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In this paper, we propose a price-augmenting asymptotically ideal model (AIM) cost
function to investigate the effects of public infrastructure on the performance of the U.S.
manufacturing industry, using KLEMS data over the period from 1953 to 2001. In doing
so, we make a distinction between the productivity effect and the production factor effect
of public infrastructure. This distinction allows us to focus on the more interesting
productivity effect by incorporating public infrastructure into the AIM cost function
through the efficiency index. Moreover, we specify the growth rate of the efficiency index
as a Box–Cox function of public infrastructure and a time trend, a proxy for other
technology. The excellent flexibility of our price-augmenting AIM cost function offers
many insights regarding the effects of infrastructure on the U.S. manufacturing sector.
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1. INTRODUCTION

The size and significance of the effects of public infrastructure on the economic
performance of the private sector have been a hotly debated topic since Aschauer
(1989) raised the issue of productivity of infrastructure capital—see, for example,
surveys in Gramlich (1994), Sturm et al. (1998), Romp and de Haan (2007), and
Hashimzade and Myles (2010). Early studies in this literature find a close correla-
tion between reductions in public capital investment and declining private-sector
productivity in the United States and many other developed economies. Most
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of the subsequent studies have been aimed at reaching consensus on the extent
of these effects. Despite the voluminous literature, however, the issue remains
contentious.

The literature investigating the effects of public infrastructure on the productiv-
ity of the private sector is dominated by two approaches—the production function
approach and the cost function approach. Introduced by Aschauer (1989), the
basic idea of the production function approach is to expand an aggregate produc-
tion function by specifying public infrastructure as a separate factor input. Early
studies along this line [see, for example, Aschauer (1989) and Munnell (1990)]
find that public investment has a much greater return to private-sector economic
performance than does private capital investment. For example, Aschauer (1989)
finds the elasticity of output with respect to public capital to range from 0.39 to
0.56, and the marginal product of public capital implied by this result is 100% or
more—see Gramlich (1994).

These findings imply that policy measures designed to augment public infras-
tructure investment could dramatically enhance productivity. In questioning the
robustness of the empirical results, subsequent studies using the production func-
tion approach focus more on refining the econometric structures by incorporating
state and time fixed effects and/or by solving potential econometric problems, such
as nonstationarity, spurious correlation, and endogeneity. The estimated effects of
public infrastructure investment on private sector productivity vary across these
later studies. In particular, some studies obtain estimates similar to the earlier ones
[see, for example, Munnell (1990)]; some find estimates with reduced magnitude
and significance [see, for example, Tatom (1991) and Kemmerling and Stephan
(2002)]; and others even find that the estimated productivity effects disappear
[see, for example, Hulten and Schwab (1991), Evans and Karras (1994), and
Holtz-Eakin (1994)].

Although less frequently used than the production function approach, the cost
function approach offers a different perspective on the effects of public infras-
tructure investment on the performance of the private sector. Pioneered by Berndt
and Hansson (1992), Nadiri and Mamuneas (1994), and Morrison and Schwartz
(1996), the cost function approach, in assuming that firms minimize cost subject
to a given level of output, treats public infrastructure as an unpaid fixed input.
Compared with the production function approach, the cost function approach has
some advantages—see Berndt and Hansson (1992) for a detailed discussion of the
merits of the cost function approach. It is less likely to suffer from the endogeneity
problem, because input prices used in the cost function approach are more likely to
be exogenous than input quantities (in this study we first assume that input prices
are exogenous and then conduct a robustness test using a two-stage least squares
approach); it usually employs flexible functional forms in place of the restrictive
Cobb–Douglas functional form in the production function approach; and it enables
one to assess whether the amount of public infrastructure is insufficient or exces-
sive by comparing the shadow value of public infrastructure and its market price.
Empirical results from such models suggest smaller, but statistically significant
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and more robust, estimates of infrastructure effects on overall productivity growth
than found in studies employing the production function approach.

In this paper, we follow the cost function approach. Unlike previous (cost func-
tion approach) studies, however, we follow the classical papers by Meade (1952)
and Hulten and Schwab (1991) and make a distinction between two channels
through which public infrastructure affects economic performance. According to
the first channel, as Hulten and Schwab (1991, p. 124) put it, government capital

acts as an “environmental” factor which enhances the productivity of some or all
of the private inputs. Such environmental factors are essentially externalities in the
sense of Romer (1986) and Lucas (1988), and seem to correspond to Aschauer’s
indirect effects and transportation analysts’ “system effects.”

More explicitly, the first channel can be expressed by specifying the Hicks-
neutral efficiency term, A, as a function of public infrastructure, that is, A =
A(g, · · · ). In the more general case where the assumption of Hicks-neutrality is
relaxed (which is what we do in this paper), the second channel can be formulated
as Ai = Ai(g, · · · ), where Ai is the efficiency index for private input i. Apparently,
in this case, public infrastructure enters the firm’s production (cost) function as a
determinant of total factor productivity. According to the second channel, public
capital can enter the production process as a direct, but unpaid, factor of production.
As discussed by Hulten and Schwab (1991), in the case of the specification of
a production function, the second channel implies that public capital should be
treated symmetrically with private inputs (e.g., private capital and labor).

To distinguish between these two channels, we refer to the effect of public in-
frastructure through the first channel as a “productivity effect” or “spillover effect”
and to that through the second channel as a “production factor effect.” In this paper,
we focus on deriving the productivity effect of public capital. Compared with the
production factor effect, the productivity effect is generally more important. This
is because it is this effect that leads to divergence between marginal social benefits
and marginal social costs if infrastructure is left entirely up to the market, and
it is also because it is this effect that makes the study of public infrastructure
interesting to policy makers and researchers.

However, we cannot disentangle the productivity effect from the production
factor effect on theoretical grounds. To overcome this problem, in this paper we
follow Hulten and Schwab (1991) by concentrating on an important subsector of
the economy in which the effects of public capital are likely to be confined to the
productivity effect [or “indirect effect” in the terminology of Hulten and Schwab
(1991)]—manufacturing. As argued by Hulten and Schwab (1991, pp. 125–126),

public capital is a direct input to the transportation and communication sectors,
to public utilities, and to some service industries. These sectors then pass along
these direct services by selling their output to other industries. As a result, public
capital does not enter the production function of other sectors as a direct input,
but as a purchased intermediate good. The direct productivity of this public capital
is thus accounted for through the productivity of the purchased inputs, and its
value is reflected in the payments for those intermediate inputs. For sectors like
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manufacturing, any correlation between private output and public capital should in
principle reflect only indirect environmental (i.e., productivity) effects.

In our particular case, we construct the price and quantity series for intermedi-
ate materials by aggregating energy (E), materials (M), and purchased business
services (S), using the Fisher ideal index. Thus the production factor effect is
accounted for through this aggregated input of intermediate materials (i.e., the
aggregate of E, M , and S), and the effects of public capital in the manufacturing
industries should in principle reflect the productivity effect. It also should be noted
that in practice, the input data for manufacturing industries are not entirely purged
of the production factor effect of public capital. This is because manufacturing
industries provide a certain amount of transportation services (by trucks and autos)
to themselves and the stocks of highways and roads should enter the manufactur-
ing production function as part of the input used in generating the self-provided
transportation services. However, given the small weight assigned to the vehicles,
this impact is expected to be very small. See Hulten and Schwab (1991, pp. 133–
134) for more details. In other words, the production factor (or direct) effects of
public capital are not going to bias the estimates of the productivity effects.

Motivated by the widespread practice of ignoring the distinction between the
two effects of public infrastructure, the purpose of this paper is to reinvestigate the
effect of public infrastructure on the performance of U.S. manufacturing industry.
In doing so, we use the KLEMS data over the period from 1953 to 2001 and
focus on the more interesting productivity or spillover effect—the first channel
of public infrastructure. Moreover, for the first time in this literature, we employ
the globally flexible AIM (asymptotically ideal model) cost function, introduced
by Barnett et al. (1991) and extended by Feng and Serletis (2008) to allow for
technical change. The AIM functional form has also been used in the consumer
context by Serletis and Shahmoradi (2005, 2008) and Serletis and Feng (2010).

The AIM cost function is chosen for two reasons. First, the AIM cost func-
tion with technical change, extended by Feng and Serletis (2008), is particularly
suitable for a situation where an economic variable enters the firm’s produc-
tion function both as part of intermediate inputs (i.e., the second channel) and
through the efficiency term (i.e., the first channel). In particular, technical change
in the AIM cost function proposed in Feng and Serletis (2008) is essentially
factor-augmenting, an assumption that has been made in many studies of U.S.
manufacturing industry. The assumption of factor-augmenting technical change
allows public infrastructure to enter the AIM cost function through both the first
and second channels.

The second reason for using the AIM cost function is its global flexibility. Most
of the existing empirical literature that deals with the correlation between public
infrastructure and macroeconomic performance uses the Cobb–Douglas, translog,
and generalized Leontief functional forms. As is well known, however, the Cobb–
Douglas function is not flexible, in that it has a constant elasticity of substitution.
In the case of the generalized Leontief, Caves and Christensen (1980) have shown
that it has satisfactory local properties only when technology is nearly homothetic
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and substitution is low. As for the translog, Guilkey et al. (1983) show that it is
globally regular if and only if technology is Cobb–Douglas. That is, the translog
performs well if substitution between all factors is close to unity. In contrast to
these functional forms, the AIM cost function is based on a linearly homogeneous
multivariate Müntz–Szatz series expansion and is globally flexible, in the sense
that it is capable of approximating the underlying cost function at every point in
the function’s domain by increasing the order of the expansion.

The rest of the paper is organized as follows. In Section 2, we derive the general
price-augmenting cost function, where public infrastructure is incorporated as part
of the efficiency indexes. In Section 3, we present the price-augmenting AIM cost
function, in which the efficiency indices are assumed to take the form of a Box–
Cox function. Section 4 deals with the econometric specification and estimation
issues. Section 5 provides a description of U.S. manufacturing data and presents
and discusses the empirical results. The final section summarizes and concludes
the paper.

2. THE PRICE-AUGMENTING COST FUNCTION

Before proceeding to the definition of the price-augmenting cost function, we first
define its dual production function. Under the assumption of non–Hicks neutral
technical change, the production function can be written as

y = f (X1, X2, · · · , Xn) = f [A1(g, t)x1, · · · , An(g, t)xn], (1)

where y is output, f a continuous twice differentiable nondecreasing and quasi-
concave function, g public infrastructure, t a time trend, xi (i = 1, · · · , n) is the
ith actual input measured in conventional units, and Xi is the ith effective input.
Xi is related to xi through the functional relationship

Xi = Ai(g, t)xi , i = 1, · · · , n, (2)

where Ai(g, t) is an efficiency index associated with the ith input. To
avoid notational clusters, Ai(g, t) is suppressed into Ai in what follows.
Apparently, f (A1x1, · · · , Anxn) in (1) is a factor-augmenting production
function.

Within this primal setup, technical change (or total factor productivity growth,
TFPG for short), defined as a shift in the production frontier, can easily be shown
to be

TFPG = ∂ ln f

∂t
=

n∑
i=1

ηi

·
Ai

Ai

,

where ηi = ∂ ln f/∂ ln xi is the elasticity of output with respect to input xi

and the dot above Ai denotes the change in Ai over time. However, estimation
of the production function is likely to suffer from several problems, including
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endogeneity, lack of flexibility, lack of economic content, and exclusion of inter-
mediate materials when they are substitutable to private capital and labor—see,
for example, Berndt and Hansson (1992), Caves et al. (1982), and Morrison and
Siegel (1999). To avoid these problems, in what follows we derive a general
price-augmenting cost function that is dual to the factor-augmenting production
function in equation (1).

In doing so, we assume that a firm is minimizing its total cost, as follows:

min
{x1,··· ,xn}

C =
n∑

i=1

pixi, (3)

subject to

y = f (A1x1, A2x2, · · · , Anxn),

where C is the total cost and pi (i = 1, · · · , n) represents the price for the ith
input in conventional units. As in equation (2), the actual quantities xi in (3) can be
augmented into effective quantities Xi by the efficiency index Ai . Previous studies
in the macroeconomics literature using the factor-augmenting production function
approach are usually vague about the determinants of Ai , typically assuming that
Ai is a function of the time trend, t . We depart from that approach, and in this
paper we explicitly assume that Ai is a function of public infrastructure, g, and the
time trend, t , the latter used as a proxy for other technology. Formally, we assume
that

Ai = Ai(g, t) (4)

for i = 1, · · · , n. Hence, in our formulation, public infrastructure, g, plays the
role of increasing the efficiency of private factor inputs (i.e., capital, labor, energy,
and materials).

Define Pi ≡ pi/Ai , for i = 1, · · · , n, to be the effective price of Xi such that
pixi = PiXi . The inputs and their corresponding prices in conventional units can
then be written as

xi = Xi

Ai

, (5)

pi = AiPi, (6)

respectively, for i = 1, · · · , n. Substituting equations (5) and (6) into (3) gives a
minimization problem equivalent to that in (3):

min
{X1,··· ,Xn}

C =
n∑

i=1

PiXi, (7)

subject to

y = f (X1, X2, · · · , Xn).
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The optimal solution to the minimization problem (7), X∗
i , for i = 1, 2, · · · , n

is a function of prices and y; formally, X∗
i = Xi(P1, · · · , Pn, y). Substituting

X∗
i into the objective function in (7) gives the following (general) efficiency

index–augmented cost function, which is dual to the factor-augmenting production
function in (1):

C = C (y, P1, P2, · · · , Pn) = C

(
y,

p1

A1
,

p2

A2
, · · · , pn

An

)
, (8)

where the second equality is obtained by using (6), and the asterisk superscript
indicating the optimal cost is dropped for simplicity. According to equation (8), the
efficiency index–augmented cost function is a function of output, y, and effective
input prices, pi/Ai (i = 1, · · · , n). We call a cost function with effective input
prices the “price-augmenting cost function,” to reflect the fact that efficiency-
adjusted private input prices are used.

Using the envelope theorem,

∂C

∂t
= −∂C

∂y

∂f (A1x1, A2x2, · · · , Anxn)

∂t
,

technical change (or total factor productivity growth) can then be measured from
the cost function as

TFPG = ∂ ln f (A1x1, A2x2, · · ·, Anxn)

∂t
(9)

= 1

y

∂f (A1x1, A2x2, · · ·, Anxn)

∂t
= − ∂C/∂t

y∂C/∂y
= − ∂ ln C/∂t

∂ ln C/∂ ln y
= −εct ε

−1
cy ,

where εcy = ∂ ln C/∂ ln y and εct = ∂ ln C/∂t—see also Feng and Serletis (2008)
for a similar derivation of (10). Using Shephard’s lemma,

xi = ∂C

∂pi

, i = 1, · · · , n, (10)

we can also obtain (see Appendix A)

εct = ∂ ln C/∂t =
n∑

i=1

si

·
Ai

Ai

, (11)

where si = pixi/C is the cost share of input i.
According to equation (10), total factor productivity growth is the negative of the

product of the dual rate of cost diminution, εct , which is the average of the growth
rates of efficiency levels weighted by their respective input cost shares, si , and the
dual rate of returns to scale, ε−1

cy . Under constant returns to scale, εcy = 1, and total
factor productivity is the negative of the dual rate of cost diminution, meaning that
a 1% upward shift in the production function is equal to a 1% decrease in the cost
of production. In our formulation, as part of Ai , public infrastructure, g, is a factor
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that determines productivity growth, rather than being a public fixed input that is
symmetric with fixed private inputs, as in previous studies.

3. MODEL SPECIFICATION

The parametric analysis of the effect of public infrastructure on private sec-
tor performance within the framework of the price-augmenting cost func-
tion in (8) requires the specification of two elements—the cost function,
C(y, p1/A1, · · · , pn/An), and the efficiency index, Ai (i = 1, · · · , n).

3.1. The Price-Augmenting AIM Cost Function

There are many alternatives for the functional form of the cost function in equation
(8). For example, Feng and Serletis (2008) present an empirical comparison and
evaluation of the effectiveness of four well-known flexible cost functions—the lo-
cally flexible generalized Leontief [see Diewert (1971)], translog [see Christensen
et al. (1975)], and normalized quadratic [see Diewert and Wales (1987)], and
one globally flexible cost function, the AIM [see Barnett et al. (1991)]. Another
globally flexible functional form is Gallant’s (1982) Fourier flexible functional cost
form, based on the Fourier series expansion, recently used by Feng and Serletis
(2009).

Both the Fourier and AIM globally flexible forms are capable of approximating
the underlying cost function at every point in the function’s domain by increasing
the order of the expansion, and thus have more flexibility than most of the locally
flexible functional forms, which theoretically can attain flexibility only at a single
point or in an infinitesimally small region. However, as noted by Barnett and
Serletis (2008), in this literature there is no a priori view as to which flexible
functional forms are appropriate, once they satisfy the theoretical regularity con-
ditions of neoclassical microeconomic theory—positiveness, monotonicity, and
curvature. With this in mind, in this study we employ the AIM cost functional
form, in an effort to extend our earlier work in this area [see Feng and Serletis
(2008)].

One of the features of the KLEMS data set used in this paper is that constant
returns to scale have been built in by the U.S. Bureau of Labor Statistics.1 To be
consistent with this feature, the (general) price-augmenting cost function in (8)
has been assumed to take the form of C( p, y, g, t) = yc( p, g, t), where c (·)
is the unit cost function. Assuming that the unit cost function takes the form of
multivariate Müntz–Szatz series expansion, we get the price-augmenting AIM
total cost function

C = C( p, y, g, t) = y

⎡⎣∑
z∈Aκ

bz

2κ∏
j=1

(
pij

Aij

)2−κ
⎤⎦ = y

⎡⎣∑
z∈Aκ

bz

2κ∏
j=1

(Pij )
2−κ

⎤⎦,

(12)
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where p > 0 is a vector of input prices (in conventional units), κ is the order of
the expansion, bz the unknown parameters, n the number of production factors,
Bκ = {(i1, i2, · · · , i2κ ) : i1, i2, · · · , i2κ ∈ {1, 2, · · · , n; i1 ≤ i2,≤ · · · ≤ i2κ },
A is the efficiency index, and P is used to denote effective prices, as defined
previously. It should be noted that (12) is an extension of the Barnett et al. (1991)
AIM cost function without technical change, and also a generalization of the AIM
cost function with technical change proposed by Feng and Serletis (2008).

Regardless of the specification of the efficiency index, Aij , in (12), our new
AIM total cost function with price-augmenting technical change retains all the
theoretical properties of the Barnett et al. (1991) AIM cost function without
technical change. In particular, it is still globally flexible, in the sense that it
is capable of approximating the underlying cost function at every point in the
function’s domain by increasing the order of expansion κ . Moreover, the sum of
the exponents of prices in each term in (12) is still 2κ2−κ = 1, thus satisfying the
property of global linear homogeneity.

Although constant returns to scale are assumed in (12) to be consistent with the
built-in feature of the BLS KLEMS data, (12) can easily be generalized to allow
for arbitrary returns to scale. More specifically, there are two ways to generalize
the price augmenting AIM cost function in (12). The first way, proposed by Barnett
et al. (1991), is to add to (12) one additional parameter, ρ, as the power of the
output, y. Formally, the resulting generalized cost function can be written as

C = C ( p, y, g, t) = yρ

⎡⎣∑
z∈Aκ

bz

2κ∏
j=1

(
pij

Aij

)2−κ
⎤⎦ = yρ

⎡⎣∑
z∈Aκ

bz

2κ∏
j=1

(Pij )
2−κ

⎤⎦.

(13)

The second way, proposed by Thomsen (2000) in the context of the generalized
Leontief cost function, is to introduce arbitrary returns to scale through the effi-
ciency indexes (i.e., Aij ) in (12). Formally, the cost function generalized in this
way can be written as

C = C ( p, y, g, t) =
∑
z∈Aκ

bz

2κ∏
j=1

(
pij

Aij

)2−κ

=
∑
z∈Aκ

bz

2κ∏
j=1

(Pij )
2−κ

, (14)

where Aij is a function of g, t , and y; i.e., Aij = Aij (t, g, y). It is easy to verify
that the cost function generalized in the first way [i.e., (13)] is a special case of the
one generalized in the second way [i.e., (14)]. However, because constant returns
to scale have been built in the data, (12) will be used in what follows.

3.2. The Price-Augmenting Efficiency Index

We also need to specify a functional form for the efficiency index, Ai , i =
1, · · · , n. We may assume an exponential form with its argument linear in public
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infrastructure, g, and a time trend, t , as follows:

Ai = exp [hi(t, g)] = exp (ϑit + γi ln g) (15)

for i = 1, · · · , n, where ϑi is the constant growth rate of efficiency due to other
technology for input i and γi is the constant elasticity of the total cost with respect
to public infrastructure for input i. This specification is quite similar to that used
in the macroeconomics growth literature, where the factor-augmenting efficiency
index is commonly specified as an exponential function of the time trend; for
example, Ai = exp (ϑit). In equation (15), Ai,0, the initial efficiency level of input
i, is a constant and does not affect the calculation of elasticities and productivity
growth, and thus is dropped from the efficiency index for notational simplicity.

Although simple and elegant, the specification in (15) lacks enough flexibility
in modeling the effects of public infrastructure and other technology (t) on the ef-
ficiency levels of private factor inputs, because it is not clear whether these growth
rates (ϑi and γi) should exhibit constant, logarithmic, or hyperbolic patterns over
time. To allow more flexibility in modeling both the effect of public infrastructure
and that of the time trend on the efficiency level of private inputs, we instead use
a Box–Cox functional form for both the growth rate of the time trend and the cost
elasticity with respect to public infrastructure. Formally,

Ai = exp [hi(t, g)] (16)

= exp

{
ϑit0

δi

[(
t

t0

)δi

− 1

]
+ γi ln g0

λi

[(
ln g

ln g0

)λi

− 1

]}
,

where δi is the curvature parameter of the Box–Cox function for the time trend, t ,
and λi that for the log of public infrastructure, ln g. Note that when δi = 1, δi = 0,
or δi < 0, ϑit0[(t/t0)

δi − 1]/δi is a linear, log-linear, or hyperbolic, respectively,
function in t . Similarly, when λi = 1, λi = 0, or λi < 0, γi ln g0[(ln g/ ln g0)

λi −
1]/λi is a linear, log-linear, or hyperbolic, respectively, function in ln g. It should
also be noted that ln g is scaled by its initial value (i.e., ln g0), and thus γi can be
interpreted as the cost elasticity with respect to public infrastructure for input i at
the beginning of the sample period. Similarly, ϑi can be interpreted as the growth
rate of efficiency due to other technology for input i at the beginning of the sample
period. Substituting (16) into (12) gives the price-augmenting AIM cost function
used in this paper.

According to our theoretical discussion in Section 2, there must exist a
production function dual to our price-augmenting AIM cost function defined
by equations (12) and (16). This production function can be written as y =
F (A1x1, A2x2, · · · , Anxn), where F(·) is a specific functional form taken by
f (·) in equation (1) and Ai is defined in equation (16). Under the assumption of
Hicksian neutrality (that is, A = Ai , for i = 1, · · · , n), this production function
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reduces to

y = AF(x1, x2, · · · , xn) (17)

= A0 exp

{
ϑt0

δ

[(
t

t0

)δ

− 1

]
+ γ ln g0

λ

[(
ln g

ln g0

)λ

− 1

]}
F(x1, x2, · · · , xn),

where

A = Ai = exp

{
ϑt0

δ

[(
t

t0

)δ

− 1

]
+ γ ln g0

λ

[(
ln g

ln g0

)λ

− 1

]}

in (17) is essentially the standard Hicks neutral technical change in the Cobb–
Douglas production function, and F(x1, x2, · · · , xn) is dual to the AIM cost
function without technical change. This further confirms the validity of Ai in
equation (16) as a measure of technical change.

Our price-augmenting cost function approach, based on our new price-
augmenting AIM cost function defined by equations (12) and (16), possesses
a number of advantages over the simple Cobb–Douglas production function ap-
proach. First, it takes explicit account of the firm’s cost optimization behavior
by considering input quantities as endogenous variables, although treating input
prices, which are more likely to be market-determined, as exogenous variables.
As such, it is less likely to suffer from the problem of endogeneity. Second, it is
globally flexible in that it is capable of approximating the underlying cost function
at every point in the function’s domain by increasing the order of the expansion,
κ , whereas the Cobb–Douglas production function is very restrictive, in the sense
that it imposes a priori the condition of constant elasticity of substitution among
inputs. Third, it allows the measurement of input-specific cost elasticity with
respect to public infrastructure, as well as the contribution of each input to overall
cost elasticity, because an efficiency index is specified for each of the n inputs.
Last but not least, the specification of the efficiency index as a Box–Cox function
enables us to investigate the time pattern of the effects of public infrastructure
on cost structure and productivity, which is unfortunately missed in most of the
previous studies.

Our price-augmenting cost function approach provides a rich framework for
investigating the effects of public infrastructure on private sector performance.
This can be accomplished using three measures—the cost elasticity with respect
to public infrastructure, the output elasticity with respect to public infrastructure,
and the contribution of public infrastructure to total factor productivity growth. In
addition, we can also obtain the social rate of return to public infrastructure, which
can help answer the important policy question of whether public infrastructure is
oversupplied or undersupplied. These measures are discussed in detail in what
follows.
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3.3. Cost Elasticity with Respect to Public Infrastructure

The spillover effect of public infrastructure on total cost is captured by the
magnitude and sign of the cost elasticity with respect to public infrastructure,
∂ ln C/∂ ln g, which represents the percentage change in total cost due to a 1%
change in public infrastructure. In our particular case, the cost elasticity can be
obtained (see Appendix B) by

∂ ln C

∂ ln g
= −

n∑
i=1

si

[
γi

(
ln g

ln g0

)λi−1
]

. (18)

According to (18), the cost elasticity with respect to public infrastructure is an
input cost-share weighted average of the input-specific cost elasticities (ISCE)
with respect to public infrastructure, which can be written as follows:

ISCEi = γi (ln g/ ln g0)
λi−1 . (19)

An advantage of (18), unlike previous studies on public infrastructure, is that we
can measure input-specific cost elasticity with respect to public infrastructure,
as well as the contribution of each input to overall cost elasticity, which can be
written as

cgi = siγi (ln g/ ln g0)
λi−1

n∑
i=1

si

[
γi (ln g/ ln g0)

λi−1
] . (20)

3.4. Output Elasticity with Respect to Public Infrastructure

Commonly used in the production function approach, the output elasticity with
respect to public infrastructure, ∂ ln f/∂ ln g, is another important measure for
evaluating the effects of public infrastructure on private sector performance.
Although it cannot be directly obtained within a cost function framework, it can
be derived indirectly from the cost elasticity with respect to public infrastructure
in (20) by exploiting the duality between the cost function and the production
function. In fact, the implied output elasticity is the negative of the cost elasticity
in (20) under the assumption of constant returns to scale.

To see this, we apply the envelope theorem to the cost minimization problem in
(3) to obtain

∂C

∂ ln g
= −∂C

∂y

∂f (A1x1, · · · , Anxn)

∂ ln g
.

https://doi.org/10.1017/S1365100512000090 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100512000090


PUBLIC INFRASTRUCTURE AND EXTERNALITIES 1379

The implied output elasticity of public infrastructure, ∂ ln f (A1x1, · · · , Anxn) /

∂ ln g, can then be measured from the cost function as follows:

∂ ln f (A1x1, · · · , Anxn)

∂ ln g
= 1

y

∂f (A1x1, · · ·, Anxn)

∂ ln g

= −∂C/∂ ln g

y∂C/∂y

= −∂ ln C/∂ ln g

∂ ln C/∂ ln y

= −εc ln gε
−1
cy ,

where εc ln g = ∂ ln C/∂ ln g and εcy = ∂ ln C/∂ ln y is returns to scale.
Hence, under constant returns to scale, εcy = 1, the implied output elas-
ticity of public infrastructure is the negative of its cost elasticity; that is,
∂ ln f (A1x1, · · · , Anxn)/∂ ln g = −εc ln g .

3.5. Total Factor Productivity Growth and Public Infrastructure

The contribution of public infrastructure to total factor productivity growth, when
coupled with that of other technology (t), provides a third perspective regarding
the effects of public infrastructure on private sector performance. Applying (9) to
the cost function defined by (12) and (16) within a discrete time framework, we
can obtain the total factor productivity growth at time t as

TFPGt = −
n∑

i=1

[
si

(
Ai,t+1

Ai,t

− 1

)]
. (21)

We can also decompose TFPGt into two important components, the productivity
growth due to public infrastructure, TFPGg

t , and the productivity growth due to
other technology, TFPGt

t . For this purpose, we first decompose Ai in (16) into two
components, A

g
i and At

i , defined as

A
g
i = exp

{
γi ln g0

λi

[(
ln g

ln g0

)λi

− 1

]}
and

At
i = exp

{
ϑit0

δi

[(
t

t0

)δi

− 1

]}
,

respectively. The productivity growth due to public infrastructure at time t , TFPGg
t ,

is given by

TFPGg
t = −

n∑
i=1

[
si

(
A

g
i,t+1

A
g
i,t

− 1

)]
, (22)
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and the productivity growth due to other technology at time t , TFPGt
t , is given by

TFPGt
t = −

n∑
i=1

⎛⎝si

·
At

i

At
i

⎞⎠ (23)

= −
n∑

i=1

[
si

(
∂ ln C

∂t

)
i

]

= −
n∑

i=1

{
si

[
γi

(
t

t0

)λi−1
]}

.

A comparison can thus be made between TFPGg
t and TFPGt

t to see whether
public infrastructure is a significant contributor to total factor productivity growth.
It should be noted that TFPG is not equal to the sum of TFPGg and TFPGt . In
fact, it is easy to show, as follows, that it is equal to the sum of TFPGg

t and TFPGt ,
plus a term representing the interaction between TFPGg and TFPGt:

TFPG = (1 + TFPGg)(1 + TFPGt ) − 1 (24)

= TFPGg + TFPGt + TFPGg × TFPGt .

3.6. The Social Rate of Return to Public Infrastructure

An important public policy question in this literature is whether public capital
is over- or undersupplied. This question can be answered by resorting to the
well-known Samuelson condition [see Samuelson (1954)], which requires that
public capital (under the assumption of lump-sum taxation) be provided up to
the point where the sum of marginal benefits to producers and consumers is
equal to the marginal cost of providing an additional unit of public capital—see
Kaizuka (1965). In calculating the marginal benefit and marginal cost, we follow
the previous literature and ignore the benefits to consumers and complications
resulting from the absence of lump-sum taxation. In other words, we can determine
the marginal benefit and marginal cost of providing an additional unit of public
capital based only on the production sector of the economy.

We assume that the government chooses the amount of public infrastructure by
minimizing the present value of the costs of all the resources in the economy—see
Nadiri and Mamuneas (1998). That is, the government selects the level of public
infrastructure such that the sum of the industry marginal benefits equals the user
cost of public capital; i.e.,

H∑
h=1

mh,g ( p, y, t, g) = pg(r + δg), (25)
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where mh,g( p, y, t, g) = −∂C/∂g is the marginal benefit (or shadow value) of
public infrastructure, which reflects the reduction in costs due to an incremental
addition to the stock and can be obtained using the cost elasticity in (18); h

indicates industry; H is the total number of industries (which is equal to one
when only the aggregate manufacturing industry is considered); r is the discount
factor; δg is the depreciation rate of public infrastructure; and pg is the acquisi-
tion price. Because public sector capital formation is generally financed through
taxation and has significant distortive effects on private sector decisions, pg is
the sum of the direct burden of the taxes needed to pay for the infrastructure
and the deadweight cost associated with these taxes for the last dollar of public
investment. Solving equation (25) for g∗ yields the optimal amount of public
infrastructure.

Let MB = ∑H
h=1 mh,g( p, y, t, g) denote the marginal benefit and MC = pg(r+

δ) denote the marginal cost. Then the Samuelson condition, together with (25),
implies that

Public infrastructure is

⎧⎨⎩
optimally supplied MB = MC
undersupplied if MB > MC
oversupplied MB < MC.

(26)

The Samuelson condition can be also stated in terms of the net social rate of return
to public infrastructure. To see this, we can rearrange (25) to obtain

∑H
h=1 mh,g ( p, y, t, g)

pg

− δg = r . (27)

Letting γs denote the left-hand side of equation (27) (the net social rate of return
to public infrastructure), equation (26), the Samuelson condition, can alternatively
be written as

Public infrastructure is

⎧⎨⎩
optimally supplied γs = r

undersupplied if γs > r

oversupplied γs < r,

(28)

where r and δg are defined as before. Equation (28) is the Samuelson condition
we will use in this paper in answering the question of whether public capital
is over- or undersupplied. However, as can be seen from (27), the application
of (28) requires the specification of pg , δg , and r , which will be discussed in
Section 5.6.
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4. ECONOMETRIC SPECIFICATION AND ESTIMATION ISSUES

In empirical applications, the approximation of the AIM cost function must be
truncated at some finite value κ (i.e., finite partial sums). The order of approxima-
tion κ is usually determined empirically and stops when the elasticity estimates
and the covariance matrix of the disturbances converge. In this paper, because of
degree-of-freedom problems, we set κ = 2. Hence, with n = 3 (the case in this
paper) and κ = 2 in equation (12), we get the price-augmenting AIM(2) cost
function

Cκ=2 ( p, y, g, t) = y
(
b1P1 + b2P2 + b3P3 (29)

+ b4P
1/2
1 P

1/2
2 + b5P

1/2
1 P

1/2
3 + b6P

1/2
2 P

1/2
3

+ b7P
3/4
1 P

1/4
2 + b8P

1/4
1 P

3/4
2 + b9P

3/4
1 P

1/4
3

+ b10P
1/4
1 P

3/4
3 + b11P

3/4
2 P

1/4
3 + b12P

1/4
2 P

3/4
3

+ b13P
1/2
1 P

1/4
2 P

1/4
3 + b14P

1/4
1 P

1/2
2 P

1/4
3 + b15P

1/4
1 P

1/4
2 P

1/2
3

)
.

Applying (10) to (29) yields the following system of factor demand equations for
the AIM(2) model with n = 3:

x1

y
= 1

A1

(
b1 + 1

2
b4P

−1/2
1 P

1/2
2 + 1

2
b5P

−1/2
1 P

1/2
3 (30)

+ 3

4
b7P

−1/4
1 P

1/4
2 + 1

4
b8P

−3/4
1 P

3/4
2 + 3

4
b9P

−1/4
1 P

1/4
3

+ 1

4
b10P

−3/4
1 P

3/4
3 + 1

2
b13P

−1/2
1 P

1/4
2 P

1/4
3 + 1

4
b14P

−3/4
1 P

1/2
2 P

1/4
3

+ 1

4
b15P

−3/4
1 P

1/4
2 P

1/2
3

)
;

x2

y
= 1

A2

(
b2 + 1

2
b4P

1/2
1 P

−1/2
2 + 1

2
b6P

−1/2
2 P

1/2
3 (31)

+ 1

4
b7P

3/4
1 P

−3/4
2 + 3

4
b8P

1/4
1 P

−1/4
2 + 3

4
b11P

−1/4
2 P

1/4
3

+ 1

4
b12P

−3/4
2 P

3/4
3 + 1

4
b13P

1/2
1 P

−3/4
2 P

1/4
3 + 1

2
b14P

1/4
1 P

−1/2
2 P

1/4
3

+ 1

4
b15P

1/4
1 P

−3/4
2 P

1/2
3

)
;
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x3

y
= 1

A3

(
b3 + 1

2
b5P

1/2
1 P

−1/2
3 + 1

2
b6P

1/2
2 P

−1/2
3 (32)

+ 1

4
b9P

3/4
1 P

−3/4
3 + 3

4
b10P

1/4
1 P

−1/4
3 + 1

4
b11P

3/4
2 P

−3/4
3

+ 3

4
b12P

1/4
2 P

−1/4
3 + 1

4
b13P

1/2
1 P

1/4
2 P

−3/4
3 + 1

4
b14P

1/4
1 P

1/2
2 P

−3/4
3

+ 1

2
b15P

1/4
1 P

1/4
2 P

−1/2
3

)
.

Concavity (in prices) requires that the Hessian matrix of the second derivatives of
the cost function with respect to prices, ∇pipj

C (p, y, g, t), be negative semidefi-
nite. In practice, concavity of the cost function may not be satisfied. In that case,
we impose concavity fully (that is, at every data point in the sample) on the AIM
model, using methods suggested by Gallant and Golub (1984), to which we now
turn.

4.1. Seminonparametric Estimation

The AIM(2) factor demand system, equations (30)–(32), can be written as

zt = ψ (p, y, g, t,θ) + εt , (33)

where z = (z1, · · · , zn)
′ is the vector of input–output ratios, ψ(p, y, g, t,θ)

is given by the the right-hand sides of equations (30)–(32), and θ =
(b1, b2, · · · , bn2κ , ϑ1, ϑ2, ϑ3, γ1, γ2, γ3, λ1, λ2, λ3, δ1, δ2, δ3). εt is a vector of
stochastic errors and we assume that ε ∼ N(0,Ω), where 0 is a null matrix
and Ω is the n × n symmetric positive definite error covariance matrix. The same
assumption about the error term, ε, has also been made by Berndt and Hansson
(1992), Nadiri and Mamuneas (1994), and Morrison and Schwartz (1996) in the
public infrastructure and productivity literature, and by Diewert and Fox (2008),
among many others, in the broader literature of demand systems.

As Gallant and Golub (1984, p. 298) put it,

all statistical estimation procedures that are commonly used in econometric research
can be formulated as an optimization problem of the following type [Burguete,
Gallant, and Souza (1982)]

θ̂ minimizes ϕ (θ) over � (34)

with ϕ(θ) twice continuously differentiable in θ.

Notice that ψ( p, y, g, t,θ) is nonlinear in ϑ1, ϑ2, ϑ3, γ1, γ2, and γ3, and there-
fore the AIM(2) factor demand system in (33) can be fitted using Gallant’s (1975)
seemingly unrelated nonlinear regression method to estimate θ. Hence, ϕ(θ) has
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the form

ϕ(θ) = 1

T
ε′

tεt (35)

= 1

T

T∑
t=1

(zt − ψ(·))′ Ω̂−1
(zt − ψ(·)),

where Ω̂ is an estimate of the error variance–covariance matrix, Ω. In minimiz-
ing (35), we use the TOMLAB/NPSOL tool box with MATLAB. NPSOL uses
a sequential quadratic programming algorithm and is suitable for both uncon-
strained and constrained optimization of smooth (that is, at least twice continuously
differentiable) nonlinear functions.

4.2. Endogeneity

One issue concerning our stochastic specification is the possible endogeneity of
input prices and public infrastructure. To address this potential problem, in this
paper we first use the Zellner method of estimation, assuming that both input prices
and public infrastructure are exogenous, and then use a two-stage least squares
approach (in Section 5.7) to test the robustness of our results obtained from the
Zellner method.

4.3. Econometric Regularity

Another issue is that of nonstationarity. If the errors are nonstationary, then there
is no theory linking the left-hand side to the right-hand side variables in equation
(33) or, equivalently, no evidence for the theoretical models in level form. In such
cases, some important nonstationary variables might have been omitted. Allowing
for first-order serial correlation, as is usually done in the literature, is almost the
same as taking first differences of the data if the autocorrelation coefficient is close
to unity. In that case, the equation errors become stationary, but there is no theory
for the models in first differences. Munnell (1992), in a discussion on infrastructure
investment and economic growth, has argued that first differencing destroys the
long-term relationships in the data and therefore it does not make economic sense
to use equations in this form. In fact, previous studies in this literature that have
estimated equations in first differences have found private capital and labor to
be nonsignificant—see, for example, Hulten and Schwab (1991) and Sturm and
de Haan (1995). Although the contribution of infrastructure can be questionable,
the role played by labor and private capital is not in doubt. Duggal et al. (1999)
have argued that the fact that first-differenced equations generate nonsignificant
estimates for the labor and capital coefficients is enough reason to question the
validity of using first differences of the data.
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4.4. Theoretical Regularity

Finally, in the estimation of (33), we pay special attention to the theoretical
regularity conditions of positiveness, monotonicity, and curvature. The regularity
conditions are checked as in Feng and Serletis (2008), as follows:

• Positiveness is checked by checking if the estimated cost is positive,

C ( p, y, g, t) > 0.

• Monotonicity is checked by direct computation of the values of the first
gradient vector of the estimated cost function with respect to p. It is satisfied
if ∇pC( p, y, g, t) > 0.

• Curvature requires the Hessian matrix of the cost function to be negative
semidefinite and is checked by performing a Cholesky factorization of that
matrix and checking whether the Cholesky values are nonpositive [because
a matrix is negative semidefinite if its Cholesky factors are nonpositive—see
Lau (1978, Theorem 3.2)]. Curvature can also be checked by examining the
eigenvalues of the Hessian matrix, provided that the monotonicity condition
holds. It requires that these eigenvalues be negative or zero.

We first run an unconstrained optimization using (34). If theoretical regularity
is not attained, then we impose the theoretical regularity conditions.

5. DATA AND EMPIRICAL EVIDENCE

5.1. Data Description

We use annual data for capital, labor, and intermediate materials for total manu-
facturing industry in the United States over the period from 1953 to 2001. We also
use annual data for capital, labor, and intermediate materials for each of the 12
two-digit manufacturing industries to check the robustness of our results. The 12
two-digit manufacturing industries chosen are exactly the same as in Nadiri and
Mamuneas (1994) and are listed in Table 1. It is to be noted that we constructed
the price and quantity series for intermediate materials by aggregating energy,
materials, and purchased business services, using the Fisher ideal index. All data
on quantities and prices were obtained from the Bureau of Labor Statistics (BLS)
at www.bls.gov/data/home.htm. We normalized all the price series to be equal to 1
in 1953 and obtained the quantity series for each of output, capital, labor, energy,
materials, and purchased business services by dividing the value of production or
factor cost by the corresponding normalized price series. This BLS (KLEMS) data
set has been used previously by Nadiri and Mamuneas (1994), Diewert and Fox
(2008), and Feng and Serletis (2008), among many others.

A major feature of the BLS data set is that constant returns to scale are built in
by constructing input factor payments in such a way that they add up to the value
of output. Thus, tests of returns to scale and scale bias are inappropriate, as are
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TABLE 1. SIC classification

SIC Industry

20 Food
26 Paper and allied products
28 Chemicals and allied products
29 Petroleum refining and related industries
30 Rubber products
32 Stone, clay, and glass products
33 Primary metals
34 Fabricated metal products
35 Machinery
36 Electrical equipment
37 Transportation
38 Scientific instruments

some tests of imperfect competition. Another feature of the BLS data set is that
it provides the price and quantity series for purchased business services inputs.
Directly collected data on purchased business services are relatively scant, and
for that reason they have been ignored by similar studies in the past. However,
there is ample evidence of an increased use of purchased business services by
industries over the postwar period, and there are two important issues to consider.
The first is that a sizable and growing input should not be ignored in productivity
measurement, if aggregate inputs are not to be underestimated and mismeasured.
The other is the possibility of substitution between capital, labor, and services
purchased from outside. Examples of the latter are the substitution of leased
equipment for owned capital and purchased accounting for services performed by
payroll employees.

As in Duggal et al. (1999, 2007), we restrict our analysis to core pub-
lic infrastructure, which consists of the following three categories: (i) high-
ways and streets; (ii) other buildings (which include police, fire stations, court
houses, auditoriums, and passenger terminals); and (iii) other structures (which
include electric and gas facilities, transit systems, and airfields). g represents
the net capital stock (net of depreciation) held by the federal, state, and local
governments, expressed in billions of 1953 dollars. The data on the stock of
public infrastructure are obtained from the Bureau of Economic Analysis (at
http://www.bea.gov/national/FA2004/SelectTable.asp).

5.2. Theoretical Regularity Tests

In the first column of Table 2, we present the parameter estimates and theoretical
regularity violations for the unconstrained AIM(2) system for U.S. total manu-
facturing industry. As results in nonlinear optimization are sensitive to the initial
parameter values, to achieve global convergence, we randomly generated 500 sets
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TABLE 2. Price-augmenting AIM(2) parameter estimates

Curvature constrained

Parameter Unconstrained In 1977 Fully

γ1 0.4462 0.7820 0.4396
γ2 0.0000 0.0000 0.1683
γ3 0.7391 0.1552 0.0720
ϑ1 0.0000 0.0045 0.0001
ϑ2 0.0296 0.0006 0.0000
ϑ3 0.0207 0.0240 0.0353
λ1 5.0257 2.4428 −0.4220
λ2 0.9904 −1.9319 −2.9598
λ3 −4.1800 −0.2179 −6.0000
δ1 0.1066 0.3954 1.5388
δ2 −1.8550 −0.9063 0.4509
δ3 1.0060 0.9694 0.8723
b1 1.2792 1.3615 3.4984
b2 2.4103 2.2261 2.8481
b3 1.7761 3.8369 2.3374
b4 4.4890 0.5454 5.1981
b5 −6.1288 4.9277 2.9666
b6 18.0862 17.7346 19.4638
b7 −3.5560 −2.0610 −4.4887
b8 8.5529 0.5853 4.9279
b9 −4.4298 −0.1552 −6.1954
b10 −12.7338 −12.5225 −11.5625
b11 1.9394 −3.9858 −5.2340
b12 −9.7623 −10.2151 −11.0440
b13 2.2237 −0.5518 5.9160
b14 4.9940 7.0677 7.0922
b15 −8.1198 −7.7834 −14.7037
ϕ(̂θ) 0.0442 0.0448 0.0459
Positivity violations 0 0 0
Monotonicity violations 0 0 0
Curvature violations 12 4 0

Note: Sample period, annual data 1953-2001 (T = 49).

of initial parameter values and chose the starting θ that led to the lowest value
of the objective function. It is also to be noted that a parametric bootstrapping
method is usually used in constrained optimization to obtain statistical inference
for the estimated parameters (̂θ) or nonlinear transformations of these param-
eters (φ(̂θ), i.e., elasticities)—see Gallant and Golub (1984). This involves the
use of Monte Carlo methods, generating a sample from the distribution of the
inequality-constrained estimator (̂θ) large enough to provide a reliable estimate of
the sampling distributions of (̂θ) and φ(̂θ). However, for computational reasons,
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this is unaffordable at present. Therefore, only point estimates are provided for
the estimated parameters (̂θ) in Table 2.

As can be seen in the first column of Table 2, although positiveness and mono-
tonicity are satisfied for all sample observations, curvature is violated for 12 data
points. Because regularity has not been attained, we follow Feng and Serletis
(2008, 2009) and use the NPSOL nonlinear programming program to minimize
ϕ(θ), subject to the constraint that the three eigenvalues of the Hessian matrix,
H, are nonpositive. This is because a necessary and sufficient condition for the
concavity of H is that all its eigenvalues are nonpositive—see, for example, Morey
(1986). Thus, our constrained optimization problem is written as

min
θ

ϕ(θ),

subject to

ϕi( p, y, g, t,θ) < 0, for i = 1, · · · , n,

where ϕi( p, y, g, t,θ), i = 1, · · · , n, are the eigenvalues of the Hessian matrix of
the AIM(2) cost function.

With the constrained optimization method, we can impose curvature restrictions
at any arbitrary set of points—at a single data point, over a region of data points, or
fully (at every data point in the sample). We minimize ϕ(θ) subject to the constraint
that the cost function is locally concave at 1977 and also subject to the constraint
that it is fully concave (concave at every data point). The results are reported in
the second and third columns of Table 2—the second column shows the results
when the curvature constraint is imposed locally (at 1977) and the third column
shows the results when the constraint is imposed at every data point in the sample.
Clearly, the effect of imposing the curvature constraint locally is unsatisfactory, as
the number of curvature violations drops from 12 to 4. However, as we expect, the
imposition of the curvature constraint at every data point in the sample has reduced
the number of curvature violations to zero, producing parameter estimates that are
consistent with all three theoretical regularity conditions at every data point in the
sample, that is, fully. Thus, in what follows we focus on results from the AIM(2)
cost function with the curvature conditions imposed fully.

As seen from the third column of Table 2, the estimates of γi (i = 1, 2, 3) are
all positive (i.e., γ1 = 0.4396, γ2 = 0.1683, and γ3 = 0.0720). With ln g and ln g0

also being positive (because both g and g0 are greater than one), this implies that,
regardless of the signs of the λi’s, the effect of public infrastructure on the efficiency
of private inputs is always positive, in the sense that it is capable of reducing total
cost [see (18)]. However, the negative signs of the curvature parameters for public
infrastructure (i.e., λ1 = −0.4220, λ2 = −2.9598, and λ3 = −6.0000) imply
that the ability of public infrastructure to increase the efficiency level of private
inputs has declined over the sample period, which is reflected hereafter in the
change in the time patterns of the estimates of cost elasticities, output elasticities,
productivity growth, and the social rate of return to public infrastructure.
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FIGURE 1. Cost elasticity with respect to public infrastructure in total U.S. manufacturing
industry.

5.3. Cost Elasticities

An important question in the literature is whether public infrastructure is produc-
tive. This question can be answered by looking at the effect of public infrastructure
on cost reduction. Using equation (18), we calculated the estimates of the cost
elasticity with respect to public infrastructure for total U.S. manufacturing industry,
shown in Figure 1. Apparently, the estimates are negative over the sample period,
with an average of −0.0993, suggesting that public infrastructure is productive in
terms of cost reduction. Our estimates of the cost elasticities are roughly consistent
with those made by Nadiri and Mamuneas (1994). In particular, they applied a
translog cost function, treating public infrastructure as a public fixed input, to the
data on the same 12 two-digit manufacturing industries (over the period from 1970
to 1986) and found that the mean values of the estimates of the cost elasticity range
between −0.1000 and −0.1500 across the two-digit manufacturing industries. As
we noted in Section 2, the cost reduction is actually achieved through the ability
of public infrastructure to increase the efficiency levels of private inputs (capital,
labor, and materials).

We are also interested in the time pattern exhibited by our estimated cost
elasticity. It is clear from Figure 1 that there is a break in the estimated cost
elasticity in 1973. In particular, over the period from 1953 to 1973, the estimates
of cost elasticity are less negative over time, and decrease rapidly from 0.1760
in 1953 to 0.0855 in 1973 in absolute terms, meaning that a 1% increase in
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FIGURE 2. Cost elasticities with respect to public infrastructure for two-digit manufacturing
industries in the United States.

public infrastructure results in a smaller percentage reduction in cost over time.
In the second subperiod, from 1974 to 2001, the estimates of the cost elasticity
are relatively stable, with an average of −0.0750, suggesting that a 1% increase
in public infrastructure leads to a 0.0750% cost reduction on average. The time
pattern exhibited by the estimated cost elasticity implies that although public
infrastructure offers significant benefits in terms of cost reduction in the pre-1973
period, it cannot offer the same benefits at the margin.

To further test the robustness of the result regarding the time pattern exhib-
ited by our estimated cost elasticity in the total manufacturing industry, we also
estimate the model (equation (33)) for each of the 12 two-digit manufacturing
industries separately, and calculate the cost elasticity for each of them. As can
be seen clearly from Figure 2, a similar time pattern (i.e., declines prior to 1974
and relative stability after that) is also found in almost all of the 12 two-digit
manufacturing industries (the only exception is ISC 33). The estimates from the
12 two-digit manufacturing industries further confirm the conclusion that the
externality effect of public infrastructure on cost reduction in U.S. manufacturing
is more significant prior to 1974 and less important after that. In addition, we note
that the estimates of the cost elasticity vary across industries, but for a majority
of the industries the estimates range between −0.0600 and −0.3065 in 1953
and between −0.0100 and −0.1255 in 2001. We also note from Figure 2 that
ISC 37 (Transportation Equipment), which is an intensive user of the core public
infrastructure, experienced a larger decline than any of the other industries. In
addition, the averages of the cost elasticities with respect to public infrastructure
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FIGURE 3. Input-specific elasticities with respect to public infrastructure in total U.S.
manufacturing industry.

for the 12 two-digit manufacturing industries ranges from −0.0232 to −0.1341,
slightly lower than those found by Nadiri and Mamuneas (1994).

Unlike previous studies, our price-augmenting technical change approach en-
ables us to further investigate the input specific cost elasticities with respect to
public infrastructure, γi(ln g/ ln g0)

λi−1, for i = 1, · · · , n. Two results emerge
from Figure 3. First, public infrastructure is mainly capital- and labor-saving. In
particular, the capital-specific cost elasticity is very impressive, averaging −0.328
per year over the sample period. For labor and materials, the input-specific cost
elasticities are found to be moderate, averaging −0.079 and −0.021, respectively.
These results imply that cost savings are realized through the ability of pub-
lic infrastructure to increase the efficiency of private inputs (capital, labor, and
materials).

We further calculate the contribution of each factor to the total cost elasticity
with respect to public infrastructure, using equation (18). It is clear from Figure 4
that capital and labor have been the two dominant factors causing the externality
effect of public infrastructure on cost reduction. Materials have a positive and small
impact on the externality effect of public infrastructure. Second, like the estimates
of the total cost elasticities, all three input-specific cost elasticities exhibit a similar
time pattern; i.e., they all become less negative over time in the first subperiod
(the pre-1973 period) and become relatively stable after 1974. In particular, the
capital-specific cost elasticity decreases from 0.440 to 0.266 in absolute terms;
the labor-specific cost elasticity decreases from 0.168 to 0.041 in absolute terms;
and the materials-specific cost elasticity decreases from 0.072 to 0.006 in absolute
terms. The time pattern exhibited by the estimates of input-specific cost elasticities
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FIGURE 4. Contribution of input factors to total cost elasticity in total U.S. manufacturing
industry.

suggests that the ability of public infrastructure to increase the efficiency of private
inputs has greatly diminished over time, and that at the end of the sample period,
public infrastructure is mainly capital-saving.

5.4. Output Elasticities

A further question in this literature is how productive public infrastructure is. This
question can be answered by making a comparison between public infrastructure
and the three private inputs in terms of output elasticity with respect to public
infrastructure. As discussed in Section 3, the implied output elasticity is the
negative of the cost elasticity in equation (18) under the assumption of constant
returns to scale. Further, under the same assumption, it is easy to show that the
output elasticities of private capital, labor, and materials can be approximated by
their corresponding revenue shares.

Figure 5 plots the output elasticity of public infrastructure and also the output
elasticities of private capital, labor, and materials in the total U.S. manufacturing
industry. Roughly speaking, over the period 1953 to 1974, the output elasticity with
respect to labor is the largest, followed by those of materials, private capital, and
public infrastructure. Over the sample period 1974 to 2001, the output elasticity
with respect to materials is the largest, followed by those with respect to labor,
private capital, and public infrastructure. Though the smallest in both periods, the
average output elasticity of public infrastructure (0.0993) is by no means small,
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FIGURE 5. Output Elasticities in total U.S. manufacturing industry.

compared to those of capital, labor, and materials (0.1750, 0.4290, and 0.3962,
respectively) over the sample period.

It is more instructive to compare the output elasticities of two types of capital,
public infrastructure and private capital. It is clear from Figure 5 that, although
the output elasticity of private capital is relatively stable over time, that of public
infrastructure has declined steadily over the sample period. In particular, the
output elasticity of public infrastructure is 0.1760, slightly higher than that of
private capital (0.1615) at the beginning year of the sample period (i.e., in 1953
and 1954). However, it declines steadily and stabilizes at around 0.0750 after
1974. At the end of the sample period (in 2001), the output elasticity of public
infrastructure is 0.0635, which is only 40% that of private capital. In other words,
public infrastructure is getting less productive relative to private physical capital
over the sample period.

5.5. Productivity Decomposition

A very important policy question in this literature is whether expanded investment
in public infrastructure can lead to sustainable productivity growth in the U.S.
economy. This question can be answered by assessing the relative importance
of public infrastructure to total factor productivity growth over time. As noted
in equation (24), total factor productivity growth, TFPG, can be decomposed
into three components—productivity growth due to public infrastructure, TFPGg ,
productivity growth due to other technology, TFPGt , and an interaction term
between public infrastructure and other technology. TFPG, TFPGg , and TFPGt

are calculated using equations (21), (22), and (23), respectively. Because of the
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FIGURE 6. Productivity growth decomposition in total U.S. manufacturing industry.

negligible magnitude of the third component, TFPGt , our analysis focuses on the
first two components.

Before making a comparison between the contribution of public infrastructure
to TFPG and that of other technology, we first examine the performance of our
model in terms of its flexibility in modeling TFPG (the solid line in Figure 6).
As is well known, the commonly used general time trend approach, where the
time trend is treated symmetrically with other inputs within the flexible functional
forms framework, does not have enough flexibility in capturing the ups and downs
in productivity growth. For example, Kohli (1990) and Diewert and Wales (1992)
have noted that the general time trend approach to obtaining productivity growth
estimates yields values that are smoothed versions of the estimates from the
commonly used index number approaches. Moreover, Feng and Serletis (2008)
have noted that even the AIM cost function with a linear time trend introduced
in the efficiency index does not perform well enough in capturing the ups and
downs in productivity growth; i.e., it produces estimates that can only be regarded
as smoothed versions of that from the Fisher ideal index. Compared with the
previous models, our model performs much better in that it captures most of the
productivity ups and downs such as the productivity slowdown in the early 1970s.
The exceptional performance of our model is also reflected in its flexibility in
capturing the ups and downs of TFPGg (see the dotted line in Figure 6) and TFPGt

(see the dashed line in Figure 6).
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We now turn to the comparison between the contribution of public infrastructure
to TFPG and that of other technology. It is clear from Figure 6 that TFPGg and
TFPGt have different time patterns and magnitudes. For the productivity growth
due to public infrastructure, there is a clear structural break in 1974. The TFPGg

estimates over the pre-1974 period are much greater on average than those over
the post-1974 period. In particular, the estimates of TFPGg average 0.79% over
the period 1953 to 1974 whereas they average only 0.17% over the period 1974
to 2001. In fact, the decline in productivity growth due to public infrastructure
partially accounts for the widely noted productivity slowdown in the early 1970s.
In contrast, there is no clear structural break in 1974 for the TFPGt estimates.
Moreover, the estimates of TFPGt over the pre-1974 period are slightly lower on
average than those over the post-1974 period. In particular, the estimates of TFPGt

average 1.25% over 1953–1974 and 1.50% over 1974–2001. It is clear from Figure
6 that the productivity growth due to other technology, TFPGt , explains most of
the productivity resurgence in the late 1990s.

To see the temporal pattern of the importance of public infrastructure to produc-
tivity growth more directly, we calculate the contribution of TFPGg to TFPG using
TFPGg/TFPG × 100. Public infrastructure makes an impressive contribution of
33.4% in the pre-1974 period. However, its contribution declines significantly to
11.2% in the second subperiod, and to merely 4.4% in the most recent period from
1996 to 2001. In contrast, other technology contributes 66.6% to the total factor
productivity growth in the pre-1974 period. Its contribution increases sharply to
88.8% in the post-1974 period, and to as high as 95.6% in the most recent period,
from 1996 to 2001. Apparently, public infrastructure is a significant contributor
to productivity growth in the pre-1974 period, but only a limited contributor in
the post-1974 period. In other words, the manufacturing industry data do not
support the view that returning public infrastructure growth to pre-1974 levels
would raise productivity growth to pre-1974 levels. Taking into account the fact
that the core public infrastructure is composed mainly of highways (around 60%),
our finding regarding the contribution of TFPGg to TFPG is consistent with that
in Fernald (1999) that the massive infrastructure building of the 1950s, 1960s, and
early 1970s—which largely reflected the construction of the interstate highway
network—offered a one-time increase in the level of productivity, rather than a
continuing path to productivity growth.

It should be noted that TFPGg represents change, not level of productivity
(or efficiency) due to public infrastructure. Thus, the negative value of TFPGg

in certain years (for example, 1957, 1975, 1982, 1983, 1992, 2000, and 2001)
should be interpreted as a decline in the level of productivity due to public in-
frastructure from the previous year, rather than as a negative level of productivity
due to public infrastructure. In fact, if the productivity level in 1953 is normal-
ized to one and only productivity growth due to public infrastructure is taken
into consideration, then the productivity level will be 1.0353, 1.1595, 1.1640,
1.1625, 1.1851, 1.2169, and 1.2102 for 1957, 1975, 1982, 1983, 1992, 2000,
and 2001, respectively. In other words, public infrastructure has consistently
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been efficiency-improving over the sample period, despite the sign changes of
TFPGg .

5.6. Rates of Return

Another important public policy question in the literature is whether public capital
is over- or undersupplied. As mentioned in Section 3.6, the optimal provision of
public capital services requires that the level of public capital provided be at
the point where the net social rate of return to public infrastructure is equal to the
discount rate—see equation (28). If the social rate of return to public infrastructure
is higher (lower) than the discount rate, public infrastructure is undersupplied
(oversupplied) and an increase (reduction) of public investment is necessary.

A difficulty in calculating the social rate of return in equation (28) is finding an
appropriate measure of the marginal cost, pg , because there is no consensus on
the magnitude of pg . For example, Ballard (1990) put the marginal cost of public
sector investment at about $1.20 for each dollar of benefits, whereas Jorgenson
and Yun (1990) estimate this cost to be about $1.47 for each dollar of benefits.
Despite the large difference in the estimates of marginal cost of public sector
investment, Browning (1987) points out that the preferred range is between 1.318
and 1.469. In this paper, we use 1.407, the median of this preferred range. As
noted in Section 3.6, we also need to find appropriate measures of the depreciation
rate of public infrastructure, δg , and the discount rate, r . For δg , we use the av-
erage of the depreciation rates of government nonresidential structures, weighted
by the value shares in each year. The depreciation rates of government nonres-
idential structures can be obtained from the Bureau of Economic Analysis (at
http://www.bea.gov/national/FA2004/Tablecandtext.pdf). For the discount rate, r ,
we use the net rate of return to private capital stock, which is approximated by
that for the nonfinancial sectors in the United States—see Bureau of Economic
Analysis (1999).

Figure 7 presents the net rate of return to public infrastructure and the net
rate of return to private capital stock. Clearly, over the period 1953 to 1973, the
rate of return to public infrastructure is much higher than that to private capital,
reflecting the shortage of public infrastructure in that period. In particular, the
average rate of return to public infrastructure over the period 1953 to 1973 is
20% compared with a return rate of 9.9% for private capital over the same period.
However, the return to public infrastructure capital declines quickly over this
period and converges to that to private capital stock in 1974. Over the period
1974 to 2001, especially after 1986, the rate of return to public infrastructure is
roughly the same as that to private capital. This suggests that the rate of return to
public infrastructure is on par with that of private capital over the 1974 to 2001
period, when only manufacturing industries are considered. The temporal pattern
exhibited by the total manufacturing industry is also confirmed by those of the 12
two-digit manufacturing industries, as shown in Figure 8.

https://doi.org/10.1017/S1365100512000090 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100512000090


PUBLIC INFRASTRUCTURE AND EXTERNALITIES 1397

35%

40%

Social rate of return on public infrastructure

25%

30%

Rate of return on private capital for nonfinancial sector

20%

25%

10%

15%

5%

0%

1953 1956 1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001

FIGURE 7. Social rate of return to public infrastructure and rate of return to private capital
in total U.S. manufacturing industry.

However, we cannot jump to the conclusion that public infrastructure was
provided at its optimal level over the period 1974 to 2001. This is because the
consumption sector and nonmanufacturing industries are ignored in our analysis.
Moreover, the market-mediated effect of public infrastructure is not taken into
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FIGURE 8. Social rate of return to public infrastructure for 12 two-digit U.S. manufacturing
industries.
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consideration, as discussed in the Introduction. When all these are taken into
account, (27) implies that the new net rate of return to public infrastructure, rw

g ,
is most likely to be greater than rg , the net rate of return to public infrastructure
when the consumption sector and nonmanufacturing industries are not considered.
Because rg is roughly the same as the rate of return to private capital in the post-
1973 period, a higher rate of return to public infrastructure implies that public
infrastructure is undersupplied when the whole economy is considered.

This conclusion is further justified by the effects of the Tax Reform Act of 1986
on the marginal cost of public funding, pg . Previous studies generally find that
the Tax Reform Act of 1986 reduces the marginal excess burden. For example,
Jorgenson (1996, p. xxviii)) finds that the Tax Reform Act of 1986 reduces the
marginal excess burden of taxation by 8%, implying that pg should be lower by
8% in the post-1986 period than in the pre-1986 period. More specifically, if we
assume that pg = 1.407 for the pre-1986 period as before, then pg in the post-
1986 period should be adjusted to 1.327, implying that the net rate of return to
public infrastructure in the post-1986 period is actually higher than that shown in
Figure 7. Thus, taking into account both the effect of the Tax Reform Act of 1986
on pg and the spillover effects of public infrastructure in the consumption sector
and nonmanufacturing industries, public infrastructure is undersupplied even in
the second subsample period.

Considering the importance of this public policy question and the lack of con-
sensus in the economic literature with respect to the magnitude of the marginal
cost of public funding [see Jacobs (2009)], in what follows we examine the sen-
sitivity of our results regarding the rate of return to public infrastructure, using
the values for pg found by more recent studies. A central finding of the modern
labor market literature is that labor supply responses tend to be concentrated along
the extensive margin (labor force participation) rather than the intensive margin
(hours of work), implying that pg becomes a function of average taxes, rather than
just marginal taxes. Noting this, Kleven and Kreiner (2003) recalculate pg for 23
OECD countries, and find that it ranges from below 1 to above 2 across the sample
countries. For the case of the United States, they find that pg ranges from 0.89 to
1.34. In what follows we will examine the sensitivity of our results, using these
new values for pg .

Figure 9 presents the net rate of return to private capital stock and the net rates
of return to public infrastructure for the two extreme cases where pg = 0.89 and
pg = 1.34, respectively. For the case of pg = 1.34 [see the curve titled “social
rate of return to public capital (pg = 1.34)” in Figure 9], the conclusion regarding
whether public infrastructure is over- or undersupplied is almost the same as that
presented before. More specifically, over the subperiod from 1953 to 1973, the
rate of return to public infrastructure is much higher than that to private capital,
reflecting the shortage of public infrastructure in that period. Over the subperiod
from 1974 to 2001, the rate of return to public infrastructure is roughly the same
as that to private capital. As the value for pg decreases to 0.89 [see the curve titled
“social rate of return to public capital (pg = 0.89)” in Figure 9], the time when the
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FIGURE 9. Net social rate of return to public infrastructure and rate of return to private
capital in total U.S. manufacturing industry.

rate of return to public infrastructure converges to that to private capital is delayed
to the year of 1998. In particular, the rate of return to public infrastructure is higher
than that to private capital over the period from 1953 to 1998, whereas the former
is roughly the same as the latter afterward. Despite this difference, the temporal
pattern exhibited by the net rate of return to public infrastructure in the case where
pg = 0.89 and that in the case where pg = 1.34 are roughly the same; i.e., it
first declines sharply and then slowly converges to that to private capital. Again,
when the consumption sector and nonmanufacturing industries, together with the
effects of the Tax Reform Act of 1986, are taken into account, public infrastructure
is undersupplied in the post-1973 period in the case where pg = 1.34 (or in the
post-1998 period in the case where pg = 0.89), for the same reason as discussed
previously.

5.7. Robustness

As noted in Section 4.2, a possible problem with our estimate of the price-
augmenting AIM(2) cost function is endogeneity. More specifically, the input
prices and public infrastructure on the right-hand side of (29)–(32) may not be
exogenous. For the input prices, their possible endogeneity can be a result of the
monopsonistic power exerted by some of the firms in the industry. As for public
infrastructure, we conducted a Granger causality test to examine the direction of
the relationship between private production (i.e., output) and public infrastructure
for U.S. total manufacturing. Our test results show that the causation is unclear,
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FIGURE 10. Cost elasticity with respect to public infrastructure in total U.S. manufacturing
industry from the 2SLS model.

in that public infrastructure Granger-causing private production as well as private
production Granger-causing public infrastructure. Thus, in this subsection we ex-
amine the sensitivity of our results (regarding cost elasticities, output elasticities,
productivity decomposition, and rates of return) to the use of the two-stage least
squares (2SLS) approach.

In using the 2SLS approach, our instrument set for input prices, pi (i = 1, 2, 3),
includes pi(−1) (where −1 indicates that pi is lagged by one period), pi(−2),
py(−1) (where py is the output price), and py(−2). The use of lagged input and
output prices as instrumental variables is based on the argument that they are
predetermined and thus are more likely to be exogenous. For the case of public
infrastructure, our instrument set includes g(−1) (where g is public infrastructure
as defined previously), g(−2), pop(−1) (where pop indicates population), and
pop(−2). The lagged values of both public infrastructure and population are
widely used in this literature to instrument public infrastructure. See, for example,
Munnell (1992) and Easterly and Rebelo (1993).

The empirical results for total U.S. manufacturing, obtained using the 2SLS
approach, are summarized in Figures 10–15. A comparison between Figures 1,
3, 4, 5, 6, and 7 and Figures 10–15 reveals that the major conclusions reached
in the previous four subsections are still valid, although we notice some slight
changes in the magnitude of the cost elasticities, output elasticities, productivity
estimates, and rates of return to public infrastructure. First, as shown in Figure 10,
the temporal pattern of the cost elasticity with respect to public infrastructure,
estimated from the 2SLS model, is very similar to that from the Zellner method.
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FIGURE 11. Input-specific elasticities with respect to public infrastructure in total U.S.
manufacturing industry from the 2SLS model.
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FIGURE 12. Contribution of input factors to total cost elasticity in total U.S. manufacturing
industry from the 2SLS model.
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FIGURE 13. Output elasticities in total U.S. manufacturing industry from the 2SLS model.
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FIGURE 14. Productivity growth decomposition in total U.S. manufacturing industry from
the 2SLS model.
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FIGURE 15. Social rate of return to public infrastructure and rate of return to private capital
in total U.S. manufacturing industry from the 2SLS model.

In particular, the cost elasticity with respect to public infrastructure, estimated
from the 2SLS model, is also negative throughout the sample period with an
average of −0.1601, suggesting that public infrastructure is productive in terms
of cost reduction. In addition, as with the Zellner method, the cost elasticity with
respect to public infrastructure, estimated from the 2SLS model, also shows a
break in the early 1970s. More specifically, the estimates of the cost elasticity are
less negative over time, decrease rapidly from 0.2350 in 1955 to 0.1426 in 1975 in
absolute terms, and then stabilize at around 0.1400 in absolute terms in the second
subperiod from 1976 to 2001. Moreover, public capital also mostly increases the
efficiency of physical capital—see Figures 11 and 12.2

Second, as with the Zellner method, although the output elasticity with respect
to public infrastructure and those with respect to private capital are comparable to
each other in terms of magnitude, they exhibit very different temporal patterns. As
shown in Figure 13, while the output elasticity of private capital is relatively stable
at around 0.0879 over the sample period, that of public infrastructure declined
steadily from 0.2350 to 0.1284 over the sample period, suggesting that public
infrastructure has become less productive over time.

Third, like the results obtained from the Zellner method, public infrastructure
is still a significant contributor to productivity growth in the first subperiod, but
only a limited contributor in the second subperiod. More specifically, as shown in
Figure 14, on average public infrastructure makes an impressive contribution to
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total productivity growth (50.0%) in the first subperiod (i.e., the pre-1976 period),
but a much smaller contribution (19.2%) in the second subperiod (i.e., the post-
1976 period).

Fourth, our conclusion that public capital is undersupplied still holds. More
specifically, as shown in Figure 15, for the first subperiod the net rate of return
to public infrastructure averages 27.03%, much higher than that to private capital
(9.58%) over the same period. This implies that as with the Zellner method, public
infrastructure is undersupplied in the first subperiod. For the second subperiod,
the former (15.31%) is still higher than the latter (8.00%), implying that public
infrastructure is undersupplied in the second subperiod too. This conclusion can
be further strengthened if we take into account the effect of the Tax Reform Act
of 1986 on pg and the spillover effects of public infrastructure in the consumption
sector and nonmanufacturing industries, as they will all cause the net rate of return
to public infrastructure to be even higher than that shown in Figure 15.

5.8. Discussion

As noted from the results from both the Zellner and 2SLS approaches, a most
salient one is that there is a “break” in the mid-1970s for all the estimates of the
cost elasticities, output elasticities, productivity growth, and social rate of return to
public infrastructure. For simplicity, in what follows we concentrate on the results
from the Zellner method. More specifically, the estimates of the cost elasticity with
respect to public infrastructure decrease rapidly in the first subperiod (from 1953
to 1973) in absolute terms, but then flatten out in the second subperiod (from 1974
to 2001). Similarly, the estimates of the output elasticity with respect to public
infrastructure decrease rapidly in the first subperiod, but then become flat in the
second subperiod. In terms of its contribution to total productivity growth, public
infrastructure plays an important role in the first subperiod and only a minor one
in the second subperiod. In addition, the rate of return to public infrastructure
falls rapidly in the first subperiod, but then it flattens out in the second subperiod.
Because this break is of particular importance in answering the aforementioned
public policy questions, it is worth discussing in more detail the causes of the
break.

From an empirical perspective, the break is actually caused by the negative sign
of the estimated curvature parameters, λi (i = 1, 2, 3). As noted in Section 3.2,
one of the powerful features of the Box–Cox function, which is used to model the
effect of public infrastructure on the efficiency of private inputs in (16), is that it
includes as special cases all the common “linear in the parameters” forms: linear,
reciprocal (hyperbolic), log, polynomial, etc., depending on the estimated value
of the curvature λi . The resulting functional form is an outcome of the estimation
process; the researcher need not specify the exact functional representation but
only a parametric family of functions, and, via the estimation process, the “best
fitting” functional form is chosen. In other words, the Box–Cox function enables
us to let the data determine the best functional form for the effect of public
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infrastructure on the efficiency of private inputs, which is a powerful attribute of
our price-augmenting AIM cost function.

In our particular case, all three estimated curvature parameters for public in-
frastructure, λi (i = 1, 2, 3), are negative. More specifically, as shown in Table 2,
λ1 = −0.4220, λ2 = −2.9598, and λ3 = −6.0000. With γi (i = 1, 2, 3) being
positive (see Table 2), and ln g and ln g0 also being positive (because both g and g0

are greater than one), the negative sign of λi (i = 1, 2, 3) implies that the ability of
public infrastructure to increase the efficiency level of private inputs has declined
over the sample period. More formally, taking the derivative of (18) with respect
to ln g yields

∂2 ln C

∂2 ln g
= −

n∑
i=1

si

[
γi (λi − 1)

(
ln g

ln g0

)λi−2
]

> 0. (36)

Because ∂2C/∂2g has the same sign as ∂2 ln C/∂2 ln g and ∂ ln C/∂ ln g < 0 (see
(18)), (36) implies that as public infrastructure increases over time, an additional
one-unit increase in public infrastructure can still lead to a reduction in total cost,
but at a lower rate. Similarly, we can show that

∂2 ln y

∂2 ln g
=

n∑
i=1

si

[
γi (λi − 1)

(
ln g

ln g0

)λi−2
]

< 0, (37)

where y is output, implying that as public infrastructure increases over time, an
additional one-unit increase in public infrastructure can still lead to an increase in
output, but at a lower rate. In other words, both (36) and (37) imply that public
infrastructure becomes less productive over time.

Moreover, when the ratio of ln g to ln g0 becomes high enough at a certain point
in time, it is easy to see that the negative sign of λi (i = 1, 2, 3) implies that
∂2 ln C/∂2 ln g in (36) and ∂2 ln y/∂2 ln g in (37) tend to be zero, implying that
an additional one-unit increase in public infrastructure leads to a rather constant
increase in output or a rather constant decrease in cost. This means that cost elastic-
ities, output elasticities, and the social rate of return to public infrastructure flatten
out in the subsequent period. Thus the point of time at which an additional one-unit
increase in public infrastructure starts resulting in a rather constant decrease in
cost elasticities/output elasticities/the social rate of return to public infrastructure
in absolute terms forms a break; i.e., prior to this point, cost elasticities (output
elasticities, and the social rate of return) decrease in absolute terms, and after it,
they flatten out. In our particular case, the break happens at around 1973–1974.

Having discussed the cause of the break from an empirical perspective, we now
discuss the possible theoretical reason behind the break. Although our framework
does not allow us to theoretically identify the causes behind the break, we believe
that it is caused by the “network effect,” discussed in Fernald (1999). This is
because, as in Fernald (1999), the core public infrastructure used in this paper
is composed mainly of highways (around 60%), which are well documented to
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have a network effect. See, for example, Liebowitz and Margolis (1994), the U.S.
Department of Transportation (1996), and Fernald (1999). More specifically, after
applying a growth accounting method to 29 sectors in the U.S. economy, Fernald
(1999, p. 621) concludes that

the massive road-building of the 1950’s and 1960’s offered a one-time boost to the
level of productivity, rather than a path to continuing rapid growth in productivity.
This conclusion—that roads were exceptionally productive before 1973 but not
exceptionally productive at the margin—is consistent with simple network argument.
In particular, building an interstate network might be very productive; building a
second network may not.

Clearly, our results from applying the price-augmenting AIM cost function,
proposed in this paper, to the data on the U.S. manufacturing industry are perfectly
consistent with this network argument.

6. CONCLUSION

In this paper, for the first time in the literature, we develop a price-augmenting
AIM to investigate the effects of public infrastructure on the productivity of U.S.
manufacturing industry. In doing so, we make a distinction between the productiv-
ity effect and the production factor effect of public infrastructure. This distinction
allows us to investigate the more interesting productivity effect by incorporating
public infrastructure into the AIM cost function through the efficiency index.
This is in contrast to previous studies where public infrastructure is incorporated
into cost functions as a fixed input, so that they are incapable of disentangling
the productivity effect from the production factor effect of public infrastructure.
The globally flexible AIM cost function is chosen because it is capable of ap-
proximating the underlying cost function at every point in the function’s domain
by increasing the order of the expansion, whereas most of the locally flexible
functional forms (i.e., generalized Leontief, translog, and normalized quadratic)
theoretically can attain flexibility only at a single point or in an infinitesimally
small region. Further, the specification of the efficiency index as an exponential
Box–Cox function enables us to investigate the temporal pattern of the effects of
core public infrastructure with better insights.

We then analyze the effects of public infrastructure using four measures: the
cost elasticity, the output elasticity, the contribution of public infrastructure to
total factor productivity, and the social rate of return. All our results point to the
decline in the spillover effects of core public infrastructure on the performance of
manufacturing industry in the United States. In particular, our estimates of cost
elasticities suggest that although public infrastructure offers significant benefits in
terms of cost reduction in the pre-1973 period, it cannot offer the same benefits at
the margin. Although our estimates of output elasticities suggest that the average
output elasticity of core public infrastructure (0.0993) is by no means small,
compared to that of capital, labor, and materials (0.1750, 0.4290, and 0.3962,
respectively), they also indicate that core public infrastructure has become less
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productive relative to private inputs over the sample period. More importantly, our
analysis of the contribution of core public infrastructure to total factor productivity
further confirms the finding in Fernald (1999) that the massive core infrastructure
building of the 1950s, 1960s, and early 1970s offered a one-time increase in the
level of productivity, rather than a continuing path to productivity growth. Finally,
our results also indicate that the social rate of return to core infrastructure was
high during the 1950s and the 1960s, but declined considerably over the sample
period. After the 1980s, the rates of return to core public infrastructure and private
sector capital seem to have converged. The results from our 2SLS approach are
roughly the same, despite some small changes in magnitude.

We note that these results are obtained by using a two-digit classification of
U.S. manufacturing industries. In our future research, we will use a four-digit or
a six-digit classification of U.S. manufacturing industries, which we believe is
more informative. This is because a lot of useful information contained in more
disaggregated data may be lost when the data are aggregated. Thus we expect that
the results obtained by using a four-digit or a six-digit classification will show
more variation in terms of the effects of public infrastructure across industries.

NOTES

1. For the fact that constant returns to scale has been built in the KLEMS data, see the Bureau
of Labor Statistics (BLS) Web site: http://www.bls.gov/mfp/mprover.htm#On the Internet. It was also
confirmed by our personal communication with Randy Kinoshita, the economist in charge of the
KLEMS data at the BLS.

2. Notice that because pi(−2) and g(−2) are used in the 2SLS model, the first two observations
are lost. Also, because of the use of the lagged values of input prices and public infrastructure as
instruments, the break is delayed to 1976.
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APPENDIX A

From equation (8) we get

εct = ∂ ln C

∂t
= 1

C

∂C

∂t
= 1

C

(
n∑

i=1

∂C

∂Pn

∂Pn

∂t

)
.

Using Shephard’s lemma, equation (10), this yields

εct = ∂ ln C

∂t
= 1

C

(
n∑

i=1

Xn

∂Pn

∂t

)
= 1

C

(
n∑

i=1

PnXn

1

Pn

∂Pn

∂t

)

=
n∑

i=1

PnXn

C

∂ ln Pn

∂t
=

n∑
i=1

si

∂ ln Pn

∂t

=
n∑

i=1

si

∂ (ln pn − ln An)

∂t
,

and because pn is exogenous and not a function of t , this reduces to equation (11).

APPENDIX B

From equation (8) or (12), we get

∂ ln C

∂ ln g
= −

n∑
i=1

si

∂ (ln An)

∂ ln g
.

Moreover, equation (16) can be written as

ln Ai = ϑit0

δi

[(
t

t0

)δi

− 1

]
+ γi ln g0

λi

[(
ln g

ln g0

)λi

− 1

]
,

so that
∂ (ln Ai)

∂ ln g
= γi ln g0

λi

λi

(
ln g

ln g0

)λi−1 1

ln g0
= γi

(
ln g

ln g0

)λi−1

.

Thus,
∂ ln C

∂ ln g
= −

n∑
i=1

si

∂ (ln An)

∂ ln g
= −

n∑
i=1

siγi

(
ln g

ln g0

)λi−1

.
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