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†Department of Computer Science, University of Bologna, Italy

Email: laneve@CS.UniBO.IT
‡Department of Information Technology, Uppsala University, Sweden

Email: Bjorn.Victor@it.uu.se

Received 15 February 2001; revised 15 May 2002

We present a calculus of mobile processes without prefix or summation, called the solos

calculus. Using two different encodings, we show that the solos calculus can express both

action prefix and guarded summation. One encoding gives a strong correspondence, but uses

a match operator; the other yields a slightly weaker correspondence, but uses no additional

operators. We also show that the expressive power of the solos calculus is still retained by

the sub-calculus where actions carry at most two names. On the other hand, expressiveness

is lost in the solos calculus without match and with actions carrying at most one name.

1. Introduction

The fusion calculus was introduced by Parrow and Victor (Parrow and Victor 1998a;

Victor and Parrow 1998; Parrow and Victor 1998b) as a simplification and extension of

the π-calculus (Milner et al. 1992). The simplification is easy to see: the fusion calculus

has only one binding operator while the π-calculus has two; in the fusion calculus, input

and output are completely symmetric, unlike in the π-calculus; and the fusion calculus

has only one sensible bisimulation congruence while the π-calculus has three (Parrow and

Victor 1998a). The extension is that the effects of communication need not be local to

the recipient process. Furthermore, the fusion calculus contains the π-calculus as a proper

sub-calculus and thus inherits all its expressive power.

In recent years the asynchronous π-calculus (Honda and Tokoro 1991; Boudol 1992)

has attracted interest; here the asymmetry between input and output is further increased

by dropping continuations from output prefixes. The resulting calculus has significant

expressive power, and is also motivated by practical implementation in distributed systems.

In the fusion calculus it would be unfortunate if we had to break the symmetry between

input and output in order to develop an asynchronous subcalculus. Indeed, in this paper

we show that continuations may be removed both from inputs and outputs – hereafter

called solos – without loss of expressive power. More precisely, the fusion calculus of

solos, or solos calculus for short, where prefixes are replaced by solos and summation is

removed, is expressive enough to encode prefixes and guarded summation.

We give two different encodings of the fusion calculus in the solos calculus. One

preserves strong barbed bisimulation but uses a match operator; the other yields weak

barbed bisimulation but uses no additional operators. Both preserve divergence. A more

precise account of our work follows.
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In the fusion calculus, as in other mobile calculi, the purpose of a prefixing α . P is to

freeze the continuation agent P until the action α has been consumed in a reduction. In

other words, every reduction involving P causally depends on the reduction involving the

prefix α. A second form of causal dependency is that inherent in the match operator:

[x = y]P freezes the agent P until x and y are the same. In the fusion calculus, this can

be caused by a fusion effect produced in another, parallel, agent. This construction is used

in our first encoding.

Apart from these explicit causal dependencies, mobile calculi possess another, implicit

form of causal dependency, which relies on the scope (or restriction) operator (causal

dependencies in the π-calculus have been studied in several works, such as Boreale and

Sangiorgi (1998), and Degano and Priami (1995)). Consider, for instance, the following

agent:

(v)(u v | v y).
In this agent, the solo v y can in no way react before the solo u v because the subject

name v is bound. When u v reacts, the scope of v is extended, possibly enabling a reaction

with v y. In our second encoding, we employ this type of causal dependency.

A similar mechanism is used in the encoding of π-calculus into the asynchronous π-

calculus, where continuations of output prefixes are dropped (Honda and Tokoro 1991;

Boudol 1992). In particular, π-calculus outputs are translated into outputs carrying local

names, in parallel with the continuation prefixed by an input on the local name. However,

the asynchronous π-calculus cannot be further simplified by also dropping continuations

of input prefixes. The reason is that in the π-calculus the communication mechanism is

asymmetric, because names carried by the output replace the names carried by the input.

Thus the information flow is unidirectional and only affects the continuation of the inputs.

Therefore the communication mechanism becomes meaningless once input continuations

are also removed.

A key for our encodings is the use of catalyst agents of the type (z)u zz, which inputs the

same name twice. If some agent in parallel composition with (z)u zz sends any two names

on u, they will be fused and made indistinguishable everywhere. In one of our encodings

such a fusion effect enables an agent guarded by a match construction testing two names

for equality; in the other, it removes the restriction of a private communication channel,

thereby enabling the channel.

An important factor for writing catalyst agents is that the calculus admits solos that

carry two names – the dyadic solos calculus. We demonstrate that the polyadic solos

calculus, where solos can carry arbitrarily many objects, may be encoded into the dyadic

one. We also show that the expressiveness of the polyadic solos calculus without match is

strictly greater than that of monadic solos.

Related work

Parrow (2000) shows that in the π-calculus without match, any agent can be encoded as

a concert of trios, that is, a parallel composition of possibly replicated prefixes α1 . α2 . α3

up to weak open equivalence (Sangiorgi 1996). He also shows that duos, that is, prefixes
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nested to depth 2, are not sufficient. In this paper we show that for the fusion calculus,

solos suffice, that is, we do not need prefixes at all.

Nestmann and Pierce (1996) shows that input-guarded choice
∑

i ui(x̃i) . Pi can be en-

coded in the asynchronous π-calculus without choice, up to coupled bisimulation (Parrow

and Sjödin 1992), and Nestmann (1997) gives encodings of separate and mixed guarded

choice. While these encodings involve increasingly complex communication protocols, our

encodings of separate choice are simpler and work up to stronger equivalences.

Palamidessi (1997) shows that there cannot exist an encoding of mixed choice into the

asynchronous π-calculus that is uniform and preserves a reasonable semantics. A uniform

encoding is compositional, meaning that [[P | Q]] = [[P ]] | [[Q]], and respects injective re-

naming of free names. A reasonable semantics distinguishes two processes P and Q if

the actions in some computation of P are different from those in any computation of

Q; in particular, it is sensitive to divergence. Nestmann (Nestmann 1997) argues that

these criteria are too strong for practical purposes, and that by allowing a top-level

context (but keeping the inner encoding compositional), or relaxing reasonableness, many

practically motivated encodings turn out to be ‘good’. Indeed, even more theoretically

motivated encodings often use top-level contexts, including our second encoding in

this paper – it does, however, respect injective renamings. Our first encoding does

not need top-level encoding, but is, in fact, uniform and reasonable in Palamidessi’s

sense.

Yoshida (1998) presents separation results between subcalculi of the asynchronous π-

calculus (without match and choice) by means of concurrent combinators, and shows the

non-existence of encodings between such subcalculi. Here a concept of standard encoding

is used, which means that the encoding is homomorphic, respects injective substitutions,

and preserves weak observations and reductions. In addition to this, the encodings

are required to be message-preserving, that is, [[u x]] ≈ u x. While our first encoding is

standard by this definition, neither of them is message-preserving. Yoshida works with

monadic calculi, where the requirement may be quite sensible, but in a polyadic setting

this requirement seems very strong, especially when only considering encoded contexts.

Yoshida also proves that the reflexive π-calculus, a variant of the π-calculus similar to the

monadic solos calculus, does not contain a synchroniser agent such as a(x) . b(y) . c y, and

is therefore less expressive than the monadic asynchronous π-calculus. In this paper we

show that in the polyadic solos calculus such an agent can indeed be encoded, although

our encodings are not message-preserving, but rather add a ‘protocol header’ to the data

being sent and received.

Recently, Gardner and Wischik have introduced a calculus with explicit fusions of

names (Gardner and Wischik 2000). This calculus is similar to the fusion calculus, but

with a local reduction rule. The similarity is strengthened by a fully-abstract translation

relating the fusion calculus and the one with explicit fusions. In view of this translation,

our expressiveness results (in particular, the encodings without the match operator and

the result about the monadic sub-calculus) should be easily adaptable to the calculus with

explicit fusions. Our results cannot be applied in the χ-calculus (a monadic variant of the

fusion calculus developed independently in Fu (1997)), since the χ-calculus is monadic

and thus (as we show in Section 5) not expressive enough.
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In the action calculus framework, Honda (2000) introduced a monadic essential π-

calculus, which is similar to our solos calculus, but he does not study the relation to the

calculus with prefix operator. In his calculus the interaction ab | ac results in a wire or

open substitution [b = c], which has similarities to the explicit fusions of Gardner and

Wischik.

Structure of the paper

The next section introduces our language, its model and the equivalences we use in the

rest of the paper. In Section 3, we detail the encodings of prefixes and the proofs of the

main results. In Section 4, we extend our results to replication. In Section 5, we study

the dyadic solos calculus and the encoding of polyadic solos; we also show that the

expressiveness of dyadic solos is strictly greater than the monadic ones. In Section 6, we

present encodings of the choice operator. We give conclusions in Section 7. Additional

proofs and examples appear in the appendices.

2. The solos calculus

In this section we first present a subcalculus of the fusion calculus where we use solos of

the form u x̃ in place of general prefixes of the form u x̃ . P , and leave out summation. We

present the syntax and semantics, review the barbed equivalences and congruences, and

introduce an auxiliary barbed expansion preorder.

2.1. Syntax

We assume an infinite set N of names ranged over by u, v, . . . , z. Names represent

communication channels, which are also the values being transmitted in communications.

We write x̃ for a (possibly empty) finite sequence x1 · · · xn of names, and we write |x̃| for

its length. Name substitutions, written {ỹ/x̃} and ranged over by σ, are total functions

on N such that u �= σ(u) for finitely many names u. We use dom(σ) = {u : σ(u) �= u}
and ran(σ) = {σ(u) : σ(u) �= u}. As usual, P {ỹ/x̃} means the simultaneous substitution of

names x̃ in P with names ỹ.

We write {x̃ = ỹ} for the smallest equivalence relation on N relating each xi with yi,

and say that a substitution σ agrees with the equivalence ϕ if for every x, y, xϕy if and

only if σ(x) = σ(y).

Definition 1. The solos, ranged over by α, and the agents, ranged over by P ,Q, . . . , are

defined by

α ::= u x̃ (input)

u x̃ (output)

P ::= 0 (inaction)

α (solo)

Q | R (composition)

(x)Q (scope)

[x = y]Q (match)
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Table 1. Reduction rules for the solos calculus.

(z̃)
(
M̃u x̃ | Ñu ỹ | R

)
−→ Rσ

P −→ P ′

P | Q −→ P ′ | Q
P −→ P ′

(x)P −→ (x)P ′
P ≡ Q Q −→ Q′ Q′ ≡ P ′

P −→ P ′

Side conditions in the first rule:

|x̃| = |ỹ|, M̃ ⇔ Ñ ⇔ true,

σ agrees with {x̃ = ỹ}, ran(σ) ∩ z̃ = �, and dom(σ) = z̃.

In solos, the name u is the subject of the solo, and the names x̃ are the objects. We write

a to stand for either u or u, thus ax̃ is the general form of a solo. Note that in contrast

with input prefixes in the π-calculus, the input solo here does not bind its objects.

A composition allows two solos to interact. We often abbreviate the composition of Pi

for i ∈ I , where I is a finite set, by
∏

i∈I Pi.

The scope (x)Q limits the scope of x to Q; the name x is said to be bound in (x)Q. This

is the only binding operator in solos calculus. We write (x̃)P for (x1) · · · (xn)P , n � 0. The

free names in P , denoted fn(P ), are the names in P with a non-bound occurrence.

A match [x = y]Q acts like Q if x and y are the same name. We use M,N to stand

for a match operator, and write match sequence to mean a sequence of match operators,

ranged over by M̃, Ñ. We also write M̃ ⇔ Ñ if the conjunction of all matches in M̃

logically implies all elements in Ñ and vice versa. We write labelled nodes M to mean the

names occurring in M.

2.2. Reduction semantics

Following Milner’s presentation of π-calculus semantics (Milner 1993), we first define a

structural congruence that equates all agents we will never want to distinguish for any

semantic reason, and then use this when giving the operational semantics.

Definition 2. The structural congruence, ≡, between agents is the least congruence con-

taining alpha equivalence and satisfying the abelian monoid laws for composition

(associativity, commutativity and 0 as identity), and the scope laws

(x)0 ≡ 0, (x)(y)P ≡ (y)(x)P , [x = x]P ≡ P

(x)MP ≡ M(x)P , if x �∈ labelled nodes M

P | (z)Q ≡ (z)(P | Q), if z �∈ fn(P ).

The reduction relation of the solos calculus is the least relation satisfying the rules in

Table 1, where structurally equivalent agents are considered the same.

The side-condition of the main reduction rule states that z̃ contains all but one

representative of each equivalence class of {x̃ = ỹ}, and that the substitution maps each

equivalence class on that representative. For instance, the reduction

(x)(u x | u y | R) −→ R{y/x}
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makes the equivalence class {x = y}, and the substitution {y/x} maps x to y. Note that

the above rule may be applied provided the scope of substituted names is localised to the

term to be reduced. For this reason, the rule also garbage collects substituted names, since

they do not occur anymore in their scope. As a particular case, u x | u x | R −→ R without

a scope operator, since the equivalence relation {x = x} has only singular equivalence

classes, so the resulting substitution is the identity relation.

The separation of binding from input makes it possible to write agents such as the

catalysts mentioned in the introduction. When (x)u xx is put into a context where an

output u yz occurs with its objects sufficiently bound (that is, either y or z is bound), they

are fused together:

(x)u xx | (y)(u yz | R) ≡ (xy)(u xx | u yz | R) −→ R{z/x, z/y} = R{z/y}

assuming x �∈ fn(R).

The effects of a reduction may spread all over the term, according to the placement of

bindings with respect to the interacting solos. In particular, effects may be bi-directional,

as in

(x)(a xy | P ) | (z)(awz | Q) −→ P {w/x} | Q{y/z} .

We conclude with a remark about the reduction semantics.

Remark 3. The behaviour of an agent is invariant under the replacement of all solos u x̃

with u x̃, and u x̃ with u x̃ (changing the polarity of solos) because the effects of reductions

are fusions of names, rather than substitutions.

2.3. Behavioural equivalence

We will use the standard idea of barbed bisimulation developed by Milner and Sangiorgi

(Milner and Sangiorgi 1992a) in the setting of CCS, which has been further investigated in

a π-calculus setting (Sangiorgi 1993), and later used in many other calculi as an intuitive

observational equivalence. The idea is that two agents are considered equivalent if their

reductions match and they are indistinguishable under global observations.

Definition 4. The observation relation is the least relation satisfying the following rules:

x ỹ ↓ x

x ỹ ↓ x

[x = x]P ↓ y if P ↓ y

(P | Q) ↓ x if P ↓ x or Q ↓ x

(x)P ↓ y if P ↓ y and x �= y.

We say that P has a barb on x if P ↓ x.

Definition 5. A strong barbed bisimulation is a symmetric binary relation S between

agents such that P S Q implies:

1 If P −→ P ′, then Q −→ Q′ and P ′ S Q′.

2 If P ↓ x for some x, then Q ↓ x.
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P is strong barbed bisimilar to Q, written P
�∼ Q, if P S Q for some strong barbed

bisimulation S. Strong barbed congruence, written ∼, is the largest barbed bisimulation

that is also a congruence.

To define the weak barbed bisimulation and congruence, we change Q −→ Q′ to

Q −→∗ Q′ and Q ↓ x to Q −→∗↓ x (written Q ⇓ x) in Definition 5.

Definition 6. A weak barbed bisimulation is a symmetric binary relation S between agents

such that P S Q implies:

1 If P −→ P ′ then Q −→∗ Q′ and P ′ S Q′.

2 If P ↓ x for some x, then Q ⇓ x.

P is weak barbed bisimilar to Q, written P
�≈ Q, if P S Q for some weak barbed bisim-

ulation S. Weak barbed congruence, written ≈, is the largest weak barbed bisimulation

that is also a congruence.

Our definitions of strong and weak barbed congruence differ from those in Victor and

Parrow (1998). There, ∼ and ≈ are defined as the largest congruences that are contained in
�∼ and

�≈, respectively. These definitions do not yield equivalences that are bisimulations.

Therefore co-inductive reasoning cannot be used and proofs are usually more difficult.

Indeed, in π-calculus and join calculus the two relations coincide, but their equivalence

has still not been proved for the fusion calculus. Refer to Fournet and Gonthier (1998)

and the references therein for a detailed analysis of this issue.

The following proposition collects a couple of immediate consequences of the definitions.

Proposition 7.

1 P ≡ Q implies P ∼ Q.

2 P ∼ Q implies P ≈ Q.

3 (Up to structural congruence) Let S be a relation that satisfies all the bisimulation

clauses of Definition 5 (respectively, Definition 6), after replacing the requirement

‘P ′ S Q′’ with ‘P ′ ≡ S ≡ Q′’. Then, S ⊆ ∼ (respectively, S ⊆ ≈).

Proposition 8. Weak barbed congruence is substitution closed, that is, if P ≈ Q, then

Pσ ≈ Qσ for any substitution σ.

Proof. We first prove the proposition for substitutions σ such that dom(σ) ∩ ran(σ) =

�. To this aim, we observe that the relation

{(C[P {ỹ/x̃}], C[(x̃)(P | (z)(z ỹ | z x̃))]) | for every C[ ], P , x̃, ỹ, x̃ ∩ ỹ = �, z �∈ x̃, ỹ}

is a weak barbed congruence up-to structural congruence. Therefore, from P ≈ Q we

derive (x̃)(P | (z)(z ỹ | z x̃)) ≈ (x̃)(Q | (z)(z ỹ | z x̃)), and by transitivity P {ỹ/x̃} ≈ Q{ỹ/x̃}.
Next, we observe that any substitution σ may be decomposed into ρ ◦ γ, such that both

dom(ρ) ∩ ran(ρ) = � and dom(γ) ∩ ran(γ) = �. In particular, ρ maps dom(σ) into names

that do not occur in dom(σ) ∪ ran(σ), and γ is injective and maps ran(ρ) into ran(σ).

Therefore we may conclude Pσ ≈ Qσ by (Pρ)γ ≈ (Qρ)γ.

https://doi.org/10.1017/S0960129503004055 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503004055


C. Laneve and B. Victor 664

Table 2. Encoding of prefixes using match. z and w are fresh.

[[u x̃ . P ]]
def
= (zw)(u x̃zww | [z = w][[P ]])

[[u x̃ . P ]]
def
= (zw)(u x̃wwz | [z = w][[P ]])

[[[x = y]P ]]
def
= [x = y][[P ]]

[[P | Q]]
def
= [[P ]] | [[Q]]

[[(x)P ]]
def
= (x)[[P ]]

We will also make use of an expansion relation (Milner and Sangiorgi 1992b), which

is an asymmetric form of weak barbed bisimulation where P � Q means that P
�≈ Q in

a way such that P does no more reductions than Q. In the following we write P −̂→P ′ if

P −→ P ′ or P ≡ P ′.

Definition 9. A weak barbed expansion is a binary relation S between agents such that

P S Q implies:

1 If P −→ P ′, then Q −→+ Q′ and P ′ S Q′.

2 If Q −→ Q′, then P −̂→P ′ and P ′ S Q′.

3 If P ↓ x for some x, then Q ⇓ x.

4 If Q ↓ x for some x, then P ↓ x.

Q expands P , written P � Q, if P S Q for some weak barbed expansion S. We also write

Q � P instead of P � Q.

3. Encodings of prefixes

In this section and the following we display the expressiveness of the solos calculus by

means of encodings. We first encode the general prefix operator of the fusion calculus

using solos. Two such encodings are presented: one using match operators, resulting in

a strong operational correspondence with the encoded terms; and one using just solos,

scope and parallel composition, to yield a weaker correspondence.

We now add the prefix operator to the calculus by allowing processes of the form α . P .

We add two observation rules,

x ỹ . P ↓ x x ỹ . P ↓ x,

and the following reduction rule:

(z̃)
(
M̃u x̃ . P | Ñu ỹ . Q | R

)
−→ (P | Q | R)σ

if |x̃| = |ỹ|, M̃ ⇔ Ñ ⇔ true, σ agrees with {x̃ = ỹ}, ran(σ) ∩ z̃ = � and dom(σ) = z̃. We

call the resulting calculus the fusion calculus (with prefix), fpre. In this calculus we regard

a solo ax̃ as shorthand for the prefix ax̃ . 0.

3.1. Encoding using match

The encoding of prefixes using match, shown in Table 2, utilises the fusion power of two

interacting solos in combination with the causal dependency of a match continuation on

https://doi.org/10.1017/S0960129503004055 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503004055


Solos in concert 665

its guard. The encoding of an input prefix u x̃ . P creates two fresh names z and w. The

continuation P of the prefix is guarded by a match operator checking for equality between

z and w; being fresh, these are initially different from each other, so P cannot reduce.

The input prefix action u x̃ is encoded by a solo with the same subject and polarity, but

with three additional objects zww appended to x̃. An output prefix u ỹ . Q is encoded

symmetrically, but with the order of the additional objects changed to wwz. When such

input and output solos interact, the result is a fusion of the names z and w on each side of

the interaction, thus triggering the continuations P and Q. Increasing polyadicity of names

to encode the temporal ordering of prefixes was also used by Parrow in Parrow (1995).

As an introduction to the encoding of Table 2, we detail the interaction of the encoding

of two parallel agents:

[[(x)(u x . P | u y . Q)]]
def
= (x)( (zw)(u xzww | [z = w][[P ]])

| (zw)(u ywwz | [z = w][[Q]]))

≡ (xz1z2w1w2)( u xz1w1w1 | [z1 = w1][[P ]]

| u yw2w2z2 | [z2 = w2][[Q]])

−→ (z1)(([z1 = w1][[P ]] | [z2 = w2][[Q]]){y/x, z1/w1, z1/w2, z1/z2})
≡ ([[P | Q]]){y/x}
= [[(P | Q){y/x}]],

which corresponds exactly to the result of the encoded prefix agents interacting.

This operational correspondence is formalised in the following lemmas.

Lemma 10. For P an agent of fpre, P ∼ [[P ]].

Proof. It is enough to demonstrate the items below, which follow by structural induction

on P or [[P ]], or by reduction induction on P −→ P ′ or [[P ]] −→ Q. We also use ≡⊆∼,

by Proposition 7.

1 If P ≡ P ′, then [[P ]] ≡ [[P ′]];

2 If P −→ P ′, then [[P ]] −→ [[P ′]].

3 If P ↓ x, then [[P ]] ↓ x.

4 If [[P ]] −→ Q, then P −→ P ′ such that Q ≡ [[P ′]].

5 If [[P ]] ↓ x for some x, then P ↓ x.

The encoding [[·]] is adequate with respect to strong barbed congruence, that is, if [[P ]] ∼
[[Q]], then P ∼ Q. This correspondence follows immediately by the following lemma on

strong barbed bisimulation.

Lemma 11. For P ,Q two agents of fpre, P
�∼ Q iff [[P ]]

�∼ [[Q]].

Proof. The proof follows from Lemma 10, showing that {([[P ]], [[Q]]) : P
�∼ Q} and

{(P ,Q) : [[P ]]
�∼ [[Q]]} are barbed bisimulations.

Theorem 12. For P ,Q two agents of fpre, [[P ]] ∼ [[Q]] implies P ∼ Q.

The completeness of [[·]] with respect to strong barbed congruence, that is, P ∼ Q implies

[[P ]] ∼ [[Q]], does not hold, since an arbitrary agent can interact with the solo encoding of
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Table 3. Encoding of prefixes without using match. v, w and v′ are fresh.

Uv ≡ (z)v zzv

[[u x̃ . P ]]v
def
= (v′)((w)(w x̃vv′ | (y)(v uwy | Uy)) | [[P ]]v′)

[[u x̃ . P ]]v
def
= (v′)((w)(w x̃v′v | (y)(v uwy | Uy)) | [[P ]]v′)

[[[x = y]P ]]v
def
= [x = y][[P ]]v

[[(x)P ]]v
def
= (x)[[P ]]v

[[P | Q]]v
def
= [[P ]]v | [[Q]]v

[(P )]
def
= (v)([[P ]]v | Uv)

a prefix action without fusing the appropriate names. For instance, (x)(u x. x) ∼ (x)(u x | x),

while [[(x)(u x. x)]] �∼ [[(x)(u x | x)]], since the context u abcd | [ ] separates them.

A result similar to Theorem 12 also holds for ≈. In fact, since ∼⊆≈, Lemma 10 may

be weakened by replacing ∼ with ≈. Therefore, a lemma corresponding to Lemma 11,

where ∼ is replaced by ≈, may be demonstrated. This yields the following theorem.

Theorem 13. For P ,Q two agents of fpre, [[P ]] ≈ [[Q]] implies P ≈ Q.

3.2. Encoding without match

While the encoding above has very pleasant properties, it may for reasons of minimality

be desirable to do without the match operator.

In this section we show that the symmetric form of communication of the solos calculus,

together with the implicit form of causal dependency described in the introduction, are

expressive enough to encode the prefix operator. The encoding is presented in Table 3.

The causal dependency used in this encoding is that of a bound subject that cannot

interact until the scope has been lifted by a fusion effect. To this end, the subject of a

prefix is encoded by a fresh scoped name w. The whole encoding has a parameter v,

and an interaction over this parameter can fuse the fresh name to the original subject,

removing the scope of w and eventually enabling a reaction. In order to achieve this, we

introduce catalyst agents Uv ≡ (z)v zzv, and we add an initial catalyst in the top level

encoding [(·)].
An example illustrating the encoding follows:

[((x)(u x . P | u y . Q))]

def
= (vx)

(
(v′)((w)(w xvv′ | (y)(v uwy | Uy)) | [[P ]]v′)

| (v′)((w)(w yv′v | (y)(v uwy | Uy)) | [[Q]]v′ )

| Uv

)
(1)

−→ (vxv′
1v

′
2)( u xvv′

1 | [[P ]]v′
1

| Uv

| (w)(w yv′
2v(y)(v uwy | Uy)) | [[Q]]v′

2
)

(2)

−→ (vxv′
1v

′
2)(u xvv

′
1 | [[P ]]v′

1
| u yv′

2v | [[Q]]v′
2

| Uv) (3)
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−→ (v)([[P ]]v | [[Q]]v | Uv){y/x}
def
= (v)([[P | Q]]v{y/x} | Uv)

= [((P | Q){y/x})]. (4)

Initially, the solos corresponding to the prefix actions cannot interact, since their subjects

are locally scoped. Expanding the definitions, we can see at (1) that the catalyst (z)v zzv

can interact with one of the terms v uwy, thereby changing the subject of the prefix solo,

and removing the scope. The initial catalyst is consumed when it interacts with the term

v uwy, but this interaction also changes the subterm Uy into a new catalyst Uv . This can be

used at (2) to remove the scope of the other prefix solo, enabling the interaction between

the two prefixes at (3) and producing another new catalyst. Observe that as a side effect

of this latter interaction, the continuations [[P ]]v′
1

and [[Q]]v′
2
are now enabled since v′

1 and

v′
2 are fused with v. We end up with the desired result (4).

Before proving our main result for [(·)], we require a few basic properties of this

mapping. We first point out a basic algebraic property of the encoding [[ · ]]v .

Proposition 14. For P an agent of fpre, σ a substitution, and v �∈ fv(P ) ∪ dom(σ) ∪ ran(σ),

[[Pσ]]v = [[P ]]vσ.

The following lemma shows the tight correspondence between reductions and observa-

tions of P and those of [(P )]. The proof is detailed in Appendix A.

Lemma 15. For P an agent of fpre,

P � [(P )].

The correspondence established by Lemma 15 is weaker than Lemma 10 for Table 2

(� instead of ∼). This is because in order to set the proper causal dependencies, every

reduction in P ∈ fpre amounts to a sequence of (three) reductions in [(P )]. Nevertheless,

the encoding [(·)] is adequate with respect to weak barbed congruence. To prove this, we

need the following lemma.

Lemma 16. For P ,Q two agents of fpre,

P
�≈ Q iff [(P )]

�≈ [(Q)].

Proof. We use the fact that {(P ,Q) : P �
�≈� Q} and {(P ,Q) : P �

�≈� Q} are both

weak barbed bisimulations. Therefore, by Lemma 15, we derive that P � [(P )]
�≈ [(Q)] � Q

and [(P )] � P
�≈ Q � [(Q)] are weak barbed bisimulations.

Theorem 17. For P ,Q two agents of fpre,

[(P )] ≈ [(Q)] implies P ≈ Q.

3.3. Other translations

We have also considered other translations, which improve the encoding of Table 3 in

terms of the number of book-keeping reductions or in terms of channel sorts.
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The following translation requires that channels carry only one extra object instead

of two, with the added cost of a further book-keeping interaction for every original

interaction. We only show the translation rules for prefixes, since the others are the same:

[[u x̃ . P ]]v
def
= (wz)(w x̃z | (v′)(z v′v | [[P ]]v′) | (y)(v uwy | Uy))

[[u x̃ . P ]]v
def
= (wz)(w x̃z | (v′)(z vv′ | [[P ]]v′) | (y)(v uwy | Uy)).

Once replication has been added (see Section 4), we can also get rid of the catalyst agents

inside the encodings of prefixes of [[ · ]]v . Instead we use a replicated catalyst at top level.

Catalysts now need only two objects:

[[u x̃ . P ]]v
def
= (wv′)(w x̃vv′ | [[P ]]v′ | v uw)

[[u x̃ . P ]]v
def
= (wv′)(w x̃v′v | [[P ]]v′ | v uw)

[(P )]
def
= (v)([[P ]]v | ! (z)v zz).

The processes in Table 3 in any case evaluate the catalyst agents to prepare the term for

the initial reductions. These moves are useless if the original term does not reduce. Our

last translation allows us to remove the initial book-keeping reductions (again we only

illustrate the rules for prefixes):

((u x̃ . P ))
def
= (z)(u x̃z | (vv′)(z vv′ | [[P ]]v′ | v zzv))

((u x̃ . P ))
def
= (z)(u x̃z | (v)(z vv | [[P ]]v)).

In contrast with [(·)], the function ((·)) does not introduce any initial catalyst agent and does

not rename the subjects of unguarded solos. Solos in continuations are managed as in

Table 3.

4. Replication and recursion

We can add replication to the fpre calculus by introducing the operator !P and the

structural law !P ≡ P | !P . Extending our first encoding using match (Table 2) with

[[!P ]] =! [[P ]], Lemmas 10, 11 and Theorem 12 still hold. As an immediate consequence of

Lemma 10, we can further strengthen these results by proving preservation of divergence

properties.

Theorem 18. For P an agent of fpre with replication, P diverges iff [[P ]] diverges.

Extending the second encoding (Table 3) in the same way does not preserve divergence,

since [(! u . 0)] could reduce indefinitely even though the original term cannot reduce.

This is due to the book-keeping reductions that are needed to implement prefixing.

However, if we replace replication with guarded recursion, introduced by the structural

law A(ỹ) ≡ P {ỹ/x̃} if A(x̃)
def
= P and |x̃| = |ỹ|, where the x̃ are pairwise distinct, and

the requirement that process variables only occur under a prefix, then Lemmas 15, 16

and Theorem 17 still hold. In particular, Propositions 30, 31, and 32 may also be easily

generalised.

Theorem 19. For P an agent of fpre with guarded recursion, P diverges iff [(P )] diverges.
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Proof. If P diverges, the divergence of [(P )] is an immediate consequence of Lemma 15.

For the converse, let (v)(Uv | [(P )]v) diverge. Then, by Lemma 33 (in Appendix A), P

diverges too.

Remarkably, the above extension of the solos calculus with replication may be reduced,

without losing expressiveness. The next theorem determines how nested replications may

be flattened into non-nested replications. As a consequence of the flattening theorem

below, we only need to consider agents with non-nested replications. This simplifies the

theory of the solos calculus, as well as the practice (Laneve et al. 2001). For instance, we

have a simple form of canonical representatives of agents.

Remark 20. Every agent in the solos calculus with non-nested replications is structurally

congruent to an agent of shape (x̃)(P |
∏

i∈I! (ỹi)Qi), where P and Qi, i ∈ I , are a parallel

composition of solos.

In the π-calculus, Parrow’s concerts of trios construction (Parrow 2000) provides a similar

flattening: there, the canonical form is the same but with P and Qi being sequences of

prefixes α1 . α2 . α3. Again, no nested replication is needed.

Theorem 21. (Flattening)

! (x̃)(P | !Q) ≈ (y)(! (x̃)(P | y z̃y) | ! (z̃v)(y z̃v | v z̃v | Q))

where z̃ = fn(Q) and y, v are fresh names.

Proof. Let

RP ,Q = ! (x̃)(P | !Q)

R′
P ,Q = (y)(! (x̃)(P | y z̃y) | ! (z̃v)(y z̃v | v z̃v | Q)).

Let S be a relation containing the pairs (C[Rσ], C[R′σ]), for every context C[·] and every

substitution σ, such that:

— R = RP ,Q |
∏

i∈1..n(!Q{w̃i/z̃} |
∏

j∈1..mi
Qi{w̃i/z̃});

— R′ = R′
P ,Q |

∏
i∈1..n(y)

(
y w̃iy | ! (z̃v)(y z̃v | v z̃v | Q) |

∏
j∈1..mi

(z̃v)(y z̃v | v z̃v | Qi)
)

for every m, n, C[ ], Qi, where z̃i = fn(Qi), and y, v, w̃i are fresh names.

The relation S is clearly a congruence. To demonstrate S is a weak barbed bisimulation

up to structural congruence, we distinguish among the reductions that may occur on each

component of the pair, and in each case we simulate them on the other component. There

are three cases, according to whether the reduction is inside the hole of the context, inside

the context, or involves both the context and the process in the hole. We give details for

the last case only; the other two are easy.

There are three subcases. The first is when the interacting solos belong to the context and

the agent in the hole, respectively. Let C[·] = C ′[(ũ)(T | u′ ũ′′ | [·])] and let C[R] S C[R′].

There are four possibilities:

1 P = u′ ṽ′′ | P ′. Then

C[R] −→≡ C ′[(ṽ′)(Tσ | P ′σ | [R1σ])]

C[R′] −→≡ C ′[(ṽ′)(Tσ | P ′σ | [R′
1σ])]
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where σ agrees with {ũ′′ = ṽ′′}. Let C ′′[·] = C ′[(ṽ′)(Tσ | P ′σ | [·])]. Note that

C ′′[R1σ] S C ′′[R′
1σ].

2 Q = u′ ṽ′′ | Q′{w̃i/z̃}. Then

C[R] −→≡ C ′[(ṽ′)(Tσ | Pσ | Q′σ | [R1σ])]

C[R′] −→∗≡ C ′[(ṽ′)(Tσ | P ′σ | Q′σ | [(R′
1 | y w̃iy | ! (z̃v)(y z̃v | v z̃v | Q))σ])]

where σ agrees with {ũ′′ = ṽ′′}. Let C ′′[·] = C ′[(ṽ′)(Tσ | P ′σ | Q′σ | [·])]. Note that

C ′′[R1σ] S C ′′[(R′
1 | y w̃iy | ! (z̃v)(y z̃v | v z̃v | Q))σ].

3 Q{w̃i/z̃} = u′ ṽ′′ | Q′{w̃i/z̃}. This is similar to cases 1 and 2.

4 Qi{w̃i/z̃} = u′ ṽ′′ | Q′
i{w̃i/z̃}. This is similar to cases 1 and 2.

The second subcase is when the interacting solos are both in the context. Then the

reduction may modify the agent in the hole according to a substitution. The conclusion

is immediate because S is closed up to substitutions of agents in the hole.

The third subcase is when the interacting solos are both in the agent in the hole. It is

not difficult to verify that the derivatives of the agents in the holes still have shape R and

R′ and the context is possibly augmented with a residual of the reduction, as in cases 1

and 2 above.

5. The dyadic solos calculus

The solos calculus is polyadic, that is, names carry tuples of values. Polyadicity is crucial

in the translations of Tables 2 and 3 for the encoding of the causal dependencies of

prefixes. In this section we show that the dyadic sub-calculus, where solos carry at most

two values, is as expressive as the full polyadic calculus. This fact is already known in

asynchronous π-calculus (Boudol 1992), and here we rephrase the arguments in the solos

calculus. (In the original π-calculus the monadic sub-calculus is sufficient (Milner 1993).)

In addition, we demonstrate that some expressiveness is lost when solos are monadic. All

these results concern the so-called well-sorted solos calculus, whose theory is detailed in

the next section.

5.1. A sorting discipline for the solos calculus

The solos calculus may be equipped, in the style of Milner (1993), with a recursive

sorting discipline on names that avoids arity mismatch. To this end, let x be a generic

sort-variable, and τ be a sort defined by the following grammar:

τ ::= 〈〉 | x | 〈̃τ〉 | rec x. τ

A name u has sort 〈τ1, · · · , τk〉 if it can carry k objects with sorts τ1, · · · , τk , respectively.

The sort rec x. τ models recursive sorts. For example, if u has sort rec x. 〈x〉, it means that

a message as u u is well-sorted. As usual, the operator rec x. - is a binder, which induces

the standard notions of bound and free sort-variables. When we write rec x. τ, we always

assume that x belongs to the free sort-variables in τ, and x occurs inside brackets 〈·〉. Let
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τ be infinite if:

1 τ = rec x. τ′;
2 or τ = 〈τ1, · · · , τk〉 and τi is infinite, for some i ∈ 1..k.

The sort τ is called finite if it is not infinite. We associate a weight to channels with

finite sorts, namely the maximum number of nested brackets 〈·〉 in the sort. Formally, let

weight(x) = n if the sort of x is finite and the maximum number of nested brackets 〈·〉 in

the sort is n, and weight(x) = 0 otherwise, For example, a channel with sort 〈〈〈〉〉, 〈〉〉 has

weight 3, while a channel with sort 〈rec x. 〈x〉, 〈〉〉 has weight 0 because its sort is infinite.

An agent is well-sorted when:

1 names have unique sorts,

2 subjects of solos always carry objects of the right sort, and

3 matching concerns names of the same sort.

The well-sorted solos calculus is the sub-calculus where all agents are well-sorted.

Two preliminary propositions gather together some basic properties of reductions in

the well-sorted calculus.

Proposition 22. In the well-sorted solos calculus:

1 Reductions fuse names of the same sort.

2 A reduction fuses names of infinite sorts if and only if the subjects of the reduction

have infinite sort.

3 A reduction between solos with subjects of weight n fuses names whose sorts are finite

and have weight strictly less than n, and vice versa.

To every well-sorted process P , it is possible to associate an integer that denotes the

maximal weight of channels in P . Let mweight[P ] be the function defined inductively as

follows:

mweight[0] = 0

mweight[a u1 · · · uk] = max{weight(a),weight(u1), · · · weight(uk)}
mweight[P | Q] = max{mweight[P ],mweight[Q]}
mweight[(x)P ] = mweight[P ]

mweight[[x = y]P ] = max{mweight[P ],weight(x),weight(y)}
mweight[!P ] = mweight[P ].

It is routine to check that reductions do not increase the value of mweight[·].

Proposition 23. For every well-sorted process P ,

P −→∗ P ′ implies mweight[P ] � mweight[P ′].

5.2. Reducing polyadicity to dyadicity

Let [[[ · ]]] be the translation from the solos calculus to the dyadic sub-calculus that is the

identity everywhere except for solos that carry at least three values, that is, n > 2:

[[[u x1 · · · xn]]]
def
= (z)(u x1z | [[[z x2 · · · xn]]])

[[[u x1 · · · xn]]]
def
= (z)(u x1z | [[[z x2 · · · xn]]]).
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Note that polyadic solos carrying objects x1 · · · xn are encoded as sequences of dyadic

solos. Each solo emits exactly two objects, the first of which is one of the xi; the second

object is a bound name that is used in the encoding of the rest of the sequence (except

for the last solo). This second object is used as a subject in another solo, which cannot

take part in a reduction until after the first solo has. The definition of [[[ · ]]] immediately

entails the following lemma.

Lemma 24. If [[[P ]]] −→∗ P ′, then for some agent Q:

1 P ′ ≡ (ũ)([[[Q]]] |
∏

i∈I (zi)([[[zi ỹi]]] | [[[zi x̃i]]]));

2 P ′ −→∗≡ (ũ)[[[Q]]]σ, where σ agrees with {ỹi = x̃i | i ∈ I}. This process (ũ)[[[Q]]]σ is

called the P ′-completion.

The correctness of the encoding is an immediate consequence of the following lemma.

Lemma 25. In the well-sorted solos calculus, P
�≈ Q if and only if [[[P ]]]

�≈ [[[Q]]].

Proof. (If direction) By definition of the encoding, we observe that:

1 P ≡ Q implies [[[P ]]] ≡ [[[Q]]].

2 P −→ Q implies [[[P ]]] −→∗ [[[Q]]].

3 P ↓ x if and only if [[[P ]]] ↓ x.

Let S be a weak barbed bisimulation between [[[P ]]] and [[[Q]]]. The above three properties

immediately entail that S′ = {(P ′, Q′) | [[[P ′]]] S [[[Q′]]]} is a weak barbed bisimulation.

(Only-if direction) Let S be a weak barbed bisimulation such that P S Q, and let P
and Q be the set of derivatives of [[[P ]]] and [[[Q]]], respectively, including [[[P ]]] and [[[Q]]].

Consider the relation in P × Q:

S′ = {(P ′, Q′) | P ′′ S Q′′

and [[[P ′′]]] is a P ′-completion

and [[[Q′′]]] is a Q′-completion}.

By definition, [[[P ]]] S′ [[[Q]]]. We demonstrate that S ′ is a weak barbed bisimulation up

to structural congruence. We will only give details for the case when the left component

reduces; the symmetric case is similar. Let P ′ S′ Q′ and let P ′ −→ P ′′. By Lemma 24(1),

P ′ ≡ (ũ)([[[P ′
1]]] |

∏
i∈I (zi)([[[zi ỹi]]] | [[[zi x̃i]]])). Therefore there are two cases:

(a) P ′ −→ P ′′ is due to a reduction inside [[[P ′
1]]], or

(b) P ′ −→ P ′′ is due to a reduction inside
∏

i∈I (zi)([[[zi ỹi]]] | [[[zi x̃i]]]).

Case (b) is immediate because P ′′ S′ Q′, by definition of S′ .

In case (a), let

P ′′ ≡ (ũ)([[[P ′′
1 ]]] | (z)([[[z ỹ]]] | [[[z x̃]]]) |

∏
i∈I

(zi)([[[zi ỹi]]] | [[[zi x̃i]]])),

and let P0 and Q0 be the P ′ and Q′-completions, respectively. In particular, note that, by

Lemma 24(2), P0 ≡ (ũ)[[[P ′
1]]]σ, where σ agrees with {x̃i = ỹi | i ∈ I}. Next, observe that the

reduction P ′ −→ P ′′ amounts to a reduction P0 −→ P ′
0 such that P ′

0 is the P ′′-completion.

Therefore, there is a Q′
0 with Q0 −→∗ Q′

0 and P ′
0 S Q′

0. We conclude by observing that

Q′ −→∗ Q0 −→∗ Q′
0 and P ′′ S′ [[[Q′

0]]].
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Clearly, the above theorem is false when agents are not well-sorted. For instance

(xy)(x zyy | x yy | y )
�≈ 0, while [[[(xy)(x zyy | x yy | y )]]] � �≈ [[[0]]].

Lemma 25 allows us to derive the adequacy of the encoding into the dyadic solos

calculus.

Theorem 26. In the well-sorted solos calculus, [[[P ]]] ≈ [[[Q]]] implies P ≈ Q.

5.3. Expressiveness of the monadic solos calculus

The question which naturally arises is whether there is an encoding of polyadic solos into

monadic ones, that is, whether the monadic solos calculus, where names have nullary or

monadic sorts, is expressive enough. In the sub-calculus without the match operator, we

demonstrate that the monadic solos calculus is not as expressive as the polyadic one, when

the calculus is well-sorted. The proof technique is similar to the one used by Parrow in

Parrow (2000).

A preliminary lemma conveys a basic property for the inexpressiveness of the monadic

solos calculus.

Lemma 27. Let P be a well-sorted term in the monadic solos calculus, x ∈ fn(P ), and

weight(x) = n. Let P −→∗ P ′ be a minimal derivation such that P ′ ↓ x, that is, no other

derivation producing a barb on x is shorter. Then every solo reduced in this derivation

has subject of finite sort, which is strictly greater than n.

Proof. We use induction on the length of the derivation P −→∗ P ′. When the length

is 0, the lemma is obvious. Otherwise, let P −→ Q −→∗ P ′. By the induction hypothesis,

all solos reduced in Q −→∗ P ′ have subjects of finite sort whose weight is strictly greater

than n. There are two subcases: either Q −→∗ P ′ has length 0, or is greater than 0. We

discuss the latter subcase only; the other subcase is simpler.

Let P ≡ (ũ)(z v | z w | Q1), where the two solos of the reduction P −→ Q have been

singled out. There are three cases:

(i) Exactly one of the names v, w must occur at least once in solos reduced in Q −→∗ P ′.

(ii) At least one of the names v, w is x.

(iii) Neither (i) nor (ii) is true, that is, none of the names v, w occur in solos involved in

reductions of Q −→∗ P ′, and none is x.

In case (i), since subjects of solos reduced in Q −→∗ P ′ have finite sort, by Proposition 22,

v, w also have finite sorts with weight greater than n. Therefore, by the same proposition,

z has finite sort and weight greater than n.

In case (ii), the lemma is an obvious consequence of Proposition 22.

To conclude, we demonstrate that case (iii) is vacuous. Indeed, in this case, we show

that a term with an x-barb may be derived from P with a shorter derivation, which

contradicts the hypothesis that P −→ Q −→∗ P ′ is a minimal derivation. By Remark 20,

P ≡ (ũ)(z v | z w | Q′ | Q′′), where:

1 Q′ collects replications and solos,

2 Q′′ is a parallel composition of solos, such that Q′′ may contain replicas of terms in

Q′ underneath ‘!’; these terms result from the structural law !R ≡ R | !R;
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We further constrain Q′′ to collect a minimal set of solos such that every reduction in

Q −→∗ P ′ involves solos in Q′′, that is, P −→ Q ≡ (ũ0)(Q
′σ0 | Q′′σ0), and Q −→∗ P ′ is the

derivation:

(ũ0)(Q
′σ0 | Q′′σ0) −→ (ũ1)(Q

′σ0σ1 | Q1σ0σ1)

−→ (ũ2)(Q
′σ0σ1σ2 | Q2σ0σ1σ2)

−→ · · ·
· · ·
−→ (ũk)(Q

′σ0σ1σ2 · · · σk | Qkσ0σ1σ2 · · · σk) ≡ P ′

where Qkσ0σ1σ2 · · · σk = (x y | Q′
k) or Qkσ0σ1σ2 · · · σk = (x y | Q′

k), for some y and Q′
k , and

where Qiσ0 · · · σi �↓ x for each i < k.

Without loss of generality, let σ0 = {v/w}. Since in this case solos reduced in the

derivation never contain v, by Table 1 we may rewrite the above derivation as follows:

(ũ0)(z v | z w | Q′ | Q′′) −→ (ũ1)((z v | z w | Q′)σ1 | Q1σ0σ1)

−→ (ũ2)((z v | z w | Q′)σ1σ2 | Q2σ1σ2)

−→ · · ·
· · ·
−→ (ũk)((z v | z w | Q′)σ1σ2 · · · σk | Qkσ1σ2 · · · σk).

Finally, since ũ = ũ0w, the second inductive rule of Table 1 yields

P −→∗ (ũkw)((z v | z w | Q′)σ1σ2 · · · σk | Qkσ1σ2 · · · σk).

This derivation is shorter than P −→∗ P ′, and the final term has a barb on x. This is a

contradiction.

Let us consider an agent A such that,

either A −→∗≈ a or A −→∗≈ a | A.

In other words, A is ‘observationally’ terminating by producing a composition of n solos a,

for every n, or may not terminate by always emitting a. This non-deterministic behaviour

may be suitably implemented in the solos calculus by using internal reductions. For

example, the above agent A can be defined in the dyadic calculus as follows:

(xy)
(
x ay | ! (uv)(x uv | u | (w)(y w | y x | v w | w ay))

)
.

We demonstrate that an agent that is weak barbed congruent to A above is not definable

in the well-sorted monadic calculus.

Theorem 28. There is no agent in the well-sorted monadic solos calculus without the

match operator that is weak barbed congruent to an agent A such that

either A −→∗≈ a or A −→∗≈ a | A.

Proof. For a contradiction, we assume there exists such an agent, and let it be P .

Since P may produce an infinite number of a, there must be (at least) one subprocess

underneath a replication that produces these terms. We consider the case when there is
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exactly one subprocess. The general case is similar. Therefore,

P = (ũ)(P ′ | !P ′′)

where P ′ is a composition of solos. Now observe that:

1 !P ′′ �−→∗ a | Q. Informally, !P ′′ cannot produce, without interacting with P ′, any solo

with free subject a. Otherwise it may produce an infinite number of such solos, and

then it is not possible to derive a finite behaviour of P .

2 Without loss of generality, we assume that the minimal derivation of P yielding a

barb a involves solos coming from P ′ and P ′′. Formally, it has the following shape

(the roles of x and x , as well as v and w, may be interchanged):

(ũ)(P ′ | !P ′′) −→∗ (reductions only involve solos in P ′)

(ũ′)(P ′
1 | x v | !P ′′)σ

−→∗ (reductions only involve replicas of !P ′′)

(ũ′′)(P ′
1 | x v | xw | P ′′

1 | !P ′′)σ′

−→ (ũ′′ \ w)(P ′
1 | P ′′

1 | !P ′′)σ′{v/w}
−→∗ a | Q.

3 Let τ be the sort of x above. By Lemma 27, τ is finite. By Proposition 22, the term P ′

must contain at least one solo with subject of sort τ.

4 Next we observe that the production of a finite or infinite number of solos a amounts

to producing a finite or infinite number of solos x v. Therefore we must repeat the

same argument, now for x v. Again, as in item 1, x v cannot be produced by reductions

inside P ′′, otherwise it is not possible to derive a finite behaviour of P . Thus, as in

2, without loss of generality, we assume that the minimal derivation of (ũ)(P ′ | !P ′′)

yielding x v involves solos coming from both P ′ and P ′′.

5 This minimal derivation may be written as follows (the roles of y and y , as well as v′

and v′′, may be interchanged):

(ũ)(P ′ | !P ′′) −→∗ (reductions only involve solos in P ′)

(ũ′)(P ′
2 | y v′ | !P ′′)σ

−→∗ (reductions only involve replicas of !P ′′)

(ũ′′)(P ′
2 | y v′ | y v′′ | P ′′

2 | !P ′′)σσ′

−→ (ũ′′ \ v′′)(P ′
2 | P ′′

2 | !P ′′)σσ′{v′/v′′}
−→ (ũ′′′)(P ′′′ | x v | !P ′′)σ′′.

Let τ′ be the sort of y. By Lemma 27, τ′ has finite sort and its weight is strictly greater

than the weight of τ. Therefore x v and y v′ are different solos.

6 The production of a finite or infinite number of solos x v amounts to producing a

finite or infinite number of solos y v′. Therefore we must repeat the same argument,

now for y v′.

The conclusion is that P ′ and a number of replicas of !P ′′ must contain an infinite

number of different solos with subjects of different finite sorts. This is impossible, by

Proposition 23.
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6. Encoding choice

In this section we present encodings of the choice operator; P + Q allows P or Q to

take part in reduction, and discards the other branch when doing so. Here we add the

mismatch operator [x �= y]P , which can act like P if x and y are different. We extend

the ranges of M,N, M̃ and Ñ and the definition of M̃ ⇔ Ñ appropriately, and add the

reduction rule

P −→ P ′, x �= y

[x �= y]P −→ P ′

and the observation rule [x �= z]P ↓ y if P ↓ y and x �= z. We also extend our previous

encodings homomorphically for the mismatch operator.

Restricting the general choice operator P +Q to guarded choice,
∑

I αi . Pi, and further

requiring that all αi in a guarded choice have the same polarity (all inputs or all outputs),

we can extend the encoding of Table 2 by replacing the encoding of prefixes by the

following, where z and w are fresh:

[[ ∑
I

ui x̃i . Pi

]]
def
= (zw)

∏
I

[z �= w](ui x̃izww | [z = w][[Pi]])

[[ ∑
I

ui x̃i . Pi

]]
def
= (zw)

∏
I

[z �= w](ui x̃iwwz | [z = w][[Pi]]).

The mismatch operator is used in a ‘test-and-set’ construction, which tests two names

z and w for inequality, and if they are not equal, makes them so atomically. Only one

branch of the choice can succeed in doing this. The interaction between an input and an

output prefix now not only enables the continuations of the prefixes, but also disables the

other branches of the choice. Lemma 10 and 11 and Theorems 12 and 18 still hold for

this extended encoding.

The encoding of Table 3 can also be extended in a similar way, replacing the encodings

of prefixes (v and v′ are fresh):

[[ ∑
I

ui x̃i . Pi

]]
v

def
= (v′)

∏
I

[v �= v′](w)(w x̃ivv
′ | [[Pi]]v′ | (y)(v uiwy | Uy))

[[ ∑
I

ui x̃i . Pi

]]
v

def
= (v′)

∏
I

[v �= v′](w)(w x̃iv
′v | [[Pi]]v′ | (y)(v uiwy | Uy))

Appendix B illustrates this encoding using an example. Lemmas 15 and 11 and

Theorem 17, as well as Theorem 19, also hold for this encoding.

As we have seen above, the mismatch operator is very powerful in the solos calculus.

While mismatch distributes over prefixes in the π-calculus, it does not do so in the fusion

calculus (or its encoding into the solos calculus). This makes it powerful enough for the

test-and-set construction used in the encoding above; however, such a construction is

difficult to implement in a distributed setting, since all component systems must agree at

one point in time that the names are distinct. Therefore, the mismatch operation can be

implemented, but at the cost of synchronising all the processes underneath the mismatch,
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which may be in different locations. For a tightly coupled system, the cost is lower, and

indeed most multiprocessor systems implement some sort of test-and-set instruction.

7. Conclusions

In this paper we have shown that the expressive power of the fusion calculus is still

retained by the sub-calculus without action prefix and summation – the solos calculus.

In addition, the expressive power does not change by restriction to dyadic solos, while

expressiveness strictly decreases in the monadic calculus without match. The results of

this paper are collected in the table below.

Encodings Results

fusion calculus

↓
solos calculus

[[·]] encodes prefixes with matches and is adequate

with respect to ∼ (Theorem 12) and

with respect to ≈ (Theorem 13)

[(·)] encodes prefixes without matches and is adequate

with respect to ≈ (Theorem 17)

polyadic solos calculus

↓
dyadic solos calculus

[[[·]]] is adequate in the well-sorted calculus

with respect to ≈ (Theorem 26)

dyadic solos calculus

�↓
monadic solos calculus

No encoding is possible in the well-sorted calculus

without match (Theorem 28)

Some open questions still remain. For instance, we conjecture that the encoding of the

polyadic calculus into the dyadic one is also complete. Merro has studied similar encodings

for the asynchronous π-calculus (Merro 2000). However his proof technique uses labelled

bisimulation and the correspondence of this equivalence with weak barbed congruence,

and this correspondence has still not been proved in the fusion calculus. Furthermore, we

conjecture that the unsorted monadic solos calculus has strictly lower expressive power

than the fusion calculus. Finally, we also leave open the question as to whether there is

a compositional encoding (in the sense of Palamidessi (1997)) of the fusion calculus into

the solos calculus without the match operator.

The simplicity of the solos calculus and the results in this paper suggest its use as a test

suite for experimenting with implementations, theories and models of mobile programming

languages. In this respect, the paper Laneve et al. (2001), describing a graphical formalism

for solos, is a first contribution towards an implementation. Concerning distributed

implementations, a promising formalism seems to be the solos calculus with explicit fusions,

in the style of Gardner and Wischik (2000).
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Appendix A. Proofs for Section 3

We begin by defining a standard form for derivatives of [(P )].

Definition 29. An agent Q belongs to the [[P ]]v-family (v �∈ fv(P )) if

1 P ≡ (z̃)(
∏

i∈I ui x̃i.Ri |
∏

j∈J uj x̃j .Rj | R), and

2 Q ≡ (z̃)(
∏

i∈I (vi)(ui x̃ivvi | [[Ri]]vi) | ∏
j∈J(vj)(uj x̃jvjv | [[Rj]]vj ) | [[R]]v)

where, for every k ∈ I ∪ J ,

1 v, vk are different,

2 {v, vk} ∩ (fv(Rk) ∪ {uk, x̃k}) = �.

The next proposition guarantees that derivatives of [(P )] are actually [(·)]-reducts.

Proposition 30. Let Q ∈ [[P ]]v-family. If P −→ P ′, then

(v)(Uv | Q) −→+≡ (v)(Uv | Q′)

and Q′ ∈ [[P ′]]v-family.

Proof. Since P ≡ (z̃)(
∏

i∈I ui x̃i.Ri |
∏

j∈J uj x̃j .Rj | R), the transition P −→ P ′ is due to

two sub-processes, which fall in one of the three cases below:

1 The sub-processes are uh x̃h.Rh and uk x̃k.Rk , for some h, k.

2 Exactly one of the two subprocesses is uh x̃h.Rh or uh x̃h.Rh, for some h ∈ I ∪ J .

3 The two subprocesses belong to R.

We demonstrate the three subcases separately.

1 The transition P −→ P ′ may be rewritten as follows:

P ≡ (z̃)(uh x̃h.Rh | uk x̃k.Rk |
∏

i∈I\h ui x̃i.Ri |
∏

j∈J\k uj x̃j .Rj | R)

−→ (z̃′)(Rh | Rk |
∏

i∈I\h ui x̃i.Ri |
∏

j∈J\k uj x̃j .Rj | R)σ

≡ (z̃′)(
∏

i∈I\h(ui x̃i.Ri)σ |
∏

j∈J\k(uj x̃j .Rj)σ | Rσ | Rhσ | Rkσ)

≡ P ′

where dom(σ) ⊆ (x̃h ∪ x̃k) and ran(σ) = z̃ \ z̃′. On the other side we have

(v)(Uv | Q) ≡ (v)(Uv | (z̃)
(
(vh)(uh x̃hvvh | [[Rh]]vh) | (vk)(uk x̃kvkv | [[Rk]]vk )

| ∏
i∈I\h(vi)(ui x̃ivvi | [[Ri]]vi)

| ∏
j∈J\k(vj)(uj x̃jvjv | [[Rj]]vj ) | [[R]]v

)
)

−→ (v)(Uv | (z̃′)
(
[[Rh]]vh | [[Rk]]vk

| ∏
i∈I\h(vi)(ui x̃ivvi | [[Ri]]vi)

| ∏
j∈J\k(vj)(uj x̃jvjv | [[Rj]]vj )

| [[R]]v

)
σ{v/vh}{v/vk})
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≡ (v)(Uv | (z̃′)
(∏

i∈I\h(vi)(ui x̃ivvi | [[Ri]]vi)

| ∏
j∈J\k(vj)(uj x̃jvjv | [[Rj]]vj )

| [[R]]v | [[Rh]]v | [[Rk]]v

)
σ)

= (v)(Uv | (z̃′)
(∏

i∈I\h(vi)(ui x̃ivvi | [[Ri]]vi)σ

| ∏
j∈J\k(vj)(uj x̃jvjv | [[Rj]]vj )σ

| [[Rσ]]v | [[Rhσ]]v | [[Rkσ]]v

)
)

≡ (v)(Uv | Q′)

where the last-but-one step is due to Proposition 14. It is immediate that Q′ ∈ [[P ′]]v-

family.

2 We assume h ∈ I; the case h ∈ J being similar. Let R ≡ (z̃′)(u x̃.R′ | R′′). The transition

P −→ P ′ may be rewritten as follows:

P ≡ (z̃z̃′)(uh x̃h.Rh | u x̃.R′ |
∏

i∈I\h ui x̃i.Ri |
∏

j∈J uj x̃j .Rj | R′′)

−→ (z̃′′)(Rh | R′ |
∏

i∈I\h ui x̃i.Ri |
∏

j∈J uj x̃j .Rj | R′′)σ

≡ (z̃′′)(
∏

i∈I\h(ui x̃i.Ri)σ |
∏

j∈J(uj x̃j .Rj)σ | Rσ | R′σ | R′′σ)

≡ P ′

where dom(σ) ⊆ (x̃h ∪ x̃) and ran(σ) = (z̃ ∪ z̃′) \ z̃′′. On the other side we have

(v)(Uv | Q) ≡ (v)(Uv | (z̃z̃′)
(
(vh)(uh x̃hvvh | [[Rh]]vh ) | [[u x̃.R′]]v

| ∏
i∈I\h(vi)(ui x̃ivvi | [[Ri]]vi)

| ∏
j∈J(vj)(uj x̃jvjv | [[Rj]]vj ) | [[R′′]]v

)
)

−→ (v)(Uv | (z̃z̃′)
(
(vh)(uh x̃hvvh | [[Rh]]vh ) | (v′)(u x̃v′v | [[R′]]v′)

| ∏
i∈I\h(vi)(ui x̃ivvi | [[Ri]]vi)

| ∏
j∈J(vj)(uj x̃jvjv | [[Rj]]vj )

| [[R′′]]v

)
)

−→ (v)(Uv | (z̃′′)
(
[[Rh]]vh | [[R′]]v′∏
i∈I\h(vi)(ui x̃ivvi | [[Ri]]vi)

| ∏
j∈J(vj)(uj x̃jvjv | [[Rj]]vj )

| [[R′′]]v

)
σ{v/vi}{v/v′})

≡ (v)(Uv | (z̃′)
(∏

i∈I\h(vi)(ui x̃ivvi | [[Ri]]vi )

| ∏
j∈J(vj)(uj x̃jvjv | [[Rj]]vj )

| [[R′′]]v | [[Rh]]v | [[R′]]v

)
σ)

= (v)(Uv | (z̃′)
(∏

i∈I\h(vi)(ui x̃ivvi | [[Ri]]vi )σ

| ∏
j∈J(vj)(uj x̃jvjv | [[Rj]]vj )σ

| [[R′′σ]]v | [[Rhσ]]v | [[R′σ]]v

)
)

≡ (v)(Uv | Q′)
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where, as before, the last-but-one step is due to Proposition 14. It is immediate that

Q′ ∈ [[P ′]]v-family.

3 This is similar to the previous cases.

Proposition 31. Let Q ∈ [[P ]]v-family. If (v)(Uv | Q) −→ Q′, then Q′ ≡ (v)(Uv | Q′′) and

P −̂→P ′ such that Q′′ ∈ [[P ′]]v-family.

Proof. Since

Q ≡ (z̃)
(∏

i∈I
(vi)(ui x̃ivvi | [[Ri]]vi) | ∏

j∈J
(vj)(uj x̃jvjv | [[Rj]]vj ) | [[R]]v

)
,

there are two cases, according to

1 the reduction is due to a pair uh x̃hvvh, uk x̃kvkv, for some h ∈ I , k ∈ J;

2 the reduction is due to the agent Uv and a sub-agent of [[R]]v .

The proof is similar to Proposition 30. Note that, in the second case, P does not perform

any reduction.

Proposition 32. Let Q ∈ [[P ]]v-family. Then:

1 If P ↓ x, for some x, then (v)(Uv | Q) ⇓ x.

2 If (v)(Uv | Q) ↓ x, for some x, the P ↓ x.

Proof. Both cases are straightforward consequences the of definition of [[P ]]v and

[[P ]]v-family.

We are now in a position to demonstrate Lemma 15. For convenience, we restate the

lemma.

Lemma 15. For P an agent of fpre, P � [(P )].

Proof. By Propositions 30, 31, and 32, the relation

{
(
P ,Q) | Q ≡ (v)(Uv | Q′) and Q′ ∈ [[P ]]v-family and v �∈ fv(P )}

is a weak barbed expansion containing the pairs (P , [(P )]).

Next, we consider the solos calculus where replication is replaced by guarded recursion,

as discussed in Section 4. The following lemma relates the divergence of an agent with

guarded recursion to the divergence of its encoding [(·)].

Lemma 33. Let P be an agent of fpre with guarded recursion. For every Q ∈ [[P ]]v-family,

if (v)(Uv | Q) diverges, then P diverges, too.

Proof. Note that the agent (v)(Uv | [[Q]]v) performs a finite number of different

reductions involving the catalyst agent Uv because recursion is guarded. Therefore, if

(v)(Uv | Q) diverges, there is a finite prefix of the divergent derivation of shape

(v)(Uv | Q) −→∗≡ (v)(Uv | Q′) −→≡ (v)(Uv | Q′′),

where Q,Q′ ∈ [[P ]]v-family and the last reduction does not involve the catalyst agent.

Then, by Proposition 31, there is P ′ such that P −→ P ′, and Q′′ ∈ [[P ′]]v-family. We

conclude by observing that (v)(Uv | Q′′) also diverges.
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Appendix B. Example reduction of choice encoding

In this appendix we illustrate the second encoding of the choice operator (Section 6) using

an example.

[( (x1x2)
(
(u x1 . P1 + u x2 . P2) | (u y1 . Q1 + u y2 . Q2)

)
)]

def
= (vx1x2)

(
Uv | (v′)( [v �= v′](w)(w x1vv

′ | [[P1]]v′ | (y)(v uwy | Uy))

| [v �= v′](w)(w x2vv
′ | [[P2]]v′ | (y)(v uwy | Uy)))

| (v′)( [v �= v′](w)(w y1v
′v | [[Q1]]v′ | (y)(v uwy | Uy))

| [v �= v′](w)(w y2v
′v | [[Q2]]v′ | (y)(v uwy | Uy)))

)
−→ (vx1x2)

(
Uv | (v′)( [v �= v′](u x1vv

′ | [[P1]]v′)

| [v �= v′](w)(w x2vv
′ | [[P2]]v′ | (y)(v uwy | Uy)))

| (v′)( [v �= v′](w)(w y1v
′v | [[Q1]]v′ | (y)(v uwy | Uy))

| [v �= v′](w)(w y2v
′v | [[Q2]]v′ | (y)(v uwy | Uy)))

)
−→ (vx1x2)

(
Uv | (v′)( [v �= v′](u x1vv

′ | [[P1]]v′)

| [v �= v′](w)(w x2vv
′ | [[P2]]v′ | (y)(v uwy | Uy)))

| (v′)( [v �= v′](u y1v
′v | [[Q1]]v′)

| [v �= v′](w)(w y2v
′v | [[Q2]]v′ | (y)(v uwy | Uy)))

)
In these initial reductions, for legibility we always move the new catalyst created by

Uy{v/y} to top level. Already after these reductions, an interaction between two of the

summands can take place. To make it more interesting, we let all summands interact with

the catalyst:

−→−→ (vx1x2)
(
Uv | (v′)( [v �= v′](u x1vv

′ | [[P1]]v′ )

| [v �= v′](u x2vv
′ | [[P2]]v′ ))

| (v′)( [v �= v′](u y1v
′v | [[Q1]]v′)

| [v �= v′](u y2v
′v | [[Q2]]v′))

)
.

(5)

Here, any of the two summands of each parallel component of the original agent can

interact with any of the summands of the other component. (Note that all mismatch

conditions are false, since v′ is fresh in both components.) We arbitrarily choose the first

summand of each:

−→ (vx2)
(
Uv | ( [[P1]]v

| [v �= v](u x2vv | [[P2]]v))

| ( [[Q1]]v
| [v �= v](u y2vv | [[Q2]]v))

)
{y1/x1}.

Since [v �= v]P ∼ 0 for all v and P , we can remove the components corresponding to the

discarded summands, and then we can also garbage collect the binding of x2:

∼ (v)
(
Uv | [[P1]]v | [[Q1]]v

)
{y1/x1}

def
= [(P1 | Q1)]{y1/x1}.

This is exactly the result we were expecting.

https://doi.org/10.1017/S0960129503004055 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503004055


C. Laneve and B. Victor 682

Note that this encoding does not work for mixed guarded choice, where the prefixes

in a summation can be both inputs and outputs. This is easy to see from the agent in

(5) above, where, if the original summation terms were of mixed polarity, their encoding

would at this point allow interaction between the terms of each choice.
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