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Abstract
Researchers who generate data often optimize efficiency and robustness by choosing stratified over simple

random sampling designs. Yet, all theories of inference proposed to justify matching methods are based

on simple random sampling. This is all the more troubling because, although these theories require exact

matching, most matching applications resort to some form of ex post stratification (on a propensity score,

distancemetric, or thecovariates) to findapproximatematches, thusnullifying the statistical properties these

theories are designed to ensure. Fortunately, the type of sampling used in a theory of inference is an axiom,

rather than an assumption vulnerable to being proven wrong, and so we can replace simple with stratified

sampling, so long as we can show, as we do here, that the implications of the theory are coherent and

remain true. Properties of estimators basedon this theory aremucheasier tounderstandandcanbe satisfied

without the unattractive properties of existing theories, such as assumptions hidden in data analyses rather

than stated up front, asymptotics, unfamiliar estimators, and complex variance calculations. Our theory of

inference makes it possible for researchers to treat matching as a simple form of preprocessing to reduce

model dependence, after which all the familiar inferential techniques and uncertainty calculations can be

applied. This theory also allows binary, multicategory, and continuous treatment variables from the outset

and straightforward extensions for imperfect treatment assignment and different versions of treatments.

Keywords: causal inference, matching, observational studies, multiple treatments, stratification

1 Introduction

Matching is a powerful nonparametric approach for improving causal inferences, especially in

observational studies—that is, where assignment of units to treatment and control groups is

not under the control of the investigator and not necessarily random. Matching is increasingly

popular amongapplied researchers because it canbe simple to apply andeasy tounderstand. The

basic idea is that certain serious statistical problems in a data set can be sidestepped by limiting

inferences to a carefully selected subset. In particular, by reducing the strength of the relationship

between pretreatment covariates and the treatment assignment variable, statistical methods

applied to the matched subset have reduced model dependence, estimation error, and bias

(Cochran and Rubin 1973; Rubin 1974; Ho et al. 2007). By removing heterogeneous observations,

matching can sometimes reduce variancebut,when variance increases, thebias reductionusually

more than compensates in typically large observational data sets; see Imbens (2004), Stuart

(2010), Morgan and Winship (2014).

In this article,wediscuss the theoriesof statistical inference that justify the statistical properties

of estimators applied to matched data sets. We begin by observing that every theory of statistical

inference involves an axiom about alternative realities where many hypothetical data sets could

Authors’ note: Our thanks to Alberto Abadie, Adam Glynn, Kosuke Imai, and Molly Roberts for helpful comments on an

earlier draft. The replication code can be found in Iacus (2018).
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have been generated, and which we are supposed to imagine also generated our data, under the

same conditions at the same moment in time. This data generation axiom can be modeled after

how the one observed data set was actually drawn, on the theory that it is sometimes easier

to imagine how hypothetical data sets might also have been generated. More common in the

observational data sets to which matching is often applied, the data generation process is not

known, and so researchers arbitrarily choose a data generation process for the observed and

hypothetical data sets. In either case, thesehypothetical realities are axioms thatdefine thenature

of our inferences, and themeaning of quantities such as standard errors, rather than being claims

that could in principle be proven wrong. Stating the sampling axiom then clarifies the specific

assumptions necessary for causal identification and unbiased estimation, which of course can be

violated and which thus need to be justified by researchers. Applied researchers must therefore

understand that the specific assumptions to be justified, and how they may be justified, depend

on this data generation axiom.

Until now, theories of statistical inference discussed in the literature on matching use the

axiom that the data are generated by simple random sampling, where each population unit has

the same probability of selection (e.g., Abadie and Imbens 2006). This is a simple-to-understand

data generation process but, under finite sample inference, turns out to require that treated and

control units match exactly on all measured pretreatment covariates or on the propensity score

(Imbens 2000, Lechner 2001, and Imai and van Dyk 2004)—conditions impossible tomeet in finite

data with at least one continuous variable. In practice, empirical analysts routinely violate this

exact matching requirement by applying various forms of approximate matching. Interestingly,

they do this within a simple random sampling framework by stratifying ex post on the original

covariate space, or a propensity score or distancemetric on that space, and treating approximate

matches within strata as if they were exact. Unfortunately, the assumptions necessary to make

this procedure appropriate are virtually never discussed or justified by those implicitly using

them. In otherwords, theorists assumeno stratification in repeated samplingwhen they are being

explicit about their theory of inference, but they actually do assume stratification in almost all real

applications implicitly during applied data analyses.

In this article, we bring stratification into a theory of causal inference formatching in an explicit

and visible way. Instead of burying the assumption ex post in the data analysis stage, we include

it ex ante via an alternative formally stated axiom about the data generating process following

a stratified sampling framework. We then make explicit all the assumptions necessary for valid

causal inference given this axiom, which must be followed by researchers if they are to proceed

as they analyze data as they do now. Because the strata under this theory are defined explicitly,

ex ante, and in the space of the investigator’s original variables, rather than ex post on the basis

of more complicated derived variables like a propensity score or standardized (Mahalanobis)

distance, it is easier to understand and, as with the congruence principle (Mielke and Berry 2007),

more intuitive and statistically robust.

Other theories of inference that work well in a stratified framework, like the one we propose,

include novel finite sample approaches based on Neyman’s randomization-based theory (Imai

2008) and Fisher’s permutation-based inference (Rosenbaum 1988). These are not as easy to use

as the stratified theory we propose, but easier than those based on simple random sampling.

Alternatively, one can use asymptotic results, which, in addition to the approximations necessary,

unfortunately also must assume that the observational data grows in size at given arbitrary rates

that depend on the number of continuous covariates (Abadie and Imbens 2012). These alternative

approaches can be of value in some instances, but none allow researchers the convenience of

using whatever point and uncertainty estimates they might have without a prior matching step.

Section 2 outlines our theory of statistical inference for matching based on stratified random

sampling, and Section 3 gives the properties of estimators that satisfy it. We discuss what can go
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wrong in applications in Section 4. Then, in Section 5,wework through a real data set to showhow

applyingmatchingmethods designed for simple random sampling is, as used, implicitly allowing

for approximate matching, and how this step leads to uncontrolled imbalance and bias. This

section also shows that by choosing directly the stratified random sampling matching theory of

this paper, researchers can estimate the same treatment effect without hiding the approximation

step. Section 6 concludes. Appendix A gives the proofs and Appendix B extends the theory to

situations where the true and the observed treatment status diverge andwhere different versions

of treatment are evident.

2 Causal Inference under Stratified Random Sampling Theory

2.1 Data generation process
Theories of statistical inference require an axiom about the assumed data generation process

in hypothetical repeated samples. In the matching literature, existing theories of inference for

matching assume (usually implicitly) simple random sampling, which we define formally as

follows:

AXIOM A0’ (Simple Random Sampling). Consider a population of units Θ with covariates X.
Draw repeated hypothetical samples, of fixed size n < ∞, at random from this population (i.e.,

so that each sample of n observations has equal probability of selection).

In this article, we offer a new theory of inference for matching that replaces Axiom A0’ with an

axiom based on stratified random sampling. Stratification is a well-known technique in statistics

that has had a role in matching since at least Cochran (1968) (see also Rubin 1977). To ease

the exposition below, we denote by X the space of pretreatment covariates and offer a formal

definition of stratification as follows.

DEFINITION 1. Let Π (X) be a finite partition of the covariate space X, and let Ak ∈ Π (X) (k =

1, . . . ,K < ∞) be one generic set of the partition, that is,∪k Ak = X andAl ∩ Am = ∅ for l � m.

For example, suppose that X consists of the variables age, gender, and earnings, that is, X =

{age, gender, earnings}. ThenΠ (X) can be interpreted as the product (space) of variables age×
gender × earnings = Π (X). Therefore, in the example, one of the sets Ak might be the subset

of “young adult males making greater than $25,000,” that is, Ak = {age ∈ (18, 24]} × {gender =

M } × {(earnings > $25000)}. When no ambiguity is introduced, we drop the subscript k from

Ak . Stratified random sampling involves random sampling fromwithin strataAwith given quotas

proportional to the relative weight of the strata {WA,A ∈ Π (X)}.
Finally, we offer our alternative data generating process axiom.

AXIOM A0 (Stratified Random Sampling). Consider a population of units Θ, and denote the

spaceof covariates asX. LetΠ (X)beapartitionofX that stratifiesΘ intodisjoint subpopulations

of units. Let {WA,A ∈ Π (X)}be fixedweights for the strata. Draw repeated hypothetical samples
of [n · WA] observations, n < ∞, via simple random sampling (defined in Axiom A0’) in each

stratumA ∈ Π (X), so that the total number of observations is n (andwhere [x ] is the integer part
of x ).

In this alternative Axiom A0, the strata and the total number of observations for each

hypothetical repeated sample and the observed sample are fixed. Then, the data set within each

stratum is drawn according to simple random sampling from Axiom A0’.1

1 LetMA
j
= {i : Ti = t j ,Xi ∈ A} be the set of indexes of all observations for treatment levelTi = t j within stratumA ∈ Π (X)

andMj =
⋃

A∈Π (X) M
A
j
be the set of all indexes of the observations corresponding to treatmentT = t j . Denote the number

of observations in each set by mA
j

= �MA
j
� and mj = �Mj �, respectively and define the weights introduced in Axiom A0

asWA
j

= mA
j
/mj , j = 1, 2. We assume that, in our stratified random sampling data generation process, the proportions

WA
j
are fixedacross repeatedsamples, andhence theweights inA0aredefinedbyWA = (mA

1 +m
A
2 )/(m1+m2) forA ∈ Π (X).
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The axioms described in Axioms A0 and A0’ cannot be proven true or false on the basis of

comparisons to a single observed data set, arguments about plausibility, or information about

how matching methods are used. Because the repeated samples are strictly hypothetical, A0

and A0’ are not even statements that could be true or false in principle. Instead, the choice of

an axiom merely defines how to interpret one’s causal inferences and uncertainty estimates,

the specific type of repeated hypothetical samples, and the ultimate inferential target. As all

matching methods use some kind of stratification of the covariates X, Axiom A0 highlights this

fact and clarifies the theoretical assumptions necessary for valid inferences, rather than, as under

AxiomA0’, keeping it hidden and leaving to applied researchers to dealwith outside of the process

of statistical inference.

2.2 Treatment assignment
Consider now the data generated in Axiom A0, where subject i (i = 1, . . . , n) has been exposed to

treatment Ti = t , for t ∈ T , where T is either a subset of � or a set of (ordered or unordered)

categories,Ti is a random variable, and t one possible value of it. Then Y = {Yi (t ) : t ∈ T , i =
1, . . . , n} is the set ofpotential outcomes, thepossible valuesof theoutcomevariablewhenT takes

on different values. For each observation, we observe one and only one of the set of potential

outcomes, that for which the treatment was actually assigned:Yi ≡ Yi (Ti ). In this setup, Ti is a

random variable, the potential outcomes are fixed constants for each value of Ti , and Yi (Ti ) is

a random variable, with randomness stemming solely from the data generation process for T

determining which of the potential outcomes is observed for each i . Let Xi be the p × 1 vector

(X ∈ X) of pretreatment covariates for subject i .2

2.3 Treatment effect
Let t1 and t2 be distinct values of T that happen to be of interest, regardless of whether T is

binary, multicategory, or continuous (and which, for convenience, we refer to as the treated and

control conditions, respectively). Assume T is observed without error (an assumption we relax

in Appendix B). Define the treatment effect for each observation as the difference between the

corresponding twopotential outcomes, TEi =Yi (t1)−Yi (t2), of which atmost only one is observed

(this is known as the “Fundamental Problem of Causal Inference”; Holland 1986). (Problems with

multiple or continuous values of treatment variables have multiple treatment effects for each

observation, but the same issues apply.)

The object of statistical inference is usually an average of treatment effects over a given subset

of observations. Researchers then usually estimate one of two types of quantities. The first is

the sample average treatment effect on the treated (SATT), for which the potential outcomes

and thus TEi are considered fixed, and inference is for all treated units in the sample at hand:

SATT = 1
�M1�

∑
i ∈M1

TEi , with the control units used to help estimate this quantity (Imbens 2004,

p. 6). Other causal quantities of this first type are averaged over different subsets of units, such

as from the population, the subset of the population similar to X , or all units in the sample or

population regardless of the value of Ti . Since a good estimate of one of these quantities will

2 We can clarify AxiomsA0 andA0’ by giving a contrasting axiomwhere the repeated hypothetical sampling distributions are

based on the use of the randomized treatment assignmentmechanism. This axiom is used for Fisher’s permutation-based

inference of sharp null hypotheses (Rosenbaum 1988) and Neyman’s randomization-based theory for average treatment

effects (Imai 2008); see also Ding (2016).

AXIOM A0” (Randomized Treatment Assignment). Consideranobserveddatasetofn observations,with treatedvariable

Ti ∈ {0, 1}, covariates Xi ∈ X, outcomeYi , and i = 1, . . . , n . Define hypothetical repeated samples that reassign the
vector of values of T by randomly drawing a permutation of T , such that each of the n! possible permutations has an

equal probability of selection.

We focus on developing a theory of inference around the use of Axiom A0, and so do not use Axiom A0” further.

Nevertheless, the differences among these three axioms help clarify the meaning of each and suggest potential avenues

for future research.
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usually be a good estimate of the others, usually little attention is paid to the differences for point

estimation, although there may be differences with respect to uncertainty estimates under some

theories of inference (Imai 2008; Imbens and Wooldridge 2009).

The second type of causal quantity is when some treated units have no acceptable matches

among a given control group and so are pruned along with unmatched controls, a common

situation, which gives rise to “feasible” versions of SATT (which we label FSATT) or of the other

quantities discussed above. This formalizes the common practice in many types of observational

studies by focusing on quantities that can be estimated well (perhaps, in addition to estimating

a more model dependent estimate of one of the original quantities) (see Crump et al. 2009;

Rubin 2010; Iacus, King, and Porro 2011), an issue we return to in Section 3.2. (In multilevel

treatment applications, the researcher must choose whether to keep the feasible set the same

across different treated units so that direct comparison of causal effects is possible, or to let the

sets vary to make it easier to find matches.)

2.4 Assumptions
WenowdescribeAssumptionsA1–A3,whichestablish the theoreticalbackgroundneeded to justify

valid causal inference under finite data with stratified random sampling as defined in Axiom A0;

this set of assumptions can be seen as a natural stratum-wide extension of the pointwise theory

by Rosenbaum and Rubin (1983), which differs because it builds off Axiom A0’ instead.

The first assumption (whichwegeneralize in Appendix B) helps to precisely define the variables

used in the analysis.

ASSUMPTION A1 (SUTVA: Stable Unit Treatment Value Assumption (Rubin 1980, 1990, 1991)). A

complete representation of all potential outcomes isY = {Yi (t ) : t ∈ T , i = 1, . . . , n}.

SUTVA can be interpreted in at least threeways (see VanderWeele andHernan 2012). The first is

“logical consistency,” which connects potential outcomes to the observed values and thus rules

out a situation where sayYi (0) = 5 if Ti = 1 butYi (0) = 12 if Ti = 0 (Robins 1986). The second

is “no interference,” which indicates that the observed value Ti does not affect the values of

{Yi (t ) : t ∈ T } or {Yj (t ) : t ∈ T , � j � i } (Cox 1958). And finally, SUTVA requires that the treatment

assignment process produce one potential outcome value for any (true) treatment value (Neyman

1935).

To use our theory to justify a matching method requires that the information in these strata,

and the variables that generate them, be taken into account. The theory does not require that our

specific formalization of these strata be used in a matching method, only that the information is

controlled for in some way. This can be done by directly matching onA, using some function ofA

in covariates to control for, or some type of weighting that takes account ofA. An example is given

in Section 5.

We now introduce the second assumption, which ensures that the pretreatment covariates

defining the strata are sufficient to adjust for any biases. (This assumption serves the same

purpose as the “no omitted variable bias” assumption in classical econometrics, but without

having to assume a particular functional form.) Thus, by conditioning on the values ofX encoded

in the strata A, we define the following.

ASSUMPTION A2 (Set-wide Weak Unconfoundedness). T⊥Y (t )�A, for all t ∈ T and each A ∈
Π (X).

For example, under A2, the distribution of potential outcomes under control Y (0) is the same

for the unobserved treated units and as the observed control units; below, this will enable us to

estimate the causal effect by using the observed outcome variable in the control group.
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Apart from the sampling framework, Assumption A2 can be thought of as a degenerate version

of the Conditioning At Random (CAR) assumption in Heitjan and Rubin (1991) with conditioning

fixed. CAR was designed to draw inferences from coarsened data, when the original uncoarsened

data are not observed. In the present framework, Π (X) represents only a stratification of the

reference population and each stratumA in that definition is fixed in repeated sampling. A special

case of AssumptionA2,with setsA fixed to singletons (i.e., takingA = {X = x}), is knownas “weak

unconfoundedness” used under exactmatching theory (Imbens 2000; Lechner 2001; Imai and van

Dyk 2004) and first articulated in Rosenbaum and Rubin (1983).

Finally, anymatching theory requires a version of the common support assumption, that is, for

any unit with observed treatment condition Ti = t1 and covariates Xi ∈ A, it is also possible

to observe a unit with the counterfactual treatment, Ti = t2, and the covariate values in the

same set A. This assumption rules out trying to estimate the causal effect of United Nations (UN)

interventions in civil wars even though the UN intervenes only when it is likely to succeed (King

and Zeng 2006). In less extreme cases, it is possible to narrow the quantity of interest to a portion

of the sample space (and thus the data) where common support does exist. More formally, we

introduce this version that works under the stratified random sampling Axiom A0.

ASSUMPTION A3 (Set-wide Common Support). For all measurable sets B ∈ T and all sets A ∈
Π (X) we have p(T ∈ B �X ∈ A) > 0.

Assumptions A2 and A3 make the search for counterfactuals easier since all observations in the

vicinity of (i.e., in the same strata as) a unit, rather than only thosewith exactly the same covariate

values, arenowacceptablematches. (The combinationof thepointwise versionsof bothA2andA3

is often referred to as “strong ignorability” (Rosenbaum and Rubin 1983; Abadie and Imbens

2002).) Assumption A3 also requires that at least one treated and one control unit (or one in each

treatment regime) appear within every stratum, and so A3 imposes constraints on the weights.

2.5 Identification of the treatment effect
We show here that Assumptions A1–A3 enable point identification of the causal effect in the

presence of approximate matching. Identification for the expected value of this quantity can be

established under the new assumptions by noting, for each A ∈ Π (X), that

E {Y (t )�A}
A2
= E {Y (t )�T = t ,A} = E {Y �T = t ,A},

which means that within set Ak , we can average over the observed Y corresponding to the

observed values of the treatment T rather than unobserved potential outcomes for which the

treatment was not assigned. The result is that the average causal effect within the set A, which

we denote by τA, can be written as the difference in two means of observed variables, and so is

easy to estimate:

τA = E {Y (t1) −Y (t2)�A} = E {Y �T = t1,A} − E {Y �T = t2,A}, (1)

for any t1 � t2 ∈ T . That is, (1) simplifies the task of estimating the causal effect in approximate

matching in that it allows one to consider themeans of the treated and control groups separately,

within each set A, and to take the weighted average over all strata A ∈ Π (X) afterward. To take

this weighted average, we use Assumption A3:

E (Y (t ))
A3
= E (E {Y (t )�A}), (2)
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which is exactly what we need to calculate the average causal effect τ = E (Y (t1)) − E (Y (t2)).

Assumption A3 is required because otherwiseE {Y (t )�A}may not exist for one of the two values of

t = t1 or t = t2 for some stratum A, in which case E (Y (t )), would not exist and the overall causal

effect would not be identified.

3 Properties of Estimators after Matching

Current estimationpractice after one-to-onematching involves using estimators for the difference

in means or with regression adjustment that follows matching. In j -to-k matching for j > 0 and

k > 1 varying over units, the same procedures are used after averagingwithin strata for treatment

and control groups or, equivalently, without strata but with unit-level weights. Either way, the

same estimation procedures that might have been used without matching can now be used as

is, alongwith familiar uncertainty estimates and diagnostic techniques. We now give some details

of how our theory of inference justifies these simple procedures.

3.1 Difference in means estimator
To describe the property of the estimators, we adapt the notation of Abadie and Imbens (2011)

(which operates under Axiom A0’) and rewrite the causal quantity of interest as the weighted sum

computed within each stratum A from (1):

τ =
1

m1

∑
i ∈M1

E {TEi } =
1

m1

∑
A∈Π (X)

∑
i ∈MA

1

E {Yi (t1) −Yi (t2)�Xi ∈ A}

=
1

m1

∑
A∈Π (X)

∑
i ∈MA

1

(μA1 − μA2 ) =
1

m1

∑
A∈Π (X)

(μA1 − μA2 )mA
1 =

∑
A∈Π (X)

τAW A
1 , (3)

where μA
k
= E {Y (tk )�X ∈ A} (k = 1, 2) andτA is the treatment effectwithin setA as in (1). Consider

now an estimator τ̂ for τ based on this weighted average:

τ̂ =
∑

A∈Π (X)
τ̂AW A

1 =
1

m1

∑
i ∈MA

1

(Yi (t1) − Ŷi (t2)), (4)

where τ̂A is the simple difference in means within the set A, that is:

τ̂A =
1

mA
1

∑
i ∈MA

1

�
Yi − Ŷi (t2)

�
=

1

mA
1

∑
i ∈MA

1

���
�
Yi −

1

mA
2

∑
j ∈MA

2

Yj

���
	

=
1

mA
1

∑
i ∈MA

1

Yi −
1

mA
2

∑
j ∈MA

2

Yj . (5)

Finally, we have the main result (see Appendix A for a proof).

THEOREM 1. The estimator τ̂ is unbiased for τ .

Given that the sets of the partitionΠ (X) are disjoint, it is straightforward to obtain the variance

σ2
τ̂
= Var(τ̂) of the causal effect. If we denote by σ2

τ̂A
the variance of the stratum-level estimates τ̂A

in (5), we have σ2
τ̂
=
∑

A∈Π (X)
�
στ̂AW

A
1

�2
.

3.2 Simplified inference through weighted least squares
The direct approach to estimating the treatment effect by strata and then aggregating is useful

to define the matching estimator, but it is more convenient to rewrite the estimation problem

in an equivalent way as a weighted least squares (WLS) problem. This approach provides a easy
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procedure for computing standard errors, even for multilevel treatment (see Section 3.3) or when

one ormore strata contain only one treated unit and one control unit (see Section 4). In this latter

case, one cannot directly estimate the variance within the strata σ2
τ̂A

but we can still obtain an

estimate of it by applying whatever estimator one would have applied to the data set without

matching.

We now introduce the weights we use to simplify the estimator in (4) and re-express them as

the difference in weightedmeans. For all observations, define the weightswi as

wi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, ifTi = t1,

0, ifTi = t2 and i � MA
2 for all A,

mA
1

mA
2

m2

m1
, ifTi = t2 and i ∈ MA

2 for one A.

(6)

Then, the estimator τ̂ in (4) can be rewritten as

τ̂ =
1

m1

∑
i ∈M1

Yiwi −
1

m2

∑
j ∈M2

Yjwj ,

where the variance is the sumof the variances of the two quantities. Therefore, the standard error

of τ̂ is the usual standard error of estimates for regression analysis with weights. For example,

consider the linear regression model:

Yi = β0 + β1Ti + εi , εi ∼ N (0, 1) and i.i.d.,

where τ̂ ≡ β̂1 if weightswi are used in estimation. So the standard error of β̂1 can be obtained as

the output of thisWLSmodel, and is the correct estimate ofσ2
τ̂
. Othermodels, such as generalized

linearmodels (GLM)withweights, can also be estimated in a similar fashion. The only change that

needs to bemade to the estimator without matching is to include these weights.

3.3 Estimation with multilevel treatments
For more than two treatments we define the multitreatment weights as

wi (k ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, ifTi = t1,

0, ifTi = tk and i � MA
k
for all A,

mA

mA
k

mk

m1
, ifTi = tk and i ∈ MA

k
for one A.

Then, for each k = 2, 3, . . ., the treatment effect τ(k ) can be estimated as β̂1(k ) in

Yi = β0 + β1(k )Ti + · · · + εi

with weightswi (k ) and, again, the usual standard errors are correct as is.

3.4 Additional regression adjustment for further covariates
If Assumption A2 holds, then adjusting for covariates is unnecessary to ensure unbiasedness. If

AssumptionA2holds but the analyst is unsure if it does, and soadjusts for pretreatment covariates

(with interactions), then the downside is trivial (Lin 2013; Miratrix, Sekhon, and Yu 2013). But

sometimes, the researcher may need to adjust for covariates via a model, even if they were
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not used during matching. In this situation, it is sufficient to proceed as one would without the

matching step by including all the variables in the regression model

Yi = β0 + β1Ti + γ1Xi1 + · · · γdXid + εi ,

and using the weights in (6) to run the WLS regression. The estimated coefficient β̂1 is then the

estimator of the treatment effect τ̂ and its standard error is an unbiased estimator of its standard

deviation, under the model.

3.5 Defining strata in observational data
One question that may arise in this framework, as in any stratified sampling, is how to choose

the strata A ∈ Π (X) in a given problem? The answer is by definition application-specific, which

can be an advantage in that it relies on variables in the original investigator-defined units of

measurement, reflecting knowledge the investigator must have.

To show the applicability of our approach in observational studies, we take advantage of

the fact that in many data sets variables referred to as “continuous” in fact often have natural

breakpoints that may be as or more important than the continuous values. These may include

grade school, high school, and college degrees for the variable “years of education”; the official

poverty level for the variable “income”; or puberty, official retirement age, and so on, for the

variable “age.” This understanding of measurement recognizes that, for another example, 33 ◦F

may be closer to 200◦ than to 31◦, at least for certain purposes. Most data analysts not only

know this distinctionwell but use it routinely to collapse variables in their ordinary data analyses.

Indeed, in analyses of sample surveys, continuous variableswith nonatural breakpoints, orwhere

authors never use breakpoints to collapse variables or categories, are uncommon.

For another example, consider estimating the causal effect of the treatment variable “taking

one introductory statistics course” on the outcome variable “income after college,” andwhere we

also observe one pretreatment covariate “years of education,” along with its natural breakpoints

at high school and college degrees. Assumption A2 says that it is sufficient to control for the

coarsened three-category education variable (no high school degree, high school degree and

possibly some college courses but no college degree, and college degree) rather than the full

“years of education” variable. In this application, A2 is plausible if, as seems common, employers

at least at first primarily value degree completion in setting salaries. Then, poststratification and

matching within the strata is appropriate. If, instead, amajor difference in expected income exists

between those who have, for example, one versus three years of college, then there can be some

degree of bias induced.

4 How to Avoid Violating Assumptions A2 and A3

When a data set has at least one stratum A that does not contain all levels of the treatment, the

now prevalent view in the literature is that the best approach is to change the quantity of interest

and switch from SATT to FSATT, where we use only strata where A3 is satisfied (Crump et al. 2009;

Rubin 2010; Iacus, King, and Porro 2011). Yet, this absence of evidence for A3 does not necessarily

imply that the assumption itself is false; it could instead have been the case that we happen not

to have sufficient samples from those strata.

In the situation when switching to FSATT is not an option, because only an inference about the

original quantity of interest will do, bias may arise if, for example, we merge two or more strata

into a new larger stratum, match within this larger stratum, and violate A2, and possibly also A3.

This same issue arises under stratified sampling A0 as under simple random sampling A0’, but we

discuss how to think about it under stratified sampling in this section.
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4.1 How bias arises?
To understand where bias may arise under Axiom A0 when some strata A need to be enlarged

or changed, we study the following bias decomposition, by adapting ideas designed to work

under Axiom A0’ from Abadie and Imbens (2006, 2011, 2012). Let μt (x ) = E {Y (t )�X = x} and

μ(tk , x ) = E {Y �X = x ,T = tk }. Under Assumption A2 we know that μtk (x )
A2
= μ(tk , x ) ≡ μA

k
for

all {X = x} ⊆ A. Then the bias is written as:

τ̂A − τA =
∑

A∈Π (X)
{(τ̄A − τA) + EA + BA}WA

1 ,

where

τ̄A =
1

mA
1

∑
i ∈MA

1

(μt1 (Xi ) − μt2 (Xi ))

EA =
1

mA
1

∑
i ∈MA

1

���
�
(Yi − μt1 (Xi )) −

1

mA
1

∑
i ∈MA

1

1

mA
2

∑
j ∈MA

2

(Yj − μt2 (Xj ))
���
	

and

BA =
1

mA
1

∑
i ∈MA

1

1

mA
2

∑
j ∈MA

2

(μt2 (Xi ) − μt2 (Xj )),

where μtk (X ) = μA
k
forX ∈ A. Therefore, both (τ̄A −τA) and EA have zero expectation inside each

setA andBA = 0. But if someof the setsA′ are different from the original partitionA, or combined

or enlarged, thenAssumptionA2maynot apply any longer; in general,μtk (X ) � μA
k
forX ∈ A′ � A.

4.2 Nonparametric regression adjustment
One way to proceed is with the following regression adjustment, as in Abadie and Imbens (2011),

that compensates for the bias due to the difference between A and A′. Let μ̂t2�A(x ) be a (local)

consistent estimator of μt2 (x ) for x ∈ A. In this case, one possible estimator is the following:

τ̂A =
1

mA
1

∑
i ∈MA

1

(Yi − μ̂t2�A(Xi )) −
1

mA
2

∑
j ∈MA

2

(Yj − μ̂t2�A(Xj )). (7)

This estimator is asymptotically unbiased if the number of control units in each stratum grows

at the usual rate. If instead of using a local estimator μ̂t2�A(x ) we use a global estimator μ̂t2 (x ),

that is, using all control units in the sample as in Abadie and Imbens (2011), then the calculation

of the variance of the estimator is no longer obtained by simple weighting and the validity of

the approach requires a treatment similar to the asymptotic theory of exact matching. More

technical assumptions and regularity on the unknown functions μt (x ) are needed to prove that

the regression type estimator in (7) can compensate for the bias asymptotically but, essentially, it

is required that, for some r ≥ 1, we imposemr
1/m2 → κ, with 0 < κ < ∞. A simplified statement is

thatm1/m
4/k
2 → 0, where k is the number of continuous covariates in the data and this condition

is equivalent to m
k /4
1 /m2 = mr

1/m2 → κ. The proof of these results can be found in Abadie and

Imbens (2011).

4.3 Asymptotic filling of the strata
If Assumption A3 is apparently violated because there are not enoughobservations in one ormore

strata, but we still believe A1–A3 to be true and we happen to be able to continue to collect data,

then it is worth knowing that it is theoretically possible to fill all the strata in Π (X) and obtain
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unbiased estimates of the treatment effect. This is theoretically possible under the additional

assumption thatmr
1/m2 ≤ κ, with 0 < κ < ∞, r > k , and k the number of continuous covariates.

By Proposition 1 in Abadie and Imbens (2012), all the strata A will be filled with probability one.

This result is enough to obtain asymptotically unbiased estimates of the causal effect under

the original assumptions A2–A3, without changing the initial partition Π (X) or other technical
smoothness assumptions on the functions μt (x ) and μ̂t �A(x ). As such, one could use an asymptotic

approximation to obtain estimates and standard errors, but it is considerably safer to use these

results as a guide to future data collection.

5 Approximate Matching in Practice

In this section, we apply commonly used matching methods to the same real data set in order

to highlight five important points.3 First, we emphasize how the application of all matching

methods, in almost all real data sets, requires approximations thatmay violate the corresponding

theory of inference. Second, the assumptions do not fail gracefully: Even small deviations

from the requirements of any theory of inference can yield large biases or misinterpretations.

Third, there is reason to believe that our alternative (stratified random sampling) theory will

often be more robust to incorrect approximations than existing (simple random sampling)

theories. And finally, common usage of some existing theories of inference typically ignores

the essential approximations, making it difficult or impossible for applied researchers in most

situations to apply the theory with fidelity. Applied researchers typically march forward anyway,

inappropriately burying the approximations, and the assumptions necessary tomake the theories

valid, usually without comment as part of commonly used data analysis practices. In contrast,

under our alternative stratified-based theory of inference, all necessary assumptions are stated

explicitly, up front, and before any data analysis. These assumptions, and any deviations from

them, are also considerably easier to understand and use under our alternative than under

existing theories. Finally, as emphasized in previous sections, the choice of stratified sampling

in Axiom A0 versus simple random sampling in Axiom A0’ is a statement about a hypothetical

sampling process, rather than a claim that can be proven right or wrong. In this situation, the

critical task for the analyst is to completely understand how the theory of inference is applied in

the context of their data, and to interpret it correctly, rather than to justify whether it is correct,

“plausible,” or appropriate for an application. As such, the far greater simplicity of the stratified

over simple random sampling theory can be amajor advantage.

5.1 Data
For data, we consider the National Supported Work (NSW) training program used in the seminal

paper by Lalonde (1986). In these data, the outcome variable is the real earnings of workers in

1978 (re78) and the treatment is the participation in the program. Pretreatment control variables

include age; years of education; indicators for black and hispanic; an indicator for marital

status,married; an indicator fornotpossessingahigh schooldegree (nodegree); earnings in 1975,
re75, and 1974, re74; and unemployment status in both years, u74 and u75. The data set contains
297 individuals exposed to treatment and425 control units. This is in fact an experimental sample,

although Lalonde (1986) analyzed it as an observational study to provide insights aboutmatching

methods. The quantity of interest is the sample average treatment effect on the treated (ATT), the

increase in earnings in 1978 due to treatment.

3 Replication code can be found in Iacus, King, and Porro (2018).
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5.2 Applying simple random sampling-based theory
We now show how three ways of satisfying the existing simple random sampling-based theory of

inference all fail in these data. We begin with the simple random sampling Axiom A0’, and assume

SUTVA, along with pointwise unconfoundedness and common support.

First, we apply exact matching theory, the hardest to satisfy but best case scenario, requiring

exact matching onX . In most applications with rich sets of covariates, fewmatches are available.

In our application, we do happen to have 55 treated units that exactly match 74 control

observations (this occurs because the otherwise continuous variables, re74 and re75, have a

point mass at zero, and other variables are discrete). Unfortunately, this small sample would

leave confidence intervals on the ATT too wide to make useful inferences.

More generally, this exact matching approach may work for very large samples, when there

is a high probability that match occurs without replacement for one-to-one nearest neighbor

matching, and imbalance is zero (or very small according to some distance). In this situation, a

simple regression model, with pretreatment covariates and a treatment indicator, will normally

be able to take into account the remaining bias in either simple or stratified random sampling.

Second, we consider exact matching on the propensity score. If successful, this approach

would yield less efficient estimates than exact matching on X , and would introduce a variety

of other serious problems, but causal estimates would at least be ex ante unbiased (King and

Nielsen 2017). To try this, we use the propensity score specification in Dehejia andWahba (1999), a

logistic model for all the indicator variables, as well as age, education, re74, and re75 and their

squares. Unfortunately, as is typical in data sets with continuous covariates, lowering the bar for

what constitutes a match in this way buys us zero additional matched observations. This is not a

surprise, since propensity scorematching requires exactmatching on the propensity score, which

does not happen with any higher probability than exact matching on X as long as we have some

continuous variables.

A final option to follow existing theory would be to have a very large data set. Although we do

not have a large data set, in observational data analysis, the data set is whatever one chooses to

include. In this case, we could add new data by gathering contemporaneous surveys on the same

subject, of similar people, and treat themas part of the pool of potential control units (see Dehejia

andWahba 1999). In fact, adding external data has been tried in this application but turns out not

to help because it greatly increases heterogeneity, does not markedly increase the information

in the data as n increases about the ATT, and so does not satisfy the conditions for the theory of

inference to apply (see Smith and Todd 2005; King, Lucas, and Nielsen 2017).

5.3 Applying approximate simple random sampling-based theory
At this point, we can see that applying an existing theory of inference based on simple random

sampling, to generate valid causal inferences in these data without approximations, is not

possible. Researchers in this situation typically try to come up with an approximate matching

solution, but this leads to two problems.

First, approximate matching is not justified by the simple random sampling-based theory of

inference, as the formal properties of the resulting statistical estimators do not hold. Second,

one might think that small deviations from the theoretical requirement would be approximately

unbiased, but this is untrue. No known theorem supported this claim and even exactly matched

propensity scores imply only approximate matching onX .

By looking at how imbalanced a data set is, we can get a feel for at least the potential bias due

to failing to exactly matching on X or on the propensity score. To illustrate, we use one-to-one

nearest neighbor propensity score matching (NN-PSM) with a caliper of 0.001. This results in 100

treated units and 100 control units. The closest (inexact) match allowed by this procedure has a

difference in propensity scores of only 0.000003, but yet still has substantial imbalance:
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treated age education black hispanic married nodegree u74 u75 re74 re75

1 20 9 0 1 0 1 0 0 8740.939 8015.442

0 23 8 1 0 0 1 1 1 0.000 0.000

As can be seen, education (at 9 years for treated and 8 for control) is not far off, at least for a job

trainingprogram.Also apparently close isagebut, at 20and23, the impact couldbedeterminative

if the legal age of adulthood (21) impacts prospective employers’ hiring decisions. More serious is

that the treated person in this pair is hispanic and employed in both 1974 and 1975, whereas the

control person is black and unemployed in the same years. In this typical example, a practitioner

would have to implicitly admit to not controlling for several of the variables they designated as

pretreatment confounders, thus violating ignorability or tohope that thebiasesof one confounder

miraculously cancel out the biases for another.

We also repeat here the same analysis for a larger caliper to further increase the number of

matched units, and show its cost in terms of increasing imbalance further. Herewe choose a larger

caliper of 0.01, and find 219 treated units matched with 219 control units. The next best pair of

matched units this brings in has a “small” propensity score difference of 0.000622, but with an

obviously large imbalance onX :

treated age education black hispanic married nodegree u74 u75 re74 re75

1 27 8 1 0 0 1 1 1 0.00 0.00

0 27 12 0 1 0 0 0 0 27913.66 24276.97

Thedifferencesbetween the treatedandcontrol groupsonX hereareevenmore substantial, even

with an only slightly larger caliper. Here wematch a treated African American who dropped out of

junior high school with no income, to a control group Hispanic who graduated from high school

with more than $27,000 of income.

The two matched pairs of units we describe here are each intuitive and the degree of

approximation is easy to understand. However, to understand the full degree of approximation

for the entire matching solution requires performing this identical comparison on every pair of

matched observations (100, 219, or 274, depending on the choice of caliper).

Althoughwedonotofferanexampleuntil later,wealsonote that runningNN-PSMwithacaliper

of 0.1 matches 274 treated units to 274 control units (i.e., 548 units).

As is clear from this discussion, the size of the propensity score caliper alone provides little

intuition about the quality of the match, the degree of approximation to the requirements of the

theory of inference, the resulting level of imbalance on X , or the degree of statistical bias in the

ATT. Since the required Axiom A0’ is an axiom, being able to clearly convey what it means is the

only real requirement in applications.

5.4 Applying stratified random sampling-based theory
We now illustrate three advantages of replacing AxiomA0’ with AxiomA0, and thus thinking of the

data in terms of stratification rather than simple random sampling.

The first advantage of stratification-basedmatching is ease of interpretation, which is essential

in matching. Understanding assumptions—which by definition are unverifiable—is important in

any empirical analysis. However, the sampling axiom in matching defines the inferences being

made and thus also the meaning of the sampling distribution and standard errors. As such,

without some clear understanding of the sampling process, making any inferences at all makes

little sense.
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To convey how one would interpret an application under this stratification-based theory of

inference, and why matching is easier to understand than under simple random sampling-based

approaches,wenowgiveanexample involvinganalysis choices ina realdata set. For stratification-

based inference, the key choice is the partition of X , which we have been referring to as A. In

principle, this choice must be made prior to examining the data, or else the weights will not be

fixed in repeated samples. We discuss different ways of interpreting this requirement so that it

may be used in practice when not generating the data oneself.

A reasonable way to define A, before seeing the data, is to define it based on information in

the data set’s codebook. In the case of these data, a natural choice is tomatch all binary variables

exactly, age according to the official US Bureau of Labor Statistics stratification (i.e., 16–24, 25–54,

55 and over), and for the variable education to coarsen by formal degrees—elementary [0,6],

high school [7–12], undergraduate [13–16], and graduate [17,). The covariate u74 (and u75) is an
indicator variable, which is nonzerowhen re74 (and re75) is nonzero. As a result, this continuous
counterpart of the unemployment status (re74 and re75) can be in principle dropped from the

matching stage and eventually included in the model specification for the ATT estimation.

If we use this definition of A, which we could plausibly have arrived at before examining the

data, then we can think of the data generation process as stratified random sampling within

this given partition. Then all hypothetical repeated samples, the resulting sampling distribution,

and associated standard errors, confidence intervals, and hypothesis tests are defined as a

consequence. As it happens, when we can try this stratification with our one observed data set,

we find that we have 221 treated units matched with 313 control units.

Now suppose we examine the data and prefer to drop re74 and re75 from the partition in

order to prune fewer observations. To make this decision statistically justifiable, two conditions

must hold. The first condition is that we must ensure we do not violate set-wide ignorability

(i.e., Assumptions A2 and A3), which will be satisfied in one or more of three situations: the two

variables are unrelated to the treatment variable, unrelated to the outcome given the treatment,

or included in an appropriate model during the estimation stage. The second condition involves

conceptualizing the resulting strata A. If the choice of A is determined from the data (not merely

the codebook), then the weights are random and, as a result, more complicated methods must

be used for uncertainty estimates (point estimates remain unchanged). However, we may still

be able to conceptualize A as fixed ex ante if we can argue that we would have interpreted the

partitions the same way if we had thought of the same reasoning before seeing the data. That

is, sometimes seeing the data causes one to surface ideas that could easily have been specified

ex ante. Of course, we should try to avoid the lure of post hoc, just-so stories, but if we do, we

would be justified in interpreting A as fixed, and then all the familiar methods are available for

computing uncertainty estimates, such as standard errors and confidence intervals. Either way,

the advantage of stratification is that understanding the sampling axiom, and how to think about

the resulting data generation process, is straightforward. In this case, dropping re74 and re75
results in matching 278 treated units matched to 394 control units.

Now suppose we go another step and try to interpret our analyses without much prior

knowledge of A. Here, we first generate a large set of matching solutions. This need not be done

in practice, but we find it useful here for illustrative purposes. To do this, we create 500 random

stratifications of the covariate space by dividing the support of each pretreatment covariate into

a random number of subintervals (chosen uniformly on the integers 1, . . . , 15). For comparison,

we also generate 500matching solutions fromNN-PSMmodels, by randomly selecting propensity

scoremodels and its caliper, and500nearest neighbor,Mahalanobis distancematching (NN-MDM)

solutions, by randomly selecting input variables and its caliper (both selecting from the set of all
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Figure 1. Randomly created matching solutions: imbalance (vertically) by matched sample size

(horizontally). Each dot represents a matching solution, including the original unmatched data (raw);

three solutions with lower imbalance and more matched treated units than any other (best random

stratifications, at the lower left); NN-PSM solutions with calipers of 0.1, 0.01, and 0.001; 500 solutions based

on random stratifications of the covariate space (dots); 500 random NN-PSM solutions (stars), and 500

random NN-MDM solutions (squares). The plot represents solutions with at least 200matched units.

main, polynomial, and interaction terms up to the second degree, with a logistic specification

as usual for the propensity score model). In real applications, imbalance is best measured on

the scale of the original variables but, to save space for our methodological purposes, we use

the average of the standardized difference in means applied to each matching variable. (Other

measures of imbalance do not materially change our conclusions.) Then, in Figure 1, the vertical

axis is this measure of imbalance and the horizontal axis is the number of matched units (scaled

according to 1/n). Each point in the plot corresponds to one randomly selectedmatching solution

(with stratification solutions inblue,NN-PSM ingreen, andNN-MDM in red). Stratification solutions

here are all based on coarsened exact matching, but our stratified theory of inference applies to

anymember of the class of “monotonic imbalancebounding”matchingmethods (Iacus, King, and

Porro 2011).

The raw dot (at the middle left) corresponds to the original, unmatched data. In the same

figure, we also include and label the three different NN-PSMmatching solutions discussed above

with calipers set to 0.1, 0.01, and 0.001 (across the middle of the graph from left to right). The

dots marked with “best stratifications” (at the bottom left) represent matching solutions based

on stratifications with the lowest imbalance for a given number of matched units or the largest

number of matched units for any given imbalance. These solutions do not necessarily represent

the theoretical frontier of imbalance and matched sample size, since they were generated

randomly, but they are the best solutions among those in this graph (King, Lucas, and Nielsen

2017) and are still the best among those randomly generated.

Then, to convey how easy it is to understand a stratified matching solution, consider only the

central dot of this sequence of “best stratifications.” This matching solution was constructed (by

chance, i.e., randomly) using the cross products of the following strata.
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Variable Class cut-points

age (min = 17, 29.67, 42.33, max = 55), i.e., three classes

education (min = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, max = 16)

re74 (min = 0, 19785.34, max = 39570.68), i.e., two classes

re75 (min = 0, max = 37431.66), i.e., one large class

black all in the same class, i.e., no matching

hispanic classes 0 and 1, i.e., exact matching

married classes 0 and 1, i.e., exact matching

nodegree classes 0 and 1, i.e., exact matching

u74 classes 0 and 1, i.e., exact matching

u75 classes 0 and 1, i.e., exact matching

The advantage of presenting these strata is that they convey all information necessary about

the entire matching solution in an easy-to-understand and compact display. To use our stratified

theory of inference, we need to imagine that our data, and all the repeated hypothetical samples,

were generated by a stratified sampling design, based on these strata. In fact, the data are

observational, and the hypothetical distributions do not and will not exist. However, we can still

conceptualize what this distribution means as if these strata are fixed. The argument should be

recognized asmore of a stretch, since we did arrive at this stratification directly from the data, but

stating this axiom about hypothetical (stratified) sampling replications cannot be proven wrong

and so it is reasonable to use it as a way to interpret a matching-based estimator. Our main point

here is that the axiom itself is easy to understand: all we need to do is to understand the strata

defined above.

In contrast, to convey all information in an NN-PSM matching solution, we would need to

understand every individual matched set in a matching solution, as we did above, but for 100,

219, or 274 individual matched sets (corresponding to calipers of 0.001, 0.01, and 0.1). This of

course would be infeasible to comprehend all at once. With stratification, a researcher can

more easily, quickly, and concisely understand the approximation and what assumptions are

necessary to believe that bias is being constrained, without hundreds of separate evaluations.

These stratifications might still be implausible as ex ante definitions for A, but researchers will

be able to understand, if appropriate justify, the assumptionsmore easily. In this example, we can

see that this particularmatching solution does not control for black or re75, aswas the case for a
particular pair of NN-PSMmatched sets above, but this timewe can see all the compromises from

the entire data set at once, so that one can judge whether this approximation is justifiable. The

problem of course is that even if one can understand a hundred ormore stratifications, the axiom

of simple random sampling requires exact matching on X or the propensity score, not a nearest

neighbor solution, or one within some caliper.

A second advantage of stratification-based matching is that imbalance tends to be lower than

under other matching methods for any given number of matched observations. This is not a

general claim, but it is a typical pattern in many applications (King, Lucas, and Nielsen 2017). This

can be seen in Figure 1 by the blue stratification-based matching points appearing to the lower

left, indicating lower imbalancegivenhigher numbersof observations,whereas thegreenNN-PSM

and red NN-MDM matching solutions appearing above and to the right indicate more imbalance

or fewer matched observations.

A final advantage of stratification-basedmatching is that estimated treatment effects are often

less variable, and thus somewhat more robust, than under other matching methods. To see this

common, but also not universal, pattern we compute, for each of the matching solutions in

Figure 1, an estimate of the ATT and standard error (by regressing the outcome variable on the

treatment indicator and all pretreatment variables included in the matching solution). We then

present, in Figure 2, all the ATT estimates (vertically) by the matched sample size (horizontally).
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Figure 2. Estimated ATT (vertically) by number of matching units (horizontally), for matching solutions in

Figure 1. The ellipses are convex hulls of the plotted points and represent roughly the dispersion of the ATT

estimates for eachmatching method. The plot represents solutions with at least 200matched units.

Because of the enormous variability of NN-MDM, the plot is zoomed in, excluding points outside

of the range of the visible axes.

This figure shows that for any given matched sample size (i.e., any point on the horizontal

axis), the vertical variability of the ATT estimates is much larger for NN-PSM and NN-MDM than for

stratification. Because Figure 2 does not reveal all the data, we present Table 1, which summarizes

aspects of these same estimates. Table 1 demonstrates that stratification, in addition to having

lower overall imbalance (i.e., finding better matched subgroups of treated and control units),

is also the method that on average produces more matched units, a less variable and more

robust ATT estimate, with a smaller standard error. In addition, the one-sigma Monte Carlo

confidence interval for average treatment effect contains zero for both PSM and MDM, but not

under stratification.

As we exemplify with this analysis, the choice of a theory of inference defines the nature of the

hypothetical repeated samples used for statistical inference.Whether these samples are based on

simple or stratified random sampling is not an assumption vulnerable to being provenwrong, but

rather than an axiom that defines how we interpret standard errors and confidence intervals. As

such, the critical question is not which is more appropriate but whether we are able to clarify the

meaning of one’s uncertainty calculations. As we show here, under stratified random sampling,

Table 1. Distribution of estimated ATTs, their standard error, and number of matched units for the data in

Figure 2.

Method Min ATT Average ATT Median ATT Max ATT

MDM −108673.5 819.1 886.0 31915.9

PSM −1693.3 681.3 710.7 5586.3

Stratification 287.4 1031.1 999.7 1931.0

Method Min std. error Average std. error Median std. error Max std. error

MDM 510.2 2031.6 740.9 296298.1

PSM 194.3 870.2 696.0 4056.7

Stratification 461.6 529.6 524.2 681.3

Method Min n Average n Median n Max n

MDM 4 288 279 594

PSM 4 302 307 592

Stratification 360 550 553 713
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the assumptions and inferences are considerably clearer and easier to understand, and do not

require asymptotic results, which is quite unlike the situation with most methods for simple

random sampling-based inference.

6 Concluding Remarks

In this paper, we highlight the assumptions and estimators necessary for identification and

unbiased causal estimation when, as is usually the case in practice, matches are approximate

rather than exact, and treatment variables are assumed known and applied without error. The

theory of statistical inference we develop here justifies the common practice among applied

researchers of using matching as preprocessing and then applying the same convenient and

familiar methods of estimation and inference. Only with formally stated assumptions like

those presented here can applied researchers begin to assess whether they are meeting the

requirements necessary for valid causal inference in real applications. By moving the nearly

universal stratification assumption made ex post into an explicit ex ante assumption, the

assumptions that must be met are taken out of the shadows and made explicit. Researchers

are still responsible for meeting these assumptions, and in observational data causal inference

is always hazardous, but researchers should now be able to see more clearly the conditions

necessary for generating valid inferences.

Appendix A. Proofs

Proof of Theorem 1. This is true because, for eachA, τ̂A is an unbiased estimator of τA. In fact,

E {τ̂A} =
1

mA
1

∑
i ∈MA

1

E (Yi ) −
1

mA
2

∑
j ∈MA

2

E {Yj } =
1

mA
1

∑
i ∈MA

1

μA1 −
1

mA
2

∑
j ∈MA

2

μA2 = μA1 − μA2

is now

E {τ̂} =
∑

A∈Π (X)
E {τ̂A}WA

1 =
∑

A∈Π (X)
(μA1 − μA2 )WA

1 = τ . �

Proof of Theorem 2. Recall that T ∗ = T − u . If Y (t ) is a generalized additive function of T

linearly and X , then it has a form like a + bt + c · h(X ), for any deterministic function h(·)
independent of t . Hence E {Y (T )}−E {Y (T ∗)} = a + bE {T }+ c · h(X )− a − bE {T }− c · h(X )+

bE (u) = bE (u) = 0. �

Proof of Theorem 3. Recall thatY (t ) = a0 +
∑p

k=1 ak t
k with coefficients a0, a1, . . . , ak . Using

independence ofT and u and the fact thatT ∗ = T − u , we write

E {Y (T ∗)} = a0 +

p∑
k=1

ak E {(T − u)k } = a0 +

p∑
k=1

ak

k∑
i=0

(
k

i

)
E {T i }E {(−u)k−i }

= a0 +

p∑
k=1

ak �
�E {T

k } +
k−1∑
i=0

(
k

i

)
E {T i }E {(−u)k−i }�	 ,

and the result follows. �

LEMMA 1 (Mean Value Theorem (De Crescenzo 1999)). Let X and Y be nonnegative random

variables, with X stochastically smaller than Y . Let g be some measurable and differentiable

function such thatE [g (X )] andE [g (Y )] are finite; let g ′ bemeasurable and Riemann-integrable
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on [x , y ] for all y ≥ x ≥ 0. Then

E {g (Y )} − E {g (X )} = E {g ′(Z )} (E {Y } − E {X })

with Z a nonnegative random variable with distribution function

FZ (z ) =
FX (z ) − FY (z )
E {Y } − E {X }

, z ≥ 0,

and FX , FY , and FZ the distribution functions ofX ,Y , and Z , respectively.

Proof of Theorem 4. A direct application of Lemma 1, with Y = T = T ∗ + u , X = T ∗, and

g =Y . �

Appendix B. Allowing True and Observed Treatment Status to Diverge

We show here how the stratified sampling-based theory of statistical inference is easy to extend

in several ways. In particular, thus far, the observed treatment variableT has been assumed (here

and in thematching literature, generally) to equal the true treatment actually applied,T ∗, so that

T ∗ =T . Inmost applications, this assumption is implausible and sowenow let these twovariables

diverge. Todo this,weoffer definitions, assumptions for identification, and,whenT is continuous,

assumptions for estimation.

B.1 Definitions
Consider the following three cases:

(i) Versions of treatments: Observing treatment variable T = t j implies that the unobserved

true treatment T ∗ = t ∗ belongs to a a known set Uj . For example, if treatment group

members are assigned to receive a medicine, sayT ∗ = t ∗1, we know they take the medicine

but, unbeknownst to the researcher, they take the medicine at different times of the day,

or with different foods, or in slightly different amounts, and so on, within the constraints

defined by setU1. That is, we assume that all possible variations of the treatment belong to

a setU1. In this case, if the prescribed assignment to the treatmentwasT ∗ = t ∗
j
but actually

t ∗ ∈ Uj was the true treatment received, thenT = t j is observed,T
∗ and its realization t ∗ are

unobserved,Y (T ) is a randomvariable (with variation depending onT ∗), and its realization

Y (t ∗) is observed.

(ii) Discretization: In this situation,T ∗ is an observed (continuous or discrete) treatment, which

the investigator chooses to discretize for matching asT . We setT = t j ifT
∗ ∈ Uj , withUj a

prescribed (nonrandom) set. In this framework,T = t j andT
∗
i
= t ∗ ∈ Uj are observed;Y (T )

is an observed random variable (with variation depending on the knownT ∗) andY (t ∗) is an

observed point.

(iii) Discretization with error: Given the unobserved true treatment level T ∗, we observe T̄ ∗ =

T ∗ + ε, where ε is the unobserved error. Then, for the purpose of matching (again based

on some substantive criteria so that matches can be found), the observed value ofT = t j

corresponds to a discretized version of T̄ ∗, that is,T = t j if T̄
∗ belongs to the intervalUj . As

a result,T = t j is observed,T
∗ and ε are unobserved,Y (T ) is an observed random variable

(with variation depending on the observed T̄ ∗), andY (T ∗) is an unobserved point.

The above cases correspond to an analysis based on a discretized version of T ∗, which we

denote by T . The distinguishing feature of these cases is that the discretization is controlled by

unobserved features of the data generation process in case i, the investigator in case ii, and both

in case iii. The discretization ofT ∗ (in case ii) and T̄ ∗ (in case iii) may be temporary for the purpose

of matching and can be reversed when amodeling step follows matching.
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When T and T ∗ diverge, we redefine the treatment effect as averaging over the variation

(observed for ii and unobserved for i and iii) inY (T ∗) for each observed treatment level so that

analyzing a discretized version of the treatment variable rules out the problem of uncertainty

about the true value of the treatment. That is, instead of comparing two treatment levels t1 and

t2, we compare the average effect between two sets of unobserved true treatment setsU1 andU2.

Thus, for two chosen observed levels,T = t1 andT = t2, the corresponding true treatment levels

areT ∗ = t ∗ ∈ U1 andT
∗ = t ∗ ∈ U2, respectively. Then, the redefined treatment effect is

TEi = E [Yi (t
∗) � t ∗ ∈ U1] − E [Yi (t

∗) � t ∗ ∈ U2] = E [Yi (Ti = t1)] − E [Yi (Ti = t2)]

with the averages SATT, FSATT, and others defined as in Section 2.3.

B.2 Assumptions
We keep the usual SUTVA Assumption A1 but extend the framework of the previous sections to

where the true treatment level T ∗ may diverge from the observed treatment level T . In what

follows, we denote this mechanism as a map ϕ of the form t = ϕ(t ∗), which includes cases i, ii,

and iii above.

We now introduce one additional assumption, which ensures that different treatment levels

remain distinct:

ASSUMPTION A4 (Distinct Treatments). PartitionT into disjoints sets,Uj , j = 1, . . . , and define

ϕ as a map fromT ∗ toT such thatϕ(t ′) � ϕ(t ′′) for t ′ ∈ Uj and t ′′ ∈ Uk , j � k .

Assumption A4 is enough to ensure the identifiability of the true treatment effect despite the

divergence ofT andT ∗; it can usually be mademore plausible in practice by choosing treatment

levels that define the causal effect farther apart. A4 also says that discretizing the true treatment

T ∗ into the observed valueT does not affect the distribution of the potential outcomes; that is,

if T = 1 = ϕ(T ∗ = 2), the relevant potential outcome (which is observed if T = 1) is based

on the (true) treatment actually applied, Y (T ∗ = 2). Assumption A4 can also be replaced with

instrumental variables and other assumptions where the divergence between observed and true

treatment levels is conceptualized as noncompliance (e.g., Angrist, Imbens, and Rubin 1996; Imai,

King, andNall 2009), or different types of constancy assumptions (VanderWeele andHernan2012).

To complete the setup, we make Assumption A2 compliant with Assumption A4. Let DU (z ) be

an indicator variable of the setU ofT such thatDU (z ) = 1 if z ∈ U andDU (z ) = 0 otherwise. Then

we replace Assumption A2with A2’, whichwe refer to as “double set-wide” because of the sets for

the treatment and covariates:

ASSUMPTION A2’ (Double Set-wide Weak Unconfoundedness). Assignment to the treatment

T ∗ is weakly unconfounded, given pretreatment covariates in setA ∈ Π (X), ifDU (t
∗)⊥Y (t ∗)�A,

for all t ∗ ∈ U and eachU ⊂ T and A ∈ Π (X).

A2’ is again an extension of the notion of weak unconfoundedness suggested by Rosenbaum

and Rubin (1983).

B.3 Identification
Under coarsening of a continuous treatment, Assumptions A1, A2’, A3, and A4 allow for

identification and estimation of the treatment effect. For each A ∈ Π (X) and t ∗ ∈ Ui , we have

E {Y (T ∗)�A}
A2’
= E {Y (T ∗)�DUi

(T ∗) = 1,A} = E {Y �DUi
(T ∗) = 1,A}

= E {Y �T ∗ ∈ Ui ,A}
A4
= E {Y �T = t i ,A} = E {Y (t i )�A}.
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Hence, the average casual effect for t ∗ ∈ U1 versus t
∗ ∈ U2, within set A, is

E {Y (t ∗1) −Y (t ∗2)�A} = E {Y (t1)�A} − E {Y (t2)�A}.

Then, under Assumption A3, we average over all strata as in (2), which enables us to compute

the average treatment effect even when conditioning on an observed treatment assignment that

differs from the true treatment.

B.4 Assumptions for estimation whenT is continuous
In case iii where the observation is continuous, a meaningful quantity of interest is E {Y (t ∗1) −
Y (t ∗2)}, given the comparison of two chosen levels of the treatment t ∗1 and t ∗2. After matching,

E {Y (t )} is modeled and used to estimate E {Y (T ∗)}. Our goal here is to evaluate the discrepancy

E {Y (t1) − Y (t2)} − E {Y (t ∗1) − Y (t ∗2)}, which of course we want to be zero. We begin with an

assumption on the type of measurement error, u :

ASSUMPTION A5 (Berkson’s Type Measurement Error). Let T = T ∗ + u , with E (u) = 0 and u

independent of the observed treatment statusT andX.

(We name Assumption A5 in honor of Berkson (1950), although we have added the condition, for

our more general context, of independence with respect toX; see also Hyslop and Imbens 2001.)

We now offer three theorems that prove, under different conditions, the validity of using T for

estimation in place ofT ∗. We beginwith the simplest by assuming thatY (t ) is linear in t , although

it may have any relationship with X .

THEOREM 2. Under Assumptions A1, A2’, A3, A4, and A5, whenY (t ) is linear in t , and any function

ofX is independent of t , E {Y (T )} = E {Y (T ∗)}.

Theorem 2 enables us to work directly with the observed treatment T because E {Y (T )} =

E {Y (T ∗)}. With Assumption A5, we can write E {Y (T ∗)�A} = E {Y (T )�A} by a parallel argument.

Therefore, Assumptions A1, A2’, A3, A4, and A5 allow for valid causal estimation even in the

presence of approximate matching and a divergence between the observed and true treatment.

The average causal effect for t ∗1 versus t
∗
2 when t1 ∈ U1 and t2 ∈ U2 is then

E {Y (t ∗1) −Y (t ∗2)�A} = E {Y (t1) −Y (t2)�A}.

Linearity in t , which is part of the basis of the assumption’s reliance on the difference inmeans

estimator, is not so restrictive because Theorem 2 does not constrain the functional relationship

withX. Nevertheless, we can generalize this in twoways. First, consider a polynomial relationship

as follows.

THEOREM 3. Under Assumptions A1, A2’, A3, A4, and A5, whenY (t ) is a polynomial function of t of

order p , it follows that

E {Y (T )} − E {Y (T ∗)} =
p∑

k=1

ak

k−1∑
i=0

(
k

i

)
E {T i }E {(−u)k−i }.

If, in addition,we assumea structure for the erroru such that themoments ofu are known (e.g.,

u ∼ N (0, 1) or the truncated Gaussian law to satisfy Assumption A4), then the moments ofT can

be estimated. With estimators of a0, a1, . . . , ap , we can estimate and correct for the bias term. For

example, ifp = 2andu ∼ N (0, 1) then thebiashas the simple form a2(2E {u
2}+2E {T }E {u}) = 2a2.

So one estimates a generalized additive model for E {Y (T )} = a0 + a1T + a2T
2 + h(X ) (with h(X )
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any function ofX ) and adjusts the result by−2â2. Thismakes valid estimation possible under this

less restrictive polynomial process, once one assumes Assumptions A1, A2’, A3, A4, and A5.

Our final generalization works under a special type of measurement error:

ASSUMPTION A6 (Stochastically Ordered Measurement Error). LetT = T ∗ + u , withT ∗ a non-

negative random variable and u a nonnegative random variable independent of the observed

treatment statusT andX.

Then, we have our final theorem justifying how estimation can proceed.

THEOREM 4. LetY be differentiable with respect to t . Then given Assumptions A1, A2’, A3, A4, and

A6,

E {Y (T )} − E {Y (T ∗)} =

∫ ∞

0
Y ′(z )(FT ∗ (z ) − FT (z )) dz ,

where FT and FT ∗ are the distribution functions ofT andT ∗, respectively.

Theorem 4 allows one to estimate the bias due to the measurement error. If the distribution

functions of u (orT ) andT ∗ are known, this bias can be evaluated analytically or via Monte Carlo

simulation. InAssumptionA6, themeasurement error cannotbe zeromeanandT ∗ is nonnegative.

Themeasurement erroru is still independent ofT and, even thoughT is systematically larger than

T ∗, it is not deterministic. Note that if u is a negative random variable, a similar result apply with

a change of sign in the above expression. Thus, Assumptions A1, A2’, A3, A4, A5, and A6 allow for

valid causal estimation if we can adjust for the bias, as in Theorem 3.
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