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SUMMARY
A In this article, we present a learning model that can control
the kinematics motion of a simulated anthropomorphic
arm in reaching and grasping tasks of a static prototypic
object placed behind an obstacle of varying position
and size. The network, composed of two generic neural
network modules, learns to combine multi-modal arm-related
information (trajectory parameters) as well as obstacle-
related information (obstacle size and location). We based
our simulation on the Via Point notion, which postulates
that the reach motion planning is divided into successive
positions of the arm. In order to determine these particular
positions, some specific parameters have been extracted
from an experimental protocol and constitute the pertinent
parameters to be integrated into the model. This net of neural
net determines the total path able to reach and grasp the
prototypic object while avoiding an obstacle.

KEYWORDS: Reach motion; Obstacle avoidance; Neural
network; Via point.

I. INTRODUCTION
In the last twenty years, motion planning has become one of
the most important research topics in the field of robotics.
More especially, the learning of the reach-and-grasp of an
object by a robot is particularly difficult when an obstacle
is placed between them. However, although several studies
have shown the coupling of arm and finger movements
during prehension,1–3 the reach motion planning system in
a cluttered environment can be handled separately. Thus, in
this study, we consider the kinematics motion planning of
the arm avoiding obstacles.

Two main methods arise from the literature. The “global”
method uses complete information about the workspace
and considers the whole degrees of freedom of the robot
manipulator. In this case, the collision avoidance algorithms
can be classified into an “off-line” algorithm, where the
motion planning is carried out before the robot motion.
The second method called “local” uses only incomplete
information of the environment, and, is usually implemented
in “on-line” algorithms. In this case, the robot checks
potential collisions during the robot motion and activates a
matched strategy to avoid the obstacle. Several authors have
worked on this path planning problem involving obstacles
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and propose a large number of methods, such as potential-
field,4–6 or the wall-following method7 that continues to
follow the obstacle’s contours until it has passed by the
obstacle, and the goal-oriented recursive path planning
method.8 Koren and all used the APF method and assumed
that each object in the environment exerts a repulsive force
on the mobile robot whereas the goal exerts an attractive
force on it. The resulting force is then computed at each step
and used to determine the direction of movement for the next
step. Noorhosseini and all, in the GORP method, tried to
find the longest straight-path segment with a predetermined
clearance from the obstacles in the direction that takes the
robot closer to the goal.

Concerning the off-line algorithm,9 Latombe proposed
of distance maps method whose principle is to divide the
space by grids with equal distance.10,11 On the intersection
of the grids are nodes which are marked with number of
collision inspection. Many solutions have been proposed
in the literature. As example, we can note the differential-
geometry method based on the kinematics set forth.12,13 In
this case, Chirikjian used “virtual tunnels” through which the
multi-body system has to pass in order to avoid obstacles.
Some authors proposed a method based on a potential
function around the obstacles.14–16 With this formulation,
the motion of the manipulator of the multi-body system is
planned in terms of minimum potential.

Another approach emerged at the beginning of the 1980’s
based on imitation learning idea. Inspired by artificial
intelligence techniques, symbolic reasoning was commonly
chosen to behavior mime. During a training phase, several
sample movements were generated under manual robot
control. Sensor recording as position and force were stored all
along the experiment as well as the positions and orientations
of the obstacles and the goal states.17 More recently, new
elements were included to use visual input of the teacher
and to perform movement segmentation out of computer
vision algorithm.18–20 Other projects used data gloves,21

or marker-based observation systems as input for imitation
learning.21

In this paper, we present a learning model that can control a
simulated anthropomorphic arm kinematics motion in order
to reach and grasp a static prototypic object placed behind
an obstacle of varying position and size. The network,
composed of two generic neural network modules,22 learns
to combine multi-modal arm-related information such as
trajectory parameters, as well as obstacle-related information
such as obstacle size and location.
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Fig. 1. Temporal wrist elevation and Via Point specification.

We based our simulation on the notion of Via Point,
previously observed by Johansson,23 which postulate that
the reach motion planning is divided into some specifics
successive position of the arm based on gaze information.
In this study, deprived of gaze information, we assume that
elbow and wrist positions characteristic in relation to the
height of obstacle allow the impediment avoidance during
the motion. For that, we present an experimental protocol
which makes possible the extraction of several specific
data to be integrated into the generic learning model. The
neural network architecture is used to determine the total
trajectory of the arm in reaching and grasping tasks while
avoiding the obstacle. According to these studies, we propose
an original method which takes into account the previous
learning modules. The goal of this method is to determine
the entire trajectory of the wrist in order to reach the object
placed behind two successive obstacles.

This paper is organized as following. In section II, we
present the method used to obtain the different required data.
The third section is devoted to the presentation of the neural
network architecture retained to perform the reach-and-grasp
learning. In section IV, we present the learning and simulation
results demonstrating the tools efficiency. Finally in
section V, we present the neural network architecture and
simulation results of the novel approach.

II. EXPERIMENTAL PROCEDURE

II.A. Materials and methods
Seventeen healthy subjects (age, 22–34 years), twelve males
and five females, volunteered to participate. Subjects were

seated in a chair facing a table and were instructed to reach
for and grasp a prototypic object (box) placed behind an
obstacle of varying position and size. The object to be grasped
was a compact block (8 ∗ 8 ∗ 8 cm) placed at 50 cm from
the wrist initial position Po. Three obstacles of different
sizes (10 ∗ 35 ∗ 10, 10 ∗ 35 ∗ 15, 10 ∗ 35 ∗ 20 cm) were placed
randomly at 25 (P 2 position) or 40 (P1 position) cm from
Po. Then, subjects performed six different tasks.

Each subject executed all the randomized tasks. Move-
ments were recording using the Vicon optoelectronic system
which allow the record of markers placed on the shoulder,
elbow and wrist articulations. With the help of a specific
software, the trajectories of each marker can be recon-
structed. Subjects were allowed to reach around the obstacle
or to grasp the block from the top but only the last strategy
was taken into account.

II.B. Results
II.B.1. Trajectory analysis: Via point underlining. The
location of the obstacle between the initial hand position and
the target object required the subjects to produce greater
vertical elevation during the reach to avoid the obstacle.
This phenomenon affects the wrist and the elbow trajectory.
Figures 1 and 2 represent, respectively, the wrist and elbow
trajectory in the six conditions (obstacle height (cm): 10, 15,
20, Position P1 and P2).

According to the trajectory description, we can notice
that the maximum vertical height achieved by the wrist
happened at 42 ± 1% times relative to the total time of the
task independently of the obstacle location and size. This

Fig. 2. Temporal elbow elevation and Via Point specification.
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Fig. 3. Elbow trajectory in the obstacle frame.

trajectory parameter characteristic represents the first Via
point position.

In order to take into account the reach path curve depending
on the height of the obstacle, we determine the second and
the third via point position respectively at 20% and 70% of
the total task time (see figures 1 and 2). With these three
characteristic positions, we can reproduce the experimental
trajectories with the use of a spline interpolation.

Then, in relation with these time characteristics, we define
the corresponding Elbow Via Point location as shown in
figure 2.

II.B.2. Final position analysis. The data relative to the final
position give some relevant information relative to the elbow
and wrist position in relation to the obstacle position and size.
In fact, we notice the existence of a safety distance between
the elbow and the obstacle allowing the obstacle avoidance.
Figure 3 represent the elbow trajectory in the obstacle
frame and show that the final vertical distance between the
elbow and the obstacle is invariant whatever the obstacle
height:

d safety = 120 ± 10 mm (1)

Then, the final elbow, like that the wrist position, can be
determined according to the obstacle position and height. At
this step, we have determined five characteristic positions
(see Table I) of the upper limb for each condition which
allow the path planning: the initial position, the first heuristic
Via point, the Via point corresponding to the maximal height
of the wrist, the second heuristic Via point and the final
position.

In the next section, we present the neural network used to
learn the final arm configuration and the generalization of the
trajectory parameter determined in this paragraph.

Table I. Trajectory characteristic position.

Characteristical Initial Via Via Via final
position position point 1 point 2 point 3 position

%time 0 20 43 70 100

III. NEURAL NETWORK MODEL

III.A. Architecture
The neural network learning algorithm is based on the
Locally Weighted Projection Regression (LWPR), used for
incremental learning of nonlinear functions.24,25 It uses
locally linear models, spanned by a small number of
univariate regressions in selected directions in input space,
to achieve a piecewise linear function approximation.

The region of validity, called a receptive field, of each
linear model is computed from a Gaussian function:

wk = exp

(
−1

2
(x − ck)T Dk(x − ck)

)
(2)

where ck is the center of the kth linear model, and Dk

corresponds to a distance metric that determines the size and
shape of validity region of the linear model. Given a query
point x, every linear model calculates a prediction yk(x). The
total output of the learning system is the normalized weighted
mean of all linear models:

y =
K∑

k=1

wkyk

/
K∑

k=1

wk. (3)

The main capability of the generic neural network is to
learn multi-modal sensory-motor relations independently of
the specific nature of the sensory signals. In this paper, we
focus on a net of two neural networks which is able to gene-
rate the entire trajectory avoiding collision relative to the
position and size of the obstacle and the object data to grasp.

The first learning module is dedicated to the learning of the
final upper limb configuration whereas the second module is
devoted to the learning of the via point generating by the
trajectory. Figure 4 illustrates the net of the neural network.

III.B. Learning of the final upper limb configuration
The arm configuration determination requires multiple steps.
The first one concerns the end effectors position and orient-
ation definition. In fact, the wrist position and orientation
relative to the object has been pre-defined.

According to the study of Tolani,26 we have computed
a robust algorithm in order to solve the inverse kinematics
and to deal with the redundancy problem. In fact, we can
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Fig. 4. Net of neural nets.

determine only one arm configuration imposing the elbow
desired position such as a constraint. This desired position is
provided by the experimental data as shown in section II.
With these two conditions, the information of the final
arm configuration avoiding the obstacle is determined and
the learning can be performed. The following algorithm
(Figure 5) explains the learning procedure.

In the next section, we present the results of the learning
described in this paragraph and we illustrate the efficiency of
the tool through some modelisation results.

III.C. Learning of the Via point generated trajectory
The generalization of the via point definition comes from
the experimental data analysis. A training point matrix
containing the Via point position and the corresponding
obstacle height and position has been established. Then, the
neural network learns to generalize the via point position.
The algorithm related to the via point learning is shown in
Figure 6.

IV. SIMULATION RESULTS

IV.A. Learning curve results: final arm configuration
and Via Point
Here we present the simulation results that concern the
learning of the arm configuration avoiding the obstacle and

the learning of the trajectory parameters such as Via Point
(see Figure 4 and 5). Figures 7a and 7b show, respectively,
their learning curves (Mean Squared Error, MSE) over 6000
and 9000 training epochs.

To evaluate the efficiency of the neural network, we
compute the mean positional error corresponding to the norm
of the vector from the desired position to the actual position,
with a test set of 5000 different configurations, after having
specified the obstacle position and size. These mean error
value are, respectively, 5.1 ± 1.0 mm and 7.2 ± 1.6 mm for
the elbow and the wrist.

Moreover, the safety distance given by the predicted model
is approximately equal to the one given by experimental data:

d safety predicted = d safety ± 5 mm (4)

IV.B. Efficiency of the tool
Figure 8a represents the wrist trajectory given by the
predicted model and the experimental one for the three
obstacles heights in P1 position. Figure 8b represents the
predicted elbow trajectory in P2 position for the higher
obstacle and an arbitrary case trajectory (Position: 0.3;
Height: 0.16). The mean error value of the wrist position
is equal to 20 ± 6 mm and 15.5 ± 3 mm for the elbow in the
six conditions.

Figure 9a represents the wrist trajectory given by the
predicted model and the experimental one for the higher
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Fig. 5. Algorithm for the arm configuration learning.
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Fig. 6. Algorithm for the Via Point position learning.

obstacle height in P1 and P2 position. Figure 9b represents
the predicted wrist trajectory for an arbitrary case (Position
P: 0.33; Height: 0.11; 0.13; 0.16; 0.19 cm).

IV.C. Modelisation results
In order to illustrate the adaptability of the model, we
present the anthropomorphic arm simulated. The 7 degrees of
freedom (DoF) arm model is composed of two segments (arm
and forearm) linked by three joints, as shown in Figure 10.
The shoulder joint has 3 DoF (q1, q2, q3), the elbow joint has
1 (q4) and the wrist joint has 3 DoF (q5, q6, q7).

Thus, the configuration of the arm is completely defined
by the vector of the joint angles q = (q1, q2, q3, q4, q5, q6,
q7)T.

These last figures illustrate the capability of our learning
model. The hand shape and the wrist position and orientation
relative to the object has been pre-defined. The inputs of
the model are the obstacle position and height as well as
the object position to be grasped. With the use of the two
neural nets learned, the simulator is able to generate the entire
trajectory which enables to avoid the obstacle. Figures 11a
and 11b show the grasp performed once the trajectory is

Fig. 7. Learning curves. (a) Final arm configuration. (b) Via point.

Fig. 8. Simulated trajectories. (a) Wrist. (b) Elbow.
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Fig. 9. Simulated trajectories. (a) Wrist. (b) Elbow.

Fig. 10. Seven degrees of freedom arm model. (Shoulder: 3 DoF, Elbow: 1 DoF, Wrist: 3 DoF).

Fig. 11. Model illustration. (a) Wrist and Elbow trajectories.
(b) Wrist trajectory.

performed. We have represented the elbow and wrist
evolution in order to avoid the obstacle.

V. CONCLUSION
In this paper, we have presented an original approach that
integrates several parameters from experimental data in a
generic neural network in order to perform a path planning.
According to the notion of Via point and obstacle-related
information such as obstacle size and location, the entire
trajectory is determined after learning in order to reach and
grasp a static prototypic object placed behind an obstacle
of varying position and size. The method uses a net of two
neural networks. The first performs the learning of the final
upper limb configuration avoiding the obstacle, whereas the
second is devoted to the learning the trajectory parameters
(Via Points). Both of these informations are provided by the
experimental data analysis and integrated to the two different
learning modules. Several results show the efficiency of

the tool and allow us to think that the use of this net of
generic neural network can treat more complex situation as
the combination of the reach-and-grasp. In future works, we
will integrate other learning modules as the determination of
the hand shape and such as the wrist orientation and position
relative to the object.
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