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Thanks to its physical characteristics, Ultra-wideband (UWB) is one of the most promising
technologies for indoor pedestrian navigation. UWB radio localisation systems however

experience multipath phenomena that decrease the precision and the reliability of the user’s
location. To cope with complex indoor environments, UWB radio signals are coupled with
inertial measurements from Micro Electro Mechanical Sensors (MEMS) in an extended
Kalman filter. Improved performances of the filter are presented and compared with refer-

ence trajectories and with pure inertial solutions. Only specific selection methods enable this
improvement by detecting and removing outliers in the raw localisation data.
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1. INTRODUCTION. The introduction of GPS enabled a significant im-
provement in the performance of navigation in open sky environments.
Consequently many new applications based on GPS emerged. This technology is
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now essential for a lot of services offered to the consumer market. However GPS
does not allow indoor positioning due to the lack of penetration of signals inside
buildings. New indoor localisation techniques are emerging, but are not yet at
the same level of development and are less well understood than existing outdoor
location solutions.

Indoor positioning is currently the subject of a lot of research and some technol-
ogies are now available. For example, radio signals used for telecommunications,
such as Bluetooth or RFID, are the basis for several indoor positioning systems.
These systems utilize proximity detection algorithms to infer the presence of a
mobile in a clearly defined area of a building. WiFi technology can also be used for
localisation. In such systems, the time of flight of a signal between a receiver and a
transmitter is employed (Evennou, 2007).

Based on the large diversity of available metrics, new applications for indoor
pedestrian navigation can now be developed. Similarly to applications emerging after
the introduction of GPS, the use of these technologies promises to be various and
growing in the future. Thanks to these systems, pedestrians will be able to find their
way in a wide range of complex environments, such as airports or train stations.
Improved security in premises sensitive to terrorism is also expected. In the marketing
domain, targeted advertising might be sent to clients according to their position in a
shopping centre.

This paper presents a combination of two of the most promising technologies for
indoor positioning. The first one is a radio localisation system based on the new
wireless telecommunication technology called Ultra-wideband (UWB). The second is
an inertial system based on Micro Electro Mechanical Sensors (MEMS). The goal of
this combination is to improve the performance of indoor pedestrian localisation.
The measurements of these two systems are coupled in order to combine the
complementary advantages of MEMS and UWB. Algorithms based on an Extended
Kalman Filter (EKF) are used for the coupling. The benefits of the proposed solution
are evaluated and compared with pure UWB and inertial positioning systems.

2. LOCALISATION BASED ON INERTIAL SENSORS. MEMS re-
sult from the integration of mechanical and electrostatic elements on a common
substrate. Sensors based on this technology are essentially accelerometers, gyro-
scopes and magnetometers. Inertial data from these systems are used for dead reck-
oning navigation where the current position is estimated by accumulating
movements determined using onboard measurements. The advantages of inertial
measurements are their regularity and their independence from any existing infra-
structure. MEMS hardware is also compact and relatively cheap compared to other
high-end inertial systems. They are particularly suitable in the context of pedestrian
navigation (Evennou, 2007).

However, MEMS data are affected by errors typical of these sensors, such as drift
and bias which disturb the estimation of the pedestrian trajectory. The MEMS-based
trajectory error is likely to grow rapidly with time when no additional absolute
measurement is available. Therefore MEMS are generally hybridised with other
positioning technologies. In these hybridisation schemes, MEMS records are used to
compensate for the lack of data continuity in the absolute position determinations
(Renaudin et al., 2007).
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The inertial measurement unit (IMU) shown in Figure 1, is composed of a triad of
orthogonal accelerometers, a triad of orthogonal gyroscopes and a triad of orthog-
onal magnetometers. The hybridisation structure uses MEMS data to compute bio-
mechanical information that describes the walking features of a pedestrian (Aminian
and Najafi, 2004). Accelerometers data detect steps, while gyroscopes and magnet-
ometers are used to estimate the pedestrian’s heading.

3. RADIO LOCALISATION BASED ON UWB SIGNALS. UWB
was first developed in 1960 for radar applications. This technology has become the
focus of developments more recently for both wireless data communication and real
time location tracking. It was the subject of recent standardisation efforts both in
the USA in 2002 and the European Union in 2007. UWB operates by transmitting
a series of signals as narrow pulses in the time domain, which in turn spreads infor-
mation over a very large spectral bandwidth; typically from 3 to 10 GHz. The pulse
duration is very short, varying between some picoseconds and nanoseconds
(Renaudin et al., 2007).

This communication technology is especially suitable for localisation applications,
as it allows ranging with centimetric accuracy. Three main categories of data are
measured: time of arrival, angle of arrival and signal strength (Gustafsson and
Gunnarsson, 2005). We will discuss the two first categories.

UWB ranging systems often measure the time of arrival (TOA) of signals travelling
between a target node and a number of reference nodes. The transmitter is either a

Figure 1. Inertial measurement unit composed of MEMS from Xsens company.
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mobile unit placed on the pedestrian, or an ‘‘access point ’’ fix mounted on a known
location inside the building. Three TOA are necessary to estimate the mobile position
in R

3. To compute the TOA, the receiver and the transmitter clocks need a precise
synchronisation. The receiver/transmitter range is computed accordingly. However it
is not always easy to synchronise the receivers and the transmitter clocks. This diffi-
culty can be avoided by using time difference of arrival (TDOA). The TDOA results
from the difference of two TOA of a given signal on two different receivers. In this
case, a simple receivers network synchronisation is needed. (See Figure 2.) Three
TDOA resulting from four reference nodes are necessary to locate a mobile in R

3.
UWB systems can also measure the angle of arrival (AOA) of radio signals in order

to determine positions. Two different angles are measured for each AOA; one of
them is measured in a vertical plane, and the second is measured in the horizontal
plane. Two measures of AOA from, at least, two different access points are necessary
to compute the target location in R

3. (See Figure 3.)
Characteristics of UWB signals offer a wealth of advantages for localisation

applications. Since UWB signals have very large bandwidths and the pulse duration is
very short, it is possible to have extremely accurate location estimates. The absence of
carrier frequency and the low power spectral density tend to reduce interference
to other systems. Moreover, thanks to these characteristics direct line of sight can
be more easily separated from multipath components, undesirable in localisation
applications (Gezici et al., 2005). Therefore UWB is foreseen as one of the most
promising technologies for indoor localisation.

In our experiments, the Ubisense Real Time Location System (RTLS) UWB
based system was used (www.ubisense.net). Fixed receivers measure TDOA and
AOA metrics. A central computer, connected with all access points, computes the
3D positions of the mobile. The positioning accuracy is about 30 cm. The central
interface controls the pulses emission frequency of the mobile.
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Figure 3. Location determination from AOA.
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Despite promising technical characteristics, UWB location performance is strongly
affected by radio signals interactions with the environment. Reflection, refraction and
transmission phenomena represent an important source of location errors (Denis,
2005). Indoors is one of the most challenging environments in terms of electromag-
netic interactions. Reflection represents certainly the major problem. Building walls
act as mirrors to UWB signals and receivers may measure AOA or TDOA on re-
flected signals. In such cases, the metrics correspond to large outliers that are not
suitable for localisation purposes. This physical constraint induces major difficulties
in the development of reliable radio localisation systems and it strongly disturbs the
correct operation of hybridisation algorithms.

4. HYBRIDISATION OF MEMS AND UWB TECHNOLOGIES. To cope
with multipath difficulties, a coupling filter based on an extended Kalman filter
(EKF) was developed. The goal of this hybridisation is the computation of
reliable and accurate pedestrian trajectories, thanks to the calculation of successive
positions in time. Thus 3D coordinates of the pedestrian position are estimated in
permanence through corresponding parameters in the state vector of the EKF.

4.1. Filter design. UWB AOA and TDOA metrics are hybridised with MEMS
based information in an EKF. Being continuous and independent, MEMS data
permit the computation of a trajectory even when UWB measurements are absent
due to lack of line of sight signals. Our localisation hardware uses only one IMU,
attached to the UWB mobile, suspended together around the neck and carried on the
thorax. This choice provides an easy-to-use system. However, using a single MEMS
module reduces the possibilities of computing the pedestrian’s step length and the
walked distance in comparison with other systems (Renaudin et al, 2007). Based on
the recorded inertial data, it is mainly possible to detect step events and to estimate
the pedestrian’s azimuth. Each time the walker takes a step, accelerometers register
a peak along the vertical axis, which is used for step detection. Gyroscopes and
magnetometers data are processed to calculate the heading.

Step detection information is event-driven. As a consequence, using this data for
the state vector prediction would generate an irregular cadence, following the walking
rhythm. UWB pulses are emitted at 5 Hz and are thus less compatible with the pre-
dicted state vector in temporal terms. Therefore MEMS and UWB data are only
involved in the updating step of the filter.

MEMS based information should be connected with the state vector to ensure the
corresponding updates. A variable representing the frequency of the pedestrian steps
(fstep), associated with a white noise stochastic model, is introduced into the state
vector and directly updated by step detection information. In the same way, a variable
representing the MEMS-based heading (hMEMS) is present in the state vector and
is updated five times per second thanks to corresponding MEMS measurements. As
MEMS headings are affected by a bias that varies strongly in time, up to the value p,
the estimation of this variable (dhMEMS) is essential. These variations are mainly due
tomagnetic perturbations. The corrected heading results from the following equation:

h=hMEMS+dhMEMS (1)

4.2. Kinematic model. The filter is running at 5 Hz. The state vector prediction
uses only the state variables in an automatic process. Based on the heading as well
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as on the horizontal and vertical speeds, the East (E) and North (N) coordinates
of the pedestrian’s location are predicted. The vertical speed (vz) is used for the
vertical component (Z) of the walker’s position. The horizontal speed is computed by
multiplying the step frequency by the step length (Lstep). The kinematic model is given
by the following mechanisation equations:

_EE=fstep �Lstep � sin (hMEMS+dhMEMS)

_NN=fstep �Lstep � cos (hMEMS+dhMEMS)

_ZZ=vz

(2)

The state vector contains the following eight states:

x = E N Z fstep vz Lstep hMEMS dhMEMS

� �T
(3)

4.3. Measurements models. Four different kinds of updates are performed. The
first two are based on MEMS records and the remaining on UWB signals. MEMS
based heading and step frequency are directly updated respectively at 5 Hz and 1 Hz.
The bias on heading measurements and the step length are updated thanks to
absolute measurements originating from UWB signals. Without absolute data, the
trajectory would classically diverge with time. This effect is well known in navigation
based only on inertial sensors (Mezentsev et al., 2004).

In contrast to MEMS data, availability of AOA and TDOA measurements is
especially irregular in time. This behaviour is mainly due to the geometrical con-
figuration drawn by the pedestrian and the access points, which can be more or less
favourable for UWB measurements. When an AOA is available, the corresponding
update is done. The following equations link the horizontal and vertical angles with
the predicted position of the pedestrian.

Equation for the horizontal angle measured from the access point i :

Qi+ai= arctan
NxNi

ExEi

� �
(4)

Where

– Qi is the horizontal angle measured by the access point relatively to an access point
reference frame (see Figure 4)

– ai is the horizontal orientation of the access point reference frame relatively to the
local reference frame (see Figure 4)

– Ni is the North component of the access point position
– Ei is the East component of the access point position

Equation for the vertical angle measured from the access point i :

li+bi= arctan
ZxZiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(ExEi)
2+(NxNi)

2
p

 !
(5)

Where

– li is the angle measured in a vertical plane by the access point, relatively to its axis
(see Figure 4).
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– bi is the vertical angle of the axis of the access point reference frame relatively to the
horizontal plane (see Figure 4).

– Ni is the North component of the access point position
– Ei is the East component of the access point position
– Zi is the vertical component of the access point position

A similar update method is implemented for TDOA metrics. With d(m,i), the
distance between the mobile and the access point i, and d(m,j), the distance between
the mobile and the access point j, the following equation describes the TDOA
measured on access points i and j :

Ddij=d(m, i)xd(m, j) (6)

The following equation links the TDOA to the location components of the state
vector. This measurement model is used to update the state vector:

Ddij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ExEi)

2+(NxNi)
2+(ZxZi)

2
q

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ExEj)

2+(NxNj)
2+(ZxZj)

2
q

(7)

5. IMPLEMENTATION OF SELECTION METHODS ON
RADIOLOCALISATION DATA. The previously described EKF enables
the computation of hybrid trajectories. However, the preliminary tests have shown
that multipath effects induce large errors in the computed trajectory. Indeed
reflected signals produce many important UWB measurement errors. We conclude
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Figure 4. Angles resulting from an AOA measurement.
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an obvious need to develop selective methods to distinguish UWB measurements
issued from reflected signals before including them in the filter.

Two different selection methods are implemented. (See Figure 5). The first one is
based on the knowledge of the human body’s orientation relative to the UWB wave
propagation. The second method compares the measured values with the predicted
state to estimate whether a measurement is correct or issued from a multipath. The
principle of both methods is described in the two following sections.

5.1. Selection method based on the human body’s orientation. Many experiments
have been conducted to assess whether the human body represents an obstacle for
UWB electromagnetic waves propagation or not. Experimental results and literature
(Zhang et al., 2007; Welch et al., 2002) show that the signals transmitted by the UWB
mobile are not able to pass through the human body. UWB tags are suspended
around the neck and carried on the thorax. In this configuration, UWB signals
received by access points located in the back of the pedestrian can only result from
multipath. Consequently, AOA and TDOA measurements recorded in such con-
figurations are considered as outliers.

The pedestrian’s heading estimated in the state vector informs about the body’s
orientation. In the developed algorithm, the predicted position of the state vector and
the coordinates of the access points are combined with the heading to determinate
whether a measurement is recorded in front of the pedestrian or not. For each time
step, a vector binding the predicted position with a given access point is defined.
The difference between the azimuth of this vector (f) and the pedestrian’s heading (h)
is then computed. (See Figure 6). When this difference, in absolute value, is smaller

Measurement 
accepted

UWB 
measurement

yes

no no

yes

Step 1
Measurement 

performed by an access 
point situated in front of 

the pedestrian?

Step 2
Correspondence 

between predicted 
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Measurement 
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Measurement 
rejected

Figure 5. Principle of implemented selection methods.
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Figure 6. Principle of selection based on the human body’s orientation.
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than p/2, the location of the corresponding access point is considered as being in
front of the pedestrian. AOA or TDOA measurements involving this access point are
then accepted. This method removes many reflected measurements. However some
erroneous AOA or TDOA measurements made by access points situated in front
of the pedestrian remain. A second step of selection is necessary to eliminate these
errors.

5.2. Selection method based on a comparative statement of the predicted state
and the UWB measurements. The second selection method exploits the state vector
information. Comparing the predicted position and the coordinates of the access
points, ‘‘predicted measurements’’, either AOA or TDOA, can be computed for each
time step. The following equations detail the computation of an AOA prediction:

~QQi= arctan
NxNi

ExEi

� �
xai

~lli= arctan
ZxZiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(ExEi)
2+(NxNi)

2
p
 !

xbi

(8)

The predicted TDOA metric is calculated according to the following equation:

D~ddij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ExEi)

2+(NxNi)
2+(ZxZi)

2
q

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ExEj)

2+(NxNj)
2+(ZxZj)

2
q

(9)

When an AOA or a TDOA is available, their values are compared with the predicted
measurements. The differences between these values, corresponding to predicted re-
siduals, are calculated as follows for the selection purpose.

’ Difference of AOA:

DQi=Qix~QQi

Dli=lix~lli

�
(10)

’ Difference of TDOA:

D(Ddij)=DdijxD~ddij (11)

However, these differences do not represent enough pertinent criteria to identify
outliers. The predicted measurements implied in previous equations may contain er-
rors, if the corresponding state vector position is incorrect. The consequence of such
errors is a growth of the predicted residuals, which affects any selection based on that
criterion. Moreover, one effect of this selection error might be to reject correct
measurements, which cancels the update of the state vector and lets errors in the
predicted state grow with time. Thus a chain reaction effect can result from selection
of measurements based on these residuals.

Thus the implemented selection method estimates the errors of the predicted
measurements to compensate the effect of drifts on the calculated trajectory. As the
covariance matrix of the state vector is continuously estimated in the EKF, the co-
variance matrix of the predicted position is created at each time step. Standard
deviations of predicted measurements are derived from this covariance matrix
according to a variance propagation scheme. Standardised residuals are then com-
puted by dividing the difference from Equations 10 and 11 by the corresponding
standard deviations of the predicted measurements.
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’ For each AOA, two standardised residuals are computed, corresponding to the
two measurement angles :

tQi
= DQi

sQi

tli=
Dli
sli

(
(12)

’ For each TDOA, one standardised residual is computed:

tDdij=
D(Ddij)

sDdij
(13)

Thresholds are used to assess the final choice. The selection test starts with the AOA
metrics. Outliers are identified and eliminated when a standardised residual is greater
than the corresponding threshold. Synchronised TDOA involving identical access
points are consequently rejected, because the received UWB signal for AOA and the
TDOA computation are identical and affected similarly by multipath. TDOA data is
also eliminated when the indicator error exceeds its corresponding threshold.

6. PERFORMANCES EVALUATION OF MEMS/UWB
COUPLING.

6.1. Methodology. The performances of the implemented Kalman filter were
assessed in a classroom of EPFL campus, where the UWB radio localisation system is
installed. All walls of this classroom are made of steel. During these tests, a pedestrian
equipped with a MEMS module and a UWB mobile walks according to clearly
defined scenarios. The pedestrian’s reference trajectory is recorded by storing each
instant the person walks between a set of pre-determined waypoints. These reference
points are distributed in the room and were surveyed with a theodolite. MEMS and
UWB data are stored on a computer. Hybrid routes are computed with the EKF.

To assess the filtering performances, hybrid trajectories are compared with the
reference trajectory at each reference waypoint. The distance to each reference
waypoint is computed, and a 2D horizontal RMS value is estimated.

e=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ExEwaypoint)

2+(NxNwaypoint)
2

q
(14)

6.2. Graphical Results. Figures 7–9 depict the hybridised and real trajectories for
three different scenarios, plotted with the experimental room in the background. The
footpath of each scenario was repeated three times.

6.3. Analysis of experimental results. As illustrated in Figures 7 to 9, the filter
performance varies considerably from one scenario to another. Whereas the com-
puted positions stay near the reference trajectory in the second and third scenarios,
the hybridised route shows important errors in the first scenario.

These differences arise from how the UWB system operates in particular con-
ditions. Sometimes, the pedestrian is located in an unfavourable geometrical
configuration causing a lack of measurements or reflected signals only. This is the case
in the first scenario where parts of the footpath are out of the UWB coverage
(the room). Periods of 10–20 seconds without UWB measurement exist. During this
time, the hybridisation relies solely on MEMS data, which generates a drift of
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the trajectory and a growth of the variances associated with the predicted position.
This disturbs the operation of the selection algorithm. After a period without UWB,
erroneous measurements might be accepted and used for an update, inducing an ad-
ditional drift of the hybridised trajectory. As the predicted position directly resulting
from such an update will be distorted, the filter might reject any incoming correct
UWB measurement. This contributes again to the drift of the estimated footpath.
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Figure 8. Hybrid trajectory for scenario 2.
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Figure 7. Hybrid trajectory for scenario 1.
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6.4. Assessment of EKF performance. To assess the EKF performance, three
different analyses are completed.

’ The first analysis presents the results of a trajectory computed without using any
selection algorithm

’ The second analysis illustrates the performances of a pure inertial footpath,
calculated without using UWB measurements

’ The last analysis compares the hybrid trajectory with the known coordinates of
the waypoints.

Figures 10 and 11 illustrate the two first analyses for the 3rd scenario. The
inertial only trajectory, obtained without using any UWB data, is represented with a
continuous green line. The trajectory computed without selection of UWB measure-
ment is drawn with a dotted line.

As expected, the hybrid solution performs better than the inertial only solution.
This performance difference is even stronger when the hybrid trajectory is computed
without using any selection algorithm. Even if the scale of Figure 10 is not adequate
to observe the entire footpath, it is interesting to notice that without any selection
method, the solution diverges drastically. The trajectory leaves the room rapidly and
sometimes reaches positions located up to several hundred metres away from the
reference route.

Figures 12–14 depict the last analysis for all scenarios. The planimetric errors be-
tween the hybrid positions and the reference positions are computed at each waypoint
(Equation 14). Errors of the MEMS based only trajectory are also represented.
Planimetric errors of the solution computed without selection methods do not appear
on these figures because their magnitude is too large.

As expected, the coupling algorithm combines the advantages of both UWB and
MEMS systems to improve the overall localisation performance. Except for the first
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Figure 9. Hybrid trajectory for scenario 3.
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scenario, the planimetric error of the hybrid positions remains under 2 metres with an
average around 70 centimetres. This trend is lost when the positions are obtained
without any selection method or only with MEMS data. In both cases, the plani-
metric error grows with time.
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Figure 12. Planimetric errors in scenario 1.
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Figure 13. Planimetric errors in scenario 2.

382 SYLVAIN PITTET AND OTHERS VOL. 61

https://doi.org/10.1017/S0373463308004797 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463308004797


The major role of the implemented selection methods is highlighted through the
comparison of the results obtained with and without selection. Without selection,
reflected signals can drastically affect the AOA and TDOA measurements giving rise
to large drifts. This proves that it is impossible to achieve reliable localisation per-
formances without these selection methods.

7. CONCLUSIONS. This paper describes a novel pedestrian navigation
solution based on the combination of UWB location and MEMS inertial data.
First experimental results are very promising. The hybridised trajectories show
a significant improvement, in terms of accuracy and reliability, compared with the
performance of each technology considered alone. Generally, a 1 metre accuracy is
achieved. This addresses the pedestrian’s needs for reliable indoor localisation.

In order to achieve good localisation performance, specific selection methods for
the UWB measurements are required. These reduce the effect of multipath phenom-
ena, typical of an indoors environment. Implemented methods have been able to
identify and reject the majority of the biased measurements.

According to the results presented in this paper, working on outlier selection
methods might be a key to improve indoor navigation performance. The two fol-
lowing ideas are worthy of further investigation:

The cohesion and the number of geometrical intersections computed at a specific
instant with all AOA and TDOA available, informs us about the presence of
multipath.
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Figure 14. Planimetric errors in scenario 3.

NO. 3 UWB AND MEMS BASED INDOOR NAVIGATION 383

https://doi.org/10.1017/S0373463308004797 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463308004797


If a lot of reflections come from clearly defined objects, such as the walls in a room,
multipath prediction models could be used to distinguish them from line of sight
measurements. Such methods should improve hybridisation performances.

Even though good results have been obtained, pedestrian navigation indoors remains
a challenge.
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