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Abstract We use a spectral sequence developed by Graeme Segal in order to understand the twisted
G-equivariant K-theory for proper and discrete actions. We show that the second page of this spectral
sequence is isomorphic to a version of Bredon cohomology with local coefficients in twisted representa-
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and recover known results when the twisting comes from finite order elements in discrete torsion.
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1. Introduction

One of the tools for calculating generalized cohomology groups is the Atiyah–Hirzebruch
spectral sequence, which was originally developed in [2] in order to study K-theory. Many
generalizations of this spectral sequence have been developed for studying cohomology
theories in the equivariant context and we will pay specific attention to the spectral
sequence developed by Segal in [26].

Twisted equivariant K-theory was defined by Atiyah and Segal in [3] using bundles
of Fredholm operators and was extended to the context of proper actions by Joachim
and the first three authors in [7]. Owing to the relation of the Verlinde algebra to the
twisted equivariant K-theory of a compact Lie group acting on itself by conjugation,
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122 N. Bárcenas and others

established by Freed et al. in [16], computational methods have become necessary in
order to calculate the twisted equivariant K-theory groups. Specialized to the case of
the conjugation action, the Künneth spectral sequence [9] and the Rothenberg–Steenrod
spectral sequence for twisted equivariant K-homology [11] have been successfully used to
determine the twisted equivariant K-theory groups. Theoretical tools such as the com-
pletion theorem of Lahtinen [19], together with the previously described methods, define
the group of ideas used for the computation in [18] of the twisted K-theory of the loop
space of the classifying space of a simply connected and simple compact Lie group.

Besides the notable specific examples explained in [15], and the case when the twisting
comes from discrete torsion [12] (where a method is used to reduce the construction of
the spectral sequence to an untwisted version, as done in [10]), no systematic study of
a spectral sequence for computing twisted equivariant K-theory under the presence of a
generic twist has been carried out. This is the main objective of this work.

In [7], the twisted equivariant K-theory for a proper equivariant absolute neighbour-
hood retract (G-ANR)X was defined given a stable equivariant projective unitary bundle;
these bundles were shown in [7] to be classified by elements of the degree 3 Borel cohomol-
ogy group H3(X×GEG; Z). In this note, we use the explicit construction of the universal
stable equivariant projective unitary bundle done in [7] in order to determine the first two
pages of Segal’s spectral sequence converging to the twisted equivariant K-theory groups.
For this purpose, we develop a twisted version of Bredon cohomology, which turns out to
determine the E2-page of Segal’s spectral sequence once it is applied to an equivariantly
contractible cover.

The construction of the spectral sequence extends and generalizes previous work of
C. Dwyer [12], who only treated the twistings classified by cohomology classes of finite
order which lie in the image of the canonical map H3(BG,Z) → H3(X×GEG; Z); these
twistings are termed discrete torsion twistings.

The main result of this note, which is Theorem 5.5, relies on the construction and the
properties of the universal stable equivariant projective unitary bundle carried out in [7].
Since this work can be seen as a continuation of what has been done in [7], we will use
the notation, the definitions and the results of that paper. We will not reproduce any
proof that already appears in [7]; instead, we will give appropriate references whenever
a definition or a result of [7] is used.

We emphasize that the topological issues that may appear when working with the
projective unitary group have all been resolved in [22, § 15] when it is endowed with the
norm topology. We therefore assume in this work that we are working with the norm
topology when discussing topological properties of operator spaces.

This note is organized as follows. In § 2 a version of Bredon cohomology associated with
an equivariant cover of a space is constructed. In § 3 the basics of transformation groups
and parametrized homotopy theory needed for the construction are quickly reviewed.
These are used to construct a version of Bredon cohomology with local coefficients. In § 4
the construction of twisted equivariant K-theory for proper and discrete actions given in
[7] is reviewed. In § 5, the Bredon cohomology with local coefficients in twisted represen-
tations is shown to be isomorphic to the second page of a spectral sequence converging to
twisted equivariant K-theory. Some phenomena concerning the third differential of this
spectral sequence are also analysed. In § 6 some simple examples are given, including the
case of discrete torsion which was developed by Dwyer in [12].
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2. Bredon cohomology associated with a cover

We introduce first the formalism of modules and spaces over a category (see [10] for
details).

Definition 2.1. Let C be a small category. A contravariant C-space is a contravariant
functor C −→ SPACES to the category of compactly generated spaces.

Definition 2.2. Let X and Y be C-spaces of the same variance. Their mapping space
HomC(X,Y ) is the space of natural transformations between the functors X and Y ,
endowed with the subspace topology of the product of the spaces of pointed maps
Πc∈Obj(C)Map(X(c), Y (c)), where Map(X(c), Y (c)) has the compact-open topology for
any c ∈ Obj(C).

Let I be the constant functor with value [0, 1]. A C-homotopy between two C-maps
f0, f1 : X → Y is a natural transformation H : X × I → Y such that the composition H ◦
ik with the inclusions ik : X → X × I for k = 0, 1 are equal to fk. The set of C-homotopy
classes of maps between two spaces will be denoted by [X,Y ]C .

Definition 2.3. Let X be a contravariant, pointed C-space over C and let Y be a
covariant C-space over C. Their tensor product X ⊗C Y is the space defined by

∐
c∈Obj(C)

X(c) × Y (c)/ ∼

where ∼ is the equivalence relation generated by (X(φ)(x), y) ∼ (x, Y (φ)(y)) for all
morphisms φ : c→ d in C and points x ∈ X(d) and y ∈ Y (c).

Definition 2.4. Let C be a small category. A free C-CW complex is a contravariant
C-space together with a filtration

X0 ⊂ X1 ⊂ . . . = X

such that X = colimnXn and each Xn is obtained from the Xn−1 by a pushout consisting
of maps of C-spaces of the form

∐
i∈In

MorC(?, ci) × Sn−1

��

�� Xn−1

��∐
i∈In

MorC(?, ci) ×Dn �� Xn

where the cis are objects in C and the spaces MorC(?, ci) carry the discrete topology.

Definition 2.5. Let C be a small category and R be a commutative ring. A con-
travariant RC-module is a contravariant functor from C to the category of R-modules. A
contravariant RC-chain complex is a functor from C to the category of R-chain complexes.

We write C-module for a ZC-module.
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An RC-module F is free if it is isomorphic to an RC-module of the form

F (?) =
⊕
i∈I

R[MorC(?, ci)]

for some index set I and objects ci ∈ C.
Given two RC-modules A, B of the same variance, the R-module

HomRC(A,B)

is the module of natural transformations of functors from C to R-modules.

Definition 2.6. Given a category C and an object c in C, the category over c, C ↓ c
is the category where the objects are morphisms ϕ : c0 → c and a morphism between
ϕ0 : c0 → c and ϕ1 : c1 → c is a morphism ψ : c0 → c1 in C such that ϕ0 = ϕ1 ◦ ψ.

Dually, the category under an object c, denoted c ↓ C, is the category where the
objects are morphisms ϕ : c→ c0 and a morphism between ϕ0 : c→ c0 and ϕ : c→ c1
is a morphism in C, ψ : c0 → c1 such that ϕ1 = ψ ◦ ϕ0.

Fix an object c, and denote by BC ↓ c the classifying space of the category over c and
by Bc ↓ C the classifying space of the category under c.

The contravariant, free ZC-chain complex CZ
∗ (C) is defined on every object as the

cellular Z-chain complex of BC ↓ c.

Definition 2.7. Let M be a contravariant C-module. The cohomology of C with coef-
ficients in M , Hn(C,M) is defined to be the cohomology groups of the cochain complex
of natural transformations between the C-modules CZ

∗ (C) and M ,

Hn(C,M) := HnHomZC(CZ

∗ (C),M).

We now specialize to the categories relevant to twisted K-theory and Bredon
cohomology with local coefficient systems.

Let G be a group and X be a proper G-ANR. Let U = {Ui}i∈Σ be a countable covering
of X by open, G-invariant sets X =

⋃
i∈Σ Ui. Given a subset σ ⊂ Σ, define Uσ = ∩i∈σUi.

We will assume that for all σ, the open set Uσ is G-homotopy equivalent to an orbit
G/Hσ for a finite group Hσ ⊂ G. The existence of such a cover, sometimes known as a
contractible slice cover, is guaranteed for proper G-ANRs by an appropriate version of
the slice Theorem (see [1]).

The category associated with U , denoted by NGU , has for objects
⊔

σ⊂ΣUσ and for
morphism the inclusions Uτ → Uσ whenever there is an inclusion of sets σ ⊂ τ .

A coefficient system with values on R-modules is a contravariant functor NGU → R−
Mod.

Definition 2.8. Let X be a proper G-space with a contractible slice cover U , and let
M be a coefficient system. Define the Bredon cohomology groups with respect to U as
the cohomology groups of the category NGU with coefficients in M ,

Hn
G(X,U ;M) := Hn(NGU ,M).
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Whenever we have a refinement V → U of the G-invariant cover, we get a group
homomorphism

Hn
G(X,U ;M) → Hn

G(X,V;M ′)

where the functor M ′ is obtained by the composition of the functor NGV → NGU with
the functor M .

Remark 2.9. For more general spaces than a proper G-ANR, a version of Čech coho-
mology might be constructed by taking the inverse limit over open covers U of the space
X:

Ȟn
G(X;M) := lim

U
Hn(NGU ,M).

Details are provided in [24]. Other approaches to Čech versions of Bredon cohomology
include [17].

3. Parametrized equivariant topology

The orbit category was introduced by Bredon for the definition of cohomological invariants
of spaces with an action. We introduce now a formalism for also taking into account
twisting data.

Definition 3.1. Let G be a discrete group. The orbit category OP
G, with respect to

the family of finite subgroups, has as objects

Obj(OP
G) = {G/H | H is a finite subgroup of G}

and as morphisms G-maps

MorOP
G
(G/H,G/K) = Map(G/H,G/K)G.

Given a G-space X, the fixed point set system of X, denoted by ΦX, is the OP
G-space

defined by:
ΦX(G/H) := Map(G/H,X)G = XH

and if θ : G/H → G/K corresponds to gK ∈ (G/K)H then

ΦX(θ)(x) := gx ∈ XH

whenever x ∈ XK . The functor Φ becomes a functor from the category of proper G-spaces
to the category of OP

G-spaces.
If X is a contravariant functor from OP

G to spaces, and ∇ is the covariant functor from
OP

G to spaces which assigns to an orbit G/H the homogenous space G/H, one can define
the G-space

X̂ :=
⊔

c∈Obj(OP
G)

X (c) ×∇(c)/ ∼

where ∼ is the equivalence relation generated by (X (φ)(x), y) ∼ (x,∇(φ)(y)) for all mor-
phisms φ : c→ d in OP

G and points x ∈ X (d) and y ∈ ∇(c), and the G-action comes from
the left translation action on G/H.
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For G a discrete group [10, Lemma 7.2], the functors Φ and ×OP
G
∇ are adjoint, i.e.

for a OP
G space X and a G-space Y there is a natural homeomorphism

Map(X ×OP
G
∇, Y )G ∼=→ HomOP

G
(X ,ΦY ),

and, moreover, the adjoint of the identity map on ΦY under the above adjunction is a
natural G-homeomorphism

(ΦY ) ×OP
G
∇ ∼=→ Y.

A model for the homotopical version of the previous construction is defined as follows.
Consider the topological category (X ,∇) whose objects are

Obj((X ,∇)) =
⊔

c∈Obj(OP
G)

X (c) ×∇(c)

and whose morphisms consist of all triples (x, φ, y), where φ : c→ d is a morphism in
OP

G and x ∈ X (d) and y ∈ ∇(c), with source(x, φ, y) = (X (φ)(x), y) and target(x, φ, y) =
(x,∇(φ)(y)). Define the space X̂ h as the geometric realization of the category (X ,∇).
The space X̂ h is provided with a map X̂ h → X̂ , which is a model for the map from the
homotopy colimit to the colimit. This map is a G-homotopy equivalence if X is a free
OP

G-complex.
We recall now results on the homotopy theory of spaces with an action of a group G

and OP
G-spaces.

Definition 3.2. Let G be a discrete group. Given a family F of subgroups of G, which
is closed under conjugation, and taking subgroups:

• a map f : X → Y of G-spaces is called an F-equivalence if for every finite subgroup
H � G, the map fH : XH → Y H is a weak equivalence of topological spaces;

• a map f : X → Y of G-spaces is called an F-fibration if for every finite subgroup
H � G, the map fH : XH → Y H is a Serre fibration of topological spaces;

• a map f : X → Y of G-spaces is called an F-cofibration if it has the left lifting
property with respect to any map which is F-equivalence and F-fibration.

The qf -model structure on OP
G-spaces, with levelwise weak equivalences and cofibra-

tions having the left homotopy extension property, is Quillen equivalent to the homotopy
category of compactly generated, weak Hausdorff G-spaces, with the above mentioned
model category structure for the family F = ALL of all subgroups of G [14]. In the
Appendix we prove a parametrized version of this result, and show some more facts
concerning the homotopy category of both G-spaces and OP

G-spaces.
We now introduce the category of OP

G-spectra. Recall that a spectrum is a sequence of
pointed spaces {En}n∈Z with structure maps En ∧ S1 → En+1.

A (strong) map of spectra f : E → F is a sequence of maps compatible with the
structure maps.

Finally, recall that a spectrum is called an Ω-spectrum if the adjoint of the structure
maps En → ΩEn+1 are weak homotopy equivalences.

https://doi.org/10.1017/S0013091517000281 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091517000281


Segal’s spectral sequence in twisted equivariant K-theory 127

Definition 3.3. Let G be a discrete group. An OP
G-spectrum is a contravariant functor

E : OP
G → SPECTRA to the category of spectra and strong maps.

Given an OP
G-space X , we denote by

ΣX = X+ ∧ S1

the space given on each object G/H as the reduced suspension X+(G/H) ∧ S1, together
with the structure maps given by smashing with the identity map.

The nth suspension ΣnX is the space defined on objects as X (G/H)+ ∧ Sn.

Definition 3.4. Let X be an OP
G-space. The naive OP

G-suspension spectrum of X ,
denoted by Σ∞X , is defined on each object G/H as the nth suspension space Σ∞

OP
G
X (n) =

ΣnX = X+ ∧ Sn with the OP
G-structure maps obtained by smashing the OP

G-maps of X
with the identity map Sn → Sn and spectra structure maps given by the homeomorphisms
Sn ∧ S1 → Sn+1.

We now introduce parametrized versions of the constructions defined in the orbit
category.

Definition 3.5. Fix a contravariant OP
G-space B. A OP

G-space over B is a contravariant
OP

G space X endowed with a natural transformation of OP
G-spaces pX : X → B; this map

is usually called a projection.
A map of OP

G-spaces over B is a map of OP
G-spaces F : X → Y, which in addition is

compatible with projections in the sense that pY ◦ F = pX .

The space of maps over B, denoted by HomOP
G
(X ,Y)B, is defined as the subspace of

the OP
G-mapping space consisting of OP

G-maps which are compatible with the projection
maps:

HomOP
G
(X ,Y)B := {F ∈ HomOP

G
(X ,Y) | pY ◦ F = pX }.

We denote the set of homotopy classes of maps over B by

OP
G
[X ,Y]B := π0(HomOP

G
(X ,Y)B).

4. Twisted equivariant K-theory and local coefficient versions of Bredon
cohomology

4.1. Twisted equivariant K-theory

Twisted equivariant K-theory for proper actions of discrete groups was introduced in
[7]. In what follows, we will recall its definition using Fredholm bundles and its properties
following [7], and the classification of equivariant principal bundles done in [7,22].
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Definition 4.1. Let X be a proper G-space with the homotopy type of a proper
G-ANR. Let H be a separable complex Hilbert space and

U(H) = {U : H → H | U ◦ U∗ = U∗ ◦ U = Id}
be the unitary group endowed with the norm topology. The group PU(H) = U(H)/S1

with the quotient topology is the group of projective unitary operators.
A projective unitary stable G-equivariant bundle is a right PU(H), principal bundle

PU(H) → P → X

endowed with a left G-action lifting the action on X such that:

• the left G-action commutes with the right PU(H) action, and

• for all x ∈ X there exists a G-neighbourhood V of x and a Gx-contractible slice U of
x with V equivariantly homeomorphic to U ×Gx

G with the action

Gx × (U ×G) → U ×G, k · (u, g) = (ku, gk−1),

together with a local trivialization

P |V ∼= (PU(H) × U) ×Gx
G

where the action of the isotropy group is:

Gx × [(PU(H) × U) ×G] → (PU(H) × U) ×G

k · [(F, y), g] �→ [(fx(k)F, ky), gk−1]

with fx : Gx → PU(H) a fixed stable homomorphism, in the sense that the unitary
representation H induced by the homomorphism f̃x : G̃x = f∗xU(H) → U(H) contains
each of the irreducible representations of G̃x on which S1 acts by multiplication an
infinite number of times.

Let X be a G-space and P → X a projective unitary stable G-equivariant bundle over
X. Recall [3,7] that the space of Fredholm operators is endowed with a continuous right
action of the group PU(H) by conjugation; therefore, we can take the associated bundle
over X

Fred(P ) := P ×PU(H) Fred(H),

where Fred(H) is the space of Fredholm operators with the norm topology, and with the
induced G-action given by

g · [(λ,A)] := [(gλ,A)]

for g in G, λ in P and A in Fred(H).
Denote by

Γ(X; Fred(P ))

the space of sections of the bundle Fred(P ) → X and choose as base point in this space
the section which chooses the identity operator on each fibre. This section exists because
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the PU(H)-action on IdH is trivial, and therefore

X ∼= P/PU(H) ∼= P ×PU(H) {IdH} ⊂ Fred(P );

let us denote this identity section by s.
The proof of Bott periodicity in [5, Theorem 5.1] shows the homotopy equivalence

Ω2(Fred(H))  Fred(H). This proof can be carried without changes whenever a compact
Lie group K acts in H with infinitely many representations for each irreducible represen-
tation appearing in H. Taking equivariant Fredholm operators Fred(H)K , we obtain the
homotopy equivalence Ω2(Fred(H)K)  Fred(H)K . Therefore, we obtain Bott periodic-
ity for the twisted and equivariant case, and we may define the twisted G-equivariant
K-theory groups as follows.

Definition 4.2. Let X be a connected G-space and P a projective unitary stable G-
equivariant bundle over X. The twisted G-equivariant K-theory groups of X twisted by
P are defined as the homotopy groups of the G-equivariant sections

Kp
G(X;P ) := π0

(
Γ(X; Fred(P ))G, s

)
whenever p is even

Kp
G(X;P ) := π1

(
Γ(X; Fred(P ))G, s

)
whenever p is odd

where s denotes the identity section.

4.2. Universal projective unitary stable equivariant bundle

In [7, § 3.2] the universal projective unitary stable equivariant bundle was constructed
by gluing the universal bundles over each orbit type. Let us recall how this bundle is
assembled, since we need this information in order to define the Bredon cohomology with
local coefficients.

The base of this universal bundle was constructed from the OP
G-space |C| which at each

orbit type G/K assigns the space |CG/K |; this space is the geometric realization of the
groupoid

CG/K = [Functst(G�G/K,PU(H))/Map(G/K,PU(H))]

whose objects are functors Functst(G�G/K,PU(H)) from the category defined by the
left G-action on G/K, denoted by G�G/K, and the category defined by the group
PU(H) whose restrictions to Hom(K,PU(H)) are stable homomorphisms, and whose
morphisms are given by natural transformations Map(G/K,PU(H)).

In the category of OP
G-spaces, a classifying map for the bundle ΦP → ΦX is obtained

by map μ : ΦX → |C| assembling the maps μG/K : XK → |CG/K |, with the property that

(μG/K)∗|DG/K | ∼= P |XK

where |DG/K | → |CG/K | is the universal projective unitary stable NG(K)-equivariant
bundle over |CG/K |, defined as follows [7, Definition 4.1]: the morphisms Mor(DG/K) are

Functst(G�G/K,PU(H)) × PU(H) × Map(G/K,PU(H))

and the objects Obj(DG/K) are

Functst(G�G/K,PU(H)) × PU(H),
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with structural maps source(ψ,F, σ) = (ψ,F ), target(ψ,F, σ) = (σF−1ψFσ−1, σ([K]))
and composition comp((ψ,F, σ), (σF−1ψFσ−1, σ([K]), δ) = (ψ,F, δσ([K])−1σ). The
functor DG/K → CG/K forgets the PU(H) component, and the map |DG/K | → |CG/K |
denotes the map of the geometric realizations.

Denote by Fred(|D|)) the OP
G-space over |C| defined on the orbit type G/K by

Fred(|DG/K |))K := (|DG/K | ×PU(H) Fred(H))K

and denote by p : Fred(|D|) → |C| the projection map which is the assembly of the
canonical projection maps

pG/K : Fred(|DG/K |)K → |CG/K |.

Since the identity operator IdH on the Hilbert space H is invariant under the
conjugation action of PU(H), then the projection map p has a canonical section

s : |C| → Fred(|D|)

which assigns to every point the operator IdH.
Alternatively, we could define the twisted equivariant K-theory groups in the category

of OP
G-spaces in the following way. For a proper G-CW complex X endowed with a map

of OP
G-spaces μ : ΦX → |C|, we can alternatively define the twisted equivariant K-theory

groups of the pair (ΦX;μ) as the homotopy groups of the pointed space

(HomOP
G
(ΦX,Fred(|D|))|C|, s ◦ μ)

namely

Kp
G(ΦX;μ) := π0(HomOP

G
(ΦX,Fred(|D|))|C|, s ◦ μ) whenever p is even

Kp
G(ΦX;μ) := π1(HomOP

G
(ΦX,Fred(|D|))|C|, s ◦ μ) whenever p is odd.

Remark 4.3. We would like to note here that an alternative, and homotopically equiv-
alent, construction of the universal projective unitary stable equivariant bundle was done
in [22, § 15]. There, all topological issues regarding the existence of local sections were
resolved.

4.3. Bredon cohomology with local coefficients

The local coefficients for the Bredon cohomology that we are going to define in this
section are constructed from the fibrewise homotopy groups of the fibre bundles

pG/K : Fred(|DG/K |)K → |CG/K |.

In order to have an explicit definition of these local coefficients, we need to recall some
properties of the previous fibration.

The only non-trivial homotopy groups of the spaces |CG/K | exist in degree 0, 1 and 3. We
know by [7, Theorem 1.9] that π0(|CG/K |) ∼= Ext(K,S1) is the set of isomorphism classes
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of S1-central extensions of K, and that the fundamental group of each connected com-
ponent of |CG/K | is isomorphic to Hom(K,S1). Let us denote by |CG/K |K̃ the connected
components of |CG/K | associated with the S1-central extension K̃; hence

|CG/K | =
⋃

K̃∈Ext(S1,K)

|CG/K |K̃ .

Now, for any point x ∈ |CG/K |K̃ there is an associated specific stable homomorphism
α : K → PU(H) with K̃ ∼= α∗(U(H)) and lift α̃ : K̃ → U(H) such that the fibre

p−1
G/K(x) ⊂ (|DG/K | ×PU(H) Fred(H))K

is isomorphic to the space of K-invariant Fredholm operators

Fred(H)α̃ := {F ∈ Fred(H) | α̃(k)F = Fα̃(k) for all k ∈ K̃}.
The index map

ind : Fred(H)α̃ → RS1(K̃)

F �→ [ker(F )] − [coker(F )]

is a homomorphism of groups that induces an isomorphism of groups at the level of the
connected components

ind : π0(p−1
G/K(x)) = π0(Fred(H)α̃)

∼=→ RS1(K̃); (4.1)

here,RS1(K̃) denotes the Grothendieck group of isomorphism classes of K̃ representations
where ker(K̃ → K) acts by multiplication of scalars. Hence, we have that the connected
components of the fibres of the map

pG/K : Fred(|DG/K |)K ||CG/K |
K̃
→ |CG/K |K̃

are all isomorphic to the group RS1(K̃) via the index map.

Definition 4.4. Consider the OP
G-space TR0 over |C| which at each orbit type G/K

is defined by

(TR0)G/K :=
⊔

K̃∈Ext(K,S1)

|CG/K |K̃ ×Hom(K,S1) RS1(K̃)

where |CG/K |K̃ is the universal cover of |CG/K |K̃ , the action of Hom(K,S1) on the left-
hand side is given by an explicit isomorphism π1(|CG/K |K̃) ∼= Hom(K,S1) and the action
on the right-hand side is given by

Hom(K,S1) ×RS1(K̃) → RS1(K̃), (ρ, V ) �→ ρ⊗C V

where ρ is understood as the one-dimensional representation of K̃ that the homomorphism
ρ defines. Denote by t : |CG/K | → (TR0)G/K the 0-section.
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Note that the definition of the explicit isomorphism π1(|CG/K |K̃) ∼= Hom(K,S1) is
based on the following construction. The first two homotopy groups of |CG/K | come
from the first two homotopy groups of Homst(K,PU(H)), the space of stable homomor-
phisms. Denote by Homst(K,PU(H))K̃ the connected component that defines K̃, and let
HomS1(K̃,U(H)) be the space of homomorphisms such that ker(K̃ → K) acts on H by
multiplication. Then the projection map

HomS1(K̃,U(H)) → Homst(K,PU(H))K̃

is a principal Hom(K,S1)-bundle where Hom(K,S1) acts on HomS1(K̃,U(H)) by multi-
plication [22, Proposition 15.7], and therefore the projection map is a universal cover for
the base.

For a stable homomorphism α : K → PU(H) such that α∗U(H) ∼= K̃, we choose a lift
α̃ : K̃ → U(H) in order to define the index map

indα̃ : Fred(H)α → RS1(K̃)

F �→ [ker(F )] − [coker(F )].

Whenever we choose another lift α̃′ = α̃ · ρ with ρ : K → S1, we have that indα̃′
(F ) =

indα̃(F ) · ρ, and since the structural group of Fred(|DG/K |)K is connected, we have that
the fibrewise index map

Fred(|DG/K |)K
ind ��

pG/K

��

(TR0)G/K

qG/K

��
|CG/K |

sG/K

��

=
�� |CG/K |

tG/K

��

(4.2)

is a well-defined map of fibre bundles, and that it induces an isomorphism of the connected
components of the fibres

π0(p−1
G/K(x)) ∼= RS1(K̃) (4.3)

for every point x ∈ |CG/K |K̃ and every S1-central extension K̃. Assembling these maps,
we obtain an index map at the level of the OP

G-spaces over |C|

Fred(|D|) ind ��

p

��

TR0

q

��
|C|

s

��

=
�� |C|

t

��

(4.4)

which induces an isomorphism on the connected components of the fibres.
To construct the Bredon cohomology with coefficients in twisted representations, we

perform a construction similar to the one in Definition 4.4, but we replace the group of
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twisted representations RS1(K̃) by HRS1(K̃), the Eilenberg–MacLane spectrum of the
abelian group RS1(K̃).

Denote by HRS1(K̃) the Eilenberg–MacLane spectrum associated with the group
RS1(K̃), i.e. at level n � 0 we have (HRS1(K̃))n = K(RS1(K̃), n), where K(RS1(K̃), n)
is a functorial model for the Eilenberg–MacLane space whose only non-trivial homotopy
group is RS1(K̃) in degree n, and which comes endowed with weak homotopy equivalences
ΩK(RS1(K̃), n)  K(RS1(K̃), n+ 1).

Definition 4.5. For n � 0, consider the OP
G-space TRn over |C| of twisted represen-

tations, such that on the orbit type G/K we have

(TRn)G/K :=
⊔

K̃∈Ext(K,S1)

|CG/K |K̃ ×Hom(K,S1) K(RS1(K̃), n)

where |CG/K |K̃ is the universal cover of |CG/K |K̃ , the action of Hom(K,S1) on the left-
hand side is given by an explicit isomorphism π1(|CG/K |K̃) ∼= Hom(K,S1) and the action
on the right-hand side is the one induced on the Eilenberg–MacLane space K(RS1(K̃), n)
by the action

Hom(K,S1) ×RS1(K̃) → RS1(K̃), (ρ, V ) �→ ρ⊗C V.

Denote by rn : TRn → |C| the natural projection map and by σn : |C| → TRn the section
which chooses the base point in K(RS1(K̃), n). For n < 0, let TRn := |C| with rn = σn =
Id|C|.

The weak homotopy equivalences ΩK(RS1(K̃), n)  K(RS1(K̃), n+ 1) induce weak
homotopy equivalences ΩTRn  TRn+1 in the category of OP

G-spaces over |C|. Assembling
the spaces TR = {TRn}n∈Z, we obtain the following lemma.

Lemma 4.6. TR = {TRn}n∈Z is a Ω-spectrum in the category of OP
G-spaces over |C|.

We are now ready to define the twisted Bredon cohomology associated with twisted
representations.

Definition 4.7. Let X be a proper G-ANR endowed with a fixed map of OP
G-spaces

ξ : ΦX → |C|. The Bredon cohomology groups with local coefficients in twisted represen-
tations associated with the pair (ΦX; ξ) are defined as the connected components of the
based spaces HomOP

G
(ΦX,TRn)|C|, i.e.

H
p
G(ΦX, ξ) := π0(HomOP

G
(ΦX,TRp)|C|;σp ◦ ξ).

Alternatively, in the category of OP
G-spectra over |C| we have:

H
p
G(ΦX, ξ) := πp(HomOP

G
(Σ∞ΦX,TR)|C|;σ ◦ ξ).

These cohomology groups satisfy the axioms of a parametrized G-equivariant cohomol-
ogy theory, and the proof follows the same lines as the one for the twisted equivariant
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K-theory groups which can be found in [7, Chapter 5]; we will not reproduce the proof
here.

Remark 4.8. Other approaches to Bredon cohomology with local coefficients include
[8], where methods from the theory of crossed complexes and their classifying spaces are
used to produce a classifying object for Bredon cohomology with local coefficients.

5. Segal’s spectral sequence for twisted equivariant K-theory

We will use Segal’s method [26] to obtain a filtration of the homotopy theoretically defined
twisted equivariant K-theory, as well as a version of Bredon cohomology associated with a
cover to handle the homotopical version of Bredon cohomology described in the previous
section. We describe first the local coefficient system associated with twisted equivariant
K-theory.

Definition 5.1 (Local coefficient system of twisted equivariant K-theory). Consider a
projective unitary stable bundle P over a proper G-space X and a G-invariant and count-
able cover U for which each open set Uσ is equivariantly contractible, i.e. G-homotopic
to G/Hσ for some finite subgroup Hσ depending on the set Uσ. We can define local
coefficient systems by the functors

Kp
G(?, P?) : NGU → Z − Mod

Uτ ⊂ Uσ �→ Kp
G(Uσ;P |Uσ

) → Kp
G(Uτ ;P |Uτ

).

Proposition 5.2. Let X be a proper compact G-ANR and P a projective unitary
stable equivariant bundle. Then Segal’s spectral sequence applied to K∗

G(X,P ) and asso-
ciated with the locally finite and equivariantly contractible cover U , has as second page
Ep,q

2 the cohomology of NGU with coefficients in the functor K0
G(?, P |?) whenever q is

even, i.e.

Ep,q
2 := Hp

G(X,U ;K0
G(?, P |?)) (5.1)

and is trivial if q is odd. Its higher differentials

dr : Ep,q
r → Ep+r,q−r+1

r

vanish when r is even.

Proof. Since the cover consists of equivariantly contractible spaces, we know that the
groups Kq

G(Uσ;P |Uσ
) are periodic and trivial for q odd. Therefore, the fact that the

second page of Segal’s spectral sequence is isomorphic to Hp
G(X,U ;Kq

G(?, P |?)) follows
directly from Segal’s original proof. Bott’s isomorphism implies that K2n

G (Uσ;P |Uσ
) ∼=

K0
G(Uσ;P |Uσ

), and therefore we have that the even differentials vanish. �

We are mainly interested in the second page of the spectral sequence. To understand
this, we need to elaborate on the cohomology of NGU with coefficients in the functor
K0

G(?, P |?)) and compare it with the homotopy theoretic definition given in § 4. This
comparison will be done in the category of OP

G-spaces over |C|.
We claim the following result.
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Theorem 5.3. Let U be a locally finite cover of G-invariant sets of X such that each
non-trivial intersection of sets in the cover is equivariantly contractible. Then, for any
map μ : ΦX → |C|, the second page of Segal’s spectral sequence applied to the groups
K∗

G(ΦX;μ) is isomorphic to the Bredon cohomology groups with local coefficients in
twisted representations H

p
G(ΦX,μ), i.e. for q even

Ep,q
2

∼= H
p
G(ΦX,μ).

Proof. Applying Segal’s spectral sequence to H
p
G(ΦX,μ) with the cover U , we get that

the second page of this spectral sequence is

Ēp,q
2 = Hp

G(ΦX,U ; Hq
G(?, μ|?)).

Since the open sets Uσ are equivariantly contractible, we have that for q �= 0

H
q
G(ΦUσ, μ|ΦUσ

)) = 0

and therefore Ēp,q
2 = 0 for q �= 0. Therefore, the spectral sequence collapses at the second

page, and this page becomes

Ēp,0
2 = Hp

G(ΦX,U ; H0
G(?, μ|?)) ∼= H

p
G(ΦX,μ)

where H
0
G(?, μ|?) is the local coefficient system defined by

H
0
G(?, μ|?) : NGU → Z − Mod

Uτ ⊂ Uσ �→ H
0
G(ΦUσ, μ|ΦUσ

) → H
0
G(ΦUτ , μ|ΦUτ

).

Now we need to show that there is a canonical way to assign isomorphisms

φσ : K0
G(ΦUσ;μ|ΦUσ

)
∼=→ H

0
G(ΦUσ, μ|ΦUσ

) (5.2)

which commute with the restriction maps on each side; the existence of such isomorphisms
would induce a canonical isomorphism between the complexes defined in the first page
of the spectral sequences

Ep,0
1

∼=→ Ēp,0
1

and therefore would induce an isomorphism at the second pages

Ep,0
2

∼=→ Ēp,0
2 .

The existence of the isomorphisms described in (5.2), and their compatibility with the
inclusions, follows from the explicit maps described in diagrams (4.2), (4.4) and from
the isomorphisms of equations (4.3). Since Uσ is equivariantly contractible to a point, by
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equation (4.1) we know that the index map

HomOP
G
(ΦUσ,Fred(|D|))|C| → HomOP

G
(ΦUσ,TR0)|C|

f �→ ind ◦ f
induces an isomorphism on connected components, and hence a canonical isomorphism

φσ : K0
G(ΦUσ;μ|ΦUσ

)
∼=→ H

0
G(ΦUσ;μ|ΦUσ

).

The inclusion Uτ ⊂ Uσ induces a commutative diagram

HomOP
G
(ΦUσ,Fred(|D|))|C|

��

ind �� HomOP
G
(ΦUσ,TR0)|C|

��
HomOP

G
(ΦUσ,Fred(|D|))|C| ind �� HomOP

G
(ΦUσ,TR0)|C|

which implies that the isomorphisms φσ are compatible with restrictions, i.e. we have the
commutative diagram

K0
G(ΦUσ;μ|ΦUσ

)
φσ

∼=
��

��

H
0
G(ΦUσ;μ|ΦUσ

)

��
K0

G(ΦUτ ;μ|ΦUτ
)

φτ

∼=
�� H

0
G(ΦUτ ;μ|ΦUτ

).

The isomorphisms φσ induce the desired isomorphism Ep,0
1

∼=→ Ēp,0
1 , and since they are

compatible with restrictions, they induce an isomorphism of complexes, thus preserving
the first differential. This implies that Ep,0

2

∼=→ Ēp,0
2 . Bott periodicity implies that there are

canonical isomorphisms Ep,q
1

∼= Ep,0
1 for q even, which are compatible with the restrictions.

We conclude that

Ep,q
2

∼= H
p
G(ΦX;μ)

whenever q is even and Ep,q
2 = 0 whenever q is odd. �

5.1. The third differential

The third differential on Segal’s spectral sequence

d3 : Ep,q
2 → Ep+3,q−2

2 ,

together with the isomorphism of Theorem 5.3, induce a degree 3 map

d3 : H
p
G(ΦX,μ) → H

p+3
G (ΦX,μ)

on the Bredon cohomology with local coefficients in twisted representations, which we
will denote with the same symbol d3.
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The purpose of this section is to evidence some particular phenomena concerning this
differential d3.

5.1.1. G-invariant cohomology class

Consider the trivial subgroup {1} ⊂ G and recall that the bundle |DG/{1}| → |CG/{1}|
is a universal projective unitary bundle, thus having that |CG/{1}| is a K(Z, 3). Hence,
for any map μ : ΦX → |C| which classifies a projective equivariant stable unitary bundle
over X, the map μG/{1} : X → |CG/{1}| encodes the information of the projective unitary
bundle once the G-action is forgotten. The map μG/{1} defines a degree 3 cohomology
class η ∈ H3(X,Z), which is moreover G-invariant.

In cohomological terms, we know that the bundle P → X is classified by an element
η ∈ H3(X ×G EG,Z). Denoting by η the restriction of η to any fibre of the Serre fibration
X → X ×G EG→ BG, and restricting it further to the fixed point set of the group K,
we get a class

ηK := η|XK ∈ H3(XK ; Z).

This class ηK is precisely the class defined by the the composition XK
μG/K→ |CG/K | κG/K→

|CG/{1}|, and it is furthermore NG(K)/K-invariant.
Since the groups RS1(K̃) are free Z-modules, there is an induced structure at the level

of the Eilenberg–MacLane spaces

|CG/{1}| ×K(RS1(K̃), n) → K(RS1(K̃), n+ 3)

which is NG(K)/K-equivariant and compatible with restrictions, and which recovers
the cup product by a degree 3 cohomology class. Composing with the canonical maps
κG/K : |CG/K | → |CG/{1}| we obtain maps

εG/K : |CG/K | ×K(RS1(K̃), n) → K(RS1(K̃), n)

which are Hom(K,S1) equivariant, and therefore they define maps

(TRn)G/K → (TRn+3)G/K

over |CG/K | which can be assembled into a map TRn → TRn+3 over |C|. At the level of
based maps, we have an induced map

HomOP
G
(ΦX,TRn)|C| → HomOP

G
(ΦX,TRn+3)|C|

F �→ F̃

with F̃G/K(x) := εG/K(μG/K(κG/K(x)), F (x)), such that it induces a degree 3 homomor-
phism

η∪ : H
n
G(ΦX,μ) → H

n+3
G (ΦX,μ).

Remark 5.4. The procedure described above defines in general a H∗(X,Z)G-module
structure on H

∗
G(ΦX,μ) by the cup product. Therefore, we could say that the degree 3

homomorphism η∪ is equivalent to performing the cup product with the class η.
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If the group G is trivial, the class η ∈ H3(X,Z) classifies the projective unitary bundles
over X, and it was proven by Atiyah and Segal [4] that the third differential of Segal’s
spectral sequence was equivalent to the homomorphism Sq3

Z
− η∪.

Theorem 5.5. Consider the Segal’s spectral sequence defined in Theorem 5.3 and the
isomorphism of its second page with the Bredon cohomology with coefficients in twisted
representations

Ep,q
2

∼= H
p
G(ΦX,μ)

whenever q is even. Then the third differential of the spectral sequence d3 : Ep,q
2 →

Ep+3,q−2
2 is a natural transformation in Bredon cohomology with local coefficients in

twisted representations.

Proof. The result follows from Brown’s representability theorem (see §A.4 in the
Appendix for a discussion of Brown representability in the parametrized and equivariant
setting). Since the third differential is a homomorphism

H
p
G(ΦX,μ) → H

p+3
G (ΦX,μ)

which is functorial and only depends on the map μ : ΦX → |C|, the third differential is
thus given by a map of TRp → TRp+3 of OP

G-spaces over |C|. �

Note that a map from (TRp)G/K → (TRp+3)G/K over |CG/K | is determined by a
Hom(K,S1)-equivariant map

|CG/K |K̃ ×K(RS1(K̃), n) → K(RS1(K̃), n+ 3).

The assembly of these maps produces a map TRp → TRp+3 of OP
G-spaces over |C|.

In the case where the acting group is trivial, Atiyah and Segal have proved [4,
Proposition 4.6] that the map of Eilenberg–MacLane spaces

K(Z, 3) ×K(Z, p) → K(Z, p+ 3)

is given by the operation (η, b) �→ Sq3
Z
b− η ∪ b.

Equivariantly, the situation is much more involved. A complete description of natu-
ral transformations in Bredon cohomology with local coefficients is not available in the
literature.

Even untwisted, the expression for the third differential in Bredon cohomology turns
out to be considerably different. One could expect that a version of Steenrod cubes defined
as follows should cover the natural transformations.

For any S1 central extension K̃, the group of twisted representations RS1(K̃) is a free
Z-module generated by the irreducible representations of K̃, on which S1 acts by scalar
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multiplication. Therefore, we have the short exact sequence of coefficients

0 → RS1(K̃) ×2−→ RS1(K̃) mod2−→ RS1(K̃) ⊗Z Z/2 → 0 (5.3)

and we can consider the composition of maps of Ω-spectra

HRS1(K̃) mod2−→ H(RS1(K̃) ⊗Z Z/2)
Sq2

−→ Σ2H(RS1(K̃) ⊗Z Z/2)
β−→ Σ3HRS1(K̃)

where the first map is the reduction modulo 2 map, the second is the Steenrod square
defined over each Z/2-module generated by irreducible representations, and the third is
the Bockstein map induced by the short exact sequence of (5.3).

Denote the composition

Sq3
K̃

= β ◦ Sq2 ◦ mod2 : HRS1(K̃) → Σ3HRS1(K̃)

and note that it is compatible with the NG(K)/K-action on HRS1(K̃) and with the
restriction maps. At the level of the OP

G-spaces over |C|, we see that the maps Sq3
K̃

induce
maps

⊔
K̃∈Ext(K,S1) |CG/K |K̃ ×Hom(K,S1) K(RS1(K̃), n)

Sq3
K̃

��⊔
K̃∈Ext(K,S1) |CG/K |K̃ ×Hom(K,S1) K(RS1(K̃), n+ 3)

which can be assembled into a map that we denote

Sq3 : TRn → TRn+3,

which furthermore assembles into a map of OP
G-spectra over |C| that we denote

Sq3 : TR → Σ3TR.

At the level of Bredon cohomology with local coefficients in twisted representations,
the map Sq3 induces a degree 3 homomorphism

Sq3 : H
p
G(ΦX,μ) → H

p+3
G (ΦX,μ) (5.4)

which will be denoted by the same symbol in order to simplify the notation.
The Steenrod cube over twisted representation vanishes on zero-dimensional Bredon

cohomology classes. The coincidence of the third differential for the spectral sequence
with this cohomology operation would imply that the edge homomorphism

K0
G(X) → E0,2r

∞ → E0,2r
2

∼= H0
G(X;R(?))

is surjective. However, evidence in specific computations [21, Example 5.2, p. 614] and
[20, Lemma 3.3, p. 6] shows that this is not the case. The first author thanks Dieter
Degrijse and Justin Noel for conversations on this issue leading to a precision on the first
version of this note.
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6. Applications

6.1. Equivariant K-theory

When Segal’s spectral sequence is applied to non-twisted equivariant K-theory, it
is known that the second page of the spectral sequence is isomorphic to the Bredon
cohomology with coefficients in representations

Ep,q
2 = H

p
G(X,R(?))

where R(G/K) = R(K) is the representation ring of K.

6.2. The case of η = 0

If the restriction of the class η ∈ H3(X ×G EG; Z) to H3(X; Z) is zero, then we have
that all the higher differentials of Segal’s spectral sequence vanish if we tensor the
spectral sequence with the rationals. This follows from the fact that the operations on
the Eilenberg–MacLane spectrum are all torsion operations. In this case, Segal’s spec-
tral sequence tensored with the rationals collapses at the second page, and therefore
the twisted equivariant K-theory is isomorphic to the Bredon cohomology with local
coefficients in twisted representations after tensoring both cohomology groups with the
rationals.

6.3. Twisted equivariant K-theory for trivial G-spheres

We know from [7, Theorem 4.8] that the twistings are classified by H3(X ×G EG; Z).
In the case where X is a trivial G-space, we have that the group G is finite and the Borel
cohomology group satisfies

H3(X ×G EG; Z) ∼= H3(X ×BG; Z),

and if X has torsion free integral cohomology, by the Künneth isomorphism we obtain

H3(X ×BG; Z) ∼=
3⊕

i=0

Hi(X; Z) ⊗H3−i(BG; Z).

In the case where X = S1, given

α = [P ] ∈ H3(S1 ×G EG; Z) ∼= H2(BG; Z) ⊕H3(BG; Z),

the class α can be decomposed as α = γ ⊕ β, with γ ∈ H2(BG; Z) ∼= Hom(G,S1) and
β ∈ H3(BG; Z) ∼= Ext(G,S1). To the homomorphism γ : G→ S1 one can associate the
linear one-dimensional representation ργ , and let 1 → S1 → G̃→ G→ 1 be the S1-central
extension of G associated with β.

If U and V are two open contractible subsets of S1, with U ∪ V = S1 and U ∩ V  S0,
then the Mayer–Vietoris sequence for K∗

G(S1;P ) is given by the following six-term exact
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sequence

K0
G(S1;P ) �� K0

G(U ;P |U ) ⊕K0
G(V ;P |V ) �� K0

G(U ∩ V ;P |U∩V )

��
K1

G(U ∩ V ;P |U∩V )

��

K1
G(U ;P |U ) ⊕K1

G(V ;P |V )�� K1
G(S1;P ).��

On the other hand (cf. [7, § 5.3.4]), the isomorphisms K0
G(U ;P |U ) ∼= RS1(G̃) ∼=

K0
G(V ;P |V ) and K0

G(U ∩ V ;P |U∩V ) ∼= RS1(G̃) ⊕RS1(G̃) fit in the following commuta-
tive diagram

K0
G(U ;P |U ) ⊕K0

G(V ;P |V )

∼=
��

�� K0
G(U ∩ V ;P |U∩V )

∼=
��

RS1(G̃) ⊕RS1(G̃)
j∗

�� RS1(G̃) ⊕RS1(G̃)

where the bottom morphism j∗ : (a, b) �→ (a− b, a− ργ · b) is induced by the inclusions
U ∩ V ↪→ U and U ∩ V ↪→ V ; thus, we obtain the exact sequence

0 �� K0
G(S1;P ) �� RS1(G̃)

×(1−ργ)
�� RS1(G̃) �� K1

G(S1;P ) �� 0

which implies that the K-theory groups are, respectively, the invariants and the
coinvariants of the operator ργ , i.e.

K0
G(S1;P ) ∼= RS1(G̃)ργ and K1

G(S1;P ) ∼= RS1(G̃)/(1 − ργ)RS1(G̃).

For the two-dimensional sphere, the Borel cohomology is given by

H3(S2 ×G EG; Z) ∼= H3(BG; Z)

by the Künneth formula and the fact H2(S2; Z) ⊗H1(BG; Z) = 0, since G is finite. So,
in this case there is only discrete torsion, and

K∗
G(S2;P ) ∼= K∗(S2) ⊗RS1(G̃)

where G̃ is the S1-central extension associated with [P ].
For X = S3 with a trivial G-action, we have

H3(S3 ×G EG; Z) ∼= H3(S3; Z) ⊕H3(BG; Z);

thus, every cohomology class α ∈ H3
G(S3; Z) can be decomposed as nγ ⊕ β, where γ ∈

H3(S3; Z) is the generator and β ∈ H3(BG; Z). Take a projective unitary stable bundle
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P over S3 which is classified by the class nγ ⊕ β. Then, in this case, the second page of
Segal’s spectral sequence is isomorphic to

H∗(S3) ⊗Z RS1(G̃)

and the third differential is given by cupping with the class nγ ⊗ 1. Therefore, we get
that for n �= 0

K0
G(S3;P ) = 0 and K1

G(S3;P ) ∼= Z/n⊗Z RS1(G̃).

6.4. Discrete torsion

The first versions of twisted equivariant K-theory were defined with the information of
a 2-cocycle Z2(G,S1) whenever the group was finite (see [23,27] and references therein);
these cocycles were called discrete torsion. Using the fact that the group H2(G,S1)
classifies isomorphism classes of S1-central extensions of the group G, this definition of
the twisted equivariant K-theory was generalized to the context of proper and discrete
actions in [12], under the additional hypothesis that the class η ∈ H2(G,S1) is a finite
order element. With our set-up, we can recover the twisted equivariant K-theory groups
associated with discrete torsion, as well as the spectral sequence developed in [12].

Let G be a countable discrete group, and let 1 → S1 → G̃→ G→ 1 be a S1-central
extension ofG which is classified by the cohomology class α ∈ H2(G,S1). Consider L2(G̃),
the square integrable complex functions on G̃, and endow it with the natural G̃-action
given by composition (g · f)(h) := f(hg−1). Let

V (G̃) := {f ∈ L2(G̃) | f(hx) = f(h)x for all h ∈ G̃ and x ∈ S1}
be the subspace on which S1 acts by multiplication, and let H := V (G̃) ⊗ L2([0, 1]) be
the G̃-Hilbert space on which kernel G̃→ G also acts by multiplication. Let U(H) be
the group of unitary operators on H and note that the G̃-action on V (G̃) defines a
homomorphism

ρ̃ : G̃→ U(H)

whose projectivization ρ : G→ PU(H) makes the following diagram commutative

G̃
ρ̃

��

��

U(H)

��
G

ρ
�� PU(H).

For every orbit type G/K with K finite, define the functor

ρG/K := Functst(G�G/K,PU(H))

by the equation ρG/K(g, h[K]) := ρ(g), and note that this assignment is functorial
since any G-equivariant map ψ : G/K → G/H induces a functor G�G/K → G�

G/H, (g, h[K]) �→ (g, ψ(h[K])), and therefore the first coordinate stays fixed. Moreover,
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since L2(K̃) ⊂ L2(G̃), where K̃ denotes the S1-central extension of K induced by G̃ and
the inclusion K ⊂ G, we know by the Peter–Weyl theorem that H includes all irreducible
representations of K̃ on which the circle acts by multiplication, an infinite number of
times; therefore, we know that ρG/K is a stable functor, since its restriction to the group
K is a stable homomorphism (see Definition 4.1), and hence it defines a point in |CG/K |.

For every proper G-CW-complex X we can associate the map of OP
G-spaces

ρX : ΦX → |C|
such that for every orbit type we get the constant map

ρX
G/K : XK �→ |CG/K |, x �→ ρG/K .

In this way, we get that the twisted G-equivariant K-theory groups K∗
G(ΦX; ρX) realize

the twisted G-equivariant K-theory groups associated with the S1-central extension G̃
defined by Dwyer in [12]. Now, since the map ρX is constant on each orbit type and
only depends on the central extension G̃ defined by α, we could define the contravariant
OP

G-module Rα(?) with Rα(G/K) := RS1(K̃), thus obtaining a canonical isomorphism

H
∗
G(ΦX, ρX) ∼= Ȟ∗

G(X;Rα(?))

between the Bredon cohomology of the map ρX and the Bredon cohomology with
coefficients in the twisted representations Rα(?).

The groups Ȟ∗
G(X;Rα(?)) are the ones shown in [12] to be isomorphic to the second

page of the Atiyah–Hirzebruch spectral sequence that converges to the twisted equivariant
K-theory groups K∗

G(ΦX; ρX).
The methods developed in the present work have been successfully applied in [6] for

the explicit calculation of the twisted Sl3(Z)-equivariant K-theory and K-homology of
the space ESl3(Z). In this case, the calculations are done using an universal coeffi-
cients theorem for α-twisted Bredon cohomology, and the fact that the spectral sequence
constructed in this work collapses at the second page.

Appendix A. Brown representability

The content of this appendix is based on Chapter 7 of [25]. We assume the reader is
familiar with the qf -model category structure defined in [25, § 6.2].

A.1. Based G-CW-complexes

Let B denote a fixed proper G-CW-complex. A based proper G-CW-complex is a pair
(X;x) withX a G-CW-complex,X − {x} a proper G-CW-complex and x a G-fixed point.

A based G-space over B is a triple X = (X, p, s), where p : X → B and s : B → X are
G-maps and p ◦ s = idB . A map X → X ′ of based G-spaces over B is a map of based
G-spaces that commute with projections and sections. We denote the space of such maps
by Hom0

G,B(X,X ′) and the corresponding set of homotopy classes by G[X,X ′]0B .
Let (X, p) be a G-space over B. We use the notation (X, p)+ for the union X

∐
B of

a based G-space (X, p) over B with a disjoint section, i.e. (X, p)+ = (X
∐
B, p

∐
id, i),

where i : B → X
∐
B is the natural inclusion.

https://doi.org/10.1017/S0013091517000281 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091517000281
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If (X, p) is a G-space over B, and Z is a based G-space, then let X ×B Z be the G-
space X × Z with projection the product of the projections p : X → B and Z → ∗. Define
X ∧B Z to be the quotient of X ×B Z obtained by taking fibrewise smash products, so
that (X ∧B Z)b = Xb ∧ Z; the base points of fibres prescribe the section.

For G-spaces (X, p) and (Y, q) over B, X ×B Y is the pullback of the projections
p : X → B and q : Y → B, with the evident G-projection X ×B Y → B. When X and
Y have G-equivariant sections s and t, their pushout X ∨B Y specifies the coproduct,
or wedge, of X and Y in the category of based proper G-spaces, and s and t induce a
G-map X ∨B Y → X ×B Y over B that sends x and y to (x, tp(x)) and (sq(y), y). Then
X ∧B Y is the pushout in the category of compactly generated spaces over B, displayed
in the diagram

X ∨B Y ��

��

X ×B Y

��
∗B �� X ∧B Y.

This implies that (X ∧B Y )b = Xb ∧ Yb, and the section and projection are evident maps.
We denote by ΣBX the G-space S1 ∧B X over B, where S1 has the trivial G-action.

A.2. qf-model category structure for G-CW-complexes over B

Let n be a natural number. Let IG be the set of all maps of the form G/H+ × i, where
H is a finite subgroup of G and i runs through the set of based inclusions i : Sn−1

+ → Dn
+

(where S−1 is empty). Analogously, let JG be the set of all maps of the form G/H+ × i0,
where H is a finite subgroup of G and i0 runs through the set of based maps i0 : Dn

+ →
(Dn × I)+.

Given maps i : (X, p) → (Y, q) and d : (Y, q) → B of based G-CW-complexes, the com-
position d ◦ i : (X, p) → B defines i as a map over B. We write i(d) for this map over B.
Let IG

B be the set of all such maps i(d) with i ∈ IG, and denote by JG
B the set of all such

maps j(d) with j ∈ JG.
In order to define the qf -model category structure on proper G-CW-complexes over

B, we need to recall the definition of q-fibration.

Proposition A.1 ([25, Proposition 6.2.2]). The following conditions on a map of
compactly generated spaces p : E → Y are equivalent. If they are satisfied, then p is called
a q-fibration.

(i) The map p satisfies the covering homotopy property with respect to discs Dn; that
means there is a lift in the following diagram

Dn
α ��

��

E

p

��
Dn × I

���
�

�
�

�
h �� Y.
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(ii) If h is a homotopy relative to the boundary Sn−1 in the diagram above, then there
is a lift that is a homotopy relative to the boundary.

(iii) The map p has the relative lifting property (RLP) with respect to the inclusion
Sn

+ → Dn+1 of the upper hemisphere into the boundary Sn of Dn+1; that is, there
is a lift in the diagram

Sn
+

α ��

��

E

p

��
Dn+1

		�
�

�
�

�
h̄ �� Y.

Definition A.2. A map g of spaces over B is an f -cofibration if it satisfies the fibrewise
homotopy extension property (HEP), that is, if it has the left lifting property (LLP) with
respect to the maps p0 : MapB(I,X) → X.

A map d : Dn → B of compactly generated spaces is said to be an f -disc if i(d) :
Sn−1 → Dn is an f -cofibration. An f -disc d : Dn+1 → B is said to be a relative f -disc if
the lower hemisphere Sn

− is also an f -disc, so that the restriction i(d) : Sn−1 → Sn
− is an

f -cofibration.
A map f : (X, p, s) → (Y, q, t) of based G-spaces over B is called a q-equivalence if

f : X → Y is a G-equivariant weak equivalence of spaces (forgetting the based structure
over B). Define If

B to be the set of inclusions i(d) : Sn−1 → Dn, where d : Dn → B is an
f -disc. Define Jf

B to be the set of inclusions i(d) : Sn
+ → Dn+1 of the upper hemisphere

into a relative f -disc d : Dn+1 → B. A map of compactly generated spaces over B is said
to be

(i) a qf -fibration if it has the RLP with respect to Jf
B, and

(ii) a qf -cofibration if it has the LLP with respect to all q-acyclic qf -fibrations, that
is, with respect to those qf -fibrations that are q-equivalences.

Now we proceed equivariantly. Let OALL
G denote the set of all orbits G/H.

Definition A.3. A set C of proper G-CW-complexes that contains the orbits G/K
with K ∈ FIN (G) and is closed under products with elements in OALL

G is called a
generating set. It is closed if it is closed under finite products.

Let C be a generating set.

(i) Let If
B(C) be the set of maps

(id×i)(d)
∐

id : C × Sn−1
∐

B → C ×Dn
∐

B

such that C ∈ C, d : C ×Dn → B is a G-map, i is the boundary inclusion, and the
associated map ĩ over MapG(C,B) is a generating qf -cofibration in the category of
compactly generated spaces over MapG(C,B).
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(ii) Let Jf
B(C) consist of the maps

(id×i)(d)
∐

id : C × Sn
+

∐
B → C ×Dn+1

∐
B

such that C ∈ C, d : C ×Dn+1 → B is a G-map, i is the inclusion, and the associ-
ated map ĩ over MapG(C,B) is a generating acyclic qf -cofibration in the category
of compactly generated spaces over MapG(C,B).

Fixing a generating set C, we define a qf -type model structure based on C, called
the qf(C)-model structure. Its weak equivalences are the weak equivalences of proper
G-CW-complexes. We define now the qf(C)-fibrations.

Definition A.4. A G-map over B is a qf(C)-fibration if MapG(C, f) is a qf -fibration
in the category of compactly generated spaces over MapG(C,B), for all C ∈ C.

In [25, § 5.5, p. 90], the notion of a well-grounded model category is introduced. There, it
is established that the category of based proper G-CW-complexes can be endowed with
a structure of a well-grounded model category.

Theorem A.5 ([25, Theorem 7.2.8]). For any generating set C, the category of
based proper G-CW-complexes over B is a well-grounded model category. The weak
equivalences are the based weak G-homotopy equivalences and the fibrations are qf(C)-
fibrations. The sets If

B(C) and Jf
B(C) are the generating qf(C)-cofibrations and the

generating acyclic qf(C)-cofibrations.

We define a qf -fibration in the category of based G-spaces over B as a map which is a
qf -fibration when regarded as a map of G-spaces over B, and similarly for qf -cofibrations.

Let (Y, q, t) be a based G-space over B and f : A→ B be a G-map. We define f∗Y as
the based G-space over A obtained from the pullback diagram

A

s

��

f
�� B

t

��
f∗Y

p

��

�� Y

q

��
A

f
�� B.

On the other hand, if (X, s, p) is a based G-space over A and f : A→ B, we define f∗X
and its structure maps q and t by means of the map of retracts in the following diagram
on the left, where the top square is a pushout, and the bottom square is defined by the
universal property of pushouts and the requirement that q ◦ t = id.
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A

s

��

f
�� B

t

��
X

p

��

�� f!X

q

��
A

f
�� B

Recall that an adjoint pair of functors (T,U) between model categories is a Quillen
adjoint pair, or a Quillen adjunction, if the left adjoint T preserves cofibrations and
acyclic cofibrations or, equivalently, the right adjoint U preserves fibrations and acyclic
fibrations. It is a Quillen equivalence if the induced adjunction on homotopy categories
is an adjoint equivalence.

The following base change result will be useful.

Proposition A.6. If f : Z1 → Z2 is a G-map, then the pair (f∗, f∗) is a Quillen
adjunction for the model category structures defined above. Moreover, if f is a weak
F-equivalence with respect to a family of subgroups F , then (f∗, f∗) is a Quillen
equivalence.

Proof. This is the content of Propositions 7.3.4 and 7.3.5 in [25]. Note that f∗ is
denoted by f! in [25]. �

Theorem A.7. Let G be a discrete group. For a G-CW complex B, there exists a
zigzag of Quillen equivalences between the category of G-spaces over B with the qf -model
structure and OP

G-spaces over ΦB with the levelwise model structure.

Proof. Let Φ be the fixed point functor, which associates an OP
G-complex with a G-

CW complex X. Notice that the additional section or projection data p : X → B and
s : B → X restrict to fixed points.

Let J be a functorial cellular approximation functor in the category of OP
G-spaces (see

[10, Theorem 3.7]), in the sense that J(X ) is a free OP
G-CW complex for every OP

G-space
X , and J(X ) → X is a weak OP

G-equivalence.
The cellular approximation functor defines a map ε : J(ΦB) ×OP

G
∇ → B, which is

a G-homotopy equivalence. The base change functors (ε∗, ε∗) satisfy the hypothesis of
Proposition A.6, thus giving a Quillen equivalence pair between the categories of G-spaces
over B and over J(ΦB) ×OP

G
∇.

Analogously, the mentioned cellular approximation defines a map of OP
G-spaces ε

′
:

JΦ(B) → Φ(B) giving a Quillen equivalence ε
′
∗, ε

′∗
between the categories of OP

G-spaces
over ΦB and over J(ΦB).

Finally, the OP
G map ΦB → J(ΦB) determines a Quillen equivalence pair between the

categories of OP
G spaces over ΦB and G-spaces over J(ΦB) ×OP

G
∇. �
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A.3. Generating sets in the category of proper G-CW-complex over B

Let H be a category with weak colimits, denoted by hocolimYn. We say that an object
X of H is compact if

colim H(X,Yn) ∼= H(X,hocolim(Yn))

for any sequence of maps Yn → Yn+1 in H.

Definition A.8. A set D of objects in a pointed category H is a generating set if
a map f : X → Y such that f∗ : H(D,X) → H(D,Y ) is a bijection for all D ∈ D is an
isomorphism.

For n > 0, b ∈ B, and H ⊂ Gb, let Sn,b
H be the based G-space over B given by (G/H+ ∧

Sn) ∨b B, where the wedge is taken with respect to the standard base point of G/H+ ∧ Sn

and the base point b ∈ B. The inclusion of B gives the section and the projection maps
G/H+ ∧ Sn to the point b and maps B by the identity map.

Let D
c
B be the set of all such based G-spaces Sn,b

H over B, with n > 0. Then, from [25,
Lemmas 7.5.13–14] the next result follows.

Lemma A.9. D
c
B is a generating set in the homotopy category of based G-connected

spaces over B. Moreover, each element in D
c
B is a compact object in that category.

We want to use the following abstract Brown representability theorem.

Theorem A.10 ([25, Theorem 7.5.7]). Let H be a category with coproducts and
weak pushouts. Assume that H has a generating set of compact objects. Let k : H → SETS
be a contravariant functor that takes coproducts to products and weak pushouts to weak
pullbacks. Then there is an object Y ∈ H and a natural isomorphism k(X) ∼= H(X,Y ) for
X ∈ H.

Given a model category T, it is possible to construct the homotopy category H. For its
definition, see [13].

A.4. Equivariant parametrized homotopy theories and Brown
representability

Let us recall that a functor HB
G defined on the category of based proper G-CW-

complexes over B with values in Z-modules is a proper reduced generalized cohomology
theory over B if it satisfies a parametrized version of the Eilenberg–Steenrod axioms
(except the reduced dimension axiom). For definitions of axioms see, for example, [7,
§ 4.3.2] or [25, Definition 20.1.2].

Theorem A.11. Let H∗
G be a reduced proper G-equivariant parametrized cohomology

theory over B. Then there exist a sequence of proper G-CW-complexes Rn over B and
natural transformations such that

Hn
G(X, p, s) ∼= G[X,Rn]0B

for every based G-connected proper G-CW-complex X over B.
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Proof. Given a G-equivariant parametrized cohomology theory H∗
G over B, since

the category of proper G-CW-complexes has a compact generating set D
c
B , one applies

Theorem A.10 for the parametrized cohomology theory H∗
G, and we obtain a Brown

representability theorem for reduced proper G-equivariant parametrized cohomology
theories. �

We can apply the above theorem for Bredon cohomology associated with a cover. Note
that this functor H

p
G(Φ(−), μ) is an equivariant parametrized cohomology theory over

|C|. Therefore, any operation in cohomology

H
p
G(ΦX,μ) → H

p+q
G (ΦX,μ)

which is functorial and only depends on the map μ : ΦX → |C| must be obtained by a
map TRp → TRp+q of OP

G-spaces over |C|.
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