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Abstract

When a company goes public, it is standard practice that the underwriting syndicate al-
locates more shares than are issued. The underwriter thus holds a short position that it
commonly fills by aftermarket trading when market prices fall or, when prices rise, by exe-
cuting the so-called overallotment option. This option is a standard feature of initial public
offering (IPO) arrangements that allows the underwriter to purchase more shares from the
issuer at the original offer price. We propose a theoretical model to study the implications
of this combination of short position and overallotment option on the pricing of the IPO.
Maximizing the sum of both the profits from their share of the offer revenue and the po-
tential profits from aftermarket trading, we show that underwriters strategically distort the
offer price. This results either in exacerbated underpricing when favorably informed un-
derwriters lower prices to secure a signaling benefit, or in informationally inefficient offer
prices when underwriters pool in offer prices irrespective of their information.

I. Introduction

Price stabilization in the aftermarket of initial public offerings (IPOs) has
been legal practice in the United States since the Securities Act of 1934 and is typ-
ically performed by the underwriter that organizes the IPO on behalf of the newly
issued company.1 The official purpose of stabilization as stated by the Securities
and Exchange Commission (SEC) is as follows: “Although stabilization is a price-
influencing activity intended to induce others to purchase the offered security,
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1It is also legal in the European Union based on Commission Regulation (EC) 2273/2003, which
closely resembles the SEC regulations.
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when appropriately regulated, it is an effective mechanism for fostering the or-
derly distribution of securities and promotes the interests of shareholders, under-
writers, and issuers.”2 While the regulator-backed aftermarket trading activities
by underwriters are intended to stabilize the post-offer market price, their exis-
tence can also have undesired effects on IPO pricing. These adverse effects are
the focus of this paper.

Current regulations allow underwriting investment banks (henceforth
“banks”) to pursue three types of aftermarket activity: First, visibly labeled sta-
bilizing bids (though rarely observed) can be posted at or below the offer price
during the distribution period of the securities. Second, penalty bids can be used
to penalize customers who immediately resell (“flip”) their securities in the af-
termarket.3 The key feature that we focus on here is the third activity, by which
banks establish a short position—the “overallotment facility”—by selling secu-
rities in excess of the preannounced amount at the offering. Aftermarket short
covering refers to the practice of filling this position in the aftermarket. Alterna-
tively, the bank can fill the short position by exercising the overallotment option,
the “greenshoe”—a call option that underwriters hold to obtain typically an ad-
ditional 15% of the originally issued amount of securities from the issuer at the
offer price.4

The important observation for this paper is that by combining the overallot-
ment facility with the overallotment option, the bank can earn a risk-free profit: If
the market price exceeds the offer price, covering the short position in the market
would be expensive, but this loss can be avoided by drawing the overallotment op-
tion (the bank will earn extra proceeds). In fact, in the bulk of offerings, the initial
short position is perfectly hedged by this option so that increasing prices are not
a risk for the bank. If the price drops, the bank provides liquidity through open
market purchases. In doing so, it does not accumulate inventory but covers its
short positions at a price below the offer price. The difference between the market
price and the offer price (minus the gross spread) is the aforementioned risk-free
profit. Indeed, case studies in Jenkinson and Ljungqvist (2001) and Boehmer and
Fishe (2004) document that banks can earn substantial short-covering profits.5

The purpose of this paper is to develop a model of the going-public proce-
dure in which we can study the impact of short-covering profits on the choice
of the offer price. We model a situation in which both the bank and investors

2Regulation M, Release No. 34-38067, SEC (1997), p. 81.
3See Fishe (2002) for a detailed account of penalty bid mechanisms for flippers.
4See http://www.sec.gov/divisions/corpfin/guidance/ci111400ex regs-k sss.htm for a synopsis of

the SEC rules on “syndicate short sales.”
5See also Aggarwal (2000) and Ellis, Michaely, and O’Hara (2000) for cross-sectional analyses.

For a further elaboration, see Fishe (2002), Sec. IV.D. More recently, Griffin, Harris, and Topaloglu
(2007) provide additional evidence for underwriter aftermarket trading activities in NASDAQ IPOs.
They show that lead underwriters’ clients are net buyers in the aftermarket and that quid pro quo
arrangements allow bookrunners to substitute client purchases for direct aftermarket support. A recent
paper by SEC staff, Edwards and Hanley (2010), indicates that a substantial number of “failures to
deliver” are connected to short sales. The authors of this study indicate that these failures to deliver
are connected to the short-selling activities of the underwriter. While this is not hard evidence for
strategic short covering, it indicates that underwriters delay their short covering, possibly waiting for
even lower prices.
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hold private information (beyond mandatory disclosure requirements) about the
intrinsic value of the offered security. The offering procedure is then a signaling
game in which the bank moves first and sets the offer price. It chooses the offer
price strategically to maximize its profits from both the gross spread of the offer
revenue and trading profits in the aftermarket. Investors fully understand this pro-
cess, and the bank anticipates the investors’ best replies (i.e., their order decisions
given the chosen offer price). Thus investors account for any potential losses that
they may incur if the IPO trades below the offer price; in other words, potential
losses are priced into the offer price.6

We first establish an informationally efficient benchmark in a setting without
aftermarket activities. In this context, a separating equilibrium is informationally
efficient, since the bank’s information is fully revealed by the offer price; and
a pooling equilibrium is informationally inefficient, as the bank’s signal is con-
cealed. Higher prices are preferred by all types of banks (and also by the company
whose shares are being issued), but the banks wish to avoid incurring the repu-
tation costs involved if the offer fails due to insufficient demand. The resulting
single crossing property generates an informationally efficient equilibrium, un-
less the reputation costs are too low.

Introducing aftermarket short covering into the model leads to one of two
outcomes: Either the offer price falls on average, or the separating equilibrium
breaks down and an informationally inefficient pooling equilibrium prevails.

The exacerbated underpricing result may appear surprising because the
higher the price, the larger both the offer revenue and the possible price drop.
And larger price drops cause higher potential profits from short covering. This
simple view would call for less underpricing. Yet signaling behavior is more sub-
tle. In our model, banks can choose a price that is risk-free; at such a (low) price,
all investors order, irrespective of their signal. Or they can choose a risky price; at
this (high) price, only high-signal investors order. As there may not be enough of
them, demand may be so low that the order must be rescinded.

In a separating equilibrium, a low-signal bank would choose a risk-free low
price and a high-signal bank would choose a risky high price. This latter price
is low enough so that it is not profitable for the low-signal bank to deviate and
assume the risk of failure. Now suppose there is potentially an extra benefit from
short covering. The key insight is that a low-signal bank considers a price drop
in the aftermarket more likely (as it has less favorable information), and thus for
a given price, potential profits from short covering are higher for the low-signal
bank than for the high-signal bank. The high-signal bank, therefore, has to distort
prices downward to maintain separation. A pooling equilibrium arises when it
does not pay for the high-signal bank to maintain separation.

A comparative statics analysis reveals that an increase in the gross spread or
an increase in the size of the short position that is covered by the overallotment
option reduces the parameter set associated with informationally efficient prices,
and underpricing is exacerbated for the informationally efficient prices. Thus em-
pirically, markets in which overallotment options or spreads are larger should tend

6A substantial number of IPOs trade below their offer price: An example is the May 24, 2006,
IPO of Vonage, which fell from its initial offer price of $17 to $14.85 on the first day of trading.
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to exhibit more withdrawn IPOs and higher market uncertainty due to lower in-
formation efficiency. Further, for markets that have underpricing on average but
different levels of the spread or different sizes of the overallotment option, we pre-
dict that the market with larger spreads or larger overallotment options has more
underpricing (controlling for all other parameters).

Turning to wealth effects, when combining the profits of a low- and a high-
signal bank, it turns out that the price distortions lead to a redistribution of wealth
in favor of the banks for most parameter configurations (Section V). Banks would
thus prefer that the aftermarket price stabilization tools combined with the over-
allotment option are included in their contract. This is not immediately obvious,
as high-signal banks have to lower the offer price and thus forego revenue. Yet
even the high-signal bank may profit from aftermarket trading. The price distor-
tions are not necessarily to the issuing company’s detriment: While it loses if
separation prevails because there is more underpricing, it is better off in a pooling
equilibrium.7

Two related papers also model the overallotment option:8 Zhang (2004)
models this option as a marketing tool that is employed to induce increased de-
mand for the offer. The existence of the option makes it easier to convince market
participants to invest in information acquisition, and this should thus reduce un-
derpricing. Aftermarket price uncertainty is exogenous in his model and, as in
Benveniste and Spindt (1989), the offer cannot be overpriced. Zhang’s (2004) re-
sults thus nicely complement ours, as they highlight the positive features of the
overallotment option when price drops are impossible.

Fishe (2002) also emphasizes the value of the overallotment option, and in
addition he shows that the presence of the option will reduce the offer price. This
increased underpricing occurs because the bank can raise the (virtual) value of the
overallotment option by lowering the strike (i.e., offer) price. The intuition behind
his result and thus its interpretation are different from ours: In his paper the option
avoids the costs of covering the initial short position at increased market prices.
In our strategic model underpricing increases because the flip side—covering the
short position in the market—is valuable. Increased underpricing thus occurs in
our model because a bank with favorable information wants to signal that the
price drop is unlikely to occur. Our contractual arrangement between issuer and
underwriter is similar to that of Fishe (2002), who provides a nice justification
for optimality of this arrangement (Sec. III.C). The focus of our study differs in
that Fishe (2002) analyzes the impact of stock flipping, whereas we determine the
informational content of offer prices and the welfare effects for issuers, bank, and
investors.

Our paper fits more broadly into the recently emerging literature that studies
the relation of IPO bookbuilding and aftermarket trading. For instance, our frame-
work shares modeling analogies with Chen and Wilhelm (2008), who focus on the

7It is important to emphasize that everyone in our model is rational and understands the other
players’ strategies; consequently, no market participant is deceived or shortchanged.

8Two other theoretical papers with aftermarket stabilization are Benveniste, Busaba, and Wilhelm
(1996) and Chowdhry and Nanda (1996). They assume that the stabilization techniques are costly for
the bank and thus serve as bonding mechanisms between investors and banks to prevent overpricing.
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dynamic relation between share allocations and pricing. They also assume that
informational asymmetries prevail after the bookbuilding process is completed.
The issuer in their model would like to price-discriminate against investors, by
first selling to high-valuation types at a high price (analogous to dynamic monop-
olistic pricing) and to low-valuation types later. While SEC regulations preclude
nonuniform pricing, Chen and Wilhelm (2008) show that the issuer can still ex-
tract some of the possible price-discrimination rents by using the services of a
financial intermediary who has long-term, repeated interactions with institutional
investors. The intermediary would grant investors preferential allocations in fu-
ture IPOs in return for implicitly implementing the price-discriminatory scheme
in the IPO aftermarket. Their model thus sheds light on how IPO pricing and
allocation interact when offer prices do not reflect all information.

The remainder of the paper is organized as follows. In Section II we intro-
duce and discuss our model of the offering procedure without aftermarket short
covering. Section III outlines necessary and sufficient conditions for the infor-
mationally efficient equilibria. Aftermarket short covering is introduced and its
impact analyzed in Section IV, and the description of the redistribution of profits
follows in Section V. Section VI concludes. The Appendix contains all the proofs
and describes the tools used in the equilibrium analysis.

II. The Benchmark Model without Short Covering

A. Overview of the Going-Public Process

A firm that intends to go public first appoints an investment bank (which
in turn assembles the sales syndicate). The initial agreement between the firm
and the bank specifies the gross spread (usually 7%) and typically grants a 15%
overallotment option to the bank. The bank starts the due diligence process, and
the firm files the registration statement with the SEC. The bank then circulates the
preliminary prospectus (“red herring”) and organizes a road show in which the
firm and the bank meet with investors.

During the road show, the firm and the bank promote the IPO based upon the
information contained in the prospectus. The prospectus also includes an initial
indicative price range. Importantly, at this stage the “book” is built from bids of
potential investors. Since the firm and the bank usually do not provide information
beyond the information contained in the prospectus, the road show is primarily a
vehicle for acquiring information from potential investors.9 Once the registration
statement has SEC approval, the effective day can be set. Prior to the effective
day, it is illegal to sell shares, so all offers submitted by investors during the road
show are classified as nonbinding indications of interest.

After the road show, on the day prior to the issuance day, the firm and the
bank agree on the definitive offer price and the exact number of shares to be sold.10

The offer price can lie outside the indicative price range and indeed sometimes

9The incentive problem of truthfully eliciting investors’ information was first discussed in
Benveniste and Spindt (1989) and Benveniste and Wilhelm (1990).

10If the firm and the bank cannot agree, then the IPO is canceled (see Busaba (2006)).
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does. The final prospectus (which contains the definitive offer price) is released
at this point. The distribution of the stocks begins on the morning of the issuance
day. Potential investors are notified of the final terms of the offering and are asked
to confirm their indications of interest.

The going-public process in Europe can differ in various aspects. Most im-
portantly, while it is strictly prohibited in the United States for the bank or the
firm to interact with potential investors prior to registration with the SEC, this
is routine in Europe. The bank derives its signal about the likely overall market
reaction to the IPO from this interaction. It then sets the price range, which thus
incorporates the bank’s information. Typically, European IPOs are priced at the
top end of the range (for a detailed account of the U.S.-European differences, see
Jenkinson et al. (2006)) and rarely outside of it. When applying our analysis to
a European context, the offer price should thus be understood as the point in the
price span that is conventionally chosen.11

The bank’s involvement may continue beyond the opening day of trading.
First, the bank must decide whether to sell shares in excess of the original amount
offered. Next, if the bank does oversell, it must cover this short position even-
tually either by exercising the overallotment option or by short covering in the
aftermarket. In the course of these aftermarket activities, the bank might also use
stabilizing or penalty bids. The final stage of an IPO begins with the end of the
“quiet period,” when the bank and other research analysts are allowed to comment
on the valuation of the new stock.

B. The Details of the Formal Model

Staging. Our model has the following structure: The bank and the investors each
receive a signal about the issuing firm, then the bank sets a price and investors
decide whether or not to buy. If a sufficient number of investors buy, the issue
is listed; otherwise it is withdrawn. If listed, then (after-)market prices react and
aggregate all available information; any short position that the bank may have
established is covered either in the market or through the overallotment option.12

This process is illustrated in Figure 1. At the end of this section, we will outline
in detail how this model maps into the above, standard going-public setting.

The Security. The security on offer can take one of two equally likely values V;
for simplicity, V ∈ {0, 1}.

The Investors. There are N identical, risk-neutral investors who can place unit
orders of the security. Each investor receives a costless, private, conditionally

11Jenkinson et al. (2006) report that, for instance, 72% of German IPOs are priced at the top end
of the range. Taking these conventions as given, one should note that in many respects, European IPO
selling mechanisms are similar to fixed price offerings even though they are formally bookbuilding
mechanisms. Partly this may be due to the fact that until the mid-1990s, European IPOs were mostly
sold in fixed price offerings, as reported in Jenkinson et al. (2006). Even today, many French and
almost all U.K. IPOs (see Ellul and Pagano (2006)) are sold in fixed price offerings.

12We will first establish a benchmark case without the overallotment option and without aftermarket
activities and later extend the analysis to the full specification.
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FIGURE 1

The Timing of the Game

independent and identically distributed (i.i.d.) signal si ∈ {0, 1} about the value of
the security. This information is noisy

(
i.e., Pr(si=v|V=v)=qi with qi ∈ (1/2, 1)

)
.

If he receives a share, the investor’s payoff is the market price minus the offer
price, otherwise his payoff is 0. An investor’s type is his signal, thus a “high-
signal investor” has si = 1, and a “low-signal investor” has si = 0. Since the prior
on the liquidation values is uniform, the signal quality qi coincides with the signal
recipient’s posterior probability assessment that the value is V = 1.

The Issuer. We assume the issuer to be nonstrategic. He holds no private infor-
mation about the value of the security and signs a standardized contract with an
investment bank that specifies the amount of securities S < N to be sold and that
delegates the pricing decision. It also specifies the gross spread β of the offer rev-
enue that remains as remuneration at the bank; this way, the incentives of bank
and issuer are aligned, as both would like a high revenue. The issuer’s payoff is
thus fraction (1− β) of the offer revenue if the offer is floated, otherwise it is 0.

The Bank. The risk-neutral bank receives a private signal sb ∈ {0, 1} about the
value of the security.13 This signal is noisy and conditionally independent from
investors’ signals and has quality qb, where Pr(sb = v|V = v) = qb. If sb = 1,
we refer to the bank as a “high-signal bank,” and if sb = 0, it is a “low-signal
bank.” The bank receives the signal after the contract has been signed and then
announces the offer price p. If the offer is withdrawn, the bank’s reputation is
damaged and it thus incurs cost C.14 Costs that the offering procedure itself may
cause are normalized to 0. Thus, if the offer is successful, the bank’s payoff is
βpS; if it is withdrawn, its payoff is −C.

The costs of a failing IPO are external to our formulation and can be thought
of as capturing the opportunity costs from lost market share when associated with
an unsuccessful IPO. (Withdrawals are a common phenomenon, as described,
for instance in Busaba (2006) or Dunbar and Foerster (2008).) The bank’s signal
can be understood as its assessments of the overall market sentiment, and it is
a disreputable indication of the bank’s judgment to get it wrong. Indeed, there

13As argued earlier, one can also think about this as a signal about market demand. These two are
correlated, but analytically it is simpler to handle a signal about the fundamental.

14The model could be extended to allow the bank to buy up unsold securities. Costs then result
from expensively bought inventory positions and not from failure. Thus C would be “smoothed.” This
would not alter our qualitative results but would complicate the analysis considerably.
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is evidence (Dunbar (2000)) of losses in market share subsequent to withdrawn
IPOs. Moreover, companies such as Brendan Wood International make a living
rating investment bank services based on issuers’ satisfaction reports.

So why does the market (as a collection of all investors) not punish over-
pricing? In our framework the answer is simple: Investors will receive sufficient
compensation for the risk of overpricing through the offer price because, as we
show below, the offer is on average underpriced—so these costs are implicitly
built-in.

The Offer. A fixed number of S securities are offered at a fixed price p. If the
demand d is insufficient, d < S, the offer fails, is thus withdrawn, and the security
does not get listed. If d ≥ S, the offer is successful. If it is oversubscribed, the
share allocation is prorated. After the distribution, demand d is revealed to the
public, the security gets listed, and market trading starts at market price pm.

C. Two Technical Assumptions to Simplify the Analysis

We make two simplifying assumptions that later allow us to find approximate
closed-form solutions for the probability of a successful IPO and for offer prices.
Define N̄(qi) := 64qi(1− qi)/(2qi − 1)2.

Assumption 1. S= (1− qi)N.

Assumption 2. The number of investors N is larger than N̄(qi).

The first assumption simplifies computations. The results of the paper will
continue to hold qualitatively for any S < N/2, but the assumption allows us
to derive approximate closed-form solutions for success probabilities and prices.
The second assumption simplifies the analysis of the bank’s and the investors’
conditional distribution over favorable signals. The use of both will become clear
when we perform the equilibrium analysis.

D. Discussion of Our Model and Its Relation to the Institutional
Conventions

While our model abstracts from a number of institutional details of the going-
public process, it captures the relevant informational stages: We assume that after
perusing the initial prospectus, investors believe that a share of the firm has either
a high or a low value, each equally likely. The IPO process in our model begins
with the distribution of the preliminary prospectus, which includes the indicative
price range.

The bank does not yet hold private information, so that the indicative range
has no signaling value.

At this point, the bank and the issuer embark on the road show. Since the
road show is primarily a tool to elicit potential investors’ valuations of the security
on offer, it is the bank (the “bookrunner”) that learns during this process. In our
model, the information that the bank acquires during the bookbuilding phase is
summarized in its signal sb.
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At the end of the bookbuilding process (i.e., after it receives its signal) the
bank sets the final offer price. In our model, each investor holds private infor-
mation at this point in time; this is captured by the signals si. This information
is meant to capture the portion of investors’ private information that was not re-
vealed during the road show.15 Faced with the definitive price, each investor de-
cides whether to uphold his indication of interest and buy the security or whether
to rescind his interest (we interpret N as the number of investors that indicated
their interest in the offering).16

Under European conventions, the informational stages are slightly different.
Since the bank solicits information from investors before the official bookbuilding
starts, the bank already has information about the likely market reaction when
it sets the indicative price range. For this reason, when applying our model to
the European context, the range carries the informational content that only the
definite offer price has under American conventions. In Europe this price range is
commonly perceived as binding, and usually the definite offer price is set at the
top end of this range. It is thus reasonable to model this range as a single price
(which in equilibrium will be the offer price that our model yields). Investors
then submit their orders based on this price (range) and their private information.
Thus, when applied to the right informational stages that are outcomes of the
institutional conventions, our model is general enough to span both the European
and the North American setting.

III. Offer Prices without Short Covering

A. Signaling Value of the Offer Price

An investor bases his decision on his private information and on the infor-
mation that the investment bank may reveal about its own signal through the offer
price. Denote by μ(p) the price information and write μ(p) = 1 if the price re-
flects that the bank’s signal is sb = 1, μ(p) = 0 if the price reflects that sb = 0,
and μ(p) = 1/2 to indicate that the price is uninformative. We restrict the analysis
to pure strategies. These three are thus the only relevant cases in equilibrium.17

B. The Aftermarket Price

The market price is determined by the aggregate number of favorable
investor signals. In our model, this number is always revealed, either directly

15Alternatively, as in Chen and Wilhelm (2008), there could be new information that arrives after
bookbuilding is complete.

16Even though indications of interest are legally nonbinding, it seems plausible that rescinding
implies costs; for instance, the bank could exclude renegers from some or all its future offerings. To
keep our analysis parsimonious, we abstract from such costs in our model. In supplementary material
that is available on the authors’ Web sites, we present a further rigorous argument that explicitly allows
such costs, and we show that they will not affect the equilibrium outcome. In a nutshell, rescinding
costs can be modeled as foregone future revenue. Thus, while rescinding is costly now, it is also costly
in the future, implying that rescinding costs lower total payoffs. The supplementary material then
shows that in such a closed system, rescinding costs will not affect the bank’s decision.

17In the literature, various papers employ signaling models in IPOs; for instance, Leland and Pyle
(1977) use the number of shares issued.
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through IPO demand or immediately after the float through trading activities.
Thus, write pm(d) for the market price as a function of d ∈ {0, . . . ,N}, the
number of high-signal investors. Appendix A fleshes out this argument and
provides an extensive treatment of price formation.

C. Investors’ Decisions and Expected Payoffs

We admit only symmetric, pure strategies. Thus, all investors with the same
signal take identical decisions. These can then be aggregated so that only three
cases need to be considered: B := {B0,1,B1,B∅}, with B0,1 denoting that all
investors buy; B1, denoting that only high-signal investors subscribe; and B∅,
meaning that no investor buys.

When deciding whether or not to order a share, an investor has to account
for the probability of actually obtaining a share. There are three cases to consider.
First, when all investors buy, market demand is N and the probability of receiving
the security is S/N. Second, suppose investor j orders and d − 1 other investors
also order but overall demand is weak, d < S. Then the IPO fails, and the investors
who ordered get shares with probability 0. Third, suppose investor j and d − 1
other investors order and d ≥ S. Then the probability that j assigns to receiving
the security is S/d.

Investors order whenever their expected profit is nonnegative. After observ-
ing the offer price, an investor’s information set contains both his signal si and
the information inferred from the offer price μ(p). Since signals are conditionally
i.i.d., for every value V , there is a different distribution over the number of favor-
able signals (si=1) among the other N−1 investors, which we denote f (d−1|V).
Investor j who receives signal si and derives information μ(p) from the price as-
signs the following posterior distribution to the event that there are d−1 favorable
signals among the other N − 1 investors:

g(d − 1|si, μ(p)) := Pr(V = si|si, μ(p)) · f (d − 1|V = si)(1)

+ Pr(V /= si|si, μ(p)) · f (d − 1|V /= si).

Assume for now that all investors with the favorable signal (and only these) or-
der the security, case B1. Then for a high-signal investor, at price p his rational-
expectation payoff from ordering has to be nonnegative,

(2)
N∑

d=S

S
d
· (pm(d)− p) · g(d − 1|si = 1, μ(p)) ≥ 0;

likewise for B0,1, when we need to ensure that investors with the low signal si= 0
want to order. In equation (2) we then replace si = 1 with si = 0. Also, since all
buy, the summation runs from 1 to N, and S/d is replaced with S/N.

D. Threshold Prices

Denote by psi,μ the highest price that an investor is willing to pay if all in-
vestors with signal s̃i ≥ si order (and only those), given signal si and price infor-
mation μ. Thus p1,1 is the highest separating price when only high-signal investors
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order (B1), p1,1/2 the highest pooling price when only high-signal investors order
(B1), p0,1/2 the highest pooling price at which all investors buy (B0,1), and p0,0 the
highest separating price at which all investors buy (B0,1). At all these prices, in-
vestors are aware that the security price may drop in the aftermarket and that they
may not get the security. The threshold prices are formally derived in Appendix C.

E. The Investment Bank’s Expected Payoff

First consider case B1. Variable d denotes the number of buys (i.e., the num-
ber of high-signal investors). If the true value is V = 1, the cumulative probability
of a successful IPO is given by

Pr(d ≥ S|B1) =
N∑

d=S

(
N
d

)
qd

i (1− qi)
N−d,(3)

analogously for V = 0. A bank with signal sb assigns probability αsb(S) to the
event that at least S investors have the favorable signal. Since the investment bank
receives its signal with quality qb, for sb = 1,

α1(S) = qb ·
N∑

d=S

(
N
d

)
qd

i (1− qi)
N−d(4)

+ (1− qb) ·
N∑

d=S

(
N
d

)
(1− qi)

dqN−d
i .

Here α0(S) is defined analogously. If the bank charges a price at which only high-
signal investors buy, its expected profit is

Π(p|sb,B1) = αsb(S) · βpS− (1− αsb(S)) · C.(5)

When all investors buy, the IPO never fails and bank profits are thus Π(p|B0,1) =
βpS. Of course, if the price is set so high that no investor buys, a loss of C results
with certainty,Π(p|B∅) =−C.

Determining αsb with Assumptions 1 and 2. The two conditional distributions
over favorable signals generated by V=0 and V=1 are hump-shaped, with peaks
at N(1 − qi) and Nqi, respectively. For large N, these two distributions become
very concentrated and do not overlap. Assumption 2 ensures this; see Figure C1
in Appendix C for an illustration.18 Moreover, for large N, the two binomial dis-
tributions become symmetric around their modes19 so that the probability of a

18The value N̄(qi) in Assumption 2 is derived from DeMoivre-Laplace’s Theorem.
19A binomial distribution is generally not exactly symmetric around its mode. However, if N is

large enough, by DeMoivre-Laplace (0 < qi ± 2
√

qi(1− qi)/N < 1) we can employ the normal
distribution, thus treating the distribution as symmetric around its modes. The number of traders has to
be large enough so that for V=0 there are almost never more than N/2 traders with a favorable signal,
and vice versa for V = 1. Indeed, the normality approximation applies for relatively small values of N
(e.g., for qi = 0.75, N̄ = 48).
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failed IPO has a simple structure. Since the IPO fails whenever d < S, we can
use Assumption 1 to “cut” the distribution around N(1 − qi) in half. Then the
IPO fails with half the weight of the lower hump, so that α0(S) = (2− qb)/2 and
α1(S) = (1 + qb)/2. In what follows, we will omit S from αsb .

F. Conditions for Informationally Efficient Prices

We now identify the conditions under which a profit-maximizing investment
bank will reveal its information through the offer price. A separating equilibrium
is defined as informationally efficient, since investors can derive the bank’s signal
from the offer price. In a pooling equilibrium information is shaded and thus it is
informationally inefficient. In this case, investors decide only on the basis of their
private signals.

The equilibrium concept for this signaling game is the perfect Bayesian equi-
librium (PBE). A common problem with signaling PBEs is the multiplicity of
equilibria, some being supported by “unreasonable” out-of-equilibrium beliefs.
The most intuitive equilibrium, however, should be the one in which the least
surplus is lost through costly signaling (sometimes referred to as the “Riley” out-
come). To single out this outcome, we only consider equilibria that satisfy Cho
and Kreps’ (1987) intuitive criterion (IC) and, if this alone does not yield a unique
outcome, we select the equilibrium that is payoff dominant for the bank.

A pooling equilibrium is specified through i) an equilibrium offer price p∗

from which investors infer, ii) price information μ = 1/2, and iii) investors’ best
replies given their private signals, μ, and p∗. A separating equilibrium is i) a sys-
tem of prices {p∗, p̄∗} and price information such that ii) at p∗ = p̄∗, the high
separation price, the price information is that the bank has the favorable signal,
μ = 1, and at p∗ = p∗, the low separation price, the price information is that the
bank has the low signal, μ = 0, and iii) investors’ best replies given their private
signals, μ, and p∗. In both separating and pooling equilibria, for p �∈ {p̄∗, p∗} out-
of-equilibrium public beliefs are chosen “appropriately.” There are three kinds
of signaling equilibria in our setting: the already mentioned separating equilib-
rium, a pooling equilibrium in which only high-signal investors buy, and a pooling
equilibrium in which all investors buy. The following result is a straightforward
consequence of signaling, the proof of which is in Appendix B.

Lemma 1 (The Highest Possible Low Separating Price). There exists no separat-
ing offer price p∗ > p0,0.

In any separating equilibrium, therefore, the low price must be such that all
investors buy, and the highest such separating price, given price information μ=0,
is p∗ = p0,0. In what follows we refer to p0,0 as the low separation price.

In our context, the Riley outcome would be so that the high-type bank chooses
the highest price low enough so that the low-signal bank cannot deviate from p0,0.
More generally, for any price p ∈ [p0,0, p0,1/2] in the range of potential risk-free
prices (all investors are willing to buy), define φsb(p) as the price at which the sb-
signal bank would be indifferent between charging a risky price φsb(p) at which
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only high-signal investors buy, B1, and a safe pooling price p with B0,1 (all in-
vestors buy). Formally,

αsbβφsb(p)S− (1− αsb)C = βpS(6)

⇔ φsb(p) =
p
αsb

+
1− αsb

αsb

C
βS
.

In what follows, we refer to φ1(p) as the high-signal bank’s deviation price, and
to φ0(p) as the low-signal bank’s deviation price. Since α1 > α0, the low-signal
bank requires a higher price as compensation for risk taking, φ0(p) > φ1(p) for
all p ∈ [p0,0, p0,1/2]. In addition, the higher the pooling price, the higher the lowest
profitable deviation price, ∂φj(p)/∂p > 0, j ∈ {0, 1}. We can now establish our
first major result.

Proposition 1 (Conditions for Informationally Efficient Prices). If i) the high-
signal bank’s deviation price from the highest safe pooling price is not higher
than the highest separating price, φ1(p0,1/2) ≤ p1,1, and if ii) the low-signal bank’s
deviation price from the low separating price is not smaller than the highest risky
pooling price, φ0(p0,0) ≥ p1,1/2 then there exists a unique PBE that satisfies the
“IC,” which is the following separating equilibrium:

• the low-signal bank charges p∗ = p0,0 and all investors buy;
• the high-signal bank charges p̄∗ = min{p1,1, φ0(p0,0)} and only high-signal

investors buy; and
• if investors observe p �= {p∗, p̄∗}, then μ = 0 and all buy if p ≤ p0,0, only

high-signal investors buy if p0,0 < p ≤ p1,0, and no one buys in all other cases.

The first condition, φ1(p0,1/2) ≤ p1,1, together with the IC, is necessary
and sufficient to rule out pooling equilibria in which all investors buy, irrespec-
tive of their signals. The second condition, φ0(p0,0) ≥ p1,1/2, ensures that there
is no pooling where only high-signal investors buy, B1. Within this range, the
IC itself ensures that the bank with sb = 1 always charges the highest sustain-
able separating price. The high separation price p̄∗ is the minimum of p1,1 and
φ0(p0,0). The bank cannot charge more than p1,1, and it cannot credibly charge
more than φ0(p0,0), as otherwise the low-signal bank would deviate. Finally, since
φ1(p0,0) < φ1(p0,1/2) ≤ p1,1, the high-signal bank is willing to separate. The third
bullet specifies the out-of-equilibrium beliefs and behavior supporting the equi-
librium. Details are in Appendix B.

G. Underpricing

In the context of this model, underpricing occurs if the (first-day) market
price is above the offer price.

Proposition 2 (Underpricing). In a separating equilibrium, on average, securi-
ties are underpriced.

Both types of investors only buy if their expected payoff is nonnegative.
At p0,0, the low-signal investor breaks even in expectation but the high-signal
investor expects a strictly positive payoff. At p1,1, the high-signal investor just
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breaks even and the low-signal investor abstains. Ex ante, the expected payoff is
positive, hence underpricing.

This result is a natural consequence of the winner’s curse type of reason-
ing that underlies the ordering decision of informed investors: Offers may be
overpriced, and on average they require compensation to be insured against the
potential payoff loss from an overpriced offering. Proposition 2 thus demonstrates
that our model is in line with extant IPO models such as Rock (1986).

H. An Intuitive Characterization of the Equilibrium

Deviation prices φsb are a convenient tool to describe restrictions. We will
now reformulate the conditions from Proposition 1 in terms of exogenous costs
C. This allows us to derive a simple linear characterization of the equilibrium.
Consider Proposition 1’s first condition, φ1(p0,1/2) ≤ p1,1. If C is so high that

φ1(p0, 1
2
) =

p0, 1
2

α1
+

1− α1

α1

C
βS

> p1,1,(7)

then, assuming the payoff-maximizing equilibrium for the bank, a separating
equilibrium cannot be sustained. Even a high-signal bank then prefers to sell the
security at a price where all investors buy. Consider now Proposition 1’s second
condition, φ0(p0,0) ≥ p1,1/2. If C is so low that

φ0(p0,0) =
p0,0

α0
+

1− α0

α0

C
βS

< p1, 1
2
,(8)

then a separating equilibrium, again, cannot be sustained (by payoff dominance).
In this case, even a low-signal bank is willing to choose a high, risky pooling
price and the high-signal bank can thus not credibly signal its information. If C is
so high that φ0(p0,0) > p1,1, then for the low-signal bank it does not even pay to
deviate to the highest separating price, p1,1. This bound on C is given by

Ĉ :=
α0p1,1 − p0,0

1− α0
βS.(9)

Define, analogously, C̄ and C such that (7) and (8) hold with equality. We get
C < Ĉ < C̄.

Corollary 1 (Proposition 1 in Terms of Costs). If C ∈ (C, C̄), then the unique
equilibrium is the separating equilibrium from Proposition 1. If C ∈ (C, Ĉ), then
p̄∗ = φ0(p0,0), and if C ∈ [Ĉ, C̄), then p̄∗ = p1,1.

It has often been argued that certifying agents, here the investment bank,
must have “enough” reputation capital at stake to make certification credible. In
this context, “too much” reputation can also inhibit certification (separation from
a low-signal bank) if it becomes too expensive to jeopardize one’s reputation at
a high, risky offer price. Figure 2 illustrates threshold costs and corresponding
equilibrium prices.
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FIGURE 2

Threshold Costs and Equilibrium Prices

For low costs, C ≤ C, if the high-signal bank wants to uphold separation it would have to set a price below the risky
pooling price p1,1/2; since this is too expensive, pooling in price p1,1/2 prevails. For a medium range of costs, C ∈ (C, C̄),
there will be a separating equilibrium. For the high end of this range, C ∈ [Ĉ, C̄), the high-signal bank can charge the
highest separating price p̄∗ = p1,1. For the lower end, C ∈ (C, Ĉ), however, the high-signal bank cannot charge the
highest separation price. Instead, to prevent the low-signal bank from mimicking, it must set a lower price φ0(p0,0) ∈
(p1,1/2, p1,1). Finally, for very large withdrawal costs, C ≥ C̄, separation is too risky for the high-signal bank, so that
pooling in a risk-free price p0,1/2 results.

IV. The Impact of Aftermarket Short Covering

A. Overview of Short Covering and a Bank’s Strategy

Aftermarket short covering works as follows: Instead of issuing the principal
volume of securities S, the investment bank overallots O securities (i.e., it takes a
short position of O shares).

Suppose first that the market price falls below the offer price. Then the bank
would fill its short position in the market at this lower price. This practice is
referred to as aftermarket short covering. If the market price is below the offer
price (minus the gross spread), then the bank makes a trading profit.

Now suppose that the market price rises above the offer price. Covering in
the market would now be costly. However, most IPO contracts grant the bank a
call option (the so-called overallotment option) for a certain number of additional
securities that the bank can obtain at the offer price from the issuer. If the bank
has this option and if its size is also O, then it is perfectly hedged against rising
prices and it may make a profit if prices drop. We will now analyze how these
potential aftermarket trading profits affect the bank’s strategy.

For simplicity, we assume that the bank issues either S+O or 0 securities; that
is, if demand is below S + O then, as in the case without short covering, the offer
is withdrawn. Moreover, we assume that the overallotment of shares coincides
with the size of the overallotment option.20 This merely simplifies the analysis
and does not affect the qualitative results.

We will now identify two scenarios that may result from introducing after-
market short covering. In the first, the high-signal bank sets a lower price (relative
to the benchmark without short covering) to uphold separation from a low-signal
bank. The second scenario arises when upholding separation becomes too expen-
sive, in which case the high-signal bank starts to pool with the low-signal bank.
The result is an informationally inefficient outcome.

20The SEC states on its Web site that “most offerings have a short position at least equal to the un-
derwriters’ overallotment option” (http://www.sec.gov/divisions/corpfin/guidance/ci111400ex regs-k
sss.htm).
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The intuition for our results is simple: With short covering, large price drops
lead to large short-covering profits. Price drops occur with higher probability if
the underlying state is bad, and thus low-signal banks consider a price drop to be
more likely. In the benchmark separating equilibrium, a low-signal bank would
not mimic a high-signal bank because it fears costs from a potential IPO failure.
With aftermarket trading gains, however, some of the potential losses from a failed
offering are offset by the prospect of aftermarket trading profits.

Figure 3 offers an illustration of the transfers between issuer, bank, and in-
vestors.

FIGURE 3

Flows of Shares and Cash

Figure 3 illustrates the flows of shares and cash between issuer, bank, and investors. Graph A describes transfers if short
covering is not allowed. Graph B shows the transfers when short covering is allowed but does not take place because the
bank exercises its option. Graph C documents that when short covering does take place (the market price pm drops below
the offer price p), there are additional transfers: O shares are sold short to investors at the offer price p and are bought
back at the market price pm .

In what follows, we will denote functions, threshold values, and variables
that pertain to the analysis with short covering by superscripts SC.

B. Payoffs with Short Covering

If the market price exceeds the offer price, pm(d) > p, then the bank exer-
cises the short position and keeps the gross spread βOp for these shares. If the
market price drops, pm(d) < p, then the bank covers its short position in the
market, earns trading profit p − pm(d), but does not obtain the spread on the O
overallotted shares.

We now write Π(p∗,B, sb) for the investment bank’s expected profits from
the offer revenue, and we use ΠSC(p∗,B, sb) for the trading profits. Suppose the
offer price p is risky (i.e., only high-signal investors order). Then

ΠSC(p,B1, sb) =

N∑
d=S + O

O ·max {(1− β) · p− pm(d), 0} · Pr(d|sb).(10)

For a safe price (at which all investors buy) the summation runs from 0 to N.
The bank also accounts for the foregone gross spread β when buying back in the
market.
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C. Equilibrium Analysis

With short covering allowed, a high separation price, p̄∗ has to be small
enough so a low-signal bank cannot profitably deviate from the low, risk-free
price, p0,0. Thus the high-signal bank has to determine the low-signal bank’s de-
viation price φSC

0 (p0,0) so that

Π(φSC
0 (p0,0)|sb = 0,B1) +ΠSC(φSC

0 (p0,0)|sb = 0) =(11)

Π(p0,0|sb = 0,B0,1) +ΠSC(p0,0|sb = 0).

In what follows, we make two further assumptions.

Assumption 3. Assume S + O= (1− qi)N.

Assumption 4. Assume qi and qb are sufficiently informative so that p1,1/2 >
2p0,0.

Assumption 3 states that the overall amount of shares that can be issued re-
mains constant relative to the scenario without aftermarket short covering. This
normalization allows a straightforward comparison of the payoffs in both scenar-
ios. If we keep the number of issued shares constant, then the offer revenue is
only affected by changes in the price. It also allows us to continue to use the
closed-form price approximations. Assumption 4 requires that the signals of the
investors and the bank jointly are sufficiently informative. The assumptions allow
us to avoid several case distinctions. Figure 4 in Section V has an illustration of
the parametric configuration that corresponds to Assumption 4.

Lemma 2 (The Low-Signal Bank’s Deviation Price Drops). For all prices p ∈
[p0,0, p0,1/2], the low-signal bank’s deviation price with short covering φSC(p) is

smaller than without short covering, φ0(p) ≥ φSC
0 (p).

The low-signal bank considers it more likely than the high-signal bank that
the price drops, hence its potential gain from short covering is large, in particular,
relative to trading profits at the low separation price. This additional incentive for
the low-signal bank to mimic the high-signal banks forces the high-signal bank to
reduce its offer price further compared to the scenario without short covering.

In what follows, if there is a switch from separating to pooling, we restrict
attention to those situations where the new equilibrium price is the risky pooling
price p1,1/2.

21 We can now establish the main result. Analogously to Corollary 1,
we spell it out in terms of the costs of withdrawal.

Proposition 3 (Equilibrium with Short Covering Relative to the Benchmark).

i) There exists a lower bound CSC > C such that for all costs C ∈ [C,CSC),
the only equilibrium that satisfies the IC and payoff dominance is a pooling
equilibrium at the highest risky pooling price p1,1/2. This price is informa-
tionally inefficient.

21Our results on informational efficiency are not affected by this restriction. To the contrary, taking
pooling in a risk-free price into account would strengthen our findings. In addition, if there is a choice
between the high, risky pooling price, p1,1/2, and the low, safe pooling price, p0,1/2, the former will
always generate more ex ante revenue.
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ii) There exists an upper bound C̄SC such that for all costs C ∈ [CSC, C̄SC], the
unique equilibrium that satisfies the IC and payoff dominance is a separating
equilibrium. For the high separating price p̄∗, there exists a threshold ĈSC ∈
[Ĉ, C̄SC) so that

a) for costs C ∈ [CSC, ĈSC), the high separation price is the low-signal
bank’s deviation price from the low separating price, p̄∗ = φSC

0 (p0,0),
p1,1/2 < φ

SC
0 (p0,0) < p1,1, and

b) for costs C ∈ [ĈSC, C̄SC], the high separation price is the highest risky
price p̄∗ = p1,1.

iii) On average, underpricing in the separating equilibrium is exacerbated.

The intuition for the result is as follows: i) When costs of withdrawal are low,
then without short covering, the high separation price is already close to the risky
pooling price. With short-covering profits, the bank would now have to lower the
high separation price below the risky pooling price to uphold separation. This is
payoff dominated by pooling.

In ii)b, in contrast, costs are so high that the additional short-covering benefit
is too small to entice the low-signal bank into mimicking; neither the high nor the
low separation price is thus affected.

Part ii)a describes the middle region of costs where separation can be upheld,
but only by reducing the high separation price. Since separating prices weakly
decrease, underpricing increases (part iii).

At first glance, the result that average prices are lower is surprising because,
after all, the short-covering profits are expected to be larger when the offer price
is higher. Agents should thus be even more inclined to set higher prices. But this
casual intuition is inaccurate because the driving force in equilibrium is not the
low-signal bank’s aspiration to exploit these profits but the high-signal bank’s
defense against the low-signal bank’s desires. This defense involves either low-
ering the risky price or surrendering to pooling and thus making offer prices less
informative.22

D. Comparative Statics

We can express the overallotment option O as a share r of S, S+O=(1+r)S.
Thus, value r = 0 is the benchmark case without short covering. Potential policy

22The argument here focuses on the relation of lower bound threshold costs C and CSC and “mid-
dle” bound threshold costs Ĉ and ĈSC. Since ĈSC increases relative to Ĉ (by Lemma 2) and since
also CSC increases relative to C, then also C̄SC should increase relative to C̄. But this is not necessarily
true—it may actually decrease. Keeping N, β, and O fixed, C̄ and C̄SC are functions of the signal qual-
ities qb and qi. For low-signal qualities, C̄SC actually decreases. For such values, the high separation
price p1,1 and the low, risk-free pooling price p0,1/2 are close. Expected aftermarket profits are higher
for the risk-free price, and this outweighs the lower expected pooling revenue. This strengthens our
result on informational inefficiency. While C̄SC does increase relative to C̄ for high values of qb and
qi, numerically these costs are far off scale in the following sense: A natural upper bound for costs
C is provided by the loss of all (discounted) future business. This upper bound on C can actually be
calculated, and it turns out that for all those combinations of qi and qb for which C̄SC increases, the
value C̄ far exceeds this “natural” upper bound. Appendix D outlines the details of this argument.
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variables in our model are the bank’s share of the revenue, β, and the size of the
overallotment option, r.

Proposition 4 (Comparative Statics). If the gross spread, β, or the size of the
overallotment facility, r, increases, then CSC increases so that the conditions
for informational efficiency become more restrictive. Moreover, the difference
ĈSC − CSC increases so that average underpricing in the separating equilibrium
increases.

A higher level of β or r strengthens the bank’s incentive to set higher prices,
so that the high-signal bank has to lower its price to defend its high separation
price. When the high separation price is low, it gets too expensive to defend sep-
aration by lowering the price so that pooling in p1,1/2 results; this increases CSC.
Close to ĈSC, we use the smallest cost so that the highest separation price p1,1 is
employed; separation is thus upheld by employing a smaller high separation price.

The result can be illustrated with Figure 2, where an increase in β or r shifts
the entire function to the right. Moreover, the slope of the increasing portion of the
function becomes smaller because ĈSC increases by more than CSC. This implies
an increase of the parameter area for which there is separation in a price that is
smaller than the largest high separation price, p1,1; this means that underpricing
is more than proportionally exacerbated.

Empirically, if there is more pooling, then all banks will set a high price, thus
risking that they may have to withdraw the IPO. If there is average underpricing
for a given cost level, then underpricing is positively related to the size of the
spread and the overallotment option.

V. Payoff Analysis

Covering a short position in the market at a price below the offer price is
unambiguously profitable. Yet it is not immediately obvious that the possibility
of short covering is profitable: Compared to the setting without short covering,
the high-signal bank has to lower prices to “defend” itself against the low-signal
banks. This lowers the offer revenue. At the same time, the high-signal bank may
also, in expectation, earn some short-covering profits. We now determine the net
effect.

A. Payoff Comparison for the Investment Bank

As outlined at the beginning of Section II, the bank obtains its signal after
making the initial arrangements with the issuer. So at that initial stage, would the
bank prefer it if the possibility of short covering is included in the contract? To
answer this question we sum the payoffs of the high- and low-signal banks and
compare the payoffs with and without short covering.

In general this payoff depends on all model variables, such as costs, signal
qualities, number of investors, spreads, and so on. To get a sense of the extent of
the payoff shifts, we look at the most extreme drop in revenue that may occur. This
drop occurs if the high-separation price drops to (almost) the high, risky pooling
price. Then separation is upheld with p̄SC=p1,1/2 and pSC=p0,0. This scenario also
involves the lowest possible short-covering profits.
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We thus combine payoffs for high- and low-signal banks to compute the
difference of payoffs with and without short covering:

Π(p1, 1
2
|sb = 1,B1) +ΠSC(p1, 1

2
|sb = 1,B1)−Π(p1,1|sb = 1,B1)(12)

+Π(p0,0|sb = 0,B0,1) +ΠSC(p0,0|sb = 0,B0,1)−Π(p0,0|sb = 0,B0,1).

Expanding this expression, one can see that withdrawal costs cancel and that
the sign of the expression will not depend on N. Fixing spread and overallotment
option to the commonly observed value β = 7% and r = 15%, we illustrate in
Figure 4 that for a very large subset of parameter configurations qi and qb, the
bank gains. Moreover, the set of parameters where banks lose is “visually” exag-
gerated because we measure only the worst possible payoff outcome. It arises if
parameters are such that CSC > Ĉ, which does not necessarily occur. And even
if CSC > Ĉ, then the bank loses only for a specific subset of these costs C. The
right panel in Figure 4 illustrates this point. Details of the computations are in
Appendix E.

FIGURE 4

Informational Efficiency and the Sign of the Bank’s Net Profit

Graph A: For parameters in the large light gray area, banks are better off on average. In the top right area, the bank may
lose. However, the graph is drawn for the scenario in which payoffs with short covering are lowest, and it is compared to a
scenario when payoffs without short covering are highest. The circled area in Graph B indicates a situation where payoffs
decline, and it also illustrates why the set of such parameters is potentially quite small. The bottom left area is excluded by
Assumption 4. The figure is drawn for the standard empirical parameters β = 7%, O = S× 15%.
Graph B: The figure draws profits of the bank as a function of withdrawal costs C; the lower, black line is for the case
without short covering, and the higher, gray lines are for the case with short covering. Profits with short covering are lowest
at CSC, and the most extreme scenario of price drops relative to the situation without short covering combined with lowest
short-covering profits occur when Ĉ < CSC. The figure is drawn for this case. For the highest, dashed line, the bank gains
for every value C; in Graph A, this corresponds to the light gray area. For the lower, solid gray line, there is a range of costs
so that the bank loses. This corresponds to the upper right area in Graph A. As can be seen, even if parameters are such
that Ĉ < CSC, then the bank loses only for a small subset of costs. Moreover, a scenario where Ĉ < CSC holds only for a
subset of parameters (which is, however, not visible from these graphs). Appendix E describes in detail how these graphs
are derived.

B. Payoff Comparison for Issuer and Investors

Given our model specification we can only compare the revenue that the
issuer receives in settings with and without short covering.23 Suppose that with

23This is equivalent to expected profits: Profits here would be defined as the difference between
revenue per share and the true value, which, by the law of large numbers (LLN), is identical to the
aftermarket price.
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short covering, separation is maintained. If the high separation price decreases,
p̄SC < p̄, then the issuer loses.

Yet if there is a switch from separation to pooling, then the issuer may actu-
ally gain. The reason is that the expected price with separation is 1/2p0,0 + 1/2α1p1,1,
whereas with pooling it is 3/4p1,1/2. Using closed-form expressions for prices that
are outlined in the Appendix and some straightforward algebra, one can see that
payoffs with pooling are larger.24 In other words, the issuer prefers the bank to
play a pooling equilibrium.

Investors’ profits are directly opposed to the issuer’s profit. Whenever the
issuer gains (in expectation), investors lose and vice versa.

Even though this section is merely concerned with redistribution, it yields
an interesting insight. The investment bank is nearly always better off with af-
termarket short covering. The issuer never gains but often loses if separation is
upheld, but the issuer wins if banks switch from separation to pooling; the effect
on investors’ payoffs is the opposite.

VI. Conclusion

It is common legal practice that investment banks pursue price stabilizing ac-
tivities in the aftermarket of IPOs. We propose a theoretical model that highlights
the strategic impact of potentially profitable aftermarket trading on the offer price.
Our analysis shows that either the offer price is rendered informationally ineffi-
cient or, on average, underpricing is exacerbated as compared to the benchmark
case without aftermarket price stabilization.

On a more general level, with efficient, frictionless markets there would be
no need for price stabilization. As it stands, however, price stabilization is allowed
by the regulator, suggesting that the IPO aftermarket is considered to be an im-
perfect market. When operating and regulating in such an environment, one must
ensure that posited rules do not create a whole new set of problems. Underwriter
trading activities in the IPO aftermarket are usually rationalized as a means to en-
sure “a more orderly distribution of securities” and “a smaller aftermarket price
volatility.” We do not contest that these benefits exist. Before attaching payoffs
to these “soft” factors, however, it is imperative to first determine “hard” payoff
shifts that can be directly attributed to aftermarket short covering. To ensure that
the possibility of aftermarket short covering does not reduce informational effi-
ciency or increase underpricing, the bank could be prohibited from filling short
positions at prices below 1− β times the offer price.

Of course, in the current environment, short-covering profits are possible and
are thus accounted for by the banks. Eliminating short-covering profits lowers
banks’ total profits. All else being equal, at the margin this may cause banks
to decline contracts so that some companies cannot go public unless the gross
spread increases. Yet as Chen and Ritter (2000) say, “Investment bankers readily

24There is a small region of parameters, so that separation is still preferred because when short
covering does take place, fewer shares are issued.
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admit that the IPO business is very profitable,” so it seems unlikely that banks’
participation constraints would be violated in most cases.

Appendix A. Aftermarket Price Formation

An efficient market price correctly aggregates the number of positive and negative
signals about the value of the security. The offer demand is published after securities have
been issued. If only high-signal investors buy the offer, this demand reveals the total num-
ber of good (and bad) signals. If all investors order the security, stated demand is N, secu-
rities are allocated at random, but the demand is uninformative. Still, high-signal investors
expect the security to be worth more than low-signal investors, and thus high-signal in-
vestors without a share allotment are willing to buy it from low-signal investors with a
share allotment. Without modeling the price-finding procedure explicitly, we assume that
an intermediate market process reveals the number of high signals d. For instance, high-
signal investors without a share allotment submit unit market-buy orders, and low-signal
investors with a share allotment submit unit market-sell orders. All other investors abstain.
Let d̃ be the number of buyers and S̃ the number of sellers. Then the number of high-
signal investors is d̃ + S − S̃, and the market price pm will again depend on the number
of favorable signals d. The updated expectation of V thus becomes the aftermarket price,
pm(d) = E[V|d, μ] = Pr(V = 1|d, μ). Using Bayes’ rule, we can express the aftermarket
price as

pm(d|μ= 1)(A-1)

=
Pr(d|V = 1) Pr(sb = 1|V = 1)

Pr(d|V = 1) Pr(sb = 1|V = 1) + Pr(d|V = 0) Pr(sb = 1|V = 0)
.

The conditional prior distribution over signals has binomial structure, Pr(d|V = 1) =(N
d

)
qd

i (1 − qi)
N−d. Price information μ about sb is unambiguous in a separating equilib-

rium. We can therefore replace it with the conditional probability of the bank’s signal being
correct, qb or 1− qb. Then

pm(d|μ= 1) =
qbq2d−N

i

qbq2d−N
i + (1− qb)(1− qi)2d−N

.(A-2)

Appendix B. Omitted Proofs

Proof of Lemma 1. Suppose p∗ > p0,0. At this price, only high-signal investors buy. A
high-signal bank will always set a price where at least high-signal investors buy. Hence,
high-signal investors buy at both prices p∗ and p̄∗. A low-signal bank can now increase its
payoff by setting a higher price, as α0 is not affected by this, a contradiction. �

Proof of Proposition 1. First we will argue that the only separating equilibrium surviving
the intuitive criterion (IC) is the one outlined in the proposition. Then we will argue that
pooling cannot occur.

Step 1 (Separating). First observe that there cannot be a separating price p̄∗ where
investors choose B0,1 because otherwise the low-signal bank would deviate to this price.
Note that no separating price with p̄∗ > φ0(p0,0) can exist because at this price, the low-
signal bank would prefer to deviate. No price p̄∗ > p1,1 can exist, since not even high-
signal investors would buy. Furthermore, p̄∗ ≥ φ1(p0,0) must be satisfied, since otherwise
the high-signal bank would prefer to deviate to p0,0. Finally, no price p̄∗ below p1,0 is
reasonable because the high-signal bank would then deviate to this price. Take p̃, with
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max{φ1(p0,0), p1,0} ≤ p̃ ≤ min{p1,1, φ0(p0,0)}. Note that such a p̃ always exists as long
as φ1(p0,0) ≤ p1,1 and p1,0 ≤ φ0(p0,0). The conditions stated in Proposition 1 ensure this
is the case because φ1(p0,1/2) > φ1(p0,0) and p1,1/2 > p1,0.

We analyze the candidate separating equilibrium

{(p∗ = p0,0, μ= 0,B0,1) ; (p̄∗ = p̃, μ= 1,B1);

(p∗ �∈ {p∗, p̄∗}, μ= 0,B0,1 if p ≤ p0,0,B1 if p0,0 < p ≤ p1,0,B∅ else)}.

By definition of φ0(p0,0), it holds that

βp0,0S = α0βφ0(p0,0)S− (1− α0)C > α0βp̃S− (1− α0)C,

so that the low-signal bank would not deviate to p̃. Since max{φ1(p0,0), p1,0} ≤ p̃, the
high-signal bank also would not deviate. Hence this is a PBE.

Now consider the application of the IC. Suppose a high separation price p̄ = ˜̃p with
p̃ < ˜̃p ≤ min{p1,1, φ0(p0,0)} is observed. This price is equilibrium dominated for a bank
with sb = 0 by definition of φ0(p0,0). The low-signal bank can therefore be excluded from
the set of potential deviators. The only remaining agent is the high-signal bank. The best
response of high-signal investors then is to buy at p̄ = ˜̃p (i.e., B1). Hence the PBE with
p̄∗ = p̃ does not survive the IC. Applying this reasoning repeatedly, all separating prices
with p̄ < min{p1,1, φ0(p0,0)} can be eliminated.

Step 2a (Pooling with B0,1). For all investors to buy, we must have p ≤ p0,1/2. Sup-
pose there was deviation to p= φ1(p0,1/2) < φ0(p0,1/2). For the low-signal bank, this would
not be profitable by definition of φ0(p0,1/2). But for some beliefs about the signal of the
bank and corresponding best responses, high-signal investors could be better off. The best
response for investors with beliefs on the remaining set of types (i.e., μ = 1), however, is
B1, as we have φ1(p0,1/2) < p1,1. Hence, applying IC, there cannot be a pooling equilibrium
with B0,1.

Step 2b (Pooling with B1). We must have p ≤ p1,1/2. Since φ0(p0,0) > p1,1/2, the
low-signal bank would prefer to deviate to p0,0, hence this cannot be an equilibrium.

To summarize, restrictions φ1(p0,1/2) < p1,1 and φ0(p0,0) > p1,1/2 ensure that the only
equilibrium surviving the IC is the one depicted in Proposition 1. �

Proof of Proposition 2. It suffices to show the result for the highest possible separating
offer prices as it will then necessarily hold for lower separating prices. The market price
will resemble the true value of the security by the law of large numbers (LLN) applied to
informative signals. Assumptions 1 and 2 imply that the IPO fails with probability 0.5 if
the bank sets the high separation price and the true value is V = 0. Likewise, if the true
value is V = 1, then the IPO never fails. The bank sets the high price when it receives the
high signal, and it sets the low price when it sets the low signal. If the true value is V = 1
then there is underpricing of 1−price. If the true value is V = 0, then there is underpricing
of −price. Using the signal probabilities, average underpricing is

Pr(V = 1)[qb(1− p1,1) + (1− qb)(1− p0,0)]

+ Pr(V = 0)

[
1− qb

2
· (−p1,1) + qb(−p0,0)

]
=

1
2

[
1− p0,0 − 1 + qb

2
p1,1

]
=

1
2
(1− qb − p0,0),
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where the last step follows using the closed-form prices from Appendix C. Straightforward
algebra yields that 1− q− p0,0 > 0 for all qb, qi > 1/2. �

Proof of Lemma 2. Without short covering, all profits stem from the gross spread; with
short covering, there are also profits from short covering. Fixing all exogenous parameters,
the offer revenue stays constant when short covering is introduced because the amount of
floated securities is assumed to remain constant. It thus suffices to check if for a fixed price
φ0(p0,0), short-covering profits for the low-signal bank are higher than for price p0,0. For if
so, then the high-signal bank has to lower the price to prevent a deviation by the low-signal
bank.

The low-signal bank knows that the aftermarket price falls whenever demand is low.
Employing the closed-form probabilities and prices that we derive in Appendix C, the low-
signal bank attaches probability qb/2 to the case that the IPO goes through at risky price
φ0(p0,0) and that prices then fall in the aftermarket. By the LLN, short covering always oc-
curs at price 0. Rising prices are no concern because of the overallotment option. The total
expected short-covering payoffs are thusΠSC(φ0(p0,0)|B1, sb=0)=(1−β)Oφ0(p0,0)qb/2.
If the bank sets the low price, p0,0, then the offer will always go through, and prices drop
in the aftermarket with probability q. Expected payoffs are thus ΠSC(p0,0|B0,1, sb = 0) =
(1− β)Op0,0qb. Thus

ΠSC(φ0(p0,0)|B1, sb = 0)−ΠSC(p0,0|B0,1, sb = 0) = (1− β)Oqb[φ0(p0,0)/2− p0,0].

Assumption 4 ensures that the above is positive because φ0(p0,0)/2 − p0,0 > p1,1/2/2 −
p0,0 > 0. �

Proof of Proposition 3. Lemma 2 ensures that CSC ≥ C. The model is set up so that all
payoffs Π + ΠSC can be dealt with as one. The pooling outcome transpires analogously
to Proposition 1; payoff dominance rules out separating equilibria in which both types of
banks make lower profits than in the pooling equilibrium. Value ĈSC exists analogously to
Proposition 1, and Lemma 2 ensures that ĈSC > Ĉ. By definition, for C > ĈSC, the highest
attainable price is p1,1, and it is the only one selected by IC. �

Proof of Proposition 4. From Proposition 3 we know that a pooling equilibrium results
for all C < CSC. Value CSC is defined as the value of C for which equation (11) is fulfilled
with φSC

0 (p0,0) = p1,1/2. Solving for CSC one obtains

CSC =
β(S + O)
1− α0

(
α0p1, 1

2
− p0,0

)
+
(1− β)Oqb

1− α0

(p1, 1
2

2
− p0,0

)
.(B-1)

Partially differentiating with respect to O we obtain

∂CSC

∂O
=

β

1− α0

(
α0p1, 1

2
− p0,0

)
+
(1− β)qb

1− α0

(p1, 1
2

2
− p0,0

)
.(B-2)

Both terms in brackets are positive by Assumption 4 as long as qb < 1. Using that S + O=
(1 + r)S, partial differentiation with respect to β yields

∂CSC

∂β
=

S(1 + r)
1− α0

(
α0p1, 1

2
− p0,0

)
− rSqb

1− α0

(p1, 1
2

2
− p0,0

)
(B-3)

=
S

1− α0

(
((1 + r)α0 − r(1− α0))(p1, 1

2
− 2p0,0) + p0,0(2α0 − 1)

)
.

As α0 > 1− α0, all terms are positive.
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Exacerbated underpricing occurs for costs in the region (CSC, ĈSC). We now show
that ĈSC increases in β and O and that it increases more than CSC. This requires the same
steps as above:

ĈSC =
β(S + O)
1− α0

(α0p1,1 − p0,0) +
(1− β)Oqb

1− α0

(p1,1

2
− p0,0

)
,(B-4)

∂ĈSC

∂O
=

β

1− α0
(α0p1,1 − p0,0) +

(1− β)qb

1− α0

(p1,1

2
− p0,0

)
> 0,(B-5)

∂ĈSC

∂β
=

S
1− α0

(((1 + r)α0 − r(1− α0))(p1,1 − 2p0,0) + p0,0(2α0 − 1))(B-6)

> 0.

Obviously, p1,1 > p1,1/2, so that the respective derivatives are all larger for ĈSC than for

CSC. �

Appendix C. Threshold Prices and Their Closed Forms

Threshold Prices. Denote by psi,μ the maximum price at which an investor with signal
si and price information μ buys, given all investors with s̃i ≥ si buy. At this price the
investor’s expected return from buying the security is 0, normalizing outside investment
opportunities accordingly.

Define ψ(1|1, 1) := Pr(V=1|si=1, μ=1) and ψ(0|1, 1) := Pr(V=0|si=1, μ=1).
Consider now the structure of the conditional distribution f (d − 1|V). For V = 1, this
is a binomial distribution over {0, . . . ,N − 1} with center (N − 1)qi, and likewise for
V = 0 with center (N − 1)(1− qi). Since by Assumption 2, N is “large enough” for every
qi, f (d − 1|1) = 0 for d < N/2 and f (d − 1|0) = 0 for d ≥ N/2. When combining
f (d − 1|1) and f (d − 1|0), we obtain a bimodal function. In g(d − 1|si, μ), investors’
posterior distribution over demands, these are weighted with ψ(1|si, μ) and ψ(0|si, μ).
Assumption 2 now satisfies two purposes. The first is to ensure that we pick N large enough
so that the two humps do not overlap. The second can be seen from the following insight:

Claim. For qi > 1/2 and any δ > 0, there exist a number of investors N(qi), such that

∑
pm(d)f (d − 1|0) < δ, and

∑
pm(d)f (d − 1|1) > 1− δ.

The claim states that market prices are mostly 0 or 1; if they are not, then the weight of
this demand is negligible. To see this, consider the following heuristic argument. Figure C1
provides an intuitive illustration of how the increase in N yields the result.

Proof. Say pm(d) as given by equation (A-2) is an S-shaped function in d that is 0 below
N/2 and 1 above for almost all d when N is large. We focus on the lower tail, when
d < N/2; the case for d ≥ N/2 follows analogously. For fixed ε, define d∗ as the threshold
value that solves pm(d)=ε and increases linearly in N (it is at constant distance from N/2).
Density g(d−1|si, μ) peaks at (N−1)(1−qi) and (N−1)qi. For large N, the two binomial
distributions in g are normal by DeMoivre-Laplace, and because the standard deviation is
increasing in N only by

√
N, the distributions become more concentrated around their

means. Let d∗∗ denote the demand so that the weight under f (d − 1|0) for values above
d∗∗ is smaller than ε,

∑N
d=d∗∗ f (d − 1|0) = ε. Then d∗∗ increases in N at rate ≈ √N (i.e.,

less than linear). This implies that there is a value N∗ so that d∗ > d∗∗. Consequently,∑
pm(d)f (d − 1|0) < (1− ε) · ε + ε · 1= :δ and can thus be made arbitrarily small. �
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FIGURE C1

The Market Price and the Distribution of Favorable Signals
in Dependence of the Number of Investors

Figure C1 illustrates how the shape of the aftermarket price function and the distribution of favorable signals change in the
number of investors. Graphs A–C are plotted for qi =qb = 0.75. The conditional probability distribution over d− 1 others’
favorable signals as described in Appendix C is plotted from the perspective of an investor who has favorable information.
The market price pm (d) is as in equation (A-2), but it has been rescaled to simplify the visualization; it is the dashed line.
Graph A plots the probability of d−1 favorable signals and the market price for N=10. The conditional signal distributions
f(d − 1|0) and f(d − 1|1) are clearly not symmetric around their modes. For N = 50, as in Graph B, the two distributions
f(d − 1|0) and f(d − 1|1) are already almost symmetric around their modes and also the “overlap” with values in pm (d)
that are not 0 or 1 is small. In Graph C, N = 100 and this overlap is almost nonexistent.

A simple application of this claim is that

N∑
d=N/2

pm(d)
S
d

g(d − 1|1, 1) ≈ 1 ·
N∑

d=N/2

S
d

g(d − 1|1, 1),

N/2−1∑
d=S

pm(d)
S
d

g(d − 1|1, 1) ≈ 0.

Using the claim, we can determine the threshold prices as follows: Consider first p1,1.

0 = (1− p1,1)
N∑

d=N/2

S
d

g(d − 1|1, 1)− p1,1

N/2−1∑
d=S

S
d

g(d − 1|1, 1)(C-1)

⇔ p1,1 =

∑N
d=N/2

S
d g(d − 1|1, 1)∑N

d=S
S
d g(d − 1|1, 1) .

For d ≥ N/2, g(d − 1|si, μ) = ψ(1|si, μ)f (d − 1|1) and for d < N/2, g(d − 1|si, μ) =
ψ(0|si, μ)f (d − 1|0). Also define

Σ0 :=
N/2−1∑

d=S

f (d − 1|0)/d and likewise

Σ1 :=
N∑

d=N/2

f (d − 1|1)/d, and σ :=
Σ0

Σ1
.

Also write �(μ) :=ψ(0|1, μ)/ψ(1|1, μ). Thus, for the combination of signal si and price-
information μ with B1, we can write

p1,1 = (1 + σ�(1))−1 and likewise p1, 1
2
= (1 + σ�( 1

2 ))
−1.(C-2)
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Consider now the case for p0,0. At this price all agents receive the security with equal
probability and we sum from 1 to N. Thus

0 = (1− p0,0)
N∑

d=N/2

S
N

g(d − 1|0, 0)− p0,0

N/2−1∑
d=1

S
N

g(d − 1|0, 0)(C-3)

⇔ p0,0 = ψ(1|0, 0).
Likewise we have

p0, 1
2
= ψ

(
1|0, 1

2

)
.(C-4)

Closed Forms of Threshold Prices. We will now derive approximate closed-form solu-
tions so that we can solve our model analytically. In this Appendix we let d denote the
number of other investors with favorable information—this contrasts with the previous ex-
position but simplifies the notation here. First consider the strategy of agent number N.
There are N − 1 other investors. Given that he invests and the true value is, say, V = 1,
then by the LLN, demand/the number of favorable signals will always be larger than N/2.
Furthermore, the market price is almost surely pm(d) = 1. If d others order, then when
buying he gets the asset with probability 1/(d + 1). Thus his payoff for price p is

(1− p)
N−1∑

d=S−1

1
d + 1

(
N − 1

d

)
qi

d(1− qi)
N−1−d

= (1− p)
N−1∑

d=N/2

1
d + 1

(
N − 1

d

)
qi

d(1− qi)
N−1−d.

To compute the sum, we proceed in a similar manner as one would to compute the ex-
pected value of a binomial distribution. First observe that for large N the following holds
(approximately):

N−1∑
d=N/2

1
d + 1

(
N − 1

d

)
qi

d(1− qi)
N−1−d =

N−1∑
d=0

1
d + 1

(
N − 1

d

)
qi

d(1− qi)
N−1−d.

Then we can compute

N−1∑
d=0

1
d + 1

(
N − 1

d

)
qi

d(1− qi)
N−1−d

=
1

qiN

N−1∑
d=0

N!
(N − (d + 1)) ! (d + 1)!

qi
d+1(1− qi)

N−1−d

=
1

qiN

(
N∑

l=0

(
N
l

)
qi

l(1− qi)
N−l −

(
N
0

)
qi

0(1− qi)
N−0

)

=
1

qiN
(1− (1− qi)

N).

In the second step we made a change of variable, l= d + 1, but through this change we had
to subtract the element of the sum for l= 0. Consequently, for large N, we can say that

N−1∑
d=N/2

1
d + 1

(
N − 1

d

)
qi

d(1− qi)
N−1−d ≈ 1

qiN
and(C-5)

N−1∑
d=0

1
d + 1

(
N − 1

d

)
qi

N−1−d(1− qi)
d ≈ 1

(1− qi)N
.(C-6)
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Recall that we can write p1,1 as

p1,1 =
1

1 + �(1)
Σ0

Σ1

.(C-7)

We now need to find a closed form for

Σ0 =

N/2∑
d=S−1

1
d + 1

(
N − 1

d

)
qi

N−1−d(1− qi)
d.(C-8)

For increasing N one can see that (1/(d + 1))
(N−1

d

)
qi

N−1−d(1 − qi)
d gets numerically

symmetric around (1− qi)(N − 1). Thus we can express

Σ0 =
1
2

N/2∑
d=0

1
d + 1

(
N − 1

d

)
qi

N−1−d(1− qi)
d(C-9)

=
1
2

N∑
d=0

1
d + 1

(
N − 1

d

)
qi

N−1−d(1− qi)
d

≈ 1
2

1
(1− qi)N

.

Combining terms, we obtain

p1,1 =
1

1 + �(1)
Σ0

Σ1

≈ 1

1 +
(1− qi)(1− qb)

qiqb

qiN
2(1− qi)N

(C-10)

=
2qb

1 + qb
≡ qb

α1
.

Similarly, we get

p1, 1
2
≈ 1

1 +
1− qi

qi

qiN
2(1− qi)N

=
2
3
, and p0,1 ≈ 1− qb

α0
.(C-11)

The information content of a high pooling price is 1/2, and knowing this information, the
probability of the offering being successful is 3/4. Thus the interpretation of risky prices is
the ratio of the expected liquidation value given price information to the share of successful
offerings given this information:

p1,μ =
E[V|μ]

Pr(IPO successful | μ) .(C-12)

Appendix D. Maximal Reputation Costs

If an IPO fails, the worst that can happen is that the investment bank loses all future
IPO business (i.e., it is out of the market). Assuming that future business takes place in
the same environment (e.g., the quality of signals remains constant), the bank can maxi-
mally lose all discounted future profits. Assume that the bank discounts future profits at
rate δ. Consider the case of highest potential costs C̄ that can occur from a failing IPO in a
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separating equilibrium. An upper bound for costs is given by the discounted lost future
profits if p̄= p1,1. Then ex ante profits of a single IPO are

Π(p0,0, p1,1,C) =
1
2
(S + O)β

(
p0,0 +

1 + qb

2
p1,1

)
− 1− qb

4
C.(D-1)

Assuming that an investment bank would conduct one IPO each period and accounting for
the fact that in a separating equilibrium the ex ante probability of the IPO to be successful
is (3 + qb)/4, we get

Cmax =
∞∑

t=0

(1− δ)t · ((3 + qb)/4)
t ·Π(p0,0, p1,1,Cmax).(D-2)

Solving for maximal possible costs, we obtain

Cmax = 2(S + O)β
p0,0 +

1 + qb

2
p1,1

δ(3 + qb) + 2(1− qb)
.(D-3)

Comparing values of Cmax to those of C̄ shows that for qi and qb sufficiently large C̄ 

Cmax. Furthermore, for reasonable values of the discount rate, the reverse relation holds
true only for values of qi and qb where we get C̄SC < C̄. That is, either C̄SC < C̄ and
informational inefficiencies result, or C̄ is so large that it lies outside the relevant parameter
region in the context of this model.

Appendix E. Payoff Comparison

To compare payoffs, we compute these both when short covering is allowed and
when it is not. In the computations, we employ the closed-form price and probability ap-
proximations derived above. When computing payoffs numerically, we use the empirically
observed numbers β = 7% and O= 15%S.

Payoffs for High- and Low-Signal Banks Combined. First observe that if costs are lower
than C or if costs are higher than ĈSC, then banks always win. The reason is that in both
cases the prices and thus expected revenues remain constant. In addition, the bank earns
short-covering profits.

We consider two special cases.
First, suppose that costs are exactly Ĉ. We then know that without short covering, the

high price is p1,1. Let us focus on the case where at this cost with short covering, banks
pool in price p1,1/2. We know that Ĉ is defined so that

Π(p0,0|sb = 0,B0,1) = Π(p1,1|sb = 0,B1).(E-1)

We can therefore express these profits as

Π(p0,0|sb = 0,B0,1) +Π(p1,1|sb = 1,B1) =(E-2)

(α1 + α0)βS(1 + r)p1,1 − ((1− α1) + (1− α0))C.

With short covering, profits are

Π(p1, 1
2
|sb = 0,B1) +Π(p1, 1

2
|sb = 1,B1) +ΠSC(p1, 1

2
|sb = 0,B1) +ΠSC(p1, 1

2
|sb = 1,B1)

= (α1 + α0)βS(1 + r)p1, 1
2
− ((1− α1) + (1− α0))C

+((1− α1) + (1− α0))(1− β)p1, 1
2
rS.
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Substituting for the closed-form approximations of prices and probabilities, and then taking
the difference of payoffs with and without short covering, this simplifies to

(E-3) S

(
β(1 + r)

(
1− 3qb

1 + qb

)
+

1
3
(1− β)r

)
.

This is positive as long as r is sufficiently larger than β and holds, for instance, for the
empirically observed values r = 15%, β = 7%. For this reason, the gray line is always
above the black line at Ĉ in Graph B of Figure 4.

The second scenario that we study is when costs are CSC. In this case, φSC
0 (p0,0) =

p1,1/2. The most extreme drop in revenue happens when Ĉ < CSC, so that without short
covering at the costs that we consider, the bank plays a separation equilibrium with high
price p1,1. Note that for such a cost CSC > Ĉ, without short covering the low-signal bank
is not indifferent between a risky and a riskless price as φ0(p0,0) > p1,1 and thus strictly
prefers the low separation price. With short covering, by the definition of CSC, the low-
signal bank is indifferent between the risky price p1,1/2 and the risk-free low separation
price p0,0. So the differences to the above computations are the payoffs for the low-signal
type,

Π1(p0,0|sb = 0,B0,1) = p0,0βS(1 + r),(E-4)

Π1(p0,0|sb = 0,B0,1) +Π2(p0,0|sb = 0,B0,1) = p0,0βS(1 + r) + q(1− β)rSp0,0.(E-5)

Combining this with the high-signal bank’s payoff and taking differences, we find that if

(E-6) ((1− q)(1− β)r − (2q− 1)β(1 + r) + 3q(1− β)p0,0) S/3 < 0,

then the bank loses on average. The upper right segment in Graph A of Figure 4 represents
the parameter configurations qb and qi where this occurs.

With respect to signal qualities, this area appears to be significant. But note that this
is the most extreme case in all dimensions: This scenario arises only for the special case
that also CSC > Ĉ, and it only arises in a strict subinterval of [Ĉ, ĈSC]. Moreover, even in
the special case, the bank is on average better off for all other costs. Graph B of Figure 4
illustrates this point. To summarize, the bank is almost always better off, on average.
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