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We study the radial-hedgehog solution in a three-dimensional spherical droplet, with homeo-

tropic boundary conditions, within the Landau–de Gennes theory for nematic liquid crystals.

The radial-hedgehog solution is a candidate for a global Landau–de Gennes minimiser in this

model framework and is also a prototype configuration for studying isolated point defects

in condensed matter physics. The static properties of the radial-hedgehog solution are gov-

erned by a non-linear singular ordinary differential equation. We study the analogies between

Ginzburg–Landau vortices and the radial-hedgehog solution and demonstrate a Ginzburg–

Landau limit for the Landau–de Gennes theory. We prove that the radial-hedgehog solution

is not the global Landau–de Gennes minimiser for droplets of finite radius and sufficiently

low temperatures and prove the stability of the radial-hedgehog solution in other parameter

regimes. These results contain quantitative information about the effect of geometry and

temperature on the properties of the radial-hedgehog solution and the associated biaxial

instabilities.
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1 Introduction

Defect structures have attracted a lot of interest in the liquid crystal community [23, 25–27].

Defect structures in liquid crystalline systems are usually modelled within the Landau–de

Gennes framework, whereby the liquid crystal configuration is mathematically described

by a symmetric, traceless 3 × 3 matrix, known as the Q-tensor order parameter [7]. The

Q-tensor can be written in terms of its eigenvalues and eigenvectors as shown below

Q =

3∑
i=1

λiei ⊗ ei,
∑
i

λi = 0, (1.1)

where λi are the eigenvalues and ei are the corresponding orthonormal eigenvectors. The

liquid crystal is said to be in the (i) isotropic state when λi = 0 for i = 1 . . . 3, (ii) uniaxial

state when Q has a pair of equal non-zero eigenvalues and (iii) biaxial state when Q has

three distinct eigenvalues [22].

A prototype example of such a confined system is a spherical droplet with strong radial

anchoring or homeotropic (normal) boundary conditions. This example has been widely
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studied in the literature, especially from a numerical point of view, and it is generally

believed that there are two competing equilibria: (a) the radial-hedgehog solution that has a

single isolated point defect at the droplet centre and (b) the biaxial-torus solution where the

point defect broadens out to a ring-like structure around the droplet centre [10,16,26,27].

The radial-hedgehog solution is purely uniaxial everywhere except for an isotropic point

at the droplet centre whereas the biaxial-torus configuration exhibits a high degree of

biaxiality around the droplet centre. The isotropic point in the radial-hedgehog solution

and the biaxial ring in the torus solution are interpreted as being defect structures since

they are localised regions of abrupt changes in the eigenvalue structure.

This paper aims to build a self-contained mathematical description of the radial-

hedgehog solution within the Landau–de Gennes framework. Firstly, this is an interesting

mathematical problem in its own right since the radial-hedgehog solution is a rare

example of an explicit solution of the Landau–de Gennes Euler–Lagrange equations in

(2.12). Moreover, the corresponding scalar order parameter is a solution of an ordinary

differential equation (see (2.17)) and hence has a tractable and yet non-trivial mathematical

structure. Indeed, this is the first step in the mathematical theory of defects in liquid

crystalline systems. Secondly, a systematic mathematical analysis of the radial-hedgehog

solution is crucial for understanding the structure and locations of point defects in liquid

crystalline systems, the multiplicity of uniaxial solutions and the characterisation of the

competing biaxial structures.

This paper has two main themes: (i) rigorously study the effect of the droplet radius,

R, and the reduced temperature, t (see (2.7) for definition) on the stability of the radial-

hedgehog solution and (ii) identify the analogies and differences between the radial-

hedgehog solution and Ginzburg–Landau vortices. We work with low temperatures for

which the isotropic phase is a locally unstable critical point of the bulk Landau–de Gennes

potential and t > 0 in this parameter regime, by our definition of the model variables

(see (2.3) and (2.7)). The stability of the radial-hedgehog solution has been studied in

a batch of papers [10, 23, 25–27]. In [10], the authors demonstrate instability of the

radial-hedgehog solution in the limit R → ∞ and t → +∞ (in terms of our definition

of t from (2.3) and (2.7)). An important ingredient of their proof is the construction of

explicit lower and upper bounds for the scalar order parameter of the radial-hedgehog

solution. However, their bounds are only valid in the R → ∞ limit. In this paper, we go a

step further by constructing lower and upper bounds for the corresponding scalar order

parameter that are valid for finite but sufficiently large values of R. We use these bounds

to demonstrate that the radial-hedgehog solution cannot be a global Landau–de Gennes

energy minimiser for finite t and for droplets with finite R. Numerical simulations indicate

that the radial-hedgehog solution cannot be globally energy minimising for modest values

of R and t, i.e. R ∼ 10, t ∼ 5 (see [17]). Secondly, we consider the second variation of the

Landau–de Gennes functional and show that the radial-hedgehog solution is locally stable

for droplets of sufficiently small radius, of the order of the biaxial correlation length [17].

The condition for local stability prescribes a curve in the (R, t)-plane and this curve is in

qualitative agreement with the numerical bifurcations reported in the literature [10,11,27].

We have generalised the local stability results to include the effect of elastic anisotropy.

Thirdly, we identify a Ginzburg–Landau limit for the Landau–de Gennes theory.

The radial-hedgehog solutions can be thought of as being prototypical vortices in the
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Ginzburg–Landau theory for superconductors [2]. More precisely, the radial-hedgehog

solution can be interpreted as being a degree +1 vortex in three dimensions. There is a

very well-developed theory for the structure, location, multiplicity and stability of vortices

in Ginzburg–Landau theory, especially in two dimensions but generalisations to higher

dimensions are non-trivial [2, 9, 12, 21]. We show that for sufficiently low temperatures,

the non-linearities in the Landau–de Gennes Euler–Lagrange equations effectively reduce

to the non-linearities in the Ginzburg–Landau equations although there are technical

differences. For sufficiently low temperatures, we exploit Ginzburg–Landau methods and

shooting methods to prove uniqueness of the radial-hedgehog solution and to study its

qualitative properties, e.g. far-field expansions. More generally, although the study of

uniaxial states can be viewed as a generalised Ginzburg–Landau theory from �3 → �3

(see [20] for a Ginzburg–Landau description of uniaxiality), biaxiality presents a whole

host of new mathematical challenges, outside the scope of Ginzburg–Landau theory [18].

In particular, there is no analogue of a biaxial instability in the current Ginzburg–Landau

literature and such instabilities play a pivotal role in Landau–de Gennes theory.

The paper is organised as follows. In Section 2, we prove the existence of a radial-

hedgehog solution in spherical droplets with radial anchoring in the Landau–de Gennes

framework and establish bounds for the corresponding scalar order parameter. In Sec-

tion 3, we derive a series expansion for the radial-hedgehog solution near its isotropic

core and demonstrate its similarity with three-dimensional vortices in Ginzburg–Landau

theory [9]. We then prove that the radial-hedgehog solution cannot be a global Landau–

de Gennes energy minimiser for sufficiently large (but finite) droplets and for sufficiently

low (but finite) temperatures by means of an explicit comparison argument. We per-

form a parallel linear stability analysis and obtain quantitative information about the

effect of geometry and temperature on the stability of the radial-hedgehog solution. In

Section 4, we focus on the low-temperature regime and the resulting Ginzburg–Landau

structure of the governing ordinary differential equation. We demonstrate the applications

of Ginzburg–Landau techniques and shooting methods to the radial-hedgehog solution

in this regime. In Section 5, we discuss our results and how they complement previous

work in this area.

2 Preliminaries

We study the qualitative properties of radial-hedgehog solutions on spherical droplets,

B(0, Ro) ⊂ �3, where

B(0, Ro) =
{
r ∈ �3; |r| � Ro

}
(2.1)

and Ro > 0 is independent of any model parameters, subject to strong radial anchoring

conditions. We work within the Landau–de Gennes theory for nematic liquid crystals, in

the low-temperature regime where the isotropic phase is locally unstable.

Let S̄ ⊂ �3×3 denote the space of symmetric, traceless 3 × 3 matrices, i.e.

S̄
def
=

{
Q ∈ �3×3; Qij = Qji, Qii = 0

}
,

where we have used the Einstein summation convention and the Einstein convention will
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be used in the rest of the paper. The corresponding matrix norm is defined to be

|Q| def
=

√
trQ2 =

√
QijQij i, j = 1 . . . 3.

We recall from [18, 22] that an arbitrary Q ∈ S̄ can be written as

Q = s

(
n ⊗ n − 1

3
I

)
+ r

(
m ⊗ m − 1

3
I

)
,

where n,m are orthonormal eigenvectors of Q and s, r are real scalar order parameters. If

Q ∈ S̄ is uniaxial, then this representation formula can be simplified to

Q = s

(
n ⊗ n − 1

3
I

)
,

where n is the eigenvector of Q with the non-degenerate eigenvalue and s is a scalar order

parameter that measures the degree of orientational ordering about n.

The Landau–de Gennes energy functional is given by [7, 22]

ILG[Q] =

∫
B(0,R)

L

2
|∇Q|2 + fB(Q) dV , (2.2)

|∇Q|2 =
∑3

i,j,k=1

( ∂Qij

∂xk

)2
is the elastic energy density, L is a material-dependent elastic

constant and fB is the bulk energy density given by

fB(Q) = −a2

2
trQ2 − b2

3
trQ3 +

c2

4

(
trQ2

)2
. (2.3)

The form (2.3) is the simplest form of the bulk energy density that allows for a first-order

nematic-isotropic phase transition; here b2, c2 are material-dependent positive constants

and a2 > 0 is a temperature-dependent parameter. For the commonly used liquid crystal

material MBBA, typical values of these characteristic constants are a2 = 0.042×106(T ∗ −
T )N/m2, b2 = 0.64 × 106N/m2, c2 = 0.35 × 106N/m2, where T is the absolute temperature

and T ∗ is a characteristic temperature below which the isotropic phase Q = 0 ceases to

be a locally stable stationary point of fB in (2.3) [22, 24]. We work in the temperature

regime T < T ∗, or equivalently a2 > 0, where the bulk energy density attains its global

minimum on the set of uniaxial Q-tensors given by [20]

Qmin =

{
Q ∈ S̄ , Q = s+

(
n ⊗ n − 1

3
I

)}
, (2.4)

with n ∈ �2 and

s+ =
b2 +

√
b4 + 24a2c2

4c2
. (2.5)

In particular, as a2 increases, we move to lower temperatures deep in the nematic phase.

We work with strong radial anchoring/homeotropic boundary conditions [10, 27]; this is
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mathematically described by the Dirichlet boundary condition Qb ∈ Qmin given below -

Qb = s+

(
r

|r| ⊗ r

|r| − 1

3
I

)
, (2.6)

where r
|r| is the unit vector in the radial direction. The physically observable, equilibrium

configurations correspond to either global or local minimisers of ILG in our admissible

space. For completeness, we recall that W 1,2(B(0, Ro); S̄) is the Sobolev space of square-

integrable Q-tensors with square-integrable first derivatives [8]. The corresponding W 1,2-

norm is given by ‖Q‖W 1,2(B(0,Ro)) = (
∫
B(0,Ro)

|Q|2+|∇Q|2 dx)1/2. In addition to the W 1,2-norm,

we also use the L∞-norm in this paper, defined to be ‖Q‖L∞(B(0,Ro)) = ess supx∈B(0,Ro)|Q(x)|.
We work in a dimensionless framework and as outlined in [10, 17], we introduce the

following dimensionless variables:

r̃ =
r

ξb
, Q̃ =

1

h+

√
27c4

2b4
Q, &ILG =

h2
+√
t

√
27c6

4b4L3
ILG, (2.7)

where t = 27a2c2

b4 > 0 is the reduced temperature [10], t > 1 throughout the paper and

h+ =
3 +

√
9 + 8t

4
. (2.8)

The length scale ξb = ξ√
t
, where ξ =

√
27c2L
b4 , is referred to as the biaxial correlation length

in the literature [17]. The corresponding dimensionless Landau–de Gennes energy density

is

ẽ(Q̃,∇Q̃) =
1

2
|∇Q̃|2 − 1

2
trQ̃2 −

√
6h+

t
trQ̃3 +

h2
+

2t
(trQ̃2)2 (2.9)

and the associated Landau–de Gennes energy functional is given by

ĨLG[Q̃] =

∫
B(0,R̃)

ẽ(Q̃,∇Q̃) dV , (2.10)

where R̃ =
√
t Ro

ξ
. In what follows, we drop the tilde on the dimensionless variables for

brevity and all subsequent results are to be understood in terms of the dimensionless

variables. We take the admissible Q-tensors to belong to the space

AQ =

{
Q ∈ W 1,2

(
B(0, R); S̄

)
; Q =

√
3

2

(
r

|r| ⊗ r

|r| − 1

3
I

)
on ∂B(0, R)

}
. (2.11)

The associated Euler–Lagrange equations are [18, 20]

∆Qij = −Qij − 3
√

6h+

t

(
QikQkj − δij

3
tr(Q2)

)
+

2h2
+

t
Qijtr(Q

2), i, j = 1, 2, 3, (2.12)

where the term
δij
3

tr(Q2) is a Lagrange multiplier associated with the tracelessness con-

straint. It follows from standard arguments in elliptic regularity that any solution Q of
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the non-linear elliptic system (2.12) is smooth and real analytic on B(0, R) [6, 18]. In

particular, all global and local energy minimisers in AQ are classical solutions of (2.12).

Radial-hedgehog solutions are examples of spherically symmetric uniaxial solutions of

the system (2.12) in the admissible space AQ and have the form

Q =

√
3

2
h(r)

(
r

|r| ⊗ r

|r| − 1

3
I

)
. (2.13)

Here the scalar order parameter h only depends on the radial distance r = |r| from the

origin and the corresponding admissible space is defined to be

Ah =
{
h ∈ W 1,2 ([0, R],�) ; h(R) = 1

}
. (2.14)

We note that Q ∈ W 1,2
(
B(0, R); S̄

)
necessarily implies that h ∈ W 1,2 ([0, R]; �) since the

eigenvalues of a symmetric matrix are Lipschitz functions of the matrix components [28],

and hence, Ah is a natural choice for the admissible space. There may be multiple

spherically symmetric solutions of (2.12) but we define a radial-hedgehog solution to be

an energy-minimising spherically symmetric solution as described below.

Proposition 2.1 (a) Consider the energy functional

I[h] =

∫ R

0

r2

(
1

2

(
dh

dr

)2

+
3h2

r2
+ f(h)

)
dr (2.15)

defined for functions h ∈ Ah, where

f (h) = −h2

2
− h+

t
h3 +

h2
+

2t
h4. (2.16)

For each t > 1, there exists a global minimiser h∗ ∈ Ah for I in (2.15). The function h∗ is

a solution of the following singular non-linear ordinary differential equation:

d2h

dr2
+

2

r

dh

dr
− 6h

r2
= −h + h3 +

3h+

t

(
h3 − h2

)
(2.17)

subject to the boundary conditions

h(0) = 0 and h(R) = 1. (2.18)

Moreover, h∗ is analytic for all r � 0.

(b) Define the radial-hedgehog solution by

Q∗(r) =

√
3

2
h∗(r)

(
r ⊗ r

r2
− 1

3
I

)
, (2.19)

where h∗ is a global minimiser of I[h] in (2.15), in the admissible space Ah. Then Q∗ ∈ AQ

is a solution of the Landau–de Gennes Euler–Lagrange equation (2.12), i.e. is a station-

ary point of the Landau–de Gennes energy functional. Moreover, these solutions satisfy the
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following energy bound:

ILG[Q∗] � 12πR, (2.20)

where Ĩ has been defined in (2.10).

(c) The function h∗ satisfies the following bounds for r ∈ [0, R]:

0 � h∗(r) � 1 r ∈ [0, R]. (2.21)

Proof

(a) Consider the energy functional I[h] defined for h ∈ Ah. Firstly, we note that the

admissible space Ah is non-empty. Indeed, the constant function h(r) = 1 for r ∈ [0, R]

belongs to Ah. Secondly, the functional I in (2.15) is bounded from below and is weakly

lower semi-continuous on our admissible space (since the integrand is convex in dh/dr).

The existence of a global minimiser h∗ ∈ Ah now follows from the direct methods in the

calculus of variations [8].

It is straightforward to compute the Euler–Lagrange equations associated with the

functional I in (2.15), i.e.

d

dr

(
∂e(h, h

′
)

∂h′

)
=

∂e(h, h′)

∂h
,

where h′ = dh/dr, e(h, h′) = r2
(

1
2

(
dh
dr

)2
+ 3h2

r2
− h2

2
− h+

t
h3 +

h2
+

2t
h4

)
. One can check that

the corresponding Euler–Lagrange equation is indeed the ordinary differential equation

in (2.17) and a global minimiser h∗ is necessarily a solution of these Euler–Lagrange

equations.

The boundary condition h∗(R) = 1 follows from our definition of the admissible space

Ah. All functions h ∈ Ah are necessarily continuous since h ∈ W 1,2([0, R],�) =⇒ h ∈
C0,α([0, R],�) for some 0 < α < 1/2 from the Sobolev embedding theorem [8]. The

boundary condition h(0) = 0 follows from the continuity of h∗(r) for r ∈ [0, R]. We

proceed by contradiction and assume that |h∗(r)| � h0 for r ∈ [0, r0], for some fixed h0 > 0

and 0 < r0 � 1. Since h∗ is continuous, we deduce that h∗ has a fixed sign near the origin

and we further assume that h∗(r) > h0 > 0 for r ∈ [0, r0]. Consider the governing equation

(2.17); it can be re-written as

d

dr

(
r2
dh

dr

)
= 6h + r2

(
h3 − h +

3h+

t

(
h3 − h2

))
, (2.22)

where h+ has been defined in (2.8). Then we have

r2
dh

dr
�

∫ r

ε

6h(r′)dr′ + Cr3 + ε2h
′
(ε) for r ∈ (0, r0), (2.23)

where 0 < ε < r/10 is fixed, h
′
(ε) = dh

dr
|r=ε and C is a constant. We note that h

′
(ε) can be

bounded independently of ε, i.e.
∣∣ dh
dr

∣∣ � C(t) for r ∈ [0, R] from [18]. Squaring both sides

of (2.23) and integrating from ε to r, we obtain

∫ r

ε

(
dh

dr′

)2

dr′ �

∫ r

ε

γh2
0

t2
dt + C

′′
r3 + ε2h

′
(ε)

∫ r

ε

1

t3
dt for r ∈ (0, r0), (2.24)
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where γ and C
′′

are constants independent of ε. In the limit ε → 0, (2.24) contradicts the

hypothesis that h ∈ W 1,2 ([0, R];�) from which we must have

∫ R

0

(
dh

dr

)2

dr < ∞.

Therefore, we deduce that h(0) = 0 for any solution of (2.17) in Ah and h∗ ∈ Ah is a

solution of (2.17), subject to the boundary conditions (2.18). The analyticity of h∗ now

follows from standard arguments in the theory of ordinary differential equations (see [14]

for a proof of the analyticity statement).

(b) Given a global minimiser h∗ of I[h] in (2.15) , define a radial-hedgehog solution as

follows:

Q∗ =

√
3

2
h∗(r)

(
r ⊗ r

r2
− 1

3
I

)
.

It is clear that Q∗ ∈ AQ since h∗ ∈ W 1,2([0, R];�) by definition. One can directly check

that

ILG[Q∗] = 4πI[h∗] (2.25)

and that Q∗ is a solution of the Euler–Lagrange equation (2.12), since h∗ is a solution of

the ordinary differential equation (2.17), subject to the boundary conditions (2.18).

The function h∗ has been defined to be the global minimiser of the functional I in

(2.15), in the admissible space Ah. However, the constant function, h̄(r) = 1 for r ∈ [0, R],

belongs to Ah and hence

I[h∗] � I[h̄] = 3R. (2.26)

The energy bound on ILG[Q∗], where Q∗ is as in (2.19), follows from (2.25).

(c) The upper bound |h∗(r)| � 1 follows directly from a result in [19] where we

establish that every solution Q of the system (2.12) in the admissible space AQ = {Q ∈
W 1,2(B(0, R); S̄ ); Q =

√
3
2

(
r⊗r
r2

− 1
3
I
)
on ∂B(0, R)} satisfies the global upper bound

|Q(r)| � 1.

The radial-hedgehog solution Q∗ is a solution of the system (2.12) and

|Q∗(r)| = |h∗(r)|.

The upper bound |h∗(r)| � 1 follows immediately.

The lower bound h∗(r) � 0 follows from the energy minimality condition. We assume

that there exists an interior measurable subset

Ω̃ = {r ∈ B(0, R); h∗(r) < 0} ⊂ B(0, R),

with h∗(r) = 0 on ∂Ω̃. We note that Ω̃ must be an interior subset because of the boundary

condition Qb in (2.6). We define the perturbation

h̄∗(r) =

{
h∗(r), r ∈ B(0, R) \ Ω̃,

−h∗(r), r ∈ Ω̃.
(2.27)
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One can then easily check that

I[h̄∗] − I[h∗] =

∫
Ω̃

−h+

t

(
h̄∗)3

+
h+

t
h∗3

dV =

∫
Ω̃

2h+

t
h∗3

dV < 0, (2.28)

since h∗(r) < 0 on Ω̃ by assumption. The inequality (2.28) contradicts the global minimality

of h∗ in Ah, and hence, we deduce that h∗(r) � 0 for r ∈ [0, R]. The inequalities (2.21)

now follow. �

Corollary For h∗ as defined in Proposition 2.1, we have h∗(r) > 0 for r > 0.

Proof We proceed by contradiction. Assume that h∗(r0) = 0 for some r0 ∈ (0, R]. From the

bounds in (2.21) and the boundary conditions (2.18), this implies that h∗ has a minimum

at r0 so that

d2h∗

dr2
+

2

r

dh∗

dr
� 0

at r0 by definition of a minimum (the first derivative vanishes and the second derivative

is strictly non-negative for a global minimum). Then (2.17) implies that

d2h∗

dr2
= 0

at r0. Given that h∗(r0) = dh∗

dr
|r=r0 = d2h∗

dr2
|r=r0 = 0, we can repeatedly differentiate both sides

of (2.17) to deduce that dnh∗

drn
|r=r0 = 0 for all n � 2. This contradicts the boundary condition

h(R) = 1, and hence, h∗ is strictly positive everywhere away from the origin. �

In summary, in Proposition 2.1, we prove the existence of a radial-hedgehog solution of

the form (2.19), that can be interpreted as being a Landau–de Gennes energy minimiser

within the class of radially symmetric configurations. This radial-hedgehog solution satis-

fies the energy bound (2.20) and the corresponding scalar order parameter h∗ is bounded

from both above and below as shown in (2.21). The radial-hedgehog solution has a single

isolated isotropic point at the origin where h∗ vanishes and this isolated isotropic point is

interpreted as being a defect point, since the radial-hedgehog solution is strictly uniaxial

everywhere else. In the next section, we study the isotropic core of the radial-hedgehog

solution and the manifestation of biaxial instabilities within this core.

3 The isotropic core, biaxial instabilities and local stability of the radial-hedgehog solution

Proposition 3.1 Let h∗ be a global minimiser of the energy functional I in (2.15). Then h∗

is a solution of the ordinary differential equation (2.17) subject to the boundary conditions

(2.18). As r → 0, we have the following series expansion for h∗:

h∗(r) =

∞∑
n=0

anr
n = a2r

2

[
1 − r2

14
+ o(r2)

]
as r → 0, (3.1)

where an = 0 for all n odd and a2 > 0 is an arbitrary constant. For R sufficiently large, we
have the following bounds on the constant a2 in (3.1):

1

14
� a2 �

1

3
+

3

8t
+

1

8t

√
9 + 8t. (3.2)
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Comment. Equation (3.1) is identical to the series expansion for three-dimensional vortices

near the origin, within the Ginzburg–Landau theory for superconductivity [9].

Comment. If a2 = 0 in (3.1), then h∗ identically vanishes contradicting our choice of the

Dirichlet boundary condition.

Proof From Proposition 2.1, we have that h∗ is analytic for r � 0. We seek a power series

expansion of h∗ around the origin with h∗(0) = 0, of the form

h∗(r) =

∞∑
n=1

anr
n 0 < r � Rc, (3.3)

where Rc is the radius of convergence.

We substitute the ansatz (3.3) into the ordinary differential equation (2.17) and equate

the coefficients of rn on both sides of (2.17). Straightforward computations show that

a1 = a3 = 0, a2 > 0 is arbitrary,

a4 = − a2

14
,

h∗(r) = a2

[
r2 − r4

14
+ · · ·

]
, (3.4)

where a2 > 0 since h∗ is non-negative from Proposition 2.1.

Next we show that the formal expansion (3.3) involves no odd powers of r. Direct

computations show that a1 = a3 = 0, as stated in (3.4). We proceed by induction. Suppose

that a2n+1 = 0 for n = 0 . . . p. We show that a2p+3 = 0 too. Consider the left-hand side of

the ordinary differential equation (2.17), i.e.

d2h∗

dr2
+

2

r

dh∗

dr
− 6h∗

r2
=

∞∑
n=1

rn−2an
[
n2 + n − 6

]

so that the coefficient of r2p+1 is (4p + 2)(p + 3)a2p+3. We compute the coefficient of r2p+1

on the right-hand side of (2.17). One can directly show that

−h∗ + h∗3
+

3h+

t

(
h∗3 − h∗2

)
=

∞∑
n=1

bnr
n,

where

b2p+1 = −a2p+1 +

(
1 +

3h+

t

)[
3(a2

1a2p−1 + a2
2a2p−3 + · · · + a2

pa1) + a3
2p+1

3

]

− 6h+

t

(
a1a2p + a2a2p−1 + · · · + apap+1

)
, (3.5)

where the term involving a 2p+1
3

comes into play if 2p+1
3

is a positive integer. One can

check (3.5) by noting that the coefficient of r2p+1 in the series h∗2 is
∑2p

n=1 2ana2p+1−n

so that both {n, 2p + 1 − n} � 2p + 1 and one of {n, 2p + 1 − n} is odd. Similarly, we

note that the coefficient of r2p+1 in the series h∗3 is a3
2p+1

3

+
∑p

n=1 3a2
na2p+1−2n, where
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{n, 2p + 1 − 2n} < 2p + 1 and { 2p+1
3

, 2p + 1 − 2n} are necessarily odd. However, from the

hypothesis, a2n+1 = 0 for n = 0 . . . p. Therefore, b2p+1 = 0 in (3.5) and since

b2p+1 = (4p + 2)(p + 3)a2p+3,

we deduce that a2p+3 = 0 as required.

The following bounds have been established in [10] and are valid in the R → ∞ limit:

r2

r2 + 14
� h∗(r) �

r2

r2 + tλ2
t

, (3.6)

where λ2
t = 24

9+8t+3
√

9+8t
� 3

t
� 3 since t � 1. The inequalities (3.2) follow from (3.6) and

the limit

a2 = lim
r→0

h∗(r)

r2
.

�

3.1 Biaxial instabilities

Proposition 3.2 Let R � 200 and t � 200. Let hR be the corresponding global minimiser of

I[h] in (2.15) in the admissible space Ah. Then hR is a solution of the ordinary differential

equation (2.17), subject to the boundary conditions (2.18). The function hR satisfies the

following explicit bounds:

( r

R

)2

� hR(r) �
r2

r2 + tλ2
t

(
1 +

tλ2
t

R2

)
, (3.7)

where λt has been defined in (3.6).

Proof The proof of Proposition 3.2 follows from classical arguments in the theory of

differential inequalities [10]. We recall the following classical result that is adequate for

our purposes. Consider the general problem

N[x] :=
d2x

dt2
− f

(
t, x,

dx

dt

)
a < t < b,

x(a) = A, x(b) = B, (3.8)

with −∞ < a < b < ∞. Under reasonable hypotheses on the function f, if there exist

functions α, β ∈ C2(a, b) ∩ C0[a, b] such that

N[α] � 0, N[β] � 0,

α(a) � A � β(a), α(b) � B � β(b), (3.9)

then

α(t) � x(t) � β(t) (3.10)

for a solution x ∈ C2(a, b)∩C0[a, b] of N[x] = 0, subject to the boundary conditions (3.8).
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We set

N[h] :=
d2h

dr2
+

2

r

dh

dr
− 6h

r2
+ h − h3 +

3h+

t

(
h2 − h3

)
,

h(0) = 0, h(R) = 1. (3.11)

We set

α(r) =
( r

R

)2

, β(r) =
r2

r2 + tλ2
t

(
1 +

tλ2
t

R2

)
,

where λt has been defined in (3.6). One can directly check that N[α] � 0 and α(0) = 0,

α(R) = 1. This establishes the lower bound in (3.7).

The upper bound argument needs more care. Firstly, we set f(r) = r2

r2+tλ2
t

so that

β(r) = f(r)

(
1 +

tλ2
t

R2

)
.

From [10], it is known that

N[f] � 0. (3.12)

A direct computation shows that

N[β] =

(
1 +

tλ2
t

R2

)(
N[f] − f3(r)

(
1 +

3h+

t

)(
2
tλ2

t

R2
+

(
tλ2

t

R2

)2
)

+
3h+

t

tλ2
t

R2
f2(r)

)
.

(3.13)

From the definition of λt in (3.6), we have for t � 200,

6

17
� tλ2

t � 3. (3.14)

We consider two cases: (i) f(r) � 1
10

and (ii) 0 � f(r) � 1
10
. In case (i), we simply note

that for t � 200,

f2(r)
3h+

t
� 2f3(r), (3.15)

which combined with (3.12) yields N[β] � 0 for f(r) � 1
10

. In case (ii), we note that

f(r) =
r2

r2 + tλ2
t

�
1

10

necessarily implies r2 � tλ2
t

9
� 1

3
. Straightforward but tedious computations show that

N[f] � −f for r2 �
1

3
(3.16)
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so that

N[β] �

(
1 +

tλ2
t

R2

)(
−f − f3(r)

(
1 +

3h+

t

)(
2
tλ2

t

R2
+

(
tλ2

t

R2

)2
)

+
3h+

t

tλ2
t

R2
f2(r)

)

for r2 �
1

3
. (3.17)

One can readily check that 3h+

t

tλ2
t

R2 f
2 < f so that N[β] < 0 for case (ii) too. Hence,

N[β] � 0, β(r) satisfies the boundary conditions in (3.11) and the upper bound in (3.7)

follows. �

Proposition 3.3 Consider the radial-hedgehog solution

Q∗(r) =

√
3

2
h∗(r)

(
r ⊗ r

r2
− 1

3
I

)
,

where h∗ is a global minimiser of I[h] in (2.15) in the admissible space Ah. Then Q∗ is

not the global minimiser of ĨLG in (2.10) in the admissible space AQ defined in (2.11) for

R � 200 and t � 200. In particular, the biaxial state

Q̂(r) =

{
Q∗(r) + 1

(r2+12)2

(
1 − r

σ

) (
z ⊗ z − I

3

)
0 � r � σ,

Q∗(r) σ � r � R,
(3.18)

where z = (0, 0, 1) is the unit vector in the z-direction, has lower Landau–de Gennes free

energy than Q∗ for

σ = 10, R = 200, t = 200. (3.19)

Proof Consider a general biaxial perturbation

Q̂(r) =

{
Q∗(r) + p(r)

(
z ⊗ z − I

3

)
0 � r � σ,

Q∗(r) σ � r � R,

where p : [0, R] → � is non-zero for 0 � r < σ and p(r) = 0 for all σ � r � R, Q∗

is the radial-hedgehog solution in (2.19), r = (x, y, z) is the position vector, z = (0, 0, 1)

is the unit-vector in the z-direction and I is the 3 × 3 identity matrix. In particular, the

perturbation Q̂ is localised in a ball of radius σ around the origin or equivalently, is

localised around the isotropic core of the radial-hedgehog solution and the radius σ will

be determined as part of the problem.
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Let (r, θ, φ) with r ∈ [0, R], θ ∈ [0, π] , φ ∈ [0, 2π) denote a spherical coordinate system

centred at the origin. Straightforward computations show that

|∇Q̂|2 = |∇Q∗|2 +
2

3

(
dp

dr

)2

+
√

6
dh∗

dr

dp

dr

(
cos2 θ − 1

3

)
,

trQ̂2 = trQ∗2
+

2

3
p2(r) +

√
6h∗(r)p(r)

(
cos2 θ − 1

3

)
,

trQ̂3 = trQ∗3
+

2

9
p3(r) +

(√
2

3
+

1√
6

)
h∗(r)p2(r)

(
cos2 θ − 1

3

)

+
3

2
h∗2

(r)p(r)

(
cos2 θ − 1

3

)
,

(trQ̂2)2 =
(
trQ∗2

)2

+
4

9
p4(r) + 6

(
h∗(r)

)2
p2(r)

(
cos2 θ − 1

3

)2

+
4

3

(
h∗(r)

)2
p2(r) + 2

√
6h∗(r)p(r)

(
cos2 θ − 1

3

) [
h∗2

+
2

3
p2(r)

]
. (3.20)

Noting that ∫ π

0

(
cos2 θ − 1

3

)
sin θdθ = 0,

and ∫ π

0

(
cos2 θ − 1

3

)2

sin θdθ =
8

45
,

we obtain the following:

1

4π
[ĨLG[Q̂] − ĨLG[Q∗]]

=

∫ σ

0

r2

3

(
dp

dr

)2

− r2

3
p2(r) − 2

√
6
h+

9t
r2p3(r) +

r2h2
+

2t

{
4

9
p4(r) +

28

15
h∗2

(r)p2(r)

}
dr,

(3.21)

where h+ has been defined in (2.8). Recalling the bounds (3.7), we have that

1

4π
[ĨLG[Q̂] − ĨLG[Q∗]]

<

∫ σ

0

r2

3

(
dp

dr

)2

− r2

3
p2(r) − 2

√
6
h+

9t
r2p3(r) +

r2h2
+

2t

×
{

4

9
p4(r) +

28

15

(
r2

r2 + tλ2
t

)2 (
1 +

tλ2
t

R2

)2

p2(r)

}
dr, (3.22)

where λ2
t = 24

9+8t+3
√

9+8t
. Let

p(r) =
1

(r2 + 12)2

(
1 − r

σ

)
. (3.23)

One can then directly substitute (3.23), σ = 10, R = 200 and t = 200 into (2.8) and (3.22)
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to find that the associated free energy difference

1

4π

[
ĨLG[Q̂] − ĨLG[Q∗]

]
< 0,

i.e. we have found a biaxial perturbation localised in a ball B(0, σ) that has lower free

energy than the radial-hedgehog solution for R, t = 200. Therefore, the radial-hedgehog

solution cannot be a global Landau–de Gennes minimiser in this regime.

One can check that for fixed t, σ and p(r) as in (3.23), the function

H(r, t, R) =
r2h2

+

2t

{
4

9
p4(r) +

28

15

(
r2

r2 + tλ2
t

)2 (
1 +

tλ2
t

R2

)2

p2(r)

}

is a decreasing function of R and hence

ĨLG[Q̂] − ĨLG[Q∗] < 0

for the perturbation Q̂ defined above for all R � 200 and t = 200. As t → ∞, the cubic

term h+

t
∼ 1√

t
→ 0 and

h2
+

2t
→ 1

4
[10] and one can verify that

∫ σ

0

r2

4

{
4

9
p4(r) +

28

15

(
r2

r2 + tλ2
t

)2 (
1 +

tλ2
t

R2

)2

p2(r)

}
− r2

3
p2(r) dr < 0

for the function p defined in (3.23). Combining the two observations above, we have[
ĨLG[Q̂] − ĨLG[Q∗]

]
< 0

for the perturbation Q̂ defined in (3.18) for all t, R � 200. Proposition 3.1 now follows.

�

3.2 Local stability results

In this section, we demonstrate that the radial-hedgehog solution is locally stable with

respect to small perturbations for R sufficiently small (of the order of the biaxial correlation

length). We consider the one-constant elastic energy density and the effects of elastic

anisotropy separately. We note that Propositions 3.4 and 3.5 are known from numerical

investigations and we present rigorous proofs partly for completeness and partly because

these proofs give insight into how the temperature and droplet radius collectively affect

stability properties.

Proposition 3.4 Let B(0, R) denote a droplet of radius R centred at the origin in �3. The

corresponding radial-hedgehog solution Q∗
R is stable against all small, smooth perturbations

of the form

Q = Q∗
R + εP, (3.24)

where ε ∈ �, |ε| � 1, P ∈ S̄ and P = 0 on ∂B(0, R), provided that the radius R is sufficiently
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small, i.e.

R2 <
1

4

(
1

1 + 4
√

6h+

t

)
. (3.25)

In terms of the original variables (see (2.7)), (3.25) is equivalent to

R2
o <

ξ2

4t

(
1

1 + 4
√

6h+

t

)
, (3.26)

where ξ =
√

27c2L/b4 as in (2.7).

Proof The results in Proposition 2.1 are true for any R > 0, i.e. for every R > 0, we

are guaranteed the existence of a radial-hedgehog solution Q∗
R of the form (2.19), which

satisfies the energy bound (2.20) and the inequalities (2.21). Consider the dimensionless

free energy in (2.10) and introduce the change of variable

r̂ =
r

R

so that the free energy becomes

I[Q] =

∫ 2π

0

∫ π

0

∫ 1

0

{
1

2
|∇Q|2 − R2

2
trQ2 −

√
6h+

t
R2trQ3 +

h2
+

2t
R2 (trQ)2

}
r̂2 sin θ dr̂ dθ dφ.

(3.27)

We consider small perturbations

Qε = Q∗
R + εP 0 < ε � 1 (3.28)

such that P = 0 on ∂B(0, R). We compute the second variation of the Landau–de Gennes

energy functional

d2

dε2
I[Qε]|ε=0 =

∫ 2π

0

∫ π

0

∫ 1

0{
|∇P|2 − R2|P|2 − 6

√
6h+

t
R2PijPjpQ

∗
Rpi

+
h2

+R
2

2t

[
8
(
Q∗

R · P
)2

+ 4|P|2|Q∗
R |2

]}
dV ,

(3.29)

where dV = r̂2 sin θ dr̂ dθ dφ.

We, next, make an elementary observation

PijPjpQ
∗
Rpi

= h∗(r)
[
riPijrpPpj/r

2 − |P|2 /3
]

�
2

3
|P|2

so that

d2

dε2
I[Qε]|ε=0 �

∫ 2π

0

∫ π

0

∫ 1

0

{
|∇P|2r̂2 − R2r̂2|P|2 − 4

√
6h+

t
R2r̂2|P|2

}
sin θ dr̂ dθ dφ.

(3.30)
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We note that

|∇P|2 �

(
∂P

∂r̂

)2

and use the following inequality from [5, 15]:

∫ 1

0

τ2

(
∂α

∂τ

)2

dτ �
1

4

∫ 1

0

α2(τ) dτ

for a real-valued function α defined on the interval [0, 1]. Substituting the above inequality

in (3.30), we have that

d2

dε2
I[Qε]|ε=0 �

∫ 2π

0

∫ π

0

∫ 1

0

{
1

4
|P|2 − |P|2R2

(
1 +

4
√

6h+

t

)}
sin θ dr̂ dθ dφ (3.31)

since r̂ � 1. It follows that

d2

dε2
I[Qε]|ε=0 > 0

if

R2 <
1

4

1

1 + 4
√

6h+

t

(3.32)

or equivalently if

R2
o <

ξ2

4t

(
1

1 + 4
√

6h+

t

)
, (3.33)

where Ro = ξ√
t
R from (2.7). Proposition 3.4 now follows. �

In Proposition 3.5, we generalise the above to include the effects of elastic anisotropy.

We consider a Landau–de Gennes elastic energy density of the form

w (∇Q) =
1

2

(
L1|∇Q|2 + L2Qij,jQik,k + L3Qij,kQik,j

)
, (3.34)

where

L1 > 0, − L1 < L3 < 2L1, − 3

5
L1 − 1

10
L3 < L2. (3.35)

The inequalities (3.35) are established in [6] and as a consequence, there exists a positive

constant Θ such that

w (∇Q) � Θ|∇Q|2. (3.36)

We work in a dimensionless framework as before (see (2.7)), drop the tildes on the

dimensionless variables and the corresponding dimensionless energy density is

e∗(Q,∇Q) =
1

2
|∇Q|2 +

η2

2
Qij,jQik,k +

η3

2
Qij,kQik,j − 1

2
|Q|2 −

√
6
h+

t
trQ3 +

h2
+

2t
|Q|4, (3.37)

where η2 = L2

L1
, η3 = L3

L1
and

−1 < η3 < 2, 6 + 10η2 + η3 > 0. (3.38)
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There exists another positive constant Θ
′
such that

1

2
|∇Q|2 +

η2

2
Qij,jQik,k +

η3

2
Qij,kQik,j � Θ

′ |∇Q|2 Q ∈ W 1,2
(
B(0, R); S̄

)
. (3.39)

The inequalities (3.38) and (3.39) follow directly from (3.35) and (3.36).

In [10], the authors demonstrate the existence of a radial-hedgehog solution, QR
H ∈ AQ,

of the form (2.13), for the Euler–Lagrange equations associated with the energy density

in (3.37). The radial-hedgehog solution, QR
H , is completely characterised by its order

parameter, h(r), which is a solution of the following ordinary differential equation [10]:

(
1 +

2

3
(η2 + η3)

)(
d2h

dr2
+

2

r

dh

dr
− 6h

r2

)
+ h − h3 +

3h+

t

(
h2 − h3

)
= 0, (3.40)

with

h(0) = 0 h(R) = 1.

Corollary Let h ∈ Ah be an arbitrary solution of (3.40) subject to the boundary conditions,

h(0) = 0 and h(R) = 1. Then

|h(r)| � 1 r ∈ [0, R] . (3.41)

Proof The proof follows from a standard maximum principle argument (see Proposi-

tion 2.1 and [19]) and the details are omitted here for brevity. �

Proposition 3.5 Consider the Landau–de Gennes energy functional

ILG[Q] =

∫
B(0,R)

e∗(Q,∇Q) dV , (3.42)

where e∗(Q,∇Q) is defined in (3.37) and B(0, R) denotes a droplet of radius R centred at the

origin in �3. The corresponding radial-hedgehog solution QR
H is locally stable if the radius

R is sufficiently small, i.e. if

R2 <
Θ

′

2

(
1

1 + 4
√

6h+

t

)
, (3.43)

where Θ
′
has been defined in (3.39). In terms of the original variables (see (2.7)), (3.43)

is equivalent to

R2
o <

ξ2

2t

(
Θ

′

1 + 4
√

6h+

t

)
, (3.44)

where ξ =
√

27c2L/b4 as in (2.7).

Proof As in Proposition 3.4, we consider small, smooth perturbations of the form

Qε = QR
H + εP 0 < ε � 1, (3.45)
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where |ε| � 1 and P = 0 on ∂B(0, R). We compute the second variation of the Landau–de

Gennes energy functional in (3.42) as shown below

d2

dε2
ILG[Qε]|ε=0 =

∫ 2π

0

∫ π

0

∫ 1

0

|∇P|2 + η2Pij,jPik,k + η3Pij,kPik,j dV

+

∫ 2π

0

∫ π

0

∫ 1

0

−R2|P|2 − 6
√

6h+

t
R2PijPjpQ

R
Hpi

+
h2

+R
2

2t

[
8
(
QR

H · P
)2

+ 4|P|2|QR
H |2

]
dV ,

(3.46)

where r̂ = r
R

and dV = r̂2 sin θ dr̂ dθ dφ. Recalling (3.39), we have

d2

dε2
ILG[Qε]|ε=0 �

∫ 2π

0

∫ π

0

∫ 1

0

2Θ
′ |∇P|2 dV +

∫ 2π

0

∫ π

0

∫ 1

0

−R2|P|2 − 6
√

6h+

t
R2PijPjpQ

R
Hpi

+
h2

+R
2

2t

[
8
(
QR

H · P
)2

+ 4|P|2|QR
H |2

]
dV .

(3.47)

We repeat the same steps as in Proposition 3.4 and the details are omitted here for brevity.

These computations show that

d2

dε2
ILG[Qε]|ε=0 > 0 for R2 <

Θ
′

2

(
1

1 + 4
√

6h+

t

)
. (3.48)

Proposition 3.5 follows. �

We conclude this section with a result on the multiplicity of radial-hedgehog solutions

for R sufficiently small. Using the change of variable r̂ = r
R
, the ordinary differential

equation (3.40) transforms to(
1 +

2

3
(η2 + η3)

)(
d2h

dr̂2
+

2

r̂

dh

dr̂
− 6h

r̂2

)
+ R2

(
h − h3 +

3h+

t

(
h2 − h3

))
= 0, (3.49)

with

h(0) = 0 and h(1) = 1. (3.50)

Corollary For R sufficiently small, the ordinary differential equation (3.49), subject to the

boundary conditions (3.50), has a unique solution.

Proof The proof follows a standard pattern. Let h1, h2 ∈ Ah be two distinct solutions of

(3.49), subject to the boundary conditions (3.50). Define

g[h] :=

(
h3 − h +

3h+

t

(
h3 − h2

))
. (3.51)

Then

g[h] � 0 for 0 � h � 1,

g[h] � −C(t), (3.52)
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where the positive constant C only depends on the reduced temperature t. Define

h3(r̂) = (h1 − h2) (r̂) r̂ ∈ [0, 1] ,

with

h3(0) = h3(1) = 0.

If h1 � h2 somewhere, then h3(r̂) has a positive maximum at the point r0 ∈ (0, 1) (unless

h2 � h1 for r̂ ∈ [0, 1], in which case we define h3 = h2 − h1.)

From (3.49) and (3.52), we have that(
1 +

2

3
(η2 + η3)

)(
d2h3

dr̂2
+

2

r̂

dh3

dr̂
− 6h3

r̂2

)
= R2 (g[h1] − g[h2]) � −C(t)R2. (3.53)

At r = r0, we obtain the following sequence of inequalities (since the first derivative

vanishes): (
1 +

2

3
(η2 + η3)

)
d2h3

dr̂2
|r̂=r0 �

(
1 +

2

3
(η2 + η3)

)
6h3(r0)

r20
− C(t)R2

�

(
1 +

2

3
(η2 + η3)

)
6h3(r0) − C(t)R2. (3.54)

We note that
(
1 + 2

3
(η2 + η3)

)
> 0, since η2 + η3 > − 3

2
, from the inequalities in (3.38). It

is clear that the right-hand side of (3.54) is necessarily positive if h3(r0) is independent of

R and R is sufficiently small. However, the definition of a maximum requires that [8]

d2h3

dr̂2

∣∣∣∣
r̂=r0

� 0

yielding a contradiction for R sufficiently small. The proof is now complete, i.e. we have

uniqueness of the radial-hedgehog solution for R sufficiently small. �

4 The Ginzburg–Landau limit

In this section, we return to the one-constant elastic energy density

w(∇Q) = L |∇Q|2

and investigate the analogies between Ginzburg–Landau vortices and the radial-hedgehog

solution.

Consider the ordinary differential equation in (2.17) and the boundary conditions (2.18)

d2h

dr2
+

2

r

dh

dr
− 6h

r2
= −h + h3 +

3h+

t

(
h3 − h2

)
in the limit t → ∞. For t sufficiently large,

h+

t
�

β√
t
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for some β > 0 independent of t and hence for any non-negative solution h, we have∣∣∣∣3h+

t

(
h2 − h3

)∣∣∣∣ = o
(
h − h3

)
t → ∞

since 0 � h(r) � 1. In the limit t → ∞, the ordinary differential equation (2.17) approxim-

ately reduces to

d2h

dr2
+

2

r

dh

dr
− 6h

r2
≈ −h + h3 (4.1)

although the influence of the perturbation term 3h+

t

(
h3 − h2

)
needs to be carefully quan-

tified. The limiting problem (4.1) has a very similar structure to the governing ordinary

differential equation for vortex solutions in the Ginzburg–Landau theory of supercon-

ductivity [1]. Vortex solutions have been widely studied within the Ginzburg–Landau

framework [9, 14]. They have the special structure

w(x) = u(|x|)g
(

x

|x|

)
x ∈ �N,

where u is a solution of the following ordinary differential equation in �N :

d2u

d|x|2 +
N − 1

|x| − λK

|x|2 u = −u + u3,

u(0) = 0 (4.2)

and λK is a characteristic constant. In what follows, we adapt Ginzburg–Landau techniques

for (4.2) to the ordinary differential equation (2.17) in the limit t → ∞ to establish

uniqueness and global monotonicity of h∗ in (2.19). In this sense, one could also refer to

the t → ∞ limit as the Ginzburg–Landau limit.

Lemma 4.1 [2] For all t > 1 and any solution Q of the Euler–Lagrange equations (2.12),

we have the following global upper bound for the gradient:

‖∇Q‖L∞(B(0,R)) � C, (4.3)

where C > 0 is independent of t. For the radial-hedgehog solution Q∗(r) =√
3
2
h∗(r)

(
r̂ ⊗ r̂ − 1

3
I
)
, this implies that for t > 1, we have the following inequality:

|∇Q∗|2 =

(
dh∗

dr

)2

+
3h∗2

r2
� C2 ∀r ∈ [0, R], (4.4)

where C is again independent of t.

Proof The proof of Lemma 4.1 can be found in [2] where the authors show that a solution

u of the elliptic system

−∆u = f on Ω ⊂ �n
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satisfies

|∇u(r)|2 � C‖f‖L∞(Ω)‖u‖L∞(Ω) ∀r ∈ Ω.

In our case, we apply this result to the system (2.12), noting that Q∗ is a solution of (2.12),

f = −Qij − 3
√

6h+

t

(
QikQkj − δij

3
tr(Q2)

)
+

2h2
+

t
Qij

(
trQ2

)

for each i, j = 1 . . . 3, ‖Q∗‖L∞(Ω) � 1 from the bounds in (2.21) and h+

t
� 9

4
and

h2
+

t
� 33

4

for t > 1. �

Proposition 4.1 Let
{
tk

}
be a sequence such that tk → ∞ as k → ∞, with corresponding

radius Rk → ∞ as k → ∞(since Rk = Ro

√
tk/ξ, where Ro is the original droplet radius that

is independent of the model parameters). For each tk , let hk ∈ Ah be a global minimiser of

I[h] in (2.15), as in Proposition 2.1. Then for all k sufficiently large, there exists rk > 0

such that hk is monotonically increasing for all r � rk .

Proof From Proposition 3.2, we have that there exists R0 > 0 such that hk(r) > 1
2

for

R0 � r � Rk , for Rk and tk sufficiently large (see the lower bound in (3.7)). Consider the

right-hand side of (2.17) and define

F(h) = h2 − 1 +
3h+

t
(h2 − h). (4.5)

Then F(1) = 0 and F
′
(h) > 0 for h > 1

2
.

We prove Proposition 4.1 by contradiction. We assume that there exists r0 > R0 such

that
dhk

dr

∣∣∣∣
r=r0

= 0.

There are three possibilities for d2hk
dr2

|r=r0 , i.e. (a) d
2hk
dr2

|r=r0 = 0, (b) d2hk
dr2

|r=r0 < 0 and (c)
d2hk
dr2

|r=r0 > 0.

Consider case (a). Then we have from (2.17) that

d2hk

dr2
+

2

r

dhk

dr
= hk

[
F(hk) +

6

r2

]
= 0 at r = r0. (4.6)

Secondly,

d

dr

[
F(hk) +

6

r2

]
< 0 at r = r0,

from which we deduce that

F(hk) +
6

r2
> 0 r ∈ (r0 − δ, r0) (4.7)

for some δ > 0. We deduce from (2.17) that

d

dr

(
r2
dhk

dr

)
> 0 r ∈ (r0 − δ, r0)
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so that

r20
dhk

dr

∣∣∣∣
r=r0

> (r0 − δ)2
dhk

dr

∣∣∣∣
r0−δ

.

Since dhk
dr

|r=r0 = 0, we deduce that dhk
dr

|r0−δ < 0. This necessarily means that there exists a

local minimum at r = r1 > r0, since 0 � hk(r) � 1 and hk → 1 as r → Rk . We, therefore,

have

d2hk

dr2
|r=r1 > 0

or equivalently

F(hk(r1)) +
6

r21
> 0.

But

F(hk(r1)) +
6

r21
< F(hk(r0)) +

6

r20
= 0

since F
′
(h) > 0 for h > 1

2
and hk(r1) < hk(r0). This gives a contradiction and we deduce

that d2hk
dr2

|r=r0 � 0.

Case (b). We assume that d2hk
dr2

|r=r0 < 0 (hk(r0) > 1
2

because of our choice of r0) i.e.

we have a local maximum at r = r0. The local maximum must be followed by a local

minimum at r = r1 > r0, since 0 � hk(r) � 1 ∀r > 0 and hk → 1 as r → Rk . Thus,

F(hk(r1)) +
6

r21
> 0

by definition of a local minimum from (4.6). However hk(r1) < hk(r0) and

F(hk(r1)) +
6

r21
< F(hk(r0)) +

6

r20
< 0

yielding a contradiction.

Case (c). We assume that d2hk
dr2

|r=r0 > 0. Then dhk
dr

> 0 for all r > r0 > R0, since the

previous arguments show that we cannot have a point of inflection or a local maximum

for r � R0. Then we set rk in Proposition 4.1 to be rk = r0. Proposition 4.1 now follows.

�

Lemma 4.2 Let
{
tk

}
be a sequence such that tk → ∞ as k → ∞, with corresponding radius

Rk → ∞ as k → ∞ (since Rk = Ro

√
tk/ξ is the re-scaled droplet radius in (2.7), where Ro

is the original droplet radius that is independent of the model parameters). Let hk ∈ Ah be

a global minimiser of I[h] in (2.15), as in Proposition 2.1. Then

lim
r→Rk

r2
dhk

dr
= 0 as k → ∞. (4.8)

Proof From the bounds (3.7), we deduce that for k sufficiently large and (Rk−r) sufficiently

small

hk(r) = 1 + σ(r), where − α

r2
� σ(r) � − β

r2
(4.9)
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for positive constants α, β independent of tk . These bounds imply that hk(r) → 1 uniformly

as r → Rk ,
dhk
dr

→ 0 uniformly as r → Rk and from Proposition 4.1

dhk

dr
=

dσ

dr
> 0,

for (Rk − r) sufficiently small and k sufficiently large.

We use (2.17) to obtain an ordinary differential equation for δ = dhk
dr

as shown below

d2δ

dr2
+

2

r

dδ

dr
− 8

r2
δ = −12

h

r3
+

[
−1 + 3h2 +

3h+

t

(
3h2 − 2h

)]
δ, (4.10)

where δ → 0 as r → Rk , for k sufficiently large. We can then use differential inequalities

as in [10] to deduce that

δ(r) =
dhk

dr
�

γ1

r3
r → Rk, (4.11)

where γ > 2β > 0 is a positive constant and β has been in defined in (4.9). Since β is

independent of tk and r, γ can be chosen to be a positive constant independent of tk and

(4.11) implies that

lim
r→Rk

r2
dhk

dr
= 0 k → ∞, (4.12)

and the limit is uniform in k. Lemma 4.2 now follows. �

Proposition 4.2 Let
{
tk

}
be a sequence such that tk → ∞ as k → ∞, with corresponding

radius Rk → ∞ as k → ∞ (since Rk = Ro

√
tk/ξ where Rk is the re-scaled droplet radius in

(2.7) and Ro is the original droplet radius independent of the model parameters). Consider

the ordinary differential equation

d2h

dr2
+

2

r

dh

dr
− 6h

r2
= −h + h3 +

3hk+
tk

(
h3 − h2

)
, (4.13)

where hk+ = 3+
√

9+8tk
4

, subject to the boundary conditions

h(0) = 0 h(Rk) = 1. (4.14)

Then (4.13) has a unique non-negative solution in the limit k → ∞.

Proof Let h1 and h2 be two distinct non-negative solutions of (4.13) subject to the

boundary conditions (4.14), i.e.

h
′′

1

h1
+

2

r

h
′

1

h1
− 6

r2
+

(
1 − h2

1

)
+

3hk+
tk

(
h1 − h2

1

)
= 0,

h
′′

2

h2
+

2

r

h
′

2

h2
− 6

r2
+

(
1 − h2

2

)
+

3hk+
tk

(
h2 − h2

2

)
= 0, (4.15)
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where h
′

1 = dh1

dr
, h

′′

1 = d2h1

dr2
etc. We subtract the two equations to get

−h
′′

1

h1
+

h
′′

2

h2
− 2

r

(
h

′

1

h1
− h

′

2

h2

)
=

(
1 +

3hk+
tk

)(
h2

2 − h2
1

)
+

3hk+
tk

(h1 − h2) . (4.16)

Following the methods in [1], we multiply both sides of (4.16) by r2
(
h2

1 − h2
2

)
and integrate

from r = 0 to r = Rk to find

∫ Rk

0

r2
(
h1

h2
h

′

2 − h
′

1

)2

dr +

∫ Rk

0

r2
(
h2

h1
h

′

1 − h
′

2

)2

dr

+

∫ Rk

0

(
1 +

3hk+
tk

)
r2

(
h2

1 − h2
2

)2
dr − 3hk+

tk

∫ Rk

0

(h1 − h2)
2 r2 (h1 + h2) dr

= −r2h
′

2

(
h2

1

h2
− h2

)
|Rk

0 − r2h
′

1

(
h2

2

h1
− h1

)
|Rk

0 . (4.17)

Taking the limit k → ∞, using (4.8) and Proposition 3.1, we have that

lim
k→∞

∫ Rk

0

r2
(
h1

h2
h

′

2 − h
′

1

)2

dr +

∫ Rk

0

r2
(
h2

h1
h

′

1 − h
′

2

)2

dr

+

∫ Rk

0

(
1 +

3hk+
tk

)
r2

(
h2

1 − h2
2

)2
dr − 3hk+

tk

∫ Rk

0

(h1 − h2)
2 r2 (h1 + h2) dr = 0.

(4.18)

From (4.18), we deduce that

∫ Rk

0

(
1 +

3hk+
tk

)
r2

(
h2

1 − h2
2

)2
dr− 3hk+

tk

∫ Rk

0

(h1 − h2)
2 r2 (h1 + h2) dr → 0 k → ∞ (4.19)

(and the limit is uniform in k).

We first make the elementary observation that ∃R1 ∈ [0, Rk] such that

h1(r) + h2(r) > 1 ∀r > R1. (4.20)

Recalling the inequalities (3.7), we have that R1 can be bounded independently of tk for

k sufficiently large.

We partition the integral contribution in (4.18) into two sub-intervals [0, R1] and [R1, Rk],

respectively.

∫ Rk

0

(
1 +

3hk+
tk

)
r2

(
h2

1 − h2
2

)2
dr − 3hk+

tk

∫ Rk

0

(h1 − h2)
2 r2 (h1 + h2) dr

=

∫ R1

0

(
1 +

3hk+
tk

)
r2

(
h2

1 − h2
2

)2 − 3hk+
tk

r2 (h1 − h2)
2 (h1 + h2) dr

+

∫ Rk

R1

r2
(
h2

1 − h2
2

)2
+ r2

3hk+
tk

(h1 − h2)
2 (h1 + h2) [h1 + h2 − 1] dr (4.21)
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and note from (4.20) that

∫ Rk

R1

r2
(
h2

1 − h2
2

)2
+ r2

3hk+
tk

(h1 − h2)
2 (h1 + h2) [h1 + h2 − 1] dr �

∫ Rk

R1

r2
(
h2

1 − h2
2

)2
dr.

Claim For k sufficiently large,

∫ R1

0

(
1 +

3hk+
tk

)
r2

(
h2

1 − h2
2

)2 − 3hk+
tk

r2 (h1 − h2)
2 (h1 + h2) dr >

1

2

∫ R1

0

r2
(
h2

1 − h2
2

)2
dr.

(4.22)

Recalling that R1 can be bounded independently of tk , we note that

3hk+
tk

∫ R1

0

r2 (h1 − h2)
2 (h1 + h2) dr � γ1

hk+
tk

R3
1 �

γ2√
tk
,

where γ1 and γ2 are positive constants independent of tk . Therefore, the claim in (4.22) is

equivalent to
√
tk �

γ3∫ R1

0
r2

(
h2

1 − h2
2

)2
dr

, (4.23)

for a positive constant γ3 independent of tk .

We note that ∫ R1

0

r2
(
h2

1 − h2
2

)2
dr �

R3
1

3

so that as k → ∞, we have two possibilities: (a)
∫ R1

0
r2

(
h2

1 − h2
2

)2
dr = O(1) as k → ∞

and (b)
∫ R1

0
r2

(
h2

1 − h2
2

)2
dr = o(1) as k → ∞. In case (a), the condition (4.23) is clearly

satisfied for k sufficiently large and the claim (4.22) follows.

For case (b), we have

∫ R1

0

r2
(
h2

1 − h2
2

)2
dr → 0 as k → ∞. (4.24)

From Lemma 4.1 and the global bound (2.21), we obtain

∣∣∇ (
h2

1 − h2
2

)∣∣ � D, (4.25)

where D is a positive constant independent of tk for k sufficiently large. Consider r0 ∈
[0, R1] and let ∣∣(h2

1 − h2
2

)
(r0)

∣∣ = α0 > 0.

Then from (4.25), we have that

∣∣(h2
1 − h2

2

)
(r)

∣∣ �
α0

2
r ∈

[
r0 − α0

2D
, r0 +

α0

2D

]
and therefore ∫ R1

0

r2
(
h2

1 − h2
2

)2
dr �

∫ r0+
α0
2D

r0− α0
2D

α2
0

4
r2 dr � γ4α

5
0,

where γ4 is a positive constant independent of tk . Combining the above with (4.24), we

https://doi.org/10.1017/S0956792511000295 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792511000295


The radial-hedgehog solution in Landau–de Gennes’ theory 87

have that α0 → 0 uniformly as k → ∞ and hence

(h1 − h2) (r) → 0 r ∈ [0, R1] (4.26)

uniformly as k → ∞, since the choice of r0 is arbitrary and we are interested in non-

negative solutions.

From (4.19) and (4.20), we have that

∫ Rk

0

(
1 +

3hk+
tk

)
r2

(
h2

1 − h2
2

)2
dr − 3hk+

tk

∫ Rk

0

(h1 − h2)
2 r2 (h1 + h2) dr

�

∫ R1

0

(
1 +

3hk+
tk

)
r2

(
h2

1 − h2
2

)2
dr − 3hk+

tk

∫ R1

0

(h1 − h2)
2 r2 (h1 + h2) dr

+

∫ Rk

R1

r2
(
h2

1 − h2
2

)2
dr. (4.27)

For case (a),(4.22) holds and (4.27) can be written as

1

2

∫ R1

0

r2
(
h2

1 − h2
2

)2
dr +

∫ Rk

R1

r2
(
h2

1 − h2
2

)2
dr

�

∫ Rk

0

(
1 +

3hk+
tk

)
r2

(
h2

1 − h2
2

)2
dr − 3hk+

tk

∫ Rk

0

(h1 − h2)
2 r2 (h1 + h2) dr → 0 k → ∞,

(4.28)

from which we deduce that

(
h2

1 − h2
2

)2 → 0 as k → ∞ (4.29)

or equivalently

|h1 − h2| (r) → 0 for r ∈ [0, R] (4.30)

uniformly, as k → ∞.

For case (b), we have established in (4.26) that (h1 − h2)(r) → 0 uniformly as k → ∞ for

r ∈ [0, R1] and hence

∫ R1

0

(
1 +

3hk+
tk

)
r2

(
h2

1 − h2
2

)2
dr − 3hk+

tk

∫ R1

0

(h1 − h2)
2 r2 (h1 + h2) dr → 0 k → ∞.

From (4.19), we deduce that

∫ Rk

R1

r2
(
h2

1 − h2
2

)2
dr → 0 k → ∞,

and hence,

(h1 − h2) (r) → 0 r ∈ [R1, Rk]

uniformly as k → ∞. Combining the above with (4.26), we have that
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(h1 − h2) (r) → 0 r ∈ [0, R] (4.31)

uniformly as k → ∞, in case (b) too. Proposition 4.2 now follows. �

We, next, illustrate the applications of shooting arguments to the ordinary differential

equation (4.13) in the limit k → ∞. The methods are similar to those for the Ginzburg–

Landau system for superconductivity [4, 9] and we reproduce all necessary details for

completeness. From Proposition 3.1, we have that for any solution hk of (4.13) subject to

the boundary condition

hk(0) = 0,

∃ a constant a2 such that

hk(r) ∼ a2r
2 r → 0. (4.32)

Given a2, we denote the corresponding solution by hk(a2, r). We are interested in non-

negative solutions, and hence, we take a2 > 0. By analogy with [4, 9], we call a2 the

shooting parameter. We consider three different classes of solutions

• P =
{
a2 > 0; ∃z ∈ (0, Ra) such that dhk(a2 ,z)

dr
= 0

}
,

• Q =
{
a2 > 0; dhk(a2 ,z)

dr
> 0 and hk(a2, r) � 1 for all r > 0

}
,

• R =
{
a2 > 0; dhk(a2 ,z)

dr
> 0∀r ∈ (0, Ra) and maxr∈(0,Ra) hk (a2, r) > 1

}
,

where Ra is the maximal interval of existence of the solution hk(a2, r) (in our case, Ra = Rk ,

where Rk = Ro

√
tk/ξ is the re-scaled droplet radius in (2.7) and Ro is the original droplet

radius independent of model parameters). Clearly

P ∩ Q = P ∩ R = Q ∩ R = φ

and

P ∪ Q ∪ R = (0,∞).

Our aim is to show that P and R are non-empty and open. Then Q is also non-empty.

We have a unique solution of the ordinary differential equation (4.13) subject to the

boundary conditions (4.14) in the limit k → ∞. Therefore, if we can show that a2 ∈ Q
implies that the corresponding hk(a2, r) is a solution of (4.13) and (4.14), then we have that

hk ∈ Q in the limit k → ∞ and hence dhk
dr

> 0 for all r > 0, i.e. we have global monotonicity

in the limit k → ∞. We note that in Proposition 4.1, we prove monotonicity close to the

boundary whereas the proposed shooting methods will yield global monotonicity for all

r > 0.

It is evident that a solution of (4.13) subject to the boundary conditions (4.14) cannot

belong to R owing to the global bounds (2.21). It remains to rule out the possibility

a2 ∈ P. We start with an elementary lemma.

Lemma 4.3 If a2 ∈ Q, then hk(a2, r) is a solution of (4.13) subject to the boundary condi-

tions (4.14), in the limit k → ∞.
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Proof Since hk(a2, r) is monotonically increasing (from the definition of Q) and is bounded

above by 1, b = limr→Rk
hk(a2, r) exists and b ∈ (0, 1]. Hence, to finish the proof, we need

to show that b = 1. In fact, if b < 1, then as r → Rk for k sufficiently large, (2.17) can be

written as

d

dr

(
r2
dh

dr

)
= 6b + r2

(
b3 − b +

3h+

t

(
b3 − b2

))
so that

dh

dr
∼ 6b

r
+

r

3

(
b3 − b +

3h+

t

(
b3 − b2

))
contradicting the hypothesis that dh

dr
> 0 for all r > 0. Therefore, b = 1 and Lemma 4.3

follows. �

Next we need to show that Q is non-empty. For this, we need

Lemma 4.4 The set P is not empty; more precisely, there exists a positive constant m such

that (0, m) ⊂ P.

Proof We set for any a2 > 0,

w(a2, r) =
hk(a2, r)

a2
; (4.33)

then w satisfies the following ordinary differential equation from (4.13)

d2w

dr2
+

2

r

dw

dr
− 6

w

r2
+ w = a2

2w
3 +

3hk+
tk

(
a2

2w
3 − a2w

2
)
,

w (a2, r) ∼ r2 r → 0. (4.34)

Then as a2 → 0, w(a2, r) → w(0, r) where w(0, r) is the solution of

d2w

dr2
+

2

r

dw

dr
− 6

w

r2
+ w = 0,

w(0, r) ∼ r2 r → 0, (4.35)

and the general solution of this ordinary differential equation exhibits oscillatory beha-

viour. From (4.33), we deduce that w(a2, r) has oscillatory behaviour as a2 → 0 and hence

so does hk(a2, r) = a2w(a2, r). This completes the proof of the lemma. �

Lemma 4.5 The set P is open.

Proof For a2 ∈ P, define

z0(a2) = inf

{
r ∈ (0, Rk) ;

dhk(a2, r)

dr
= 0

}
, (4.36)

i.e. z0(a2) is the smallest stationary point of hk(a2, r). We can show that

d2hk (a2, z0(a2))

dr2
< 0. (4.37)
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The definition of z0(a2) implies that

dhk(a2, z0(a2))

dr
= 0 and

d2hk (a2, z0(a2))

dr2
� 0

since we are interested in non-negative solutions.

From the governing ordinary differential equation (4.13), we have that

d2hk

dr2
+

2

r

dhk

dr
= hk

(
6

r2
+ h2

k − 1 +
3hk+
tk

(
h2
k − hk

))
� 0 at r = z0(a2) (4.38)

and note that

d

dr

[
6

r2
+ h2

k − 1 +
3hk+
tk

(
h2
k − hk

)]
< 0 at r = z0(a2).

If

d2hk (a2, z0(a2))

dr2
= 0

then

6

r2
+ h2

k − 1 +
3hk+
tk

(
h2
k − hk

)
= 0 at r = z0(a2).

This implies that

6

r2
+ h2

k − 1 +
3hk+
tk

(
h2
k − hk

)
> 0 on r ∈ [z0(a2) − δ, z0(a2))

for some δ > 0. On the other hand,

1

r2
d

dr

[
r2
dhk

dr

]
= hk

[
6

r2
+ h2

k − 1 +
3hk+
tk

(
h2
k − hk

)]

from (2.17) so that

1

r2
d

dr

[
r2
dhk

dr

]
> 0 on r ∈ [z0(a2) − δ, z0(a2)) .

This, in turn, implies that

z2
0(a2)

dhk(a2, z0(a2))

dr
> (z0(a2) − δ)2

dhk(a2, z0(a2) − δ)

dr
> 0 (4.39)

(since dhk
dr

> 0 for r ∈ (0, z0(a2)) from the definition (4.36)), contradicting the definition of

z0(a2). Hence, (4.37) holds.

Finally, we note that for any a0 ∈ P, by the Implicit Function Theorem and (4.37), there

exists a smooth function y(a2) defined in a neighbourhood of a0 such that y(a0) = z0(a0)

and dhk(a2 ,y(a2))
dr

= 0. Hence, P is open as required. �

Lemma 4.6 The set R is non-empty and open.
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Proof We introduce the function

v(r) = bhk(a2, br) where b = a
−1/3
2 . (4.40)

Then one can check that v satisfies the following ordinary differential equation:

d2v

dr2
+

2

r

dv

dr
− 6v

r2
−

(
1 +

3hk+
tk

)
v3 + b2v +

3hk+
tk

bv2 = 0 (4.41)

with

v(r) ∼ r2 r → 0. (4.42)

If we let b → 0, then the limiting problem is

d2v

dr2
+

2

r

dv

dr
− 6v

r2
−

(
1 +

3hk+
tk

)
v3 = 0,

v(r) ∼ r2 r → 0. (4.43)

From the hypothesis, we have that v, dv
dr

> 0 for r > 0. We claim that there does not exist

l > 0 such that limk→∞ v(Rk) = l. We prove the claim by contradiction. Assume ∃l > 0

such that limk→∞ v(Rk) = l. Then (4.43) implies that

d

dr

(
r2
dv

dr

)
∼ 6l + r2

(
1 +

3hk+
tk

)
l3 r → Rk

so that

dv

dr
∼ 6l

r
+

r

3

(
1 +

3hk+
tk

)
l3 r → Rk

as k → ∞. Therefore, v(r) � l for r sufficiently large, which contradicts the hypothesis.

The other possibility is l = 0 but this contradicts the definition of R, which requires that
dv
dr

> 0 for all r > 0. Therefore,

v(Rk) → ∞ as k → ∞. (4.44)

Consequently, hk(a2, r) is large when a2 is large enough and the set R is non-empty. By

the continuous dependence of hk on a2 and the definition of R, we deduce that R is

open. �

Lemma 4.7 The set Q is non-empty.

Proof This is immediate from Lemmas 4.4 and 4.6. We omit the proof for brevity. �

Proposition 4.3 Let
{
tk

}
be a sequence such that tk → ∞ as k → ∞, with corresponding

radius Rk → ∞ as k → ∞ (since Rk = Ro

√
tk/ξ, where Rk is the re-scaled droplet radius

in (2.7) and Ro is the original droplet radius independent of the model parameters). For

each tk > 0, let hk ∈ Ah be a global minimiser of I[h] in (2.15), as in Proposition 2.1. The

function hk is monotonically increasing in the limit k → ∞.
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Proof From Lemmas 4.3, 4.4, 4.6 and 4.7, we have that there exists a a2 ∈ Q such that

hk(a2, r) is a solution of (4.13) subject to the boundary conditions (4.14), in the limit

k → ∞. From Proposition 4.2, we have that (4.13) and (4.14) admit a unique solution

hk in the limit k → ∞. Hence, we deduce that the corresponding shooting parameter

a2 ∈ Q, i.e. hk is monotonically increasing everywhere away from the origin. An immediate

consequence of this global monotonicity is 0 < hk(r) < 1 for r ∈ (0, Rk) as k → ∞. �

We conclude this section with an explicit far-field expansion for hk in the limit k → ∞.

Proposition 4.4 Let
{
tk

}
be a sequence such that tk → ∞ as k → ∞, with corresponding

radius Rk → ∞ as k → ∞ (since Rk = Ro

√
tk/ξ, where Rk is the re-scaled droplet radius

in (2.7) and Ro is the original droplet radius independent of the model parameters). Let

hk ∈ Ah be a global minimiser of I[h] in (2.15), as in Proposition 2.1. Then hk is a non-

negative solution of the following ordinary differential equation:

d2h

dr2
+

2

r

dh

dr
− 6h

r2
= h

(
h2 − 1 +

3hk+
tk

(
h2 − h

))
(4.45)

subject to the boundary conditions

h(0) = 0 and h (Rk) = 1. (4.46)

We have the following far-field estimates as k → ∞:

r2
∣∣∣∣d2hk

dr2

∣∣∣∣ + r

∣∣∣∣dhkdr

∣∣∣∣ +

∣∣∣∣6 − r2hk(1 − hk)

(
1 +

(
1 +

3hk+
tk

)
hk

)∣∣∣∣ = o(1) r → Rk. (4.47)

Proof The proof of Proposition 4.4 follows some of the methods described in a recent

paper [21] on Ginzburg–Landau theory for three-dimensional domains. All necessary

details are reproduced below for completeness.

The bounds (3.7) imply that for Rk and tk sufficiently large,

1 − α

r2
� hk(r) � 1 − β

r2

as r → Rk , for positive constants α, β independent of k. As demonstrated in (4.8), this

implies

lim
r→Rk

r2
dhk

dr
= 0 as k → ∞, (4.48)

and hence,

lim
r→Rk

r
dhk

dr
= 0 as k → ∞. (4.49)
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For any m ∈ (0, 1) fixed, we multiply (4.45) by r2, average over (mRk, Rk), take the limit

k → ∞ and obtain

1

(1 − m)Rk

∫ Rk

mRk

d

dr

(
r2
dhk

dr

)
dr +

1

(1 − m)Rk

∫ Rk

mRk

r2hk(r) (1 − hk(r))

(
1 +

(
1 +

3hk+
tk

)
hk

)
dr

=
6

(1 − m)Rk

∫ Rk

mRk

hk(r) dr. (4.50)

As k → ∞, hk → 1 uniformly (see (3.7)), dhk
dr

> 0 as r → Rk (from Proposition 4.1) and

using (4.48), we obtain the following sequence of inequalities:

lim sup
k→∞

m2R2
k (1 − hk(Rk))

(
1 +

(
1 +

3hk+
tk

)
hk(Rk)

)
� 6

� lim inf
k→∞

R2
k (1 − hk(mRk))

(
1 +

(
1 +

3hk+
tk

)
hk(mRk)

)
. (4.51)

It immediately follows that

r2 (1 − hk(r))

(
1 +

(
1 +

3hk+
tk

)
hk(r)

)
→ 6 (4.52)

uniformly as r → Rk in the limit k → ∞.

Finally, using the estimates (4.49) and (4.52) in (4.45), we deduce that

r2
∣∣∣∣d2hk

dr2

∣∣∣∣ → 0 (4.53)

uniformly in the limit r → Rk as k → ∞. Proposition 4.4 now follows. �

One immediate consequence of (4.47) is that

hk(r) = 1 − 6

r2
(
2 +

3hk+
tk

) + o

(
1

r2

)
r → Rk (4.54)

as k → ∞. Although this information is qualitatively contained in (4.9), (4.54) is a

stronger result since it is an exact expression that captures the effects of geometry and

the temperature on the far-field structure. Further, (4.54) yields estimates for the higher

order derivatives of hk as r → Rk for k large, and this information cannot be immediately

inferred from (4.9).

5 Conclusion

This paper aims to build a self-contained and rigorous mathematical framework for the

study of the radial-hedgehog solution within the Landau–de Gennes theory for nematic

liquid crystals and to elucidate the analogies between the mathematical formulation of

defects in the Landau–de Gennes framework and defects in the Ginzburg–Landau theory

of superconductivity. These analogies need to be highlighted in the applied mathematics
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literature so that mathematical techniques from other branches of materials science can

be effectively used in the context of liquid crystals. We study radial-hedgehog solutions on

spherical droplets subject to homeotropic anchoring or strong radial anchoring conditions

and define a radial-hedgehog solution to be an energy minimiser within the class of

spherically symmetric uniaxial solutions as demonstrated in Proposition 2.1. We consider

two different regimes in this paper: (a) large droplet radius R and (b) small droplet

radius R. In Proposition 3.3, we demonstrate that the radial-hedgehog solution cannot be

globally energy minimising for large (but finite) values of R and t, i.e. for R, t � 200. In

Propositions 3.4 and 3.5, we prove that the radial-hedgehog solution is locally stable for

droplets of sufficiently small radius, i.e. when R is of the order of the biaxial correlation

length. These stability results take elastic anisotropy into account, show that elastic

anisotropy does not change the qualitative trend (compare equations (3.32) and (3.43))

and identify relationships between the elastic constants, the reduced temperature t and

the droplet radius R that guarantee local stability of the radial-hedgehog solution against

small perturbations.

In [3], Brezis postulated the following problem in the context of Ginzburg–Landau

theory for superconductors: for maps u : �3 → �3 is any solution of the system

∆u + u
(
1 − |u|2

)
= 0 (5.1)

satisfying |u(r)| → 1 as |r| + ∞ (possibly with a good rate of convergence) and deg∞u = 1

of the form

U(r) =
r

r
f(r) (5.2)

for a unique function f vanishing at zero and increasing to one at infinity. In [21], the

authors show that every non-constant local minimiser of the Ginzburg–Landau energy

functional associated with (5.1),

E(u, Ω) :=

∫
Ω

1

2
|∇u|2 +

1

4

(
1 − |u|2

)2
dV

is of the form (5.2), up to a translation on the domain and an orthogonal transformation

on the image. For nematic liquid crystals, the corresponding problem translates to: is

any uniaxial solution of (2.12) necessarily of the form (2.19), i.e. are radial-hedgehog

solutions the only possible uniaxial solutions of the system (2.12) in �3? If so, then

we will have a complete characterisation of all admissible uniaxial solutions and the

interplay between uniaxiality and biaxiality can be partially understood in terms of the

comparatively tractable radial-hedgehog problem. We expect that the methods in [21] will

not readily transfer to the Landau–de Gennes framework and there will be analogies only

in certain parameter regimes, such as the t → ∞ limit studied in this paper [13].

Finally, we compare our results with previous work in this area. As stated in Section 1,

the instability of the radial-hedgehog solution has been demonstrated in the limit R, t → ∞
in [10]. In [10], the authors consider the second variation of the Landau–de Gennes energy

functional and treat the instability condition as a Schrodinger eigenvalue problem, which

has to be solved numerically. We have demonstrated instability of the radial-hedgehog

solution for all values R, t � 200. This result is an improvement over the instability result
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in [10]. A pivotal ingredient in the instability analysis is the construction of explicit

bounds for the scalar order parameter of the radial-hedgehog solution for finite values

of R and t. We have constructed explicit lower and upper bounds for the scalar order

parameter in Proposition 3.2 for R, t � 200. In Proposition 3.3, we construct an explicit

biaxial perturbation, localised near the isotropic core of the radial-hedgehog solution

and use the bounds in Proposition 3.2 to show that this biaxial perturbation has lower

Landau–de Gennes energy than the radial-hedgehog solution for R, t � 200. The biaxial

perturbation is energetically preferable only when localised in a ball B(0, σ) centred at

the origin and one can check that [ĨLG[Q̂] − ĨLG[Q∗]] > 0 if σ is too small or too

large, i.e. σ needs to be large enough for the biaxiality to manifest itself and yet be small

enough so as not to perturb the far-field properties. We expect that our methods can

be further refined to demonstrate instability for modest values of R and t, as suggested

by numerical simulations. There are two possible routes for achieving this: (i) obtain

better upper bounds for the scalar order parameter near the isotropic core following the

methods in Proposition 3.2 and (ii) use partial differential equations-based techniques to

obtain refined bounds for the gradient of the radial-hedgehog solution as in Lemma 4.1

and these bounds will yield global upper bounds for the corresponding scalar order

parameter. In [11], the authors numerically study the stability of the radial-hedgehog

solution as a function of the droplet radius, reduced temperature and elastic constants.

From Propositions 3.4 and 3.5, we are guaranteed local stability of the radial-hedgehog

solution if

R2

ξ2
�

α

t + β(3 +
√

9 + 8t)
,

where α, β are positive constants independent of t. This prescribes a curve in the (R, t)-

plane that is in qualitative agreement with the numerical simulations reported in [11].

It is noteworthy that elastic anisotropy does not change the qualitative features of the

stability curve in the (R, t)-plane.

Further, in [27], the authors find that the radial-hedgehog solution only occurs either

in very small droplets or very close to the nematic-isotropic transition temperature; the

symmetry-breaking biaxial torus solution is energetically preferable everywhere else. This

is consistent with Propositions 3.4 and 3.5 and with Proposition 3.3. In [25], the authors

work within the Lyuksyutov constraint, which requires that trQ2 = 2
3
s2+, where s+ has been

defined in (2.5), everywhere inside the droplet. They demonstrate that the radial-hedgehog

solution is always locally unstable within the one-constant approximation for the elastic

energy density, i.e. when the elastic energy density is simply taken to |∇Q|2, as has been

done in Propositions 3.3 and 3.4. This is evidently in agreement with Proposition 3.3 and

does not contradict Proposition 3.4 where we demonstrate local stability in droplets of

sufficiently small radius. The Lyuksyutov constraint is valid in the R → ∞ limit or for

droplets of sufficiently large radius, and hence, Proposition 3.4 is outside the remit of this

instability result.

While careful attention is paid to the effect of elastic constants in some of the previous

work, we focus on the one-constant case in this paper. We point out that the mathematical

results in Sections 2 and 3 will readily extend to an anisotropic elastic energy density

as considered in Proposition 3.5. However, the results in Section 4 are restricted to the
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one-constant elastic energy density since there are no anisotropic versions of the Ginzburg–

Landau theory for superconductors. Hence, the one-constant case is the best paradigm for

illustrating the generalisations of Ginzburg–Landau techniques to the Landau–de Gennes

framework.
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