Natural Language Engineering (2021), 27, pp. 35-64 CAMBRID GE

doi:10.1017/S1351324919000627 UNIVERSITY PRESS

ARTICLE

Transfer learning for Turkish named entity recognition
on noisy text

Emre Kagan Akkaya'® and Burcu Can*

Department of Computer Engineering, Hacettepe University, Turkey
*Corresponding author. E-mail: burcucan@cs.hacettepe.edu.tr

(Received 26 October 2018; revised 11 November 2019; accepted 11 November 2019; first published online 28 January 2020)

Abstract

In this article, we investigate using deep neural networks with different word representation techniques
for named entity recognition (NER) on Turkish noisy text. We argue that valuable latent features for NER
can, in fact, be learned without using any hand-crafted features and/or domain-specific resources such as
gazetteers and lexicons. In this regard, we utilize character-level, character n-gram-level, morpheme-level,
and orthographic character-level word representations. Since noisy data with NER annotation are scarce
for Turkish, we introduce a transfer learning model in order to learn infrequent entity types as an extension
to the Bi-LSTM-CRF architecture by incorporating an additional conditional random field (CRF) layer
that is trained on a larger (but formal) text and a noisy text simultaneously. This allows us to learn from
both formal and informal/noisy text, thus improving the performance of our model further for rarely seen
entity types. We experimented on Turkish as a morphologically rich language and English as a relatively
morphologically poor language. We obtained an entity-level F1 score of 67.39% on Turkish noisy data
and 45.30% on English noisy data, which outperforms the current state-of-art models on noisy text. The
English scores are lower compared to Turkish scores because of the intense sparsity in the data introduced
by the user writing styles. The results prove that using subword information significantly contributes to
learning latent features for morphologically rich languages.

Keywords: Named entity recognition; Transfer learning; Recurrent neural networks; Low-resource language; Noisy text

1. Introduction

Named entity recognition (NER) is an information extraction task in natural language processing
that aims to identify and categorize each word into predefined categories. For example, for the
sentence “Thomas Bayes was the son of London Presbyterian minister Joshua Bayes,” as an NER
task, we aim to assign PERSON label for Thomas Bayes and Joshua Bayes and assign LOCATION
label for London, and CORPORATION label for Presbyterian. As we can see from the recent
studies in the literature, the performance of NER on formal (e.g., newspapers, academic papers)
data is very high, particularly for languages like English with comparably poor morphology and
abundant annotated data. Recent research such as Lample et al. (2016) and Ma and Hovy (2016)
achieved over 91% F1 score on English formal data, almost comparable to human annotation
performance. So one can prematurely conclude that the NER task has nearly reached its peak
performance.

However with the ever-changing nature of the Internet, especially after the emergence of social
media, we have been introduced to informal/noisy data (user-generated data) such as user com-
ments and tweets. This new type of data is highly valuable for information extraction tasks such
as opinion mining due to being widespread and having almost up-to-date nature. However, noisy

© Cambridge University Press 2020

o
https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press @ CrossMark

https://doi.org/10.1017/S1351324919000627
https://orcid.org/0000-0003-0758-4355
https://orcid.org/0000-0002-1700-0395
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1351324919000627&domain=pdf
https://doi.org/10.1017/S1351324919000627

36 EK Akkaya and B Can

and informal text normally includes missing characters in words (either deliberately or by forget-
fulness), missing punctuation, various emojis, slang words, and abbreviations. All of these bring
new problems for the existing Turkish NER studies, considering that most of them are either
statistical or rule-based models that usually depend on manually crafted features (e.g., capitaliza-
tion, numerical/date/time patterns, or other rule-based features) and/or external domain-specific
resources (e.g., gazetteers, lexicons), therefore ill-suited to noisy data. Some of these studies try
to solve these new challenges either by extending their existing feature set to better suit on this
new domain or by adding new domain-specific resources. Current state-of-the-art Turkish NER
model (Seker and Eryigit 2017), which is a conditional random field (CRF)-based model utiliz-
ing domain-specific heavy feature engineering and external resources, achieves an F1 score of
91.94% on formal data and only 67.96% (and 63.63% without using Twitter mention feature to
label mentions as PERSON) on noisy data. This is mostly due to Turkish being a morphologically
rich and agglutinative language and having scarce annotated data. It is evident that Turkish NER
performance is far behind on noisy/informal data, despite being a well-studied topic for formal
data. Recent successful studies on other languages, especially on English, address these issues by
utilizing neural architectures with the help of auto-generated features.

Turkish being a morphologically complex language, NER receives its own share. Although
derivation in Turkish named entities is not very common, inflected named entities are seen quite
often in Turkish. Especially, case markers are seen with any type of named entity. For example,
in the sentence “Istanbul’a gidecegim” (means I will go to Istanbul.”), the location named entity
“Istanbul” is inflected in the dative case; “Onu Ahmet’ten alabilirsin.” (means “You can take it
from Ahmet.”), the person name “Ahmet” is inflected in the ablative case. Thereby, due to the
common usage of suffixes with named entities, the sparsity problem is introduced in NER task.
The problem is even more severe in noisy text, since the morphemes could also be spelled differ-
ently by different users on social media. For example, the suffix “cigim” that means “dear” when it
is used with person names, could be written as “cim,” or as “¢im,” “cum,” “em,” “cm,” “cim,” etc.,
depending on the last vowel in the name accordingly with the vowel harmony.

This motivates us to research and adopt deep recurrent neural network models for Turkish
and obtain valuable features without using any external domain-specific resources or any hand-
crafted features. To this end, we propose a transfer learning model that is an extension of the
widely used bidirectional long short-term memory (LSTM)-CRF model by incorporating an addi-
tional CRF layer that we train on another, preferably larger dataset to overcome the annotated
data scarcity problem. The model is rather similar to the model presented by von Déniken and
Cieliebak (2017), since we also use another CRF layer to further improve the performance. We
argue that subword information is crucial in word representation for morphologically rich and
agglutinative languages; therefore, the model also utilizes different subword embeddings such as
morph2vec (Ustiin, Kurfal, and Can 2018), fasttext (Bojanowski et al. 2017) and orthographic
character-level embeddings. Morph2vec (Ustiin et al. 2018) is a word representation model that
estimates the word embeddings through its morphemes where the segmentation of words is not
required a priori; therefore, the pretrained word embeddings are mimicked by using an attention
mechanism over a list of potential segmentations of each word to obtain the final word represen-
tation. On the contrary, fasttext (Bojanowski ef al. 2017) estimates the word embeddings through
the n-grams of each word. To the best of our knowledge, this is the first neural network model
without using any hand-crafted features and external resources for Turkish NER. Consequently,
we obtain an F1 score of 67.39% on Turkish noisy data and 45.30% on English noisy data, which
are both the highest scores for both languages.

The paper is organized as follows: Section 2 reviews the recent work on NER on noisy text
for Turkish and also for English, Section 3 describes the word representation methods used for
representing each word by a dense vector in the NER models proposed in this paper, Section 4
describes and gives the mathematical definition of the baseline Bi-LSTM-CRF model (Huang, Xu,
and Yu 2015) adopted in this article, Section 5 describes the proposed transfer learning model,

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

Natural Language Engineering 37

Section 6 gives the details on datasets and on the implementation of the models in addition to
the experimental results obtained from the proposed models on Turkish and English, and finally
Section 7 concludes the paper along with the future goals.

2. Related work

Various methods have been adopted for NER, those include statistical methods (Bikel 1997; Wu,
Zhao, and Xu 2003; Suzuki and Isozaki 2008), rule-based models (Petasis et al. 2001), and recently
deep neural network architectures (Huang et al. 2015; Ma and Hovy 2016). Since user-generated
text on the Internet is typically different compared to formal text, more latent features need to
be defined manually or more sophisticated methods need to be used to learn the latent features
automatically from a given text. This is because noisy text is more scarce compared to formal text
since it may change from one user to another.

One of the commonly used features would be the meaning of the words. Although the spelling
of each word may change from one text to another, the meaning would stay the same. Meaning
representation has benefited from distributional approaches a lot. In recent years, distributional
models such as Latent Semantic Analysis (Landauer, Foltz, and Laham 1998) have changed direc-
tion toward neural models. Word representation models such as word2vec (Mikolov et al. 2013)
or GloVe (Pennington, Socher, and Manning 2014) have shown superior performance. However,
those models learn word representations very well when there is enough contextual informa-
tion for each word, which will not be true for the scarce and noisy text. Therefore, other neural
models that make use of subword information such as characters (Cao and Rei 2016), character n-
grams (Bojanowski ef al. 2017), and morphemes (Ustiin et al. 2018) have been introduced, which
learn the representations of scarce data (i.e., noisy text or any text in a morphologically rich lan-
guage) better than word-level models. Neural word embeddings obtained from such models have
been used as features and have shown superior performance when they are sequentially encoded
by LSTMs. Moreover, it has been discovered that an additional CRF layer can learn the named
entities by using the latent features learned by the LSTMs, which introduces the well-known Bi-
LSTM-CREF (bidirectional long short-term memory and CRF) architecture (Huang et al. 2015) as
a sequence labeling model.

Here, we review mainly the research on NER for noisy text. Although the main scope of this
article is Turkish NER, since we are also inspired by other models on English, we also review the
research on English NER on noisy text.

2.1 NER on Turkish noisy data

First of all, it is worth mentioning that all studies reported in this section use the same Turkish
noisy dataset, so the reported scores are comparable to each other.?

Celikkaya, Torunoglu, and Eryigit (2013) introduce the first study focusing on noisy data for
Turkish with a CRF-based model that utilizes hand-crafted morphological and lexical features
(e.g., stem, PoS tag, noun case, lower/upper case) along with gazetteers. They reported an F1 score
of 19.28% on noisy dataset and 91.64% on formal dataset which can be interpreted as another
indication that NER on noisy data does not perform as well as NER on formal text. With the aim of
adapting the model for noisy data, Kii¢iik and Steinberger (2014) extend a previous multilingual
rule-based NER system by expanding existing domain-specific resources based on the fact that
most sentences in the noisy data miss the letters with diacritics (¢, §, 1, 6, §,) and the authors
employ a normalization scheme using this feature. As a result, they achieved an F1 score of 46.93%
on the same Turkish noisy dataset.

Eken and Tantug (2015) introduce another CRF-based approach that also makes use of
gazetteers (with optional distance-based matching) and numerous features (e.g., apostrophe , case

2The details of the noisy dataset are given in Section 6.3.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

38 EK Akkaya and B Can

of the word, start of sentence) along with the word suffixes and prefixes. They reported 46.97%
F1 score on a new noisy imbalanced dataset, and 28.53% F1 score on the same Turkish noisy
dataset. Okur, Demir, and Ozgiir (2016) present a regularized averaged multiclass perceptron with
hand-crafted features (e.g., word type flags, suffix, prefix, capitalization) along with pretrained
embeddings obtained from word2vec (Mikolov et al. 2013). They also perform tweet normaliza-
tion using the model introduced by Torunoglu and Eryigit (2014). Consequently, they obtain an
F1 score of 48.96% on the noisy dataset.

Seker and Eryigit (2017) present the state-of-the-art model on Turkish NER which is another
CRF-based model, similar to that of Celikkaya et al. (2013). The authors use an extensive set of
morphological and lexical features (e.g., stem, part-of-speech (POS) tags, capitalization, word type
and shape flags) and gazetteers. Additionally, they use the existence of Twitter mentions as a fea-
ture. They also provide the reannotated versions of the two commonly used Turkish datasets: news
dataset (Ttr et al. 2003) and Twitter dataset (Celikkaya et al. 2013). Reannotated versions also
include TIMEX (Date, Time) and NUMEX (Money, Percent) types along with previously labeled
ENAMEX (Organization, Person, Location) types. Finally, they report an F1 score of 67.96% with
Twitter mentions and 63.63% without the mentions on the reannotated version of the Turkish
noisy dataset.

2.2 NER on English noisy data

Analogously, all studies reported in this section use the same English noisy dataset, which was
provided by the 3rd Workshop on Noisy User-Generated Text at Empirical Methods in Natural
Language Processing (EMNLP) (WNUT’2017)® so that all the reported results are comparable to
each other.

Aguilar et al. (2017), the winner of the WNUT’17,° apply multitask learning approach with
a CRF-based model that incorporates pretrained word embeddings obtained from word2vec
(Mikolov et al. 2013) and orthographic character-level embeddings trained on a Convolutional
Neural Network (CNN) with two-stacked convolutional layers. They also make use of gazetteers
for the well-known entities. They report an F1 score of 41.86% on entity level and 40.24% on
surface forms.

von Dianiken and Cieliebak (2017) use a transfer learning model. One of our proposed models
is also based on their model. However, unlike our model, their model incorporates sentence-level
embeddings (sent2vec) (Pagliardini, Gupta, and Jaggi 2017) and capitalization features in addi-
tion to character-level embeddings trained by a CNN and pretrained word embeddings obtained
from fasttext (Bojanowski ef al. 2017). As a result, they obtain 40.78% F1 score on entity level
and 39.33% F1 score on surface forms. Lin et al. (2017) follow a similar approach for a CRF-
based model and use word embeddings that are obtained from pretrained word embeddings and
character-level embeddings obtained from another bidirectional LSTM. They also incorporate
syntactic information by using POS tags, dependency roles, and word position, and head position.
They achieve an F1 score of 40.42% on entity level and 37.62% on surface forms.

Sikdar and Gamback (2017) propose an ensemble-based approach that uses features learned
from CRE, support vector machine, and an LSTM. They also use hand-crafted features such as
PoS tags, local context, chunk, suffix and prefix, word frequency, and a collection of flags (e.g., is-
word-length-less-than-5, is-all-digit). Consequently, they achieve 38.35% F1 score for entity level
and 36.31% F1 score for the surface forms.

Williams and Santia (2017) propose a statistical approach, where each word is associated with
its context. Context conditional probabilities are used to estimate the named entity tag prob-
abilities. They obtain an F1 score of 26.30% on entity level and 25.26% F1 score on surface

bThe details of the noisy dataset are given in Section 6.3.
“https://noisy-text.github.io/2017/.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://noisy-text.github.io/2017/
https://doi.org/10.1017/S1351324919000627

Natural Language Engineering 39

forms. Jansson and Liu (2017), inspired by the work of Limsopatham and Collier (2016), use a
bidirectional LSTM-CRF model that is similar to our baseline model but instead of orthographic
features, Latent Dirichlet Allocation (Blei, Ng, and Jordan 2003) topic models and PoS tags are
used as features. As a result, they achieve a performance of 39.98% F1 score on the entity level and
37.77% F1 score on the surface forms.

3. Neural word embeddings

We use neural word embeddings of words as input to our proposed models. We use different lev-
els of word embeddings such as the word-level word embeddings obtained by word2vec (Mikolov
et al. 2013), character n-gram-level word embeddings obtained by fasttext (Bojanowski et al.
2017), morpheme-level word embeddings obtained by morph2vec (Ustiin ef al. 2018), character-
level embeddings, and orthographic character-level embeddings. By using these models, we aim
to capture orthographic, morphological, and contextual information of words in noisy data.

For the notation that will be used throughout the article, we denote each sentence (i.e., tweet)
by S = (w1, w2, ..., wn) that consists of N tokens (i.e., words or other tokens), where the ith token
is denoted by w;.

3.1 Orthographic character-level embeddings

We use an orthographic character encoder similar to that of Aguilar et al. (2017) that encodes
alphabetic characters as “c” (or “C” if the character is capitalized), numeric characters as “n,”
punctuation as “p,” and other characters as “x.” For example, the word “Tiirkiye’ye!” (means fo
Turkey) becomes “Cccccccpecp.” Each orthographic encoding is also padded with 0s accordingly
with the longest word in the dataset to have a fixed length of orthographic embedding for all
words. This allows us to reduce sparsity and capture the shapes and orthographic patterns within
the words. We train the embeddings by a character-level CNN. We apply two-stacked convolu-
tional layers and perform global average pooling on the output. Finally, we use a fully connected

feed-forward layer with a rectifier linear unit (ReLU) activation function with the final character-

level word representation of each word that is denoted by E&f{.‘””). An overview of the architecture
is given in Figure 1. Here, the word “Ankara!” is first encoded in terms of its characters such as
“Cecceep,” and then the orthographic embeddings are fed into the convolutional layers to obtain
the character representation for orthographic encoding.

As an alternative approach, we also train the orthographic character-level embeddings using a
Bi-LSTM that is simply a combination of two different LSTM:s (i.e., forward and backward LSTMs)
where one of them takes the input sequence in the forward and the other one in the reverse order.
Output of the forward and backward LSTMs are concatenated for the final orthographic character-

level word embedding Eiff”_LSTM). The Bi-LSTM model is given in Figure 2. Here, the sentence
“29 ekimde Ankara’ya” is first encoded in terms of its orthographic characters such as “nn ccccee
Cccceepee,” and then the embeddings of the orthographic characters are fed into a Bi-LSTM to
obtain a character-level orthographic word embedding.

3.2 Character-level word embeddings

We also learn the character-level word embeddings using the actual characters rather than the
character types unlike the orthographic word embeddings. For example, the word “Bravo” is first
encoded in terms of the character embeddings of “B,” “,” “a,” “v,” and “0.”

We use another Bi-LSTM to learn the character-level word embeddings. To this end, the

Bi-LSTM is fed by the character embeddings of the word. We obtain the character-level word

embeddings denoted by E;f,) by concatenating the vectors that are output by both LSTMs from
both directions.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

40 EK Akkaya and B Can

Character representation —[

Fully connected _[p - e

Global Average Pooling _[\

2-Stacked Convolutions —| i S I

Character Embeddings —|

Character representation —l: A n k a r a ! <PAD>

Figure 1. Character-level word embedding using CNN (Aguilar et al. 2017).

Orthographic
Character-level —
Word Embeddings
Xt—1 XI+1
Character-level Ly)a L e Ly
Bi-LSTM]
R+ M A p A
Orthographic
Character Embeddings |
Orthographic Encoding _I_ non c ¢ ¢ ¢ ¢ ¢ c cc e cpoeoc
Input sentence —|_ 29 e k i m d e A n k a r a 'y a

Figure 2. Character-level word embedding using a bidirectional LSTM.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

Natural Language Engineering 41

3.3 Character n-gram-level word embeddings

Fasttext (Bojanowski et al. 2017) is an extension of word2vec (Mikolov et al. 2013), and it is
comparably better at capturing word representation for morphologically rich languages such as
Turkish. This is due to its ability to form vector representation of words from their vectors of
character n-grams. As a result, this allows us to generate word embeddings Ef;;‘gmm) using n-grams
even for out-of-vocabulary words, which is a common case for noisy text and also agglutinative

languages.

3.4 Morpheme-level word embeddings

Morph2vec (Ustiin et al. 2018) is another representation learning model that utilizes subword
information to learn the word embeddings. The algorithm takes a list of candidate morphological
segmentations of all words in the training data that are suggested by an unsupervised morpho-
logical segmentation system (Ustiin and Can 2016). Given that each word has multiple sequences

of candidate morphological segmentations, the final word representation Eﬁ,,’:') is a weighted
sum of the morpheme-level word embeddings of all segmentations of that word. An attention
mechanism is used on top of the model in order to learn the weights, where the mechanism
assigns more weight to the correct segmentation of the word. We incorporate morpheme-level
word embeddings that we obtain from pretrained morph2vec embeddings in our proposed
models in this article.

It can be argued that words in an informal text may not have proper morphemes. For exam-
ple, “gidiyorum” in Turkish (means “I am going”) is usually written as “gidiyom” by combining
the present participle suffix -iyor with the person ending -um. However, morph2vec (Ustiin et
al. 2018) builds the word embeddings from several segmentations of the word that are likely to
include the portions of the suffixes in the corrupted form.

3.5 Word-level word embeddings

Word2vec (Mikolov et al. 2013) has been one of the leading word representation methods that has
shown superior performance in capturing syntactic and semantic features of words. The method

aims to estimate word embeddings EfA,":) using their contextual information similar to other afore-
mentioned methods, but it does not make use of any subword information and all words are
considered as distinct tokens.

3.6 Final word embeddings

The final word embeddings that we use as input to the proposed models are the concatenation
of fasttext (Bojanowski ef al. 2017), morph2vec (Ustiin and Can 2016), word2vec (Mikolov et
al. 2013), character-level word embeddings, and orthographic character-level embeddings (either
CNN-based or LSTM-based):

Ei — ng) o Ef;:lgmm) ° EE,\T) o EE&) o ng;:nn\BifLSTm) (1)

An overview of the approach is given in Figure 3. Each vertical stacked box represents a different
level of word embedding for the given input word.

After concatenating the different-level word embeddings, we apply dropout on the final word
embedding E;. This prevents the model from solely depending on one type of word embedding
and, therefore, ensures a better generalization. We assign dropout rate r = 0.5.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

42 EK Akkaya and B Can

T Word-level Word Embedding
] Character N-gram Level
— Word Embedding
Final] y o .
Word Embedding < Morpheme-level Word Embedding
I Character-level Word Embedding
] Orthographic Character-level
1 ‘Word Embedding (CNN or Bi-LSTM)

Figure 3. Overview of the final word embeddings. After concatenating embeddings obtained from fasttext, word2vec,
morph2vec, and character-level word embeddings, orthographic character-level embeddings, we apply dropout for better
generalization.

CRF — B-DATE —— E-DATE

S-LOCATION

Word-level
Bi-LSTM

)
T

Word Embedding __ | D:I:Ij
|

(Concatenated)

— | Word Embedding Encoders

Input sentence —[29 ekimde Ankara'ya

Figure 4. Architecture of our baseline Bi-LSTM-CRF model. We learn latent features by using a Bi-LSTM that is fed by the
combined word embeddings and then we feed the output of each Bi-LSTM state to CRF in order to predict the label sequence.
Here, Word Embedding Encoders are namely word2vec (Mikolov et al. 2013), fasttext (Bojanowski et al. 2017), morph2vec
(Ustiin and Can 2016), character-level word embedding, and orthographic character-level embedding methods. The Turkish
input sequence “29 ekimde Ankara’ya” means “To Ankara on 29th October”.

4. Baseline model

Our baseline model is founded on the well-known bidirectional LSTM-CRF (Bi-LSTM-CRF)
model proposed for sequence labeling, which is similar to that of Huang et al. (2015), Chiu and
Nichols (2015), Lample et al. (2016), Ma and Hovy (2016).

A Bi-LSTM is fed by the final word embeddings E; in order to learn the higher order latent
features for the NER task, and another layer with a linear-chain CRF is fed by the LSTM outputs
of each word to compute a prediction of the label sequence. Overview of the baseline model is
given in Figure 4. Word embeddings are encoded as given in Figure 3.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

Natural Language Engineering 43

4.1 Bidirectional LSTM layer

Given an input sentence (i.e., tweet) S = {wy, wy, . . ., wy}, bidirectional LSTM is used to process
the words sequentially. To this end, the combined word embedding E; of each word in the sentence
is given as input to the bidirectional LSTM layer that is composed of a forward LSTM LSTMjyryard
and a backward LSTM LSTMp;ckward (Hochreiter and Schmidhuber 1997). Latent feature vectors

- P
R; and L; are learned as an output of the LSTMs at time step t:

—
R; = LSTMforward(El:N, 1) (2)
&
L = LSTMbackward(ElzN> t) (3)

The outputs of the LSTMs are concatenated to build a single vector output from the Bi-LSTM as
follows:

XtZE;OL(_t (4)

where X; denotes the concatenated output vector for each word. We also apply dropout on X; for
a better generalization. Weights of the Bi-LSTM are initialized using uniform Glorot initialization
(Glorot and Bengio 2010) that initializes the weights by drawing samples from a Gaussian distri-
bution with mean = 0.0 and variance based on the fan-in (input units in the weight tensor) and
fan-out (output units in the weight tensor) of the weight.

4.2 CRF layer

We use a linear-chain CRF to predict the sequence of labels Y = (y1, y2, ..., yn) for the sentence S
where y; denotes the named entity label of the ith word w; in S. The prediction score of a sequence
is defined as follows:

N N
s)= Z Ayiyin + Z Piy, (5)

i=0 i=1
where the score is estimated over a sequence of size N. Here, P is the matrix of scores that is
the output by the Bi-LSTM and A is the matrix that denotes the transitions from the previous
label to the next label. P has a size of N - k, where k is the number of the distinct entity tags. The
concatenated representation of each word X; is linearly projected onto a layer that has a size of k.
Therefore, the matrix defines the scores of labeling each word in the sequence with the possible
k tags, which is not a proper probability distribution yet. In other words, P;, is the score of the
tag y; for a given a word w;. By defining a log-linear model using the scores, the probability of the

output sequence of Y becomes:

eC(S,Y)

~ C(S,Y)’
ZYEYS e (5.7)

where Y denotes the set of possible label sequences for S. Finally, the goal becomes to maximize
the log probability of the predicted label sequence. Building the log-linear model gives us the form:

p(Y[S) = (6)

log(p(Y[$))=C(S,Y) —log [> LC6T) -

Ye Ys
The correctly predicted sequence of labels is the one that maximizes Equation 7:
arg maxerSC(S, Y). (8)

Weights of the CRF layers are initialized using uniform Glorot distribution. Both the parameter
estimation and decoding are performed by dynamic programming.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

44 EK Akkaya and B Can

B-DATE — E-DATE — S-LOCATION
Alternately
Trained — I] I

CRF Layers

CRF CRF e

target

Word-level
Bi-LSTM

Word Embedding _ | |:|:|:|:|
t

(Concatenated)

£

— | Word Embedding Encoders

Input sentence —[29 ekimde Ankara'ya

Figure 5. Overview of the transfer learning model that incorporates an additional CRF layer. CRF layers are alternately
trained on different datasets so that the shared layers learn from both datasets and therefore learning can be transferred
from the source dataset to the target dataset. The Turkish input sequence “29 ekimde Ankara’ya” means “To Ankara on 29th
October”.

5. Transfer learning

The amount of annotated Turkish noisy text is considerably limited. This prevents the basic
baseline model from learning especially some of the infrequent types such as DATE, TIME, and
PERCENTAGE. To overcome this problem, we incorporate another CRF layer (CRF;,yc.) that is
trained on a different, but preferably a larger dataset (i.e., source dataset), in addition to the CRF
layer (CRFygyget) that is trained on a small amount of noisy text (i.e., target dataset). Therefore, the
model learns from both datasets jointly.

The architecture of the baseline transfer learning model is given in Figure 5. As shown in the
figure, lower layer that involves the word-level Bi-LSTM is shared by two CRFs. The embeddings
are also shared by both CRF layers. However, the CRF layer involves two independent CRFs,
where one of them is trained on the formal text and the other one is trained on the noisy text.
Therefore, we transfer the dependencies learnt from the larger and formal text toward the noisy
text gradually. The training procedure is performed by doing the gradient updates through each
CRF layer alternately. In other words, in every other iteration, the output of one CRF layer is
considered to perform the gradient update based on its loss by discarding the output of the other
CRF layer. Therefore, the outputs of both CRFs are used alternately, where both CRF outputs are
gradually optimized in time. In this way, using the knowledge transferred from the larger text,
some dependencies between rare entity types and rare words are also learnt for the noisy text.

This model is an adaptation of the cross-domain transfer learning model proposed by Yang,
Salakhutdinov, and Cohen (2017). In their work, the authors introduce various transfer learning
architectures for cross-domain, cross-application, and cross-lingual transfer. We adapt the

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

Natural Language Engineering 45

cross-domain transfer learning architecture by introducing the parameter sharing in the word-
level Bi-LSTM, where each domain learns a separate CRF layer. However, the LSTMs are shared
across different domains. Cotterell and Duh (2017) also apply a similar transfer learning scheme
for low-resource NER with a shared Bi-LSTM across different languages with language-specific
CRFs. We particularly used the Bi-LSTM-CRF architecture and not a single Bi-LSTM as suggested
by Riedl and Pad6 (2018) for transfer learning because the best results have already been achieved
by this architecture without transfer learning (Reimers et al. 2014; Ma and Hovy 2016; Cotterell
and Duh 2017).

We further extended the transfer learning architecture by adding extra shared layers on the
baseline architecture. Following the various architectures proposed by von Diniken and Cieliebak
(2017), we added two ReLUs, a dropout layer, and a linear layer (a feed-forward network) between
the Bi-LSTM and the CRF layers. The architecture of the model is given in Figure 6. First, X;,
the output of the Bi-LSTM is passed through an ReLU (Nair and Hinton 2010) layer. Then, a
dropout is applied to X;. The dropout applied output X; is then passed through a feed-forward
network with one hidden layer and ReLU activation, which outputs a score for possible k number
of entity tags:

score; = Wy - ReLU(W1hy + by) + b, 9)

where Wy € R#%dx p, e R W, € R**9H and b, € R are the weights of the feed-forward net-
work. Here, dy is the dimension of the hidden layer and dy is the dimension of X;. As seen from
the figure, all layers and their parameters are shared by both CRF layers. The motivation behind
adding a feed-forward network between the Bi-LSTM layer and the CRF layer is to encode the
outputs of the Bi-LSTM by introducing sparsity to lead the negative features to become zero.
Otherwise, vanishing gradients problem stands out again due to the many layers that require back-
propagation during gradient descent. Therefore, some outputs are forced to be zero by the ReLU
unit, and the vanishing gradient problem is naturally solved in this multilayered architecture.

As for the training, analogously, we performed backpropagation using the loss of one of
the CRF layers alternately. Therefore, the CRF layer gains generalization through two different
datasets from different domains during training.

6. Experiments & Results

We did the experiments for the baseline and the transfer learning models on Turkish, and addi-
tionally on English to compare with other related work. First, we describe the datasets, the
implementation details of the models, and the evaluation methods that we followed in this work,
then we present the experimental results along with a discussion on the results.

6.1 Implementation details

Both the CNN-based (E&ff"”)) and Bi-LSTM (Eg,ffi’LSTm))-based orthographic character embed-
dings have a dimensionality of 30. The CNN-based character embeddings are initialized by uni-
form Glorot initializer. For the CNN model, 20 is assigned for the maximum word length, where
the shorter words are padded with zeros and the longer ones are truncated. The Bi-LSTM-based
character-level word representation has a dimensionality of 60.

We trained fasttext (Bojanowski et al. 2017) for Turkish with a learning rate of 0.025 for 4

epochs to learn the character n-gram-level word embeddings Eijfgm'") that have a dimensionality

of 200. Character n-gram-level word embeddings have a dimension of 300 for English.
Morpheme-level word embeddings E%) have a dimensionality of 75 and 50 for English and

Turkish, respectively. Word-level word embeddings E&,”f) have a dimension of 400 for both English
and Turkish.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

46 EK Akkaya and B Can

B-DATE — E-DATE — S-LOCATION

Alternately I ‘[I
Trained .
CRF Layers CRF,,,,,, CRE,
b\ 4 '
ReLU
Shared] .
Extra Layers Linear
Dropout
ReLU
Word-level |
Bi-LSTM

Word Embeading | [[[[] LLLL] LI

(Concatenated) 1
— | Word Embedding Encoders |

Input sentence _E 29 ekimde Ankara'ya

Figure 6. Overview of the extended transfer learning model that incorporates an additional CRF layer. CRF layers are
alternately trained on different datasets so that the shared layers learn from both datasets and therefore learning can be
transferred from the source dataset to the target dataset. The Turkish input sequence “29 ekimde Ankara’ya” means “To
Ankara on 29th October”.

Weights of the shared ReLU and linear layers in transfer learning models are initialized using
uniform Glorot initializer and biases are set to 0.

During all experiments, both the baseline and transfer learning models are trained using back-
propagation and the parameters are optimized using Stochastic Gradient Descent algorithm. We
trained both models for 100 epochs and set the learning rate to 0.005 in addition to using a gra-
dient clipping of 5.0. Dropout rate of all of the dropout layers is set to 0.5. Hidden dimension
of character-level Bi-LSTM and word-level Bi-LSTM layers are set to 30 and 250, respectively.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

Natural Language Engineering 47

Table 1. Implementation and training details

Setting/Hyperparameter Value
Gradient clip 5.0
'Léa”rr']iﬁg'ré{e' e e 0005
.lr.ov’.)t.imi.ze.r,. e sgd
BatChme e 10
DrOPOUt 05
Epochs e e e 100
H|dden S,.iz.e,];i-,.L;T,.Méd;ar),. e 30 ;
H.dden s‘iizegi_‘L;Tl;,[’(wl);é)u e 250
D|mens|onfasttext(m) TS 300
Dbiméhsioh‘m;réhz;;c(enb)‘ R ,.75 .
Dimensiongsttext(tr) 200
Dimensionmorphavec(tr) 50
Dimensionyordavec 400
Dimensionchar 30

Tuning the dimensions or any other hyperparameter did not significantly improve the accuracy
of the models. An overview of the hyperparameters is given in Table 1.

All models are implemented using Tensorflow 1.8.0,4 and the implementations and the related
material are publicly available.

6.2 Tagging scheme
When it is thought that a named entity can span multiple consecutive words, a tagging scheme
that impose some constraints on determining the possible label of a word is highly useful. Inside,
outside, beginning (IOB) format is such a tagging scheme that uses B for the token that refers to the
beginning of a named entity, I for the token that refers to the inside of a named entity, and O for
the token for other words in the sequence. Inside, outside, beginning, ending, single (IOBES) is a
variant of IOB format that further restricts the possible label of a word with additional tokens such
as E token that is used for specifying the ending of a named entity, and S token that is used for the
named entities with only one word. Here is an example sentence tagged with the IOBES format:

Mustafa/B-PERSON Kemal/I-PERSON Atatiirk/E-PERSON was born in 1881/S-DATE in the
former Ottoman/B-ORGANIZATION Empire/E-ORGANIZATION.

We follow the IOBES tagging scheme for Turkish and IOB tagging scheme for English to be
able to compare with other related work using the same annotated noisy text.

6.3 Datasets
In order to obtain Turkish character n-gram-level word embeddings, we trained Skipgram model
of fasttext (Bojanowski et al. 2017) on a corpus of 20M Turkish tweets.! As for English, we used

dhttps://www.tensorflow.org/.
¢All source code and related material are available on https://github.com/emrekgn/turkish-ner.

fhttp://www.kemik yildiz.edu.tr/data/File/20milyontweet.rar

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://www.tensorflow.org/
https://github.com/emrekgn/turkish-ner
http://www.kemik.yildiz.edu.tr/data/File/20milyontweet.rar
https://doi.org/10.1017/S1351324919000627

48 EK Akkaya and B Can

Table 2. Datasets

Dataset Named Entity types # of tokens # of NEs

DS-1 TR-tweet ENAMEX, TIMEX, NUMEX corporation, 55K 1.4K
creative-work, group, location,

DS-2 WNUT’17 person, product 104K 3.8K

Table 3. Number of entity types in Turkish noisy dataset, DS-1

Entity type Amount
Person 699
Locauon 230
Orgamzatlon e 363
Date e 56
T|me e 20
Money e 12
perceiﬁtaig‘e R . e 5
Total 1,383

the pretrained English word embeddings that are provided by fasttext® (Bojanowski et al. 2017).
The word embeddings are obtained from the Continuous Bag of Words model of fasttext trained
on Common Crawl,” a website that provides web crawl data.

Pretrained word embeddings obtained from word2vec (Mikolov et al. 2013) are used to learn
the morpheme-level word embeddings by imitating them in morph2vec (Ustiin et al. 2018).

We use pretrained word2vec (Mikolov et al. 2013) embeddings that are trained on a corpus that
involves 400M English tweets (Godin et al. 2015). As for Turkish, we use pretrained word2vec
embeddings that are trained on a news corpus (Bogazi¢i University web corpus) that involves
423M words (Sak, Giingor, and Saraglar 2008, 2011) and 20M Turkish tweets (Sezer, Sezer, and
Univesitesi 2013).

We experimented on two datasets on Turkish and English that are given in Table 2. DS-1 (Seker
and Eryigit 2017) is the reannotated version of the initial Turkish noisy dataset (Celikkaya et al.
2013) that consists of ENAMEX, TIMEX, and NUMEX types. As we can see in Table 3, this is a
relatively small dataset with a highly imbalanced entity type distribution. Since the dataset does
not have training and test splits, during experiments, we applied 10-fold cross-validation and split
the dataset into training, test, and validation sets with ratios of 80%, 10%, and 10%, respectively
for Turkish, and we did not apply a cross-validation for English to be able to compare our results
with other work participated in the 3rd WNUT’17.!

DS-2 is an English noisy dataset (Derczynski et al. 2017) that is released by the 3rd WNUT’17
that includes person, location, corporation, product (consumer goods, service), creative work (song,
movie, tv series, book), and group (music band, sports team, noncorporate organizations) types.
This dataset has training, test, and development sets with sizes of 65K, 23K, and 16K tokens.
Distribution of the entity types in this dataset is also given in Table 4.

Shttps://s3-us-west-1.amazonaws.com/fasttext-vectors/crawl-300d-2M-subword.zip.
Dhttps://commoncrawl.org/.
ihttps://noisy-text.github.io/2017/.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://s3-us-west-1.amazonaws.com/fasttext-vectors/crawl-300d-2M-subword.zip
https://commoncrawl.org/
https://noisy-text.github.io/2017/
https://doi.org/10.1017/S1351324919000627

Natural Language Engineering 49

Table 4. Number of entity types in English noisy dataset, DS-2

Entity type Train Development Test Total
Person 660 470 429 1,559
L
(fo.r;.)o.réti.ovh.mm L
S D I Ly 383
Creanvework I 140 B .164. S 386
Group S ,.2.6,4. B 39 S 165 R .4.6.8
Tota[S 1975 B 835 S 1079 O 3889

6.4 Preprocessing
Prior to tokenization of the datasets,

« We replaced the URLs (tokens starting with http) with a special token. This allows us to
reduce sparsity and allows our model to converge relatively faster.

o We replaced the Twitter mentions (Twitter usernames starting with @ sign) with another
special token in DS-1. This reduced the number of PERSON entities from 4256 to 699, and
we believe this prevents memorizing the mentions in the text.

6.5 Evaluation methods

We evaluate the results with accuracy, precision, and recall. Accuracy measures the overall per-
formance of the model by computing the ratio of correctly labeled tokens to the total number of
tokens. However, this results in a highly imbalanced value since most of the tokens are not part
of a named entity and, therefore, labeled as OTHER. Precision gives the ratio of correctly labeled
named entities (chunks) to the total label predictions, and recall measures the ratio of correctly
labeled named entities (chunks) to the total number of correct predictions. Finally, F1 score is
computed as the harmonic mean of precision and recall:
2 x precision * recall

Fl1= 10
(precision + recall) (10)

In order to measure the overall performance of any given model for the sequence labeling task,
F1 score is commonly chosen over accuracy since it intuitively defines a good measure of the
model by taking false negatives and false positives into account, whereas accuracy gives imbal-
anced results due to highly skewed entity type distribution because most of the tokens do not have
an entity label.

6.6 Experimental results on Turkish

We experimented with different combinations of embedding methods to analyze the impact of the
word and subword embedding methods used in the baseline and the transfer learning models. To
this end, we used word-based word embedding method word2vec (Mikolov et al. 2013), character
n-gram-level word embedding method fasttext (Bojanowski et al. 2017), morpheme-level word
embedding method morph2vec (Ustiin and Can 2016), character embeddings trained with a Bi-
LSTM (and CNN), and orthographic character-level embeddings trained on a character-level Bi-
LSTM.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

50 EK Akkaya and B Can

Table 5. Overview of the experimental results of the baseline models on the Turkish noisy dataset, DS-1. Baseline-2 uses
extra layers in the Bi-LSTM CRF model. Fasttext (Bojanowski et al. 2017), morph2vec (Ustiin et al. 2018), word2vec Mikolov et
al. (2013), character-level and orthographic embeddings are denoted in the embeddings column by ft, m2v, w2v, char and
ortho respectively. Acc refers to accuracy, P refers to Precision, and R refers to Recall.

Model Embeddings Acc. (%) P (%) R (%) F1 (%)
baseline char 96.81 48.16 18.05 26.12
baselme e m2V e 9666 e 6368 e 1134 e 1914
b,.a,.se.“.ne,., e mz\,char e %70 R 4778 e 1429 e 2133
b.a,se.“n,é., R “rﬁlz\,»,‘o‘r{h‘o» B %72 R 605 R .14'.1.1, i 2231
baseline ~ ft ote 7242 4979 5801
baseline ft, char 97.7 74.25 48.69 58.69
baseline ft, ortho 97.73 71.96 51.10 59.7
baseline ft, m2v 97.67 71.36 50.02 58.73
baseline ft, m2v, char 97.72 74.48 49.11 59.03
baseline ft, m2v, ortho 97.68 73.12 48.70 58.32
baseline ft, m2v, ortho (cnn) 97.69 74.00 49.46 59.07
baséliﬁé ' WZV ‘ o o '96;73' ‘ ' 68.49 ‘ ' 13:23 ‘ ' 22.02
b.as,e.“n,é S 'Vvv'zv;'chvarv e 9577 S 5328 I 1957 B 2845
b.a,se.“n,é., [.vw.zvv;oah(.)v e 9559 I 6064 I 1557 — 258
b.a,ée.“.n,e,., I Wzv, mz\, e 9708 e 6534 [2753 e 3858
b'anséﬁ'ne” e Wzv,mzv,char e 9713 e 6308 I 3031 e 4078
base[me [Wz\,’ft e 9777 e 7129 e 5325 e 5082
baselm é W 2,\./’.&, .Ch.a.r 977 5 7091 5319 50 58
ba.séﬁ.n.e' [.W2,\./’.f'.[’.m.2\./. e 9758 e 7349 e 4745 R 5753
Ba.sé“.n .e W 2,\./’.?.[’ m2V’Char 9780 7071 5231 5998
b.alséﬁ‘n.e“ [“\A}Z\‘,,.f{, mzv,ortho e 9731 e 7355 e 5299 e 5153
baselmez e Wzvft,mzv,ortho e 9751 e 6900 e 5300 e 6015

The results obtained from the baseline model are given in Table 5. In the baseline model, among
using only one type of embedding, fasttext performs the best compared to other embedding types
with an F1 measure of 58.91%, where CNN-based orthographic char embeddings perform 26.12%,
morph2vec performs 19.14%, and word2vec performs 22.02%. This shows that using character
n-grams in representation learning can cope with the sparsity issue better compared to other
embedding types. We were expecting a similar performance from the morph2vec embeddings;
however, they have not performed as well as fasttext. This might be a sign of ill-formed nature
of the noisy text, where the morphemes are degenerated. Since morph2vec is trained on a formal
text with exact morpheme boundaries, the noisy text could not benefit from the morphological
knowledge adequately.

When the contribution of other embeddings used along with fasttext embeddings is observed,
we see that orthographic features contribute the most with an improvement of 0.79% and the
other embedding types do not contribute to the performance of the model and rather they
degrade the results. We believe that since fasttext embeddings also contain character-level and
morpheme-level features, those embeddings do not provide a significant improvement on the

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

Natural Language Engineering 51

Table 6. Experimental results of the baseline model with fasttext (Bojanowski et al. 2017),
morph2vec (Ustiin et al. 2018), word2vec (Mikolov et al. 2013) and orthographic character-level
embeddings on Turkish noisy dataset, DS-1

Entity type Precision (%) Recall (%) F1 score (%)
person 70.61 54.10 61.17
organization 83.28 63.81 71.85
location 68.36 46.28 54.84
daté‘ e I .45.71 B . 2%..57 B o 32;85 .
t|me e o e o e 0
money 0 0 0
percentage e o e 0,. e ,.0 o
overall 73.65 52.99 61.53

fasttext embeddings. The results are also similar when more embeddings are combined with
fasttext embeddings, which is due to a similar reason.

Because of the morphological structure of Turkish, using solely word2vec trained word embed-
dings does not perform very well. Combining the word embeddings with character embeddings
or orthographic embeddings improves the scores, although the final scores are still below 30%.
Using morph2vec along with word2vec provides a better improvement compared to character-
level word embeddings and orthographic embeddings with an F1 measure of 38.68%. The highest
improvement is obtained, when word2vec is combined with fasttext and it gives an F1 measure of
60.82%.

The highest performance is obtained when all embedding types (fasttext, word2vec,
morph2vec, and orthographic encoding) are used together, which gives an F1 measure of 61.53%.
The highest scores obtained for different entity types are given in Table 6. Our baseline model fails
to label the infrequent types such as time, money, and percentage since the annotated noisy data
are too small to learn the latent features for such infrequent entity types. However, the frequent
entity types such as person and organization are learned well compared to location and date.

In order to transfer any learned features from another larger dataset, we added an extra CRF
layer where the Bi-LSTM layers are shared by both datasets as described in Section 5. We call
this model transfer learning 1. We trained the model alternately with different datasets in each
epoch. Therefore, the shared layers up to the CRF layers can learn from both of the datasets. As a
larger dataset (source dataset), we used the reannotated version of the Turkish news corpus with
492K tokens, which was originally provided by Tiir et al. (2003) and reannotated by Seker and
Eryigit (2017). The results obtained from the transfer learning models are given in Table 7. By
using orthographic character-level word embeddings, character n-gram-level word embeddings,
morpheme-level word embeddings, and word-level word embeddings, we obtained an F1 score of
66.17% that is better than the baseline model that incorporates all embedding types.

We also incorporated additional ReLU and linear layers between the Bi-LSTM and CRF layers
as described in Section 5. We call the extended model as transfer learning 2. The results obtained
from the transfer learning model are coherent with the results of the baseline model. Fasttext
embeddings perform the best with an F1 measure of 62.47%, whereas using the other embed-
ding types on its own perform comparably poorer similar to the baseline model. Morph2vec
embeddings and character embeddings perform alike with F1 measures of 34.62% and 36.74%,
respectively, which are still significantly better than the results obtained from the baseline model
when those embeddings are used alone. This is possibly due to the inclusion of another larger
dataset that compensates the sparsity issue in embeddings.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

52 EK Akkaya and B Can

Table 7. Overview of the experimental results of the transfer learning models on the Turkish noisy dataset, DS-1. Fasttext
(Bojanowski et al. 2017), morph2vec (Ustiin et al. 2018), word2vec Mikolov et al. (2013), character-level and orthographic
embeddings are denoted in the embeddings column by ft, m2v, w2v, char and ortho respectively. Transfer learning - 1 rep-
resents the basic transfer learning architecture without the additional (ReLU, linear) layers between the word-level Bi-LSTM
and CRF layers and transfer learning - 2 is the transfer learning model with additional ReLU and linear layers. Acc refers to
accuracy, P refers to Precision, and R refers to Recall

Model Embeddings Acc. (%) P (%) R (%) F1 (%)
transfer learning-1 w2y, ft, m2v, ortho 98.03 71.00 62.00 66.17
transfer learning-2 Cchar 9691 5098 28.87 36.74
transfer[eammgz m2V [959 . 5362 R 2584 3452
transfer learning-2 ‘mav,char 97.04 6596 2476 35.92
transfer[eammgz . ft [9777 . 698 B 5694 6247
transfer learning-2 ft, char 97.82 6020 59.73 64.09
t.ra.n.s fer ['eér'ni'n'g ,_.2 ff, m2 V 9781 6778 6148 5427
transfer learning-2 ft, ortho 97.88 68.09 63.04 65.37
t.ra.n.s fer l..ea.r.m.n.g ._.2 t.’ ortho ('cﬁﬁ) 9789 6989 6056 54 73
transfer learning-2 f,mav,otho 9787 70.78 60.35 65.12
transfer learning-2 ft, m2v, ortho (cnn) 97.95 74.45 58.94 65.72
transfer learning-2 wy o 96.80 65.82 1620 25.86
transfer learning-2 wav,char 9695 59.97 2377 3375
tranéfebr‘lebarnin‘g»ﬁ ‘ w2v>y m2v‘ . 9738 6538 40.15 4960
transfer learning-2 w2v, m2v, char 97.45 66.28 40.73 50.34
transfer learning-2 w2v, ft 97.89 70.09 59.86 64.46
transfer learning-2 w2y, ft, char 97.91 69.47 61.66 65.18
transfer learning-2 w2y, ft, m2v 97.88 68.19 61.53 64.64
transfer learning-2 w2y, ft, m2v, char 97.86 68.58 60.38 64.19
transfer learning-2 w2v, ft, m2v, ortho 98.00 71.79 63.9 67.39

Interestingly, using character embeddings in addition to fasttext embeddings improves the F1
score from 62.47% to 64.09%, whereas in the baseline model adding character embeddings on
fasttext embeddings did not make an impact. This is possibly due to the transfer of character
embeddings between different domains. However, without transferring any character informa-
tion between the domains, the fasttext emnbeddings seem to cover character embeddings and
this hinders the impact of character embeddings against fasttext embeddings. Similar to the
baseline results, using word2vec embeddings or character embeddings along with fasttext embed-
dings improves the scores by around 2%. Using orthographic embeddings along with fasttext
embeddings also improves the scores by around 3%.

Using character embeddings in addition to fasttext and word2vec embeddings still improves
the scores with an F1 measure of 65.18%, which was not the case in the baseline model. The highest
score is obtained with an F1 measure of 67.39% when again the combination of all embedding
types (word2vec, fasttext, morph2vec, orthographic embeddings) is used. Therefore, adding extra
layers improved the results considerably.

As an alternative to orthographic character-level embeddings, we also incorporated the
character-level embeddings that are trained on a character-level Bi-LSTM (by using the actual

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

Natural Language Engineering 53

Table 8. Experimental results of transfer learning model (transfer learning - 2) with fast-
text (Bojanowski et al. 2017), morph2vec (Ustiin et al. 2018), word2vec (Mikolov et al.
2013) and ortographic character-level embeddings on Turkish noisy dataset, DS-1

Entity type Precision (%) Recall (%) F1 score (%)
person 71.20 65.52 67.95
organization 82.05 70.23 75.16
location v 67.05 64.29 65.27
datev e 4047 I 35;5‘9” e 3536 -
t|me . 1000 R 400 571
money 500 e 555 571
percentage e 0 e 0 [T 0
overall 71.79 63.9 67.39

Table 9. Experimental results obtained from different dimensions of fasttext character n-gram-level word
embeddings (Bojanowski et al. 2017)

Dimensionality Accuracy Precision (%) Recall (%) F1 score (%)
dimensions 97.17 74.26 27.56 40.05
d|mens|ons e 9752 e 7442 e 3986 e 5186
d|mens|ons [9760 [7336 S 4494 e 5553 -
200d|mens|ons T 9759 [7242 [4979 5391 -
dimensions 97.68 72.93 48.50 58.15

characters this time instead of replacing the characters with various symbols for the shape of
the word) following the work of Lample et al. (2016). However, the results obtained from the
character-level word embeddings performed comparably poorer.

Additionally, in order to analyze the impact of the additional layers, we performed a separate
experiment for the baseline model with a single CRF layer without any transfer learning. The
model is called baseline-2 in Table 5. We used word2vec, fasttext, morph2vec, and orthographic
embeddings in this setting. The baseline model with the additional layers gives 60.15% F1 score,
which is lower than the baseline model without the additional layers using the same embeddings.

Table 8 presents the highest scores obtained for different entity types in the transfer learning
model. We can see that the transfer learning model improves upon the results of the baseline
model significantly. Although the overall results on rare entity types (such as date, time, money)
are higher compared to the baseline model, transfer learning model still fails to label percentage
but we believe that this is an expected outcome given that it has only three examples belonging
to the percentage type in the whole dataset. Note that we are also using cross-validation so that
number of times an entity type is seen in one iteration is further decreased.

We trained Skipgram model of fasttext (Bojanowski et al. 2017) on the same corpus of 20M
Turkish tweets' for different dimensions of character n-gram-level word embeddings to analyze
the impact of the character n-gram-level word embeddings’ dimensionality. The results for differ-
ent sizes of embeddings are given in Table 9. The results show that the scores improve with higher
dimensionalities, where we obtain the highest scores with 200 dimensional fasttext embeddings.

Thttp://www.kemik.yildiz.edu.tr/data/File/20milyontweet.rar.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

http://www.kemik.yildiz.edu.tr/data/File/20milyontweet.rar
https://doi.org/10.1017/S1351324919000627

54 EK Akkaya and B Can

Table 10. Comparison with related work on Turkish noisy dataset DS-1. All results are tested
on the same noisy text and are therefore comparable with each other

Related work F1 score (%) Dataset
Seker and Eryigit (2017) 63.63 DS-1v4
i(;éliikkiayéiet‘d/,‘(26113)‘ e 1928 B 051\,1
Kiiclik and Steinberger (2014) 46.93 DS-1v2
Eken and Tantug (2015) 28.53 DS-1v3
baseline (ft, m2v, w2v, ortho) 61.53 DS-1v4
baseline-2 (ft, m2v, w2v, ortho) 60.15 DS-1v4
transfer learning-1 (ft, m2v, w2v, ortho) 66.17 DS-1v4
transfer learning-2 (ft, m2v, w2v, ortho) 67.39 DS-1v4

The results also support the findings of Yin and Shen (2018), where it was reported that the
over-parametrization does not hurt the performance and the performance increases with the
dimensionality up to a level, where it degrades slightly and converges so long as the dimensionality
increases.

In all experiments, we used orthographic and character embeddings that have a dimensionality
of 30. We did further experiments to analyze the impact of the dimensionality of the orthographic
embeddings. We used 200 dimensional fasttext embeddings along with orthographic embeddings
with different dimensions (30, 50, 100). However, the results did not change considerably, and
the F1 score was always around 59-60%, which are in line with the previous results reported in
Table 5.

Since we used pretrained word2vec embeddings that are already high dimensional (400), we
did not perform further experiments to analyze the dimensionality of the word2vec embeddings.
As Yin and Shen (2018) suggest, the higher dimensions of word embeddings perform better
compared to lower dimensions to a certain extent.

As for the morph2vec (Ustiin ef al. 2018) embeddings, they are optimized by the authors using
50 and 75 for the morph vector dimensions for Turkish and English, respectively.

6.6.1 Comparison with related work on Turkish

We compare our results with the related work on Turkish noisy dataset DS-1. The results are given
in Table 10. The related work uses different reannotated versions of the same dataset; therefore,
named entity distributions within the datasets may slightly differ; however, the difference between
the datasets is not very significant. Therefore, all results are comparable with each other. Seker
and Eryigit (2017) present the latest version called DS-1 v4, which is also used in our experiments.
Note that, we replaced any Twitter mentions (number of mentions labelled as person: 3557) in
the dataset prior to training. We compare our model with the results of $eker and Eryigit (2017)
that are obtained by replacing the mentions in the tweets, so that we can make a fair comparison.
Additionally, we compare our model with the models proposed by Celikkaya et al. (2013), Kiigiik
and Steinberger (2014), and Eken and Tantug (2015).

It should be noted that none of the related work on Turkish NER is designed particularly for
noisy text. Therefore, those models are trained on formal text, and as an additional experimental
setting, the authors also present their results on noisy text by using the Turkish noisy text (from
DS-1 v1 to DS-1 v4) only for testing purposes. Therefore, our training sets are different.

Our baseline model and the transfer learning model without the additional layers outperform
the models proposed by Celikkaya et al. (2013), Kii¢iik and Steinberger (2014), and Eken and

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

Natural Language Engineering 55

Tantug (2015) significantly with F1 measures of 61.53% and 66.17% respectively, whereas the
highest score among the other works is 46.93%. The model proposed by Seker and Eryigit (2017)
is slightly better with an F1 measure of 63.63%.X Nevertheless, our transfer learning model with
extra layers outperforms all of the models with an F1 score of 67.39%.

6.6.2 Error analysis

We did a qualitative error analysis to examine the common errors in the results. Frequent person
names are usually tagged correctly. However, if they are not frequent or if they are spelled with
multiple vowels to give a shouting effect (e.g., Tiilaaaaaaaayy, where the correct name is Tiilay),
then they may not be tagged correctly. In some circumstances, the location names are also tagged
as PERSON especially when the person names are followed straight away by location names. This
mistagging does not occur when organization names are followed by location names.

Another frequent error type occurs when the organization names span across few words. Those
organization names are usually confused with the location names. This mistagging also occurs
when the organization name is not frequent enough. Another interesting usage is seen with the
organization names that are shortened by the name of the location since the organization belongs
to that location. For example, instead of using Trabzonspor (the football team that belongs to
the city Trabzon), it is shortened to Trabzon to refer to the team. This requires more informa-
tion to extract the correct meaning of the named entity and usually such names are mistagged
by our models. Those are the typical tagging errors of the organization entries. Apart from these,
frequent and single word organization names are tagged correctly by the models. Abbreviated
organization names are also tagged correctly whether or not capitalized (e.g., “FB” for the football
team name “Fenerbahge”, “gs’ for the football team name “Galatasaray”). Even some organization
names that include spelling errors are tagged correctly by our model. However, some of the mis-
spelled organization names are not tagged as organization, but instead tagged as other in the gold
data. Therefore, although those organization names are tagged correctly by our model, they are
counted wrong. For example, Fenev (the name of the football team Fener is misspelt) is tagged as
organization correctly by our model.

Location names that span across few words also usually cannot be identified properly, and only
the first word is tagged correctly. Infrequent location names are also tagged incorrectly. Another
error occurs because of the non-ASCII characters in the location names. Since we do not perform
any preprocessing on the data, those location names also cannot be identified correctly.

The inflection of named entities also have a significant impact on tagging. The inflectional
morphemes such as case markers or possessive morphemes are seen frequently with the location
names. To our observation, the frequent inflectional morphemes do not affect the tagging. For
example, “samsunsporuma” (means “to my team samsunspor”) is tagged correctly even though it
has got two inflectional suffixes (i.e., “um” for “my” and “a” for “to”). However, infrequent mor-
phemes lead to mistagging with the location names. Person names are also sometimes inflected
with the suffix cigim (means “dear” and usually abbreviated as cim in the informal text) as a
salutation and they cannot be tagged correctly.

The infrequent named entities are learned better in transfer learning, which is an expected
result. Even some of the frequent named entities that are inflected can be correctly tagged in trans-
fer learning model. Otherwise, the errors are common in baseline and transfer learning. Therefore,
the main contribution of transfer learning is the compensation of the infrequent named enti-
ties using a larger corpus. When we also compare the results obtained from different levels of
word embeddings, it shows that using subword information improves the tagging significantly.

kAlthough 67.96% is reported by Seker and Eryigit (2017), this score is obtained by including Twitter mentions in both
training and test data. Twitter mentions appear in almost any tweet, which are easy to detect and therefore increase the scores
naturally. Therefore, we compare our results with their score without using Twitter mentions to have a fair comparison.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

56 EK Akkaya and B Can

Table 11. Alist of incorrect tags in Turkish

Examples
Predicted Ege\ S-LOCATION Unlver5|te5|\ (o] Bolumu\ (o]
(io”rr.e;:t. - .Ege\ B- LOCATION Unlver5|teS|\I LOCATION Bolumu\ E LOCATION
Predicted Dogan\ B-PERSON Diyarbakr\ E-PERSON 5\ O Nolu\ O Cezaevinde\O
Correct Dogan), S-PERSON Diyarbakr\ S-LOCATION 5\ B-LOCATION Nolu\ ILOCATION Cezaevinde\, E-LOCATION
Predlcted - “Z|raat\ S- LOCATION Turklye\ S LOCATION Kupas \ O
Correct - “ZIraat\ B- ORGANIZATION Turklye\ I ORGANIZATION Kupas\ E ORGANIZATION
Predlcted - Hlstanbul\ S- LOCATION sehlr\ S LOCATION tlyatrolarnda\ O
Correct - llstanbul\ B- ORGANIZATION §eh|r\ I- ORGANIZATION tlyatrolarnda\ E ORGANIZATION -
Predictedb - HFENERBAHCEEE\ [0} -
C‘orr‘ecf‘ - FENERBAHCEEE\ S—ORGANiZA‘i’ION‘
Predicted bu\ O hafta\ O cuma\ S-DATE
Correct bu\ B-DATE hafta\ I-DATE cuma\ E-DATE
Predicted Gizemcim\ O
Correct Gizemcim)\ S-PERSON

However, the subword information in noisy text does not need to be syntactic (morphological
units) as suggested and character n-gram-level features help in tagging substantially.

As for the date label, the week days can be tagged correctly. However, analogously, if they span
over multiple words, they cannot be identified.

A list of examples to errors in our Turkish results is given in Table 11.

6.7 Experimental results on English

We performed a similar set of experiments by combining various word representations to mea-
sure the effect of different word and subword representation levels for the English noisy text.
Analogously, we employed word-based word embedding method word2vec (Mikolov et al. 2013),
character n-gram-level word embedding method fasttext (Bojanowski et al. 2017), morpheme-
level word embedding method morph2vec (Ustiin and Can 2016), character embeddings trained
with a Bi-LSTM (and CNN), and orthographic character-level embeddings trained on a character-
level Bi-LSTM. The overview of the English results is given in Tables 12 and 13 for the baseline
and the transfer learning models, respectively.

Among using solely character-level embeddings, morph2vec (Ustiin and Can 2016), fasttext
(Bojanowski et al. 2017), or word2vec (Mikolov et al. 2013), the highest results are obtained
from word2vec (Mikolov et al. 2013) with an F1 measure of 39.04% in the surface level and an
F1 measure of 36.55% in the entity level, which gives a completely different picture from the
Turkish results where the highest score was obtained from fasttext with an F1 measure of 58.91%.
The English results are both lower than that of Turkish, and moreoever word-level embed-
dings are more beneficial in English compared to Turkish. Due to the morphological divergence
between the two languages, obtaining a better performance from word-level word embeddings
is an expected result. However, the performance is still not satisfactory compared to the highest
result in Turkish when using a single type of word embedding. Using orthographic character-level
word embeddings in addition to word2vec contributed the most with an F1 measure of 40.55%
in the surface level and 37.82% in the entity level. Although the other embedding types do not

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

Natural Language Engineering 57

Table 12. The results of the baseline model on the English noisy dataset, DS-2. Baseline-2 uses extra layers in the Bi-LSTM
CRF model. Fasttext (Bojanowski et al. 2017), morph2vec (Ustiin et al. 2018), word2vec (Mikolov et al. 2013), character-
level and orthographic character-level embeddings are denoted in the embeddings column by ft, m2v, w2v, char and ortho
respectively

Entity level (%) Surface form (%)
Model Embeddings Accuracy Precision Recall F1Score Accuracy Precision Recall F1Score
baseline char 92.51 21.46 5.19 8.36 92.51 20.87 5.56 8.77
baseline m2v 92.55 10.71 0.28 0.54 92.55 12 0.31 0.61
baseline m2v, char 92.51 26.67 5.57 9.21 92.51 25.7 5.77 9.42
baseline m2v, ortho 92.56 24.2 4.92 8.17 92.56 23.7 5.24 8.58
baseline ft 93.1 52.6 7.51 13.15 93.1 51.43 7.55 13.16
baseline ft, char 93.14 52.87 7.7 13.44 93.14 52.38 8.07 13.99
béselvi‘nev ft,ovr;thvo o ' 9331 ‘ 47;54” ”15.21 ' 53.05 N 93.31 ' 4'5-.02 l4.68v 2213
ba;s,el,i.n,.e, . ft,mzv e 9307 . 5441 686 . 1219 9307 . 5235 . 631 . 1207
base[me ft,mzv,char [931 4557 779 1335 931 4511 807 1374
base[me . ft,mz\,,onho e 9339 - 4839 1531 . 2326 . 9339 - 4545 . 1468 - 2219
baseline ft,m2v,ortho (cnn),w2v ~ 94.14 6623 2839 3974 9414 6587 261 37.39
baseline ft,m2v,ortho,w2v 9419 6681 2839 3984 9419 6676 2631 37.74
Ba.sélin,.e. . Wzv 9395 — 5591 . 2514 . 3555 9395 o 6748 e 2747 - 3904
ba'se'[in'e' . .V.VZ.V.’ Char e 94 S 549 e 2607 . 3719 . 94 [6457 e 2821 e 3927 .
b.a.s.élin..e. . Wzv, ortho e 9411 i 6643 . 2644 - 3782 - 9411 i 6629 e 2921 e 4055 .
b.a.s.élin..e. . Wzv, mzv e 9393 e 6625 e 244 e 3555 e 9398 i 5667 e 2254 e 338 .
base[me . W2V mzvchar e 9408 e 6779 B 2616 e 3775 i 9403 . 6847 e 239 e 3543
l.).a.sé“n..e.. . Wz\,,ft e 9396 e 6537 2542 3568 e 9396 . 6559 . 2338 3447
baseline ~ wav,ft,char 9405 6659 2607 3747 9405 6657 2421 3551
baseline wav,ft,m2y 9408 6659 2625 3766 9408 6571 2411 3528
baseline‘ w2\), ft, miv, c‘har >94.i ‘ 66.74 ‘26.44 37.87 94.1 » 66‘.76 24.63 >35.E‘)9
baseline-2 w2v, ortho 94.3 64.51 30.52 41.44 94.3 64.81 33.33 44.02

contribute on top of the word2vec embeddings in the surface level, character-level word embed-
dings, orthographic embeddings, and fasttext embeddings slightly contribute to the word-level
word embeddings; however, the contribution is not more than 0.6%.

Combining word2vec embeddings with other embeddings obtained from different levels still
does not change the results, and the highest results in the surface level still remain the same as the
one obtained from using solely word2vec embeddings. However, in the entity level, the highest
performance is obtained by using word2vec, fasttext, morph2vec, and orthographic word embed-
dings, which gives an F1 measure of 39.84%. This is around 3% higher than the results obtained
from using solely word2vec. However, in the surface level, the highest results are obtained by using
word2vec and orthographic character embeddings with an F1 score of 40.55%.

Without using any word-level word embeddings, the results are far behind the highest obtained
score in English, and most of them are below 20%. This concludes that word-level word embed-
dings of a morphologically poor language such as English bear further information compared to

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

58 EK Akkaya and B Can

Table 13. The results of the transfer learning model on the English noisy dataset, DS-2. Fasttext (Bojanowski et al. 2017),
morph2vec (Ustiin et al. 2018), word2vec (Mikolov et al. 2013), character-level and orthographic character-level embeddings
are denoted in the embeddings column by ft, m2v, w2v, char and ortho respectively. Transfer learning - 1 represents the
basic transfer learning architecture without the additional (ReLU, linear) layers between the word-level Bi-LSTM and CRF

layers and transfer learning - 2 is the transfer learning model with additional Relu and linear layers

Entity level (%)

Surface form (%)

Model Embeddings Accuracy Precision Recall F1Score Accuracy Precision Recall F1 Score
transfer learning-1 ft, ortho 91.4 24.47 2124 22.74 91.4 26.38 20.02 22.77
transfer learning-2 char 92.53 21.27 4.36 7.24 92.53 13.89 2.62 4.41
traﬁsfevr‘learning-zv mZ\),chér v92.‘69‘ 32;28v v 3.8 v6.8v 92.69 v32.v5‘4 ‘4.3 %.59‘
transfer learning 2 ft 9384 7047 2236 3394 9384 69.04 2034 3142
transfer learning-2 ~ft, char 9393 6260 2635 371 9393 60.51 2474 3512
transfer learning2 ft,m2v,ortho 9363 4881 2291 3119 9363 4698 2117 2919
transfer learning2 ft,ortho,w2v 9422 5567 3367 4197 9422 5445 3145 3987
transfer learning2 ft,m2v,ortho,w2v 9417 57.01 3321 4187 9417 5614 3113 4005
transferlearning2 w2v 9397 6032 3117 411 9397 5087 3446 4374
transfer learning2 w2v,char 9414 60.51 3098 4098 9414 6009 3458 439
transfer learning2 w2v,ortho 9405 5598 3256 4117 94.05 6159 3583 45.30
transfer learning2 w2v,m2v 9377 5387 3098 3934 9377 5456 2883 3172
transfer learning-2 w2v,m2v,char 9412 59.89 3089 40.76 9412 5914 2883 3876
transfer learning-2 w2v,ft 9398 583 3126 407 9398 5809 2935 39

transfer learning-2 w2y, ft, char - 9419 6L76 3191 4208 9419 6212 30.08 40.54
transfer learning2 wav, ft,m2v 9422 6292 3163 421 9422 6351 2956 40.34
transfer learning-2 w2v, ft, m2v, char 94.23 62.59 32.75 43.00 94.23 62.21 30,71 4112

other embedding types, and the other levels of word embeddings hardly contribute on top of the
word-level word embeddings.

Here, orthographic character-level embeddings are trained on CNN instead of Bi-LSTM per-
formed poorer, and thus, we used only Bi-LSTM-trained character-level word embeddings in all
experiments on English.

The highest results obtained from different entity types are given in Table 14. We obtain the
highest scores again for the most frequent entity types such as person and location, whereas the
other sparse entity types such as corporation, product, creative-work, or group cannot be detected
as accurate as the frequent types.

In both transfer learning models, we used the English noisy dataset released by the 2nd
WNUT’16' as a source dataset. Therefore, both source and target datasets are noisy, but sizes of
the datasets are different. The first transfer learning model, transfer learning - 1, has not improved
upon the baseline and the results are even worse for this model. We obtained an F1 score of
22.77% for the entity level and 22.74% for the surface level from transfer learning - 1 by using
fasttext embeddings and orthographic character-level word embeddings.

As for the transfer learning model with additional layers, the results are significantly improved
upon the baseline model accordingly. For example, using solely word2vec embeddings in the

Thttps://noisy-text.github.io/2016/.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://noisy-text.github.io/2016/
https://doi.org/10.1017/S1351324919000627

Natural Language Engineering 59

Table 14. The results of the baseline model with word2vec (Mikolov et al. 2013), and orthographic character-
level embeddings on English noisy dataset, DS-2

Entity level (%) Surface form (%)
Entity type Precision Recall F1 score Precision Recall F1 score
corporation 29.41 15.15 20.00 28.00 14.89 19.44
creative-work 53.85 4.93 9.07 53.85 5.83 10.53
group 48.72 11.52 18.63 47.06 12.6 19.88
location 69.57 42.67 52.89 69.01 40.83 51.31
person 74.79 41.59 53.45 75.25 53.41 62.47
product 53.85 5.51 10.00 50.00 5.56 10.00
overall 66.43 26.44 37.82 66.29 29.21 40.55

Table 15. Experimental results of transfer learning model (transfer learning - 2) with word2vec (Mikolov et al. 2013) and
ortographic character-level embeddings on English noisy dataset, DS-2

Entity level (%) Surface form (%)
Entity type Precision Recall F1 score Precision Recall F1score
corporation 37.84 21.21 27.18 40.00 21.28 27.78
creative-work 41.67 7.04 12.05 43.48 8.33 13.99
group 52.73 17.58 26.36 50.00 18.90 27.43
location 42.78 53.33 47.48 57.27 52.5 54.78
person 69.33 48.60 57.14 72.15 61.29 66.28
product 41.67 7.87 13.25 39.13 8.33 13.74
overall 55.98 32.56 41.17 61.59 35.83 45.30

baseline model gives an F1 measure of 39.04%, whereas it improves up to 43.74% in the surface
level. The highest score is obtained with an F1 measure of 45.3%, when orthographic embeddings
are combined with the word2vec embeddings, which was also the highest in the baseline model.
Likewise, fasttext embeddings do not perform well on the transfer learning model for English.
Therefore, the results obtained from baseline model transfer learning model for different levels of
embeddings are coherent with each other.

We also performed another experiment with the baseline model with additional layers simi-
lar to Turkish, which is called baseline-2 in Table 12. We used only word2vec and orthographic
character embeddings in this setting, since it gives the highest score in the surface level for the
baseline model without the additional layers. Using the additional layers improves the F1 score up
to 44.02%, which is higher than F1 score of 40.55% obtained from the baseline model without the
additional layers using the same embeddings. In Turkish, using additional layers in the baseline
model does not help, whereas in English the additional layers contribute significantly.

Table 15 presents the highest obtained results for different entity types for the transfer learning
model. It is clearly seen that transfer learning helps the model to learn rarely seen entity types
better compared to the baseline model, thus the overall results on both entity level and surface
forms are significantly improved.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

60 EK Akkaya and B Can

Table 16. Comparison with related work on English noisy dataset DS-2. All results are
comparable with each other

F1 score (%)

Related work Entity level Surface form
Jansson and Liu (2017) 39.98 37.77
Williams and Santia (2017) 26.30 25.26
Sikdar and Gamback (2017) 38.35 36.31
|_i'n et a[' (2617) s [o s . ,3.7;62 .
vonDanikenand Cieliebak (2017) 4078 3933
Agmlareta[(zou) [4185 [4024 B
.ba;é“,r.]é (Wzv, o,-tho) e 3782 [4055 e
baselmez (Wz\,,ortho) . 4144 [4402 e
transfer learning-1 (w2v, ortho) w7 21
transferleammgz (wzv,onho) F 4117 [4530 .

6.7.1 Comparison with related work on English
We present a comparison of our proposed models to the related work on English noisy dataset DS-
2. The results are given in Table 16. Our transfer learning model with additional layers achieves
competitive results for the entity level, whereas our baseline model and the transfer learning model
with additional layers outperform all other models including the highest scoring models competed
in WNUT’17, that are proposed by von Déniken and Cieliebak (2017) and Aguilar et al. (2017).
The highest score in related work was achieved by Aguilar et al. (2017) with 40.24% F1 score.
Our transfer learning model gives 45.30% F1 score for the surface forms using the word2vec and
orthographic character-level embeddings. However, applying McNemar test™ (McNemar 1947)
between the model proposed by Aguilar ef al. (2017) and our transfer learning-2 model does not
strongly imply this difference (p = 0.248) in the surface level. If we compare the transfer learning-
2 model with the transfer learning model proposed by von Daniken and Cieliebak (2017) in the
surface level, McNemar test confirms the significance of this difference, p < 0.05. Therefore, our
transfer learning-2 model significantly outperforms the transfer learning model of von Déniken
and Cieliebak (2017) in the surface level. Additionally, our baseline model with additional layers
(baseline-2) gives 41.44% F1 score for the entity level, which is competitive to that of Aguilar et
al. (2017), where their highest reported result is 41.86% for the entity level. However, McNemar
test between the baseline-2 and the model of Aguilar et al. (2017) shows that this difference is
not significant in the entity level (p = 1.0). The same also applies for the difference between the
transfer learning model of von Déniken and Cieliebak (2017) and baseline-2. On the other hand,
McNemar test shows that the difference between baseline-2 model and the model proposed by Lin
et al. (2017) is significant (p < 0.05).

It should be noted that both Aguilar et al. (2017) and von Diniken and Cieliebak (2017)
make use of hand-crafted features such as capitalization or domain-specific knowledge such as
gazetteers, whereas our models do not use any external resource.

™MIn particular, we applied McNemar-Bowker test that allows multiple categories in the results, whereas the original version
of McNemar test allows only binary categories.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

Natural Language Engineering 61

Table 17. Alist of incorrect tags in English

Examples
Predicted Living\ O Computer\ O Museum\ O
Correct Living\ B-LOCATION Computer\ I-LOCATION Museum) I-LOCATION
Préaiét.ed G .ro.e.p.\ OK[em\o ..
C.O.rr.e.d G 'rc;eb'\ BPERSON k[éi'nu\ |pER50N
predmted s upreme\ o (;ourt\ ojudge\o ..
C..O..rr.e.ét. S Supreme\ BpERSON Court\|PERSONJudge\HDERSON S
Predicted Great\ O Southern\ B-GROUP Television\ I-GROUP
Correct Great\ B-CORPORATION Southern) I-CORPORATION Television\, I-CORPORATION
P‘rbed‘i(-;t»ed» B Skaers\BCORPORATION OSSN
Correct Snickers\ B-PRODUCT
Predicted Zealandia\ O
Correct Zealandia\ B-LOCATION
Predicted Amazon\ B-CORPORATION Echo\ O
Correct Amazon\ B-PRODUCT Echo)\ I-PRODUCT
Predicted Turkish\ O military\ O
Correct Turkish\ B-GROUP military\ I-GROUP
Predicted rival\ O cannibal\ O car\ O gangs\ O
Correct rival\ B-GROUP cannibal\ I-GROUP car\ I-GROUP gangs\ -GROUP

6.7.2 Error analysis

Since English is not a morphologically rich language, the errors do not occur because of the inflec-
tion of the named entities. Instead, most of the errors are due to the sparsity in the data. The variety
of the proper names (i.e., word types) in English data is quite intense compared to Turkish data.
Hence, the infrequent named entities cannot be identified analogously to Turkish. For example,
although the name “Thomas Jane” is correctly tagged as person, “Groep Klein” cannot be tagged
correctly as person since it is not as frequent as the former.

Analogously, location, organization, and person names that span across multiple words and
that are also infrequent cannot be tagged correctly. However, the frequent named entities with
multiple words can be tagged correctly (e.g., “Fly Community Theater”). The English text is over-
capitalized compared to Turkish text and even the common names could be capitalized. This
leads to mistagging especially in location names. For example, “Hotel Housekeepers Needed” is
incorrectly tagged as location because of the location word “hotel” that is capitalized. On the other
hand, “newzealand” is tagged as other, since the word embeddings do not help in those multiword
entities.

Corporation names are usually tagged as group. Moreover, product names and creative work
are tagged as corporation in general. Since the number of those entities are not sufficient to be
learned in the noisy text, they cannot be identified properly. For example, corporation names
are identified correctly, if they are frequent (e.g., “reddit”). Most of the time, the group names
cannot be identified and tagged as other. The same also applies for the product names. For exam-
ple, “Chevrolet Corvette” is tagged correctly as product, whereas “Centrelink” and “Sudocrem” are
tagged as other.

A list of examples to errors in our English results is given in Table 17.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627

62 EK Akkaya and B Can

7. Conclusion & Future work

Various attempts have been made on Turkish NER recently. However, the results are still not sat-
isfactory for noisy text. In this article, we have investigated using deep neural networks along with
transfer learning instead of using rule-based or statistical approaches for NER on noisy Turkish
text. Noisy text has its own difficulties because of the very sparse orthography of words that highly
depend on the user style. Moreover, Turkish brings more challenges due to its morphologically
rich structure, which introduces more sparsity in the text. We have investigated the effects of
using different word and subword-level word representation methods such as word-level, charac-
ter n-gram-level, morpheme-level, and orthographic character-level embeddings to mitigate the
sparsity in text. We did not use any hand-crafted features and external resources unlike the other
existing studies on Turkish NER on noisy text. We investigated transfer learning between a formal
text and a noisy (informal) text in order to deal with the sparsity issue in the noisy text.

Therefore, we obtained the highest scores for Turkish NER on noisy text by using a combi-
nation of word-level and subword embeddings with transfer learning between a formal text and
noisy text. We have also experimented with English as a relatively morphologically poor language
and obtained the highest surface-level score and competitive entity-level scores on the English
noisy dataset.

The results show that subword information plays a vital role for the NER task, especially on
morphologically rich languages. More importantly, we can successfully learn valuable information
without using hand-crafted features or domain-specific external resources. Furthermore, it is also
proven that transfer learning approach can indeed effectively be used to tackle the problem of data
scarcity.

Since our model is not domain and language specific, we believe that it can also be effectively
trained and used for other morphologically rich languages, especially those with data sparsity
problem. Therefore, experimenting for different languages remains as a future goal.

Supplementary materials

For supplementary material for this article, please visit https://doi.org/10.1017/
S1351324919000627

References

Aguilar G., Maharjan S., Monroy A.P.L. and Solorio, T. (2017). A multi-task approach for named entity recognition in
social media data. In Proceedings of the 3rd Workshop on Noisy User-Generated Text, Copenhagen, Denmark. Association
for Computational Linguistics, pp. 148-153.

Bikel D.M., Miller S., Schwartz R. and Weischedel R. (1997). Nymble: A high-performance learning name-finder. In
Proceedings of the Fifth Conference on Applied Natural Language Processing, ANLC’97. Stroudsburg, PA, USA: Association
for Computational Linguistics, pp. 194-201.

Blei D.M., Ng A.Y. and Jordan M.I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research 3, 993-1022.

Bojanowski P., Grave E., Joulin A. and Mikolov T. (2017). Enriching word vectors with subword information. Transactions
of the Association for Computational Linguistics 5, 135-146.

Cao K. and Rei M. (2016). A joint model for word embedding and word morphology. In Proceedings of the 1st Workshop on
Representation Learning for NLP. Association for Computational Linguistics, pp. 18-26.

Celikkaya G., Torunoglu D. and Eryigit G. (2013). Named entity recognition on real data: A preliminary investigation for
Turkish. In 2013 7th International Conference on Application of Information and Communication Technologies (AICT).
IEEE, pp. 1-5.

Chiu J.P. and Nichols E. (2015). Named entity recognition with bidirectional LSTM-CNNSs. arXiv preprint arXiv:1511.08308.

Cotterell R. and Duh K. (2017). Low-resource named entity recognition with cross-lingual, character-level neural conditional
random fields. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short
Papers), Taipei, Taiwan. Asian Federation of Natural Language Processing, pp. 91-96.

Derczynski L., Nichols E., van Erp M. and Limsopatham N. (2017). Results of the WNUT2017 shared task on novel and
emerging entity recognition. In Proceedings of the 3rd Workshop on Noisy User-generated Text, Copenhagen, Denmark.
Association for Computational Linguistics, pp. 140-147.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000627
https://doi.org/10.1017/S1351324919000627
https://arxiv.org/abs/arXiv:1511.08308
https://doi.org/10.1017/S1351324919000627

Natural Language Engineering 63

Eken B. and Tantug C. (2015). Recognizing named entities in Turkish tweets. In Proceedings of the Fourth International
Conference on Software Engineering and Applications, Dubai, UAE.

Glorot X. and Bengio Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In Teh, Y.W.
and Titterington, M. (eds), Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics,
Chia Laguna Resort, Sardinia, Italy, volume 9 of Proceedings of Machine Learning Research. PMLR, pp. 249-256.

Godin F., Vandersmissen B., De Neve W. and Van de Walle R. (2015). Multimedia lab @ ACL WNUT NER shared task:
Named entity recognition for Twitter microposts using distributed word representations. In Proceedings of the Workshop
on Noisy User-generated Text. Association for Computational Linguistics, pp. 146-153.

Hochreiter S. and Schmidhuber J. (1997). Long short-term memory. Neural Computation 9(8), 1735-1780.

Huang Z., Xu W. and Yu K. (2015). Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991.

Jansson P. and Liu S. (2017). Distributed representation, LDA topic modelling and deep learning for emerging named entity
recognition from social media. In Proceedings of the 3rd Workshop on Noisy User-generated Text, pp. 154-159.

Kiigiik D. and Steinberger R. (2014). Experiments to improve named entity recognition on Turkish tweets. arXiv preprint
arXiv:1410.8668.

Lample G., Ballesteros M., Subramanian S., Kawakami K. and Dyer C. (2016). Neural architectures for named entity
recognition. arXiv preprint arXiv:1603.01360.

Landauer T.K., Foltz P.W. and Laham D. (1998). An introduction to latent semantic analysis. Discourse Processes 25(2-3),
259-284.

Limsopatham N. and Collier N. H. (2016). Bidirectional LSTM for named entity recognition in Twitter messages.
In Proceedings of the 2nd Workshop on Noisy User-generated Text, Osaka, Japan, pp. 145-152.

Lin B.Y., Xu F., Luo Z. and Zhu K. (2017). Multi-channel BiLSTM-CRF model for emerging named entity recognition in
social media. In Proceedings of the 3rd Workshop on Noisy User-generated Text. Association for Computational Linguistics,
pp. 160-165.

Ma X. and Hovy E. (2016). End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. arXiv preprint
arXiv:1603.01354.

McNemar Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages.
Psychometrika 12(2), 153-157.

Mikolov T., Chen K., Corrado G. and Dean J. (2013). Efficient estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781.

Nair V. and Hinton G.E. (2010). Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th
International Conference on International Conference on Machine Learning, ICML'10. USA: Omnipress, pp. 807-814.

Okur E., Demir H. and Ozgiir A. (2016). Named entity recognition on Twitter for Turkish using semi-supervised learning
with word embeddings. In LREC.

Pagliardini M., Gupta P. and Jaggi M. (2017). Unsupervised learning of sentence embeddings using compositional n-gram
features. arXiv preprint arXiv:1703.02507.

Pennington J., Socher R. and Manning C.D. (2014). Glove: Global vectors for word representation. In Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar. Association for Computational Linguistics, pp. 1532-1543.

Petasis G., Vichot F., Wolinski F., Paliouras G., Karkaletsis V. and Spyropoulos C.D. (2001). Using machine learning
to maintain rule-based named-entity recognition and classification systems. In Proceedings of the 39th Annual Meeting
on Association for Computational Linguistics, ACL'01, Stroudsburg, PA, USA: Association for Computational Linguistics,
pp. 426-433.

Reimers N., Eckle-Kohler J., Schnober C., Kim, J. and Gurevych I. (2014). Germeval-2014: Nested named entity recognition
with neural networks. In Proceedings of the KONVENS GermEval Shared Task on Named Entity Recognition, Hildesheim,
Germany.

Riedl M. and Padé S. (2018). A named entity recognition shootout for German. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Melbourne, Australia. Association for
Computational Linguistics, pp. 120-125.

Sak H., Giingor T. and Saraglar M. (2008). Turkish language resources: Morphological parser, morphological disambiguator
and web corpus. In Advances in Natural Language Processing, pp. 417-427. Springer.

Sak H., Giingor T. and Saraglar M. (2011). Resources for Turkish morphological processing. Language Resources and
Evaluation 45(2), 249-261.

Seker G.A. and Eryigit G. (2017). Extending a CRF-based named entity recognition model for Turkish well formed text and
user generated content 1. Semantic Web 8(5), 625-642.

Sezer B., Sezer T. and Univesitesi M. (2013). TS Corpus: Herkes iin Tiirk¢e derlem. In Proceedings 27th National Linguistics
Conference, May, pp. 3-4.

Sikdar U.K. and Gambick B. (2017). A feature-based ensemble approach to recognition of emerging and rare named entities.
In Proceedings of the 3rd Workshop on Noisy User-generated Text, Copenhagen, Denmark. Association for Computational
Linguistics, pp. 177-181.

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://arxiv.org/abs/arXiv:1508.01991
https://arxiv.org/abs/arXiv:1410.8668
https://arxiv.org/abs/arXiv:1603.01360
https://arxiv.org/abs/arXiv:1603.01354
https://arxiv.org/abs/arXiv:1301.3781
https://arxiv.org/abs/arXiv:1703.02507
https://doi.org/10.1017/S1351324919000627

64 EK Akkaya and B Can

Suzuki J. and Isozaki H. (2008). Semi-supervised sequential labeling and segmentation using giga-word scale unlabeled data.
In Proceedings of ACL-08: HLT, pp. 665-673. Association for Computational Linguistics.

Torunoglu D. and Eryigit G. (2014). A cascaded approach for social media text normalization of Turkish. In Proceedings of
the 5th Workshop on Language Analysis for Social Media (LASM), Gothenburg, Sweden. Association for Computational
Linguistics, pp. 62-70.

Tiir G., Hakkani-Tiir D. and Oflazer K. (2003). A statistical information extraction system for Turkish. Natural Language
Engineering 9(2), 181-210.

Ustiin A. and Can B. (2016). Unsupervised morphological segmentation using neural word embeddings. In Kral P. and
Martin-Vide C. (eds), Statistical Language and Speech Processing, pp. 43-53. Cham: Springer International Publishing.

Ustiin A., Kurfal M. and Can B. (2018). Characters or morphemes: How to represent words? In Proceedings of The
Third Workshop on Representation Learning for NLP, Melbourne, Australia. Association for Computational Linguistics,
pp. 144-153.

von Diniken P. and Cieliebak M. (2017). Transfer learning and sentence level features for named entity recognition
on tweets. In Proceedings of the 3rd Workshop on Noisy User-generated Text, Copenhagen, Denmark. Association for
Computational Linguistics, pp. 166-171.

Williams J. and Santia G. (2017). Context-sensitive recognition for emerging and rare entities. In Proceedings of the 3rd
Workshop on Noisy User-generated Text, Copenhagen, Denmark. Association for Computational Linguistics, pp. 172-176.

Wu Y., Zhao J. and Xu B. (2003). Chinese named entity recognition combining statistical model with human knowledge.
In Proceedings of the ACL 2003 Workshop on Multilingual and Mixed-language Named Entity Recognition, Sapporo, Japan.
Association for Computational Linguistics, pp. 65-72.

Yang Z., Salakhutdinov R. and Cohen W.W. (2017). Transfer learning for sequence tagging with hierarchical recurrent
networks. arXiv preprint arXiv:1703.06345.

Yin Z. and Shen Y. (2018). On the dimensionality of word embedding. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, NIPS’18. USA: Curran Associates Inc, pp. 895-906.

Cite this article: Akkaya EK and Can B (2021). Transfer learning for Turkish named entity recognition on noisy text. Natural
Language Engineering 27, 35-64. https://doi.org/10.1017/51351324919000627

https://doi.org/10.1017/51351324919000627 Published online by Cambridge University Press

https://arxiv.org/abs/arXiv:1703.06345
https://doi.org/10.1017/S1351324919000627
https://doi.org/10.1017/S1351324919000627

	Introduction
	Related work
	NER on Turkish noisy data
	NER on English noisy data
	Neural word embeddings
	Orthographic character-level embeddings
	Character-level word embeddings
	Character n-gram-level word embeddings
	Morpheme-level word embeddings
	Word-level word embeddings
	Final word embeddings
	Baseline model
	Bidirectional LSTM layer
	CRF layer
	Transfer learning
	Experiments "0026` Results
	Implementation details
	Tagging scheme
	Datasets
	Preprocessing
	Evaluation methods
	Experimental results on Turkish
	Comparison with related work on Turkish
	Error analysis
	Experimental results on English
	Comparison with related work on English
	Error analysis
	Conclusion "0026` Future work
	Supplementary materials

