are close to each

other. For Wi>1/6, U(1)
out decreases dramatically and its value is highly dependent on L.

The total velocity U(1) of the particle in a FENE-P fluid is larger than in a FENE-CR
fluid, because of the shear-thinning effect. The difference becomes less noticeable for
L > κ when the polymer reaches the same maximum extension of order κ in both
fluids. When L� κ , U(1)

out largely overestimates the particle velocity, because it neglects
the restriction of polymer extension due to the finite thickness of the double layer.
In § 5, we showed that Arr ∼ L2e−(r−1)/Wi in the birefringent strand for both models,
and the strand radius at high Wi is 1θh ∼ L−1/2Wi−1/4 for FENE-P and 1θh ∼ L−1/2

for FENE-CR, respectively. Based on (4.5), we get U(1)
out ∼ LWi−3/2 for FENE-P, and

U(1)
out ∼ LWi−1 for FENE-CR. The scaling U(1)

out ∼ L is consistent with the numerical
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FIGURE 11. (a) The particle velocity U(1) versus Wi in a Giesekus fluid plotted on a log
scale, κ = 103. From bottom to top, α decreases from 10−1, 10−2, . . . to 10−7. (b) The
particle velocity U(1) versus α at Wi= 5.
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FIGURE 12. The particle velocity U(1) and U(1)
out versus Wiout in FENE fluids plotted on

a log scale, κ = 103. In (a), L increases from 10, 102, . . . to 107 from bottom to top.

results. At high Wi, both models show U(1)
out ∼Wi−1/2, which is closer to the prediction

for FENE-CR.
To see why FENE-P has the same velocity scaling as FENE-CR, figure 13 plots

the distribution of the polymer conformation tensor Arr(R) with radial distance from
the symmetry axis of the sphere at different downstream locations z. Close enough
to the particle, where the local high strain rate stretches the polymer close to its
maximum extension, the FENE-P model has a smaller birefringent strand thickness
than the FENE-CR model as predicted for the rear stagnation point (see figure 5b).
Away from this region, the nonlinear relaxation quickly becomes less important and
the birefringent strands for the two models behave similarly. Therefore, both FENE
models should have the same scaling U(1)

out ∼ LWi−1/2.
Finally, figure 14 shows the effects of the double-layer thickness 1/κ on the particle

velocity U(1) at a fixed Wi = 1. Note that the outer velocity U(1)
out is independent of

κ . In a Giesekus fluid with large α, U(1) increases with increasing κ due to the
stronger shear-thinning effect in the double layer. At small α, U(1) first decreases
with κ due to the stronger polymer stretching in the double layer. In both cases,
U(1) eventually reaches a plateau after α−1/2 > κ because the polymer stretching
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FIGURE 13. The distribution of the polymer conformation tensor Arr(R) with radial
distance from the symmetry axis of the sphere at different downstream locations z, Wi= 5.

0 5000
˚

10 000 0 5000
˚

10 000

0(a) (b)

-0.5U
(1

)

-1.0

U(1)/15

U(1)/40

å = 10-1

å = 10-2

å = 10-7

0

-1

-2

-3

-4

-5

FENE-P, L = 102

FENE-P, L = 106

FENE-CR, L = 102

FENE-CR, L = 106

FIGURE 14. The particle velocity U(1) for particles with different double-layer thickness
1/κ in (a) Giesekus and (b) FENE fluids at Wi= 1.

is not affected by the nonlinear relaxation. The FENE-P model shows a similar κ
dependence as the Giesekus model if one replaces α−1 by L, while the FENE-CR
shows a monotonic decrease of U(1) with increasing κ . These results show that the
electrophoretic velocity in a polymer solution with a thin double layer is affected by
the electrolyte concentration, in contrast to the κ-independent velocity in a Newtonian
fluid.

9. Concluding remarks
To summarize, we investigated the electrophoresis of a spherical particle with a

thin double layer in a dilute polymer solution. The polymer does not directly change
the ion concentration or the electric field. We performed a perturbation for small
polymer concentration, deriving the leading-order polymer deformation induced by
the Newtonian fluid flow, and used the generalized reciprocal theorem to determine the
particle velocity. Our analysis shows that the particle velocity always decreases due
to both the polymer contribution to the viscosity and fluid elasticity. Viscoelasticity
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significantly affects the particle motion, indicating that a shear-thinning viscosity alone
is insufficient to describe the electrophoresis in a polymer solution. At high Wi, the
polymer is strongly stretched by the local extensional flow behind the rear stagnation
point of the particle, and forms a thin birefringent strand, which generates a large
drag on the particle. The results for the birefringent strand, such as the scalings of
the conformation tensor, the exponential decay of polymer stretch and the radius
of the strand, are very similar to those of previous studies of birefringent strands
induced by uncharged dispersed phases. In particular, the outer problem, which only
considers the bulk region around the particle and uses a slip velocity to represent
the double layer, resembles the flow around a spherical bubble. Inside the double
layer, however, the polymer is undeformed at the rear stagnation point on the no-slip
surface and it monotonically stretches approaching the edge of the double layer. This
result is similar to a polymer flow around a solid sphere. Despite these similarities,
electrophoretic motion of a particle in a polymer solution is distinguished from other
flows by the very thin double layer around the particle, where the local high shear
rate of order κ can generate strong polymer extension. This phenomenon is a typical
feature in viscoelastic electrokinetic flows with thin double layers.

It is important to describe the polymer deformation inside the double layer or
region leading to slip at a surface in electrophoresis, other electrokinetic flows and
flows driven by self-propelled particles for several reasons. First, while most previous
studies on self-propelled particles have neglected the effects of polymer on the slip
velocity, our analysis shows that the polymer changes the slip velocity by three effects:
the zero-shear-rate polymer viscosity, shear thinning and elastic deformation. At small
Wi, the particle’s velocity is mainly affected by the first two effects, and the last effect
changes the flow field around the particle from neutral squirmer to puller. At large
Wi, the polymer extension inside the double layer is strong and its contribution to the
particle velocity is comparable to that of the polymer outside the double layer. Even
if the polymer radius of gyration is comparable with the double-layer thickness, the
polymer segments lying within the double layer will be strongly stretched along the
streamlines and will considerably alter the inner flow. The polymer stress may then
be considered as an average over part of the polymer chain within the inner region,
and the continuum treatment of viscoelasticity in this paper provides a preliminary
indication of the importance of viscoelasticity under such circumstances. Second, the
polymer remains at the isolated stagnation points on the slip surface for an infinitely
long time and nonlinear relaxation or finite extensibility are necessary to prevent
infinite extension for the outer problem. However, for a real electrophoretic particle,
the finiteness of the double-layer thickness itself may limit the polymer extension
even without the nonlinear effect of the polymer. Lastly, the high shear rate inside
the double layer generates a strong polymer stretch, which has different scalings from
the extensional stretch of the polymer. Although its effects on the particle velocity
are smaller than those due to the extensional stretch in the birefringent strand, it may
have other important influences on the flow, for example, affecting the stability in an
electroconvective flow (Li, Archer & Koch 2019).

The electrophoretic velocity of a particle in a viscoelastic fluid shows an explicit
dependence on the particle size, in contrast to the comparable problem in a Newtonian
fluid. The key dimensionless parameter that affects the particle velocity is the
Weissenberg number Wi = λU∗/a. Our results show that particle speed has a strong
dependence on Wi in the range of Wi . 3. In a typical electrophoresis process,
the double-layer thickness is around 10 nm, the zeta potential is 10–102 mV, the
applied field E = 1–10 V cm−1, and the fluid viscosity for aqueous solvents such as
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glycerine–water mixtures is 10−3–10−1 Pa s or the viscosity for polymer gels such as
agarose is 1–102 Pa s, so the typical particle speed ranges from 0.1 to 10 µm s−1.
If we consider particles with radii of 0.1 and 1 µm with electrophoretic velocity of
U∗= 1 µm s−1, then the Weissenberg number is Wi= 1 and 0.1 in a polymer solution
of relaxation time 0.1 s. Depending on the parameters for the polymer model, the
O(c) particle velocity U(1) may vary over several orders of magnitude. The result that
U(1)
∼ α−1/2 or L at high Wi means that the separation of particles by their size is

more effective in a solution of soft high-molecular-weight polymers.
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