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ABSTRACT. The boreal vegetation of the sub-Arctic comprises more than 30% of the Earth’s forest area and
plays a major role in controlling the global environment. In the 20th century the boreal vegetation of Fennoscandia
was significantly changed by heavy industrialisation leaving many forest areas damaged or dying. Due to severe
climate conditions of the sub-Arctic such vegetation changes are traceable over long periods of time. This provides an
opportunity to study all types of human impact on vegetation in time and to develop methods to monitor geographical
and structural changes in the vegetation cover. Here we present the first part of a larger study in which we use the
remote sensing technique to investigate the dynamics of the boreal vegetation in Fennoscandia in context of human
impact. We have developed a novel method for an automated analysis and mapping of vegetation and of all types
of human impact based on a single support-vector-machines classifier (for the whole area). Implemented with free
and open source software the method uses Landsat TM and ETM+ band data (for which it automatically performs
atmospheric correction) and a number of indices like NDVI, NBR, etc. The accuracy of the 16-class classification has
been assessed using field data and literature sources and determined to be 74.1%. The method has been successfully
applied to a study area around Monchegorsk, Kola peninsula, Russia, the most industrialised part of northern Europe.
We have characterised all major types of human impact on the boreal forest and tundra vegetation performing the
change detection analysis in an area of 1750 km2 between 1986 and 2005. The analysis has confirmed industrial
atmospheric pollutions as the primary type of human impact here. We have discussed the role of forest fires and
uncovered temporal trends in the vegetation cover. We have found that during the 19 years covered by the study more
than one third of all coniferous forest in the area was transformed primarily to wetland, deciduous forest and typical
tundra vegetation. The success of the method in this area allows us to extend the study to the rest of Fennoscandia and
look at large scale changes in the boreal vegetation cover.

Introduction
There are many factors that define the dynamics of the
global environment (Svetlosanov 2009). To a large extent
these factors have natural causes, such as varying levels
of solar radiation (Strahler and Strahler 2005; Panin and
others 2008) or volcanic activity (Smithson and others
2002). The natural transformation of the environment
is a slow process that takes years, decades or often
centuries. This allows the environment to stay stable and
in balance (Ives and Carpenter 2007). At the same time,
with the rise of man, human activity has become another
substantial factor impacting the environment, often over
much shorter time intervals. Farmland development and
forest logging (often related to the former) had dominated
human impact on the environment for centuries (Marsh
and Grossa 2002). However, the rapid industrial devel-
opment of the 19th–20th centuries and the fast growth
of the world’s population have changed the way man
transforms the environment. Greenhouse gas emissions,
toxic air pollutions, industrial clear cutting, toxic landfill
and water waste are among those activities that define
human impact today. Even though the extent of the global
human impact on the environment is currently under-
going the scrutiny of the scientific community and the
public in many developed countries, little is known about
how local and measurable human impacts are linked
to changes in the global environment. Understanding

those provides the possibility of differentiating between
changes caused by man and those occurring naturally,
and in turn, developing effective methods of reducing the
impact of man.

Bonan and others (1992a), ACIA (2005), Smithson
(2002), AMAP (2006) and others show that the boreal
vegetation plays one of the primary roles in controlling
the global heat and radiation balance, hydrological cycle,
ocean currents etc. This is not surprising as the con-
iferous boreal forest comprises 30.5% of the Earth’s
forest area (FAO 2002), whilst the boreal region covers
more than 17% of the Earth’s terrestrial area (ACIA
2005). Tundra and the boreal forest together hold about
40% of all soil carbon (Melillo and others 1993). Fur-
thermore, Kruchkov (1991) and Tømmervik and others
(2003) show that the position and structure of the boreal
vegetation depend primarily on climatic conditions and
human activity. This defines the boreal vegetation as
a feedback system, which is both controlled through
the environment and external impact, and itself controls
the environment. Severe weather conditions with long
winters, late snowmelt and short vegetation seasons make
any natural transformation and restoration of the northern
environment even slower than elsewhere (Shugart and
others 1992; Hofgaard 2004). Changes are conserved
and accumulated over a very long period of time and
the restoration takes years. Any human induced changes
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are, therefore, highly visible. The factors described above
make the boreal vegetation an ideal target to study all
types of human impact on vegetation in time and to
develop methods to monitor geographical and structural
changes in the vegetation cover.

The richness and variety of natural resources have
attracted people to sub-Arctic and Arctic for more than
a century. The northern parts of Fennoscandia, and in
particular the Kola peninsula, have become the most
industrialised and economically developed regions of
the north. The vegetation in Fennoscandia is, therefore,
greatly affected by various types of human activity, for
example reindeer grazing, logging, forest fires as well
as industrial and residential development. Unfortunately,
available publications tend to deal with just one pre-
vailing type of impact for each respective study area.
For example, Tømmervik and others (2004) as well as
Johansen and Karlsen (2005) have researched reindeer
grazing in Finnmark, Rees and Williams (1997) as well as
Tømmervik, Johansen and Pedersen (1995) have studied
industrial atmospheric pollutions around Monchegorsk
and Nikel in Russia, and the UNEP (2005) report ad-
dresses forest logging in Lapland, Finland, and so on. In
the whole of Fennoscandia one observes the following
five major types of human impact on the boreal vegeta-
tion: (a) industrial atmospheric emissions, (b) forest fires,
(c) forest logging, (d) reindeer grazing and (e) industrial
and residential infrastructure development. We believe
that in order to quantify the dynamics (changes in pos-
ition, structure and regeneration capacity) of the boreal
vegetation (separating natural contributions from those
caused by human impact), one needs to produce com-
prehensive mappings of forest and tundra along with all
the types of human impact characteristic for the region.
Otherwise, it is impossible to account for fluctuations
in the vegetation cover that are due to natural causes.
Therefore, we have systematised all the types of human
impact and integrated them all into our method.

This paper is a part of a larger study, in which we
investigate the dynamics of the boreal vegetation in Fen-
noscandia in time and in the context of human activity.
Any detailed data for an area of the size of Fennoscandia
would be massive, and comprehensive field data would
be tedious to collect. The element of temporal analysis
adds further complexity to the problem. Rees and others
(2003) and Jensen (2007) demonstrate how remote sens-
ing methods and satellite imagery provide an effective
way to monitor the environment and human activity on a
large scale, in particular over the areas that are difficult
to reach, such as those in the north. High resolution
satellite imagery has been widely used by a number of
research teams to study the northern vegetation and the
impact of human activity on it (Toutoubalina and Rees
1999; Virtanen and others 2004; Tømmervik and others
2004; Johansen and Karlsen 2005; Rees and Danks 2007;
Hofgaard and others 2010). The wide range of spectral
reflectance in multispectral satellite imagery provides a
means for differentiating between many types of land

cover like coniferous and deciduous forests, tundra, wa-
ter, eroded soil or industrial development. Therefore, we
use the remote sensing approach in our study. It allows us
to perform both qualitative and quantitate assessment of
land cover and of environmental changes caused by both
natural factors and human activity.

The scope of this paper is limited to developing
the technical approach and applying it to a test area
around Monchegorsk, Kola peninsula, Russia. Here we
describe the very first successful results in analysing the
dynamics of the boreal vegetation: we have performed
a comprehensive automated analysis of all changes to
the boreal vegetation over 19 years around Monchegorsk
mapping all types of human impact in time. In order
to achieve a high throughput (required in future to pro-
cess information for all of Fennoscandia) we have used
publicly available archives of satellite imagery (Earth
Explorer, earthexplorer.gov; Global Land Cover Facil-
ity, www.landcover.org) and our own field data (both
described in detail later), and have developed a novel
method that can perform image analysis, normalization
(atmospheric correction), land cover classification and
mapping in a fully automated manner. Automating the
workflow has opened the possibility of using high res-
olution multispectral Landsat TM and ETM+ imagery
without compromising the general nature of the study.
Having such a method at hand opens a real opportunity to
map human impact on vegetation over the vast territory of
Fennoscandia within days rather than years and to mon-
itor and study its structural and geographical dynamics.

Study area

In this paper we perform an automated analysis of human
impact on the boreal vegetation for the area around
Monchegorsk, Kola Peninsula, Russia. This area has seen
high levels of industrial development since the early
1930s when the copper-nickel smelter Severonikel started
to operate using local nickel-copper ore (Kola GMK
2005). The area is situated in the boreal forest zone
beyond the Arctic Circle, centred around 67◦56′22′′N,
32◦54′56′′E (Fig. 1) and generally suffers from toxic
air pollution, fires and occasional logging. The terrain
height varies between 100 m and 1250 m above sea level.
The forest zone extends up to 350–400 m. The forest
is primarily coniferous (Picea spp., Pinus spp.) with
occasional deciduous species (Betula spp., Salix spp.). At
higher altitudes the forest is followed by birch shrub and
mountain tundra, which features dwarf shrubs, lichen and
moss.

The vegetation around the smelter is suffering from
highly toxic atmospheric emissions of sulphur dioxide,
carbon monoxide and heavy metals (Glazovskaya and
Kasimov 1987; AMAP 1997; Zhirov and others 2007;
Lukina and others 2005). Local topography plays an es-
sential role in the spread of air pollutants. The mountains
of Monchetundra effectively block their spread south-
wards. Affected by the long term wind pattern (Yakovlev
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Fig. 1. Geographical location of the study area around
Monchegorsk in Kola peninsula, Russia, as shown on
Russian topographic maps. The study area is located
beyond the Arctic Circle in the boreal forest zone.

1961) the area of the highest air pollution stretches
northwest from the smelter.

Already in the early years of operation the adverse
effect of the smelter activity on the ecosystem became
obvious. By 1946 the surrounding forest looked fully dry
within 6 km around the smelter (Karpenko 1994). By
1970s this same area was fully covered by the destroyed
forest (Doncheva 1978), with similar situations reported
for other smelters of Kola peninsula. The scale of the
impact increased substantially along with the capacity of
the smelter and after it was moved to operate using sul-
phur rich ore from Talnah in 1968 (Kruchkov and Syroid
1984; Lukina and Nikonov 1993). At that point the level
of sulphur in the ore rose from 3.5% to 25%. According
to Kruchkov and Syroid (1984), and Doncheva (1978) by
the 1980s the ecosystems around the smelter had turned
into those at different stages of industrial damage, from
slightly damaged (up to 20% of dead shrubs and 40–
60% of dead trees) to technogenic barrens (areas free
of vegetation). By 1980s the Severonikel industrial area
had spread to 728 km2 including 8 km2 of technogenic
barren (Yarnishko 2005). At present, the total area of

Table 1. Landsat imagery used for change detection
and generation of land cover maps for the area of
Monchegorsk

Satellite Sensor Path/Row Date

Landsat 5 TM 188/012 28 July 1986
Landsat 4 TM 186/012 11 July 1988
Landsat 4 TM 186/013 11 July 1988
Landsat 7 ETM+ 188/012 26 July 2000
Landsat 5 TM 187/012 09 July 2005

dead forest stretches 4–5 km south and 6–8 km north of
Severonikel (Golubeva and others 2003). Fires are wide
spread around the smelter. Many present aged burnt areas
are 30 to 40 years old and are located in the industrially
damaged dry forest. Thereby the state of vegetation
around Monchegorsk is controlled by two main factors:
the quantities of atmospheric pollution and the frequency
of fires in places of destroyed vegetation.

Logging in this area is mostly dated about 70–80
years and goes back to 1940s and 1950s when the
cities of Monchegorsk and Olenegorsk (to the north
of Monchegorsk) were under development. Some new
logging areas are linked to building of new roads or other
types of communications (Nikonov and others 2005) and
to clearing of land for agricultural use, but those are fairly
rare.

The implicit industrial impact from the smelter
spreads over even larger distances: chlorosis and nec-
rosis of vegetation stretch as far as 55–60 km north,
while the geochemical analysis of samples of plants and
soils shows some impact even at distances of 80–90
km (Kruchkov 1993). Metal dust from Kola smelters
was detected as far as North America (Kruchkov and
Makarova 1989).

Among the mentioned five types of impact, grazing
is not typical for this area and has not been detected
in any measurable quantity. Similarly, no snow can be
detected in the study area, as it does not include any high
mountains.

Data

We have used Landsat TM and ETM+ imagery to per-
form the change detection in the study area (Table 1).
Landsat TM and ETM+ each have 7 bands in the visible
and infrared electromagnetic spectra (as compared to
just 4 in MSS sensors) and each additional band adds
further information to the classifier generally improving
its accuracy (unless fully correlated). The bands of TM
and ETM+ sensors are comparable.

The growing season in northern Fennoscandia peaks
between the middle of July and the beginning of August
(Golubeva and others 2003; Shutova and others 2006).
Therefore, all the imagery was acquired in this period (but
for different years, see Table 1). Landsat data can only
be used if the sun elevation is greater than 30◦ (USGS
2010), otherwise the radiance reflected from the Earth’s
surface in the visible and infrared bands is too low for the
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sensors (Marshall and others 1993). Whenever possible
we have also tried to pick images with low cloudiness.
Summer cloudiness is very characteristic for the region
and, therefore, it was impossible to avoid it completely.

One of the main differences that our method demon-
strates against those currently in use is in the following.
Usually a separate classification problem is solved for
every image whereas we use one and the same classifier
trained on a large amount of field data and expert know-
ledge from a very large area (both in time and space). This
improves the robustness of the results, their comparability
and reproducibility. This further ensures that our method
can be applied to a larger area than just the immediate
study area (like that of Fennoscandia) producing accurate
land cover maps.

During the initial stage of classification an overall
area of 272800 km2 comprising parts of northern Norway,
Sweden, Finland and Russia was selected based on the
same principles as used for change detection described
above. For training the classifier (see the Methods section
below), we also used an extensive archive of field data
collected in Fennoscandia during the summer seasons
of 1994, 1996, 2001–2004, 2007 and 2008 as well as a
variety of maps and literature sources including statistical
air pollution and meteorological data.

Methods

Image processing principles
As a part of a larger study, which investigates the dynam-
ics of the boreal vegetation in Fennoscandia, we have
developed a novel method for performing the change
detection and generating land cover maps. A detailed
description of the method is a topic for a separate pub-
lication; here we provide only a high level overview
essential to understand the approach and concentrate on
the change detection results. The method is based around
a supervised multi-class classification of multispectral
remote sensing data. This general principle is widely used
in remote sensing and environmental studies (Lillesand
and Kiefer 2000; Jensen 2007).

The novelty of our method lies in the following three
principles:

1) Applying a single classifier to the entire dataset.
We train a single classifier for the whole area
(like Fennoscandia). Typically researchers per-
form independent classification for individual
images. This makes the results subjective, of-
ten not reproducible and difficult to compare
(in time, between regions, or between research
teams). Having a single classifier addresses all
these issues. However, it introduces further com-
plexity for image preprocessing and defines ex-
tra requirements described below.

2) Using automation scripts to speed up map cre-
ation. We incorporate the preprocessing, clas-
sification and post-processing (mapping) into
a single automation script. This allows us to

minimise the time needed for defining a high
quality classifier and for obtaining classification
results. This also enables the processing of data
for large areas (like Fennoscandia). Typically,
all these stages are manual and require much
time and expert knowledge. From experience,
manual classification of a single satellite image
takes up to a few days, while with our method
we can do the same in minutes depending on the
computational resource available (and it is easily
to parallelise on a high performance cluster).

3) Using open source software. We have developed
our method around free and open source librar-
ies and software packages. This allows other re-
searchers to reuse our method easily in studying
other areas of interest without a licensing barrier
yielding more accessible and open science.

In order to train a single classifier that would be valid
for a large area of Fennoscandia, and in order to automate
the process, the following basic requirements need to be
satisfied:

1) Field data, expert knowledge and satellite im-
agery are required to span far beyond the im-
mediate study area, covering all types of human
impact we want to address and spanning over a
number of years;

2) All satellite data need to be comparable (in
particular when acquired at different locations
or time points), which can be achieved with
normalisation using, for example, atmospheric
correction;

3) Satellite metadata need to be incorporated in
the analysis workflow to aid normalisation; the
metadata need to be processed automatically
to extract relevant information about sun elev-
ations, data ranges, etc;

4) The classifier needs to be validated using field
data and expert knowledge in the larger area of
Fennoscandia;

5) A language suitable for scripting needs to be
used to glue all elements of the workflow to-
gether.

The software and the analysis workflow
The analysis workflow chart is given in Fig. 2. The
analysis begins with a manual process of picking satellite
images for collecting training data. These images are
automatically normalised using the atmospheric correc-
tion protocol described below. Another manual process is
selecting training areas for each class. This can be done
using any image analysis application that can process
TIFF images.

Images are normalised by performing atmospheric
correction using information from image metadata. This
eliminates differences caused by variations in the sens-
itivity of detectors, solar illumination, satellite gains,
atmospheric aerosol, etc. The dark pixel value is estim-
ated from the 2nd percentile in each band separately.
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Fig. 2. The workflow chart of the automated processing and classification of Landsat
data. Shades of grey indicate different types of user interaction with the system: light
grey – fully automated processes, medium grey – manual processes, dark grey –
input data and black – intermediate or final results.

This value was obtained empirically by processing a
large number of images manually and minimising the
difference between the manual and automated dark pixel
value selection. The value is driven largely by the noise
level in each of the bands. A manual mask is composed
for each raw image and only pixels within the mask are
considered for the dark pixel computation. This is done
to eliminate noise at the edges of the sensor. The atmo-
spheric correction protocol was proposed by Markham
and Barker (1986) using parameters for calculating the
Sun-Earth relationship by Iqbal (1983) and the dark pixel
subtraction method by Chavez (1996). The atmospheric
correction has been fully automated in this study with all
the reference information extracted from image metadata.

Next, the training data are collected from all the norm-
alised images and the following information is retrieved
for all points in the training set: the reflectance values
of bands 1–5 and 7, the value of the normalised burn
ratio (NBR; Key and Benson 2006; Miller and Yool 2002;
Brewer and others 2005), normalised difference veget-
ation index (NDVI; Singh 1989), snow index (Dozier
1984, 1989) and water index (Gao 1996). These data
constitute a 10 dimensional data set used in the classifier.

We have originally defined 22 classes relevant to
change detection in Fennoscandia and the Monchegorsk
area in particular. The training data are collected from
a large area based on our own field data and expert
knowledge from Soviet digital military topographic maps
of scale of 200,000, 100,000 and 50,000, GoogleEarth,
vegetation maps, papers and project reports. The fre-
quency of all the classes was equalised by randomly
subsampling large classes to contain the same number of

data points (500) and to have an equal probability to be
predicted by chance.

We use support vector machines (SVM) classi-
fication provided by the R library e1071 (cran.r-
project.org/web/packages/e1071), which is implemented
using the libsvm library (Chang and Lin 2001). In a recent
comparison of the SVM to 16 other methods, it was the
only one that consistently scored within the top 3 on
all test problems (Meyer and others 2003). The trained
classifier is stored in the R library. From this moment on
any number of images can be classified and mapped in a
fully automated manner either in full or sliced to the area
of interest.

The overall functionality has been implemented as
two R libraries (‘gdal’ for image analysis, and ‘geo’ for
atmospheric correction, classification and mapping) and
a standalone R script that allows users to execute the
overall analysis workflow.

Classifier accuracy assessment
The classifier accuracy was assessed in two comple-
mentary ways. Firstly, we have used the cross validation
(McLachlan and others 2004) to fine tune the SVM and
assess its overall accuracy. Any machine learning method
needs to be fine tuned for the problem domain and the
training set. In fine tuning one makes a decision on the
optimal set of parameters that maximise the classifica-
tion accuracy in cross validation. For the SVM, those
parameters are the kernel function itself, the cost factor
and the value of gamma (shared by all kernel functions
considered in e1071). We have used the 10 fold cross
validation in which random 10% of the training data are
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Table 2. Class definitions and their abbreviations used
to represent statistical information hereafter

Class Class name

BG background

I.1 Human impact or non-vegetated in forest
zone

I.1.1 Fire impact, severely and moderately burnt
areas

I.1.2 Grazing impact, severely damaged areas
with lichen cover <25% and
stereocaulon domination and moderately
damaged with cladonia domination

I.1.3 Air polluted with 40–60% of damaged
trees and old burnt areas

I.1.4 Air polluted with 80–100% of damaged
trees

I.1.5 Air polluted technogenic barren with 100%
of dead trees

I.1.6 Non-vegetated: quarry, spoil heap,
asphalt, residential and industrial areas

I.1.7 Industrial water

I.2 Human impact and non-vegetated in the
tundra zone

I.2.1 Air polluted, technogenic barren, no living
tundra vegetation

II.1 Natural forest
II.1.1 Coniferous forest
II.1.2 Deciduous forest
II.1.3 Wetland

II.2 Natural tundra
II.2.1 Tundra vegetation
II.2.2 Stone tundra

III. Other
III.1 Clouds
III.2 Snow
III.3 Clean water

left out to perform the validation (repeated a number of
times). The optimal set for our training data was to use the
Gaussian radial kernel (Buhmann 2003), the cost factor
of 750 (default was 1) and gamma of 0.20 (default was 1
over the number of classes that is 0.05). This yielded the
accuracy of 69% in the 10-fold cross validation over 22
classes. In the final results we have merged some of the
classes so that the final set used in the analysis hereafter
consisted of 16 classes. The full list of classes and their
abbreviations are given in Table 2.

Secondly, we then used the land cover map generated
for Landsat 5 TM (2005) sampling at least 30–50 points
per class and using the majority of pixels in 3×3 window
to assess the accuracy. This image was selected for
two reasons. First, only a small fraction of the training
data was obtained from this image and we could use
other field data (not used in training the classifier) for
validation. This allowed us to assess the accuracy of
predicting data in images other than those used to train
the classifier. Second, the forest valuation map of 2001
from the Monchegorsk Forestry Department has allowed
us to collect control points for making a comparison.

Results and discussion

Environmental monitoring of land cover changes for
1986–2005

We have analysed the area of about 30×60 km2 around
the copper-nickel smelter Severonikel in Monchegorsk.
For the period between 1986 and 2005 we have construc-
ted a set of vegetation cover maps (Figures 3–6) using the
classification method described and the data described
in Table 1. A summary of land covers by the types of
vegetation (natural and suffering from human impact) is
given in Table 3.

Edges of clouds are often confused with non-
vegetated areas. Nevertheless, thick clouds are detected
correctly: for example, in Fig. 3 (year 1986) the level of
cloudiness is 1.8%, in Fig. 4 (1988) - 1.2%, in Fig. 5
(2000) - 0.3% and Fig. 6 (2005) is cloud free. Clouds
and misclassification of edge pixels due to sub-pixel
alignment contribute further errors in the area under
clean water, which is expected to be nearly constant
over the study period. The corresponding variations of
1–2% are indicative of these further errors (on top of the
detected classification errors) due to cloudiness, sub-pixel
alignment etc.

Land cover changes: forest fires and the spread of
technogenic barrens

Prior to the 1990s the smelter was using sulphur-rich ore,
which led to a high level of sulphur dioxide pollution.
Under their toxicity large areas of the boreal forest
were turning dry. Later the smelter changed to local ore
with a lower sulphur content and reduced its operational
volumes. As discussed earlier, drying forest leads to fires,
which we observe decreasing gradually from 2.2% in
1986 to 0.5% in 2005 due to a negative trend in the
availability of flammable substance. Literature analysis
confirms many dry forest fires in summer periods prior
to 1986 (Rees and Williams 1997). Even though the
change that we observe is small, a consistent monotonous
reduction is not expected purely by chance. By 2005
many of these burnt areas had been partially restored by
tundra vegetation, mostly grass and dwarf shrubs. For
example, in Fig. 3 one can clearly see forest fires on
the western side of Viteguba bay (area A), which turn
into tundra vegetation by 2005 (area A in Fig. 6). Recent
fires are likely to be caused by tourists and trespassers:
more and more fresh burnt areas occur in easy-to-reach,
undamaged coniferous forests next to roads, along the
coastline and on the islands of lake Imandra (areas B in
Figs. 5 and 6).

Similarly to the expansion of dry forest that contrib-
uted to fires in the 1990s, a sharp transition of moder-
ately damaged forest (40–60% damaged) to technogenic
barren can be attributed to the high volumes of toxic
air pollution and the peak of the industrialisation in the
1980s that ended shortly after the collapse of the Soviet
Union in 1991. During the period covered by the study
the area of technogenic barren in the forest zone increased
monotonously from 2.6% in 1986 to 5.4% in 2005. The
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Table 3. Predicted land cover as percentage of the whole area analyzed for years 1986, 1988, 2000 and 2005

Class Class Name 28 July 1986 11 July 1988 28 July 2000 9 July 2005
area, % area, % area, % area, %

I.1 Human impact or non-vegetated
in the forest zone

I.1.1 Fire impact, severely and moderately
burnt areas

2.2 1.5 1.1 0.5

I.1.2 Grazing impact, severely damaged
areas with lichen cover <25% and
Stereocaulon domination and
moderately damaged with Cladonia
domination

0.0 (0.01) 0.1 (0.05) 0.0 (0.02) 0.0

I.1.3 Air polluted with 40–60% of damaged
trees and old burnt areas

7.9 11.8 3.9 6.2

I.1.4 Air polluted with 80–100% of
damaged trees

0.0 0.1 0.8 0.3

I.1.5 Air polluted technogenic barren with
100% of dead trees

2.6 3.5 3.6 5.4

I.1.6 Non-vegetated: quarry, spoil heap,
asphalt, residential and industrial
areas

4.7 3.8 3.5 3.1

I.1.7 Industrial water 0.2 0.3 0.4 0.1
I.2 Human impact or non-vegetated

in tundra
I.2.1 Air polluted, technogenic barren, no

living tundra vegetation
0.4 0.5 0.0 (0.01) 0.8

II.1 Natural forest
II.1.1 Coniferous forest 37.0 26.1 24.2 23.1
II.1.2 Deciduous forest 1.1 1.6 9.5 5.2
II.1.3 Wetland 10.9 14.9 17.7 17.9

II.2 Natural tundra
II.2.1 Tundra vegetation 1.8 5.1 6.1 7.9
II.2.2 Stone tundra 1.4 2.3 3.0 1.4

III. Other
III.1 Clouds 1.8 1.2 0.3 0.0
III.2 Snow 0.0 0.0 0.0 0.0
III.3 Clean water (lake, rivers) 28.1 27.4 26.1 27.9

area of technogenic barren in the mountain tundra zone
increased in the same period from 0.4% to 0.8%. There is
a fall in the detected technogenic barren area of the tundra
zone for the year 2000, which is probably due to the
class ambiguity with stone tundra. As seen in areas D of
Figs. 5 and 6, the spread of technogenic barren since the
end of the 1990s (after the peak of the industrialisation)
is caused primarily by earlier fires, which had not yet
recovered.

Using unsupervised classification of ISODATA from
Landsat MSS and TM images acquired between 1978
and 1994, Solheim and others (1995) analysed an area
of 6574 km2 around Monchegorsk and detected a signi-
ficant enlargement of areas of damaged vegetation. Their
calculations suggest that the area of partly damaged ve-
getation increased from 6.3% in 1978 to 17.5% in 1994,
the area of technogenic barren increased respectively
from 4.0% to 11.5%. In order to allow some degree
of quantitative comparison, the area under clean water
needs to be normalised out of the results. The class
of clean water constituted 15.0% of land cover in the
work by Solheim and others (1995), which results in an

increase of normalised values from 7.3% to 20.7% for
the partly damaged vegetation and from 4.7% to 13.7%
for technogenic barren (of the overall terrestrial area).
After performing the same normalisation on our data, we
see fluctuations of the partly damaged vegetation at the
level of 17.1±3.4% and an increase in technogenic barren
from 4.1% to 8.2% (of the overall terrestrial area). These
values agree well with the results by Solheim and others
(1995) both qualitatively and quantitatively.

Land cover changes: forest logging and the spread of
wetland

We know from field data that there were large areas
affected by forest logging prior to 1986 in the area
of Monchegorsk. In the climate conditions of the Kola
peninsula, fresh logging often leads to a spread of
wetland. These can be clearly seen in the area C1 of
Fig. 3. In the following years this area was restored by
deciduous forest. This is a common restoration pattern in
the areas affected by logging: the first stage is wetland
that potentially transforms to deciduous forest later. The
old logging areas can only be detected as deciduous
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Fig. 3. Generated land cover map for the area of Monchegorsk in 1986.

Fig. 4. Generated land cover map for the area of Monchegorsk in 1988.
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Fig. 5. Generated land cover map for the area of Monchegorsk in 2000.

forests, mostly birch and willow, which are not typical
for the area. The only indicator of logging in the past
are the straight lines of the edges of deciduous forests.
Further areas covered in grass, birch and willow can
be seen in the areas C2 of Figs. 3 and 4. Here it is
known that the cutting was carried out in Soviet times

to open areas for agricultural use by Collective Farm
Verhniy Nued. Currently, logging is used primarily to
clear off areas for residential development southeast of
Monchegorsk. Primarily due to logging, the overall wet-
land area had increased from 10.9% in 1986 to 17.9%
in 2005.

Fig. 6. Generated land cover map for the area of Monchegorsk in 2005.
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Table 4. The trend in the total vegetated area

Class Class name 28 July 1986 11 July 1988 28 July 2000 9 July 2005
area, % area, % area, % area, %

II.1.1 Coniferous forest 37.0 26.1 24.2 23.1
II.1.2 Deciduous forest 1.1 1.6 9.5 5.2
II.1.3 Wetland 10.9 14.9 17.7 17.9
II.2.1 Tundra vegetation 1.8 5.1 6.1 7.9
Total Total vegetated 50.8 47.7 57.5 54.1

Land cover changes: vegetation restoration and the
decay of coniferous forest

The restoration of the boreal forest damaged by air
pollution occurred between 1986 and 2005 primarily by
typical tundra species. These are less sensitive to changes
in air conditions, but are more sensitive to changes in
soil (moisture, nutrition components and other). This is
why the tundra had spread from 1.8% in 1986 to 8.0%
in 2005. As indicated above, areas affected by logging
restore to wetland first followed by deciduous forest.
At the same time as the area of wetland increased to
17.9%, the area of deciduous forest increased from 1.1%
in 1986 to 5.2% in 2005. Even though both processes
are effectively restoring the vegetation, the vegetation
had never restored to its initial state, coniferous forest,
pine and spruce. Naturally, deciduous trees grow along
rivers or in mountain regions between the typical tundra
and forest zones. However, due to human impact more
and more coniferous forest is converted to deciduous
forest. In line with the change in the wetland, tundra and
deciduous forest cover by a total of 17.0% (of the land
cover), the cover for coniferous forest had decreased by a
total of 14.0% (of the land cover), namely, from 37.0% in
1986 to 23.1% in 2005. This means that more than a third
of all boreal forest had been destroyed in the area during
the 19 years covered by this study as a result of human
activity.

At the same time, our results are in places more
optimistic then the previous study of the same area by
Rees and Williams (1997). The authors have used hybrid
(unsupervised/supervised) classification of Landsat MSS
images from 1978–1992 and have detected an increase
in damaged vegetation on the total area of 22225 km2.
Their data suggest that the area under severely damaged
forest (71–97% damaged) stayed around 4.4 ± 0.4% and
the area under partly damaged forest (31–71% damaged
in the authors’ definition) increased from 19.2% in 1980
to 38.0% in 1992, both contributing to the decrease of
the healthy and lightly damaged forest (11–30% dam-
aged) from 51.2% in 1980 to 36% in 1992. Our results
have been obtained for a smaller territory, in a close
proximity of the smelter and with a greater part covered
by water, yet they indicate that by 1988 healthy forest
(both coniferous and deciduous) had constituted at least
27% of the land cover around Monchegorsk while the
three classes of damaged forest and technogenic barren
together did not exceeded 15% of the land cover. Further
20% were covered with tundra vegetation and wetland.

Fig. 7. Diagram of trends in land cover changes between
1986 and 2005 (classes with small and relatively constant
land cover omitted)

Areas farther from the smelter should show even better
ratios of healthy to damaged vegetation.

Table 4 sums up the trend in the total area covered
by vegetation from 1986 to 2005. There is a positive
change of 5% in vegetation cover restored in a decade
between the end of 1980s and the beginning of 2000s.
Furthermore, Fig. 7 displays the trends discussed above
in a single bar plot. There are visible trends across
most of the classes. These support the transformation of
coniferous forest to deciduous forest, tundra vegetation
and wetland discussed above.

In contrast to many previous studies, our method
allows to study the damage to vegetation both, by type
and severity of the damage: each class describing any
type of damage can be further separated into subclasses
by levels. Applying this extended set of classes is beyond
the scope of this publication.

Assessment of the method and the maps
The overall accuracy of the 16-class land-cover map was
estimated at 74.1% and the overall Kappa statistics at
70.6%. This is a good result for the number of classes
and considering that the majority of training data was
coming from other images. It proves that, firstly, the
atmospheric correction provides a good normalisation
of data and, secondly, a single classifier approach is
viable. As discussed earlier grazing is not characteristic
for the study area: we neither identified it in the data nor
obtained any false positives in the classification results.
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Table 5. Confusion matrix between reference (columns) and predicted (rows) classes along with producer’s and user’s
accuracies

prod, user,
BG I.1.1 I.1.2 I.1.3 I.1.4 I.1.5 I.1.6 I.1.7 I.2.1 II.1.1 II.1.2 II.1.3 II.2.1 II.2.2 III.1 III.2 III.3 Total % %

BG 9 9 100.0 100.0

I.1.1 126 20 2 17 1 8 5 2 181 98.4 69.6

I.1.2 0 0

I.1.3 2 199 2 8 3 8 1 28 14 265 84.3 75.1

I.1.4 3 23 4 30 82.1 76.7

I.1.5 1 33 4 5 43 29.7 76.7

I.1.6 1 4 45 8 1 2 10 71 72.6 63.4

I.1.7 47 3 50 100.0 94.0

I.2.1 16 1 14 1 32 48.3 43.8

II.1.1 53 1 54 84.1 98.2

II.1.2 37 37 92.5 100.0

II.1.3 1 2 2 52 3 60 54.7 86.7

II.2.1 2 9 4 25 40 50.0 62.5

II.2.2 11 1 27 6 1 17 63 50.0 27.0

III.1 0 0

III.2 0 0

III.3 50 50 100.0 100.0

Total 9 128 0 236 28 111 62 47 29 63 40 95 50 34 0 0 53 935

Equally, the image used for accuracy assessment was
snow and cloud free, which is reflected by zeros next to
the corresponding classes (Table 5). In spite of the overall
good accuracy, accuracy of individual classes varies. The
producer’s accuracies for individual classes vary from
29.7% for I.1.5 to 100.0% for I.1.7 (Table 5). The user’s
accuracies show generally the same level of variation.
Most confusion arises between II.2.2 (natural stone tun-
dra) and I.1.5 (technogenic barren) in which nearly half
of technogenic barren is classified as natural stone tundra.
This is not surprising as there is little difference in
the spectral reflectance (and appearance) of these two
classes. Another example worth mentioning is the I.1.3
class (area of a moderate impact). It is a dominating class
in the area and contains very few false negatives (objects
of this class identified as something else), however, it
has a high false positive rate: about one third of II.1.3
(wetland) is identified as area under a moderate damage.
This is primarily because this class is an aggregator class,
which puts together different elements of human impact
each yielding a moderate damage. Other classes show
relatively little confusion between them.

The accuracy assessment shows that the current ad-
vanced method is reasonably accurate overall and demon-
strates good accuracy for the majority of individual

classes. However, in some cases, in which the training
data are spectrally inseparable or not homogeneous,
improving accuracy requires extra data. Going ahead
we will consider introducing the digital elevation model
(DEM) into the classifier for a better separation of tundra
and forest zones, and minimizing the confusion between
technogenic barren and stone tundra.

Conclusions
We have examined all major types of human impact on
the boreal vegetation characteristic for the highly indus-
trial area of Monchegorsk in Kola peninsula, Russia. The
change detection analysis has been performed for the
period of 1986–2005 by applying a novel method of auto-
mated classification and mapping of human impact on
the vegetation. We have developed a novel method for an
automated analysis and mapping of vegetation and of all
types of human impact based on a single support-vector-
machines classifier. We used Landsat TM and ETM+
band data (for which the method automatically performs
atmospheric correction) and a number of indices like
NDVI, NBR to generate land cover maps for 1986, 1988,
2000 and 2005. We then performed both qualitative and
quantitative assessments of the land cover over the region
of 1750 km2.
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The spatial distribution of the damaged areas shows a
clear dependence on the local topographical and meteor-
ological conditions. The pronounced spread of industrial
atmospheric pollution towards northwest from the Sever-
onikel smelter lies along the dominant wind directions
and is blocked on the southern side by mountain barriers.
The extent of the damage sees to pass the peak of
industrialisation in the 1980s. Old fires are primarily
found in dry forests caused by industrial atmospheric
pollution and their frequency has been declining over the
years. New fires can be related to tourism and can be
found along roads and in areas popular among tourists.
The restoration of areas damaged by fires of by industrial
atmospheric pollutions directly occurs frequently through
a creation of wetlands or tundra vegetation depending on
the area. Old logging areas of coniferous forest regenerate
primarily to birch and willow which are not characteristic
for this boreal forest area. Our results indicate that the
land cover of coniferous forest decreased from 37% in
1986 to 23.1% in 2005 in the study area. This means that
more than one third of all coniferous forest was destroyed
(or partially converted to deciduous forest) within the 19
years that this study covers.

The success of the method in the area of Monchegorsk
opens the possibility of follow up studies using the same
technique on the whole of Fennoscandia. This will allow
us to investigate the relation between local human impact
on vegetation and global changes in the environment.
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