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Abstract

We propose a computational method for producing novel constructs that fall within an existing design or artistic style. The
method is based on evolutionary algorithms, and we discuss related knowledge representation issues. We then present an
implementation of this method that we used in order to imitate the style of the Dutch painter Mondrian. Finally, we explain
and give the results of a cognitive experiment designed to determine the effectiveness of the method, and provide a discus-
sion of these results.
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1. INTRODUCTION

Using computers to generate artwork is not a new idea, and
neither is using ideas from evolutionary algorithms (Mitchell,
1998) for this task. Some examples of design systems that are
inspired in evolution are presented and discussed, for exam-
ple, in Bentley (1999) and Bentley and Corne (2002). Most
of the systems that generate artwork that are described in these
two books (e.g., Rowbottom, 1999; Todd & Latham, 1999;
Witbrock & Neil-Reilley, 1999; Eiben et al., 2002; Hancock
& Frowd, 2002; Pagliarini & Lund, 2002; Rooke, 2002) do so
by using the evolutionary operators of crossover and mutation
to propose new paintings. However, all of these systems leave
it to the users to decide, during the evaluation phase of the
evolutionary algorithm, which of the new paintings, or which
of the features of the new paintings, to keep for future evolu-
tionary cycles, and/or how to rank the new paintings accord-
ing to whatever the users’ subjective, and probably uncon-
scious, aesthetic criteria might be. Thus, the decisions on
what is aesthetic or interesting are not made by the systems,
and therefore one of the benefits of evolutionary algorithms
(iterating rapidly and autonomously through a propose–
evaluate–discard cycle) is not taken advantage of.

The above approach assumes that one is interested in pro-
ducing new artwork, with the aid of the computer, that is
deemed by people to be pleasing, and that there are enough
people available to provide feedback to the evolutionary pro-
cess to generate such artwork. In contrast, we are more inter-

ested in formalizing and furthering our understanding of de-
sign, and in the computational and algorithmic aspects of
artwork generation rather than the artistic value of the final
product. We would like to create fully autonomous systems
that require no user feedback as their evolutionary or other al-
gorithms proceed. The point of our approach is to explore,
and perhaps push, the limits of what computers are capable
of doing by themselves.

More specifically, what we are interested in is to have com-
puter systems that can imitate an artistic style given examples
of that style. This contrasts with systems that are programmed
with their own, completely new, artistic style, for instance, by
generating paintings that follow the patterns defined by some
preprogrammed mathematical equations, or that, because of
the way they are programmed, emulate the artistic style of
their users or programmers, such as Harold Cohen’s AARON
(McCorduck, 1991). Imitating a style involves achieving a
trade-off between making sure that the new designs or paint-
ings that are created are novel, rather than simply copying pre-
viously existing ones, but at the same time making sure that
the new products do not differ in significant ways from the
original ones in order not to go beyond the limits of the style
that is being imitated.

For various reasons given shortly, we believe that evolu-
tionary algorithms provide us with a computational frame-
work that allows us to achieve our goal. Work into capturing
the style of particular artists or designers in the computer has
often focused on shape grammars (e.g., Cha & Gero, 1999) or
semantic networks (e.g., Gero & Jupp, 2003), although some
work has also used evolutionary algorithms to explore style.
For instance, Ding and Gero (2001) describe a system that
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generates traditional Chinese architectural facades after it in-
fers a representation of their style. This inference and subse-
quent learning is done by using an evolutionary algorithm
that produces a hierarchical genotype that represents a par-
ticular style according to the exemplars that have been shown
to it. Recognizing whether a new design matches a particular
style involves matching its features with the style representa-
tion embodied in the hierarchical genotype. However, these
new designs are not generated by this system by using evolu-
tionary algorithms.

In contrast, in our work we believe that the power of the
evolutionary algorithm is in the generation of new artwork.
In Section 2 we describe our method for generating imitations
of style based on an evolutionary algorithm, and explain our
reasoning behind this choice of computational method. In
Section 3 we present a particular artistic style, Mondrian’s,
which we tried to imitate by implementing our process model,
and some knowledge representation issues related to captur-
ing the essence of Mondrian paintings in the computer. In
Section 4 we explain a set of experiments we performed for
evaluating our implementation and give the results of these
experiments. Finally, in Section 5 we discuss our findings
and future work to be done.

One project that has in the past been used to learn (evolve)
generic genotype descriptions of patterns used by Mondrian
in his paintings, using a method similar to Ding and Gero
(2001), is described in Schnier and Gero (1997, 1998). The
new evolved descriptions were then used in an evolutionary
algorithm to generate new paintings that use some of the
learned patterns. However, the resulting paintings were never
evaluated to determine their “Mondrian-ness” either compu-
tationally or by showing them to human subjects or experts.
The purpose of the project was to explore learning of patterns
in evolved genotypes, and also style combination (some of
the learned patterns were combined in one evolutionary algo-
rithm with patterns that were learned from Frank Lloyd
Wright window designs), rather than style imitation. Even
though the resulting paintings shown in the two papers cited
above are clearly inspired by Mondrian’s style, many of them
would not be mistaken for Mondrian paintings by anyone fa-
miliar with his paintings. In addition, the representation used
in that project forces the entire space on either side of a black
line in a painting to be of a uniform given color, but many Mon-
drian paintings have colored areas that are not bounded on all
four sides by a black line (or the edge of a canvas). This can
be seen in some of the examples shown in supplementary Fig-
ures S.1 and S.2 (online only)1 and in our project because we
have taken care to be flexible enough to allow it in one of the
rules (rule 6, Subsection 3.2) that embody our description of
Mondrian’s style. Therefore, despite some superficial similari-
ties (the use of Mondrian exemplars and the use of evolutionary

algorithms), there are several significant differences between
that project and ours, in both purposes and implementations.

2. EVOLUTIONARY METHOD OF STYLE
IMITATION

In this section we describe in generic terms our evolutionary
method of style imitation, some of its features, and the rea-
sons behind them, leaving out the details and decisions re-
lated to the method that depend on a particular application
to the next section of the paper, in which we describe our im-
plementation domain. Figure 1 shows the flow of tasks in our
evolutionary method of style imitation.

2.1. Evolution

Briefly, a population of potential solutions (e.g., paintings, in
case we want to imitate an artistic style) is kept throughout the
process. The makeup of the population changes because of
the evolutionary process, in which new potential solutions
are generated through the application of the genetic operators
of crossover and mutation, which at random combine and
modify the features of old potential solutions that are already
in the population, respectively. This is in contrast with the use
of shape grammars or other approaches that generate new po-
tential solutions based on preprogrammed rules that embody
expert knowledge about a particular design domain.

Returning to our process model, a temporarily expanded
population is created by adding the new potential solutions
to the original population. Each new potential solution is
evaluated and a fitness value assigned to it. The fitness value
is a measure of how close or how far each potential solution is
from the style that we are trying to imitate. If one or more (de-
pending on what is desired) of the new potential solutions is
already perfect (i.e., already fits the desired style) according
to the evaluation procedure, the evolutionary process stops
(or if the search has gone on for too long without successfully
producing any imitations). Otherwise, a selection procedure
sorts the potential solutions in the temporarily expanded pop-
ulation according to fitness value, keeps the best of them,

Fig. 1. The evolutionary method of style imitation.

1 At the request of the Mondrian Trust, the printed version of this article
does not include the images of Mondrian’s paintings. However, they do ap-
pear in color as supplementary figures in the online version of the article
(http://journals.cambridge.org/aie).
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and discards the rest. The individuals that are kept become the
initial population for the next evolutionary cycle. This new
population may include both old and new potential solutions
(i.e., some carried over from previous generations and some
newly generated ones), something known as elitism in the
evolutionary algorithms community, and the process repeats
itself.

2.2. Crossover and mutation

As many people have remarked (e.g., Boden, 2003), creative
solutions generated by people are hardly ever completely
novel with respect to what has come before; they tend to com-
bine and/or tweak certain aspects of previously existing solu-
tions in a creative way. Although there is a general agreement
that, in retrospect, the features of new solutions can often be
traced back to previous solutions that were combined and/or
modified, there is less certainty about how to achieve these
two types of transformation of known solutions to achieve
new, creative ones. One way in which these two desired ef-
fects, combination and tweaking or modification, can be di-
rectly achieved algorithmically is by using the two previously
mentioned genetic operators of crossover and mutation, re-
spectively.

Crossover and mutation both operate on linear data struc-
tures that are considered to be genotypes (i.e., a linear descrip-
tion of an individual instance of the type of species that is
being processed by an evolutionary algorithm). The most ba-
sic form of crossover takes two parent genotypes as input,
randomly chooses a crossover point for them, splits them
into two pieces at that point, and produces two offspring ge-
notypes as output by splicing together the opposite pieces of
the two parents. That is, one offspring consists of the first
part of the first parent concatenated with the second part of
the second parent, whereas the other offspring consists of
the first part of the second parent concatenated with the sec-
ond part of the first parent. Figure 2 illustrates the functioning
of the crossover operation graphically.

The most basic form of mutation takes one parent genotype
as input and changes one of its genetic characteristics by ran-
domly deciding which one to change and randomly choosing
a new value for it, and produces the resulting offspring geno-
type as output. Figure 3 illustrates the functioning of the mu-
tation operator graphically. Note that both crossover and mu-
tation operate “blindly,” without paying attention to the
semantics of the genotypes they operate on, and thus are
very generic operators that do not depend on the implementa-

tion domain, that is, on the type of individual that is described
by the genotypes in an evolutionary algorithm’s population.
The individuals in the population may represent paintings,
car designs, airplane wing profiles, or footwear sole cross sec-
tions, just to give a few examples of artistic or engineering do-
mains for which an evolutionary method of design imitation
like ours may be used.

The number of times that crossover and mutation are to be
performed in each evolutionary cycle depend on the number
of new individuals that need to be produced at each generation
and on the relative percentage of the desired origin for these
new individuals (i.e., how many of them we want to originate
from a combination operation and how many from a modifi-
cation operation). In addition, in some domains it may be
necessary or useful to have the evolutionary algorithm manip-
ulate nonlinear genotypes, such as those embodied in hierar-
chical (tree-shaped) data structures or matrix-shaped data
structures. The corresponding crossover and mutation opera-
tors, while retaining their effects of combining or modifying
aspects of previous solutions, respectively, would have to be
implemented in ways that take into account the nonlinear na-
ture of the genotypes, such as those explained in Koza (1992)
and Kane and Schoenauer (1996). These are all decisions that
may vary depending on the implementation domain, and be-
cause our evolutionary method is generic, it does not make
any commitments in this regard.

2.3. Makeup of the population and evaluation

When we analyze Figure 1 to determine what it is that is being
combined and/or modified in our process model, we note that
it is a population (of potential solutions) that is operated on by
crossover and mutation. However, what exactly does this pop-
ulation consist of? Eventually over time, the population that is
processed by the evolutionary algorithm consists at least
partly of potential designs or paintings, represented as geno-
types, that were generated by the evolutionary algorithm in
previous generations. However, what is the initial contents
of the population? If we want to combine and modify aspects
of previously existing solutions, this would seem to indicate
that the initial population should consist of known solutions.
Fortunately, to achieve our task of style imitation we already
have known solutions to draw from: exemplars of the style
that we would like to imitate. For other design-related tasks,
depending on how creative one wants to be, it might not al-
ways be so easy to have access to previously known solutionsFig. 2. A graphical illustration of the genetic crossover operator.

Fig. 3. A graphical illustration of the genetic mutation operator.
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as for style imitation. In contrast, if the initial population con-
sists exclusively of exemplars, then producing any new solu-
tions that do not consist solely (and boringly) of some com-
bination of the features of the already existing solutions
would take a very long time and would depend on the effi-
ciency and effectiveness of the mutation operator’s use of ran-
domness. Thus, in addition to exemplars, we recommend
placing some randomly generated potential solutions into
the initial population to add some variety into the population,
a popular trait used in most evolutionary algorithms. This
raises a new question: how much of each (exemplars and ran-
dom “solutions”) to use in the initial population. In Section
3 we discuss this issue with respect to our implementation
domain.

The other aspect that needs to be discussed is evaluation. As
can be seen in Figure 1, our process model involves the evalu-
ation of the solutions in the initial population and of each new
potential solution generated and placed into the population
during the evolutionary algorithm. There is also the matter
of selecting the best individuals in the population before start-
ing each new evolutionary cycle, which depends on the results
of the aforementioned evaluation. The following points have
to be taken into account with respect to evaluation:

1. In the initial population those individuals that are real
exemplars (as opposed to randomly generated solu-
tions) of the style to be imitated should be awarded a fit-
ness of 100% by the evaluation procedure, because they
all belong to (fit within) the desired style.

2. The randomly generated initial individuals and the po-
tential solutions that are newly generated during each
evolutionary cycle should be awarded a degree of fit-
ness that depends on how closely they fit within the
style that is being imitated.

3. The evolutionary process has successfully imitated the
style (i.e., reached convergence) when an individual in
the population that was not there initially gets awarded a
fitness of 100%.

Because of this there are some major, although perhaps
subtle, differences between our process model and standard
evolutionary algorithms, which generally begin with a com-
pletely random initial population, none of whose individuals
have a 100% fitness, or anywhere close to that, and where
convergence usually takes place the first time that any indi-
vidual’s fitness reaches or approaches 100%.

How to determine the degree of fit of a given design to a
given style is the key factor in the evaluation procedure. We
propose that the same exemplars that are used to seed the ini-
tial population of the evolutionary algorithm can be used to
generate a generic description of the style that is being imi-
tated, which can then be used during the evaluation phase of
the evolutionary algorithm. Whether this generic description is
obtained through a process of knowledge engineering, data
mining, training a neural network to recognize the style, or
some other means depends on the appropriateness of each

of these possible methods for each design domain. In the fol-
lowing section we also discuss this issue with respect to our
implementation domain.

3. IMPLEMENTATION DOMAIN AND
KNOWLEDGE REPRESENTATION

3.1. Mondrian

The Dutch painter Piet Mondrian was born in 1872 and died
in 1944. He was active mainly in the first half of the 20th cen-
tury and, like many other modern painters, started his career
painting landscapes, human figures, and other realistic sub-
jects. Eventually, however, he developed his own distinctive
and abstract style. Many people call Mondrian’s style simply
de stijl, which is Dutch for “the style.” However, De Stijl was
the name of a journal that was founded by Mondrian and
Theo van Doesberg, to which Mondrian contributed many ar-
ticles (and the artists attracted to it were called the De Stijl
movement). Mondrian named his style de neue Beelding (in
English, Neoplasticism). Paintings in Mondrian’s style typi-
cally include vertical and horizontal black lines painted
over a white background, with some or all of the primary col-
ors (blue, red, and yellow) and/or black filling in some of the
square or rectangular regions (or parts of the regions) that are
separated from the background by the black lines. To imitate
this style, we implemented a system that follows our evolu-
tionary method.

In the Mondrian-Imitating Computer Artist (MONICA)
System, which is written in Cþþ and for the graphical as-
pects OpenGL, we were able to store 55 paintings by Mon-
drian that we use as exemplars of his style. These 55 paintings
do not include his early nonabstract work, his lozenges (fol-
lowing the style described above, but painted on diamond-
rather than rectangle-shaped canvases), or his later work (in
which he started to use colored lines, sometimes even multi-
colored lines, rather than just black lines, to separate the white
or colored regions in his paintings). Supplementary Figures
S.1 and S.2 show some of the 55 exemplars we used in MON-
ICA, which were obtained from several Websites or scanned
from one of two books: Deicher (1999) or Bax (2001).

In MONICA we chose to duplicate the size of the evolu-
tionary algorithm’s population temporarily (i.e., when creat-
ing the temporary expanded population shown in Fig. 1) at
each evolutionary cycle, and of the new genotypes created
in each generation, 80% are created through the use of the
crossover operator and the other 20% through mutation.
Through a series of experiments described in the following
paragraph, we determined that, for our domain and represen-
tation, the optimal mixture of individuals in the initial popu-
lation of the evolutionary algorithm to ensure quicker con-
vergence is to use 60% exemplars and 40% randomly
generated individuals. Therefore, MONICA’s evolutionary
algorithm operates on populations of 92 individuals, which
consist initially of our 55 exemplars plus 37 randomly gener-
ated ones. The 60/40 split was determined as follows.
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We initially knew that we wanted to combine exemplars
and randomly generated paintings in the initial population,
for the reasons given in Subsection 2.3 above, but did not
know in which proportion, or if there would be any difference
in outcome depending on the relative proportions of each. We
therefore set up an experiment to test out different propor-
tions. For this experiment we limited the total size of the pop-
ulation to 55. We first tried out the evolutionary algorithm
using a population consisting exclusively of exemplars and
without random paintings in a 55/0 or 100%/0% split. We
then tried out the evolutionary algorithm using a 90%/10%
split, an 80%/20% split, and so forth until 10%/90%. We ran
each of these different splits 10 times, each time measuring
the convergence time in CPU time, where convergence was de-
termined to occur the first time a new painting fitting Mon-
drian’s style, according to the evaluation rules discussed below,
was produced. Figure 4 shows the results of this experiment.

As can be seen in Figure 4, for our particular knowledge
representation and domain, and using speed of convergence
as the criterion for comparison, it seems that any percentage
higher than or equal to 30% of exemplars in the initial popu-
lation is best, with 60% being up to 30% faster than some of
the other possibilities. Our interpretation of this result is that if
there are not enough exemplars in the initial population to
give the system a head start, it may be a long time before
Mondrian-like paintings start resulting from the evolutionary
algorithm’s operations. For our system this cutoff point, be-
low which there are not enough exemplars in the population
to guide the algorithm to a quick convergence, seems to be
somewhere between 20% and 30%. The slight deterioration
in convergence speed when the percentage of exemplars is
above 60% may be due to the diversity factor: having less
than 40% random individuals in the initial population might
not allow the algorithm to produce new Mondrian-like paint-
ings as quickly as when there is a larger amount of random-
ness, and therefore diversity, in the initial population.

For the experiments, the random solutions included in the
initial population were created by randomly deciding how
many colored regions a solution is going to have, and ran-
domly choosing values for the color, dimensions, and posi-
tions of each one of them. More details on the experiments

can be consulted in Gómez de Silva Garza and Zamora Lores
(2005).

3.2. Evaluation rules

For the Mondrian domain we figured it would be relatively
simple to come up with a series of evaluation rules based
on our own observations of the patterns that we found to be
present in the 55 exemplars. The series of evaluation rules
we implemented pay attention to such factors as the total
number of vertical or horizontal lines present in a painting,
the total number of colored regions present in a painting,
the locations of the colored regions with respect to the black
lines and/or the edge of the canvas, and the thickness of the
black lines. Judging from the 55 exemplars, it seems to us
that Mondrian was also taking into account these constraints
while producing new paintings in his style, at least subcon-
sciously. The implemented rules that are used to evaluate
the new individuals produced by our evolutionary algorithm
(plus those in the initial population) are the following:

1. EvaluateColor: Each rectangular region that is con-
tained in an individual must have one of the four valid
colors (red, green, blue, black).

2. EvaluateCoordinates: The height, width, x coordinate,
and y coordinate of each rectangular region in an indi-
vidual must all fall between within the limits admitted
by OpenGL.

3. EvaluateLineThickness: Up to two black rectangular re-
gions are allowed in an individual that are not thin, but
all other black regions in the individual must be either
vertically or horizontally thin and thus must visually
represent a line rather than a rectangular region. The
definition of “thin” used here is having a width of at
most 2 pixels.

4. EvaluateNumberOfVerticalLines: A minimum of 1 and
a maximum of 10 vertical lines must be present in an in-
dividual.

5. EvaluateNumberOfHorizontalLines: A minimum of 2
and a maximum of 10 horizontal lines must be present
in an individual.

6. EvaluateLimits: Each colored rectangular region in an
individual must be adjacent vertically, horizontally, or
both to rectangular regions that represent lines or to the
edge of the canvas. A vertical adjacency here means that
the colored region must touch, both above and below it,
either a horizontal line or the top or bottom edge of the
canvas. A horizontal adjacency means that the colored
region must touch, both to its left and to its right, either
a vertical line or the left or right edge of the canvas.

7. EvaluateFrame: All rectangular regions in an individual
must fall within the coordinates of the frame/canvas,
whose background color is white by default, whose cen-
ter represents the origin, and whose dimensions are such
that þ4.0 and –4.0 are the maximum and minimum x-
and y-coordinate values, as per OpenGL specifications.

Fig. 4. The amount of CPU time for different combinations of exemplars (cases)
and random individuals in the evolutionary algorithm’s initial population. [A
color version of this figure can be viewed online at journals.cambridge.org/aie]
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8. EvaluateNumberOfColoredRegions: There must be at
least 1 colored rectangular region in an individual,
and at most 13, not counting the thin, black “rectangular
regions” that are actually lines, but at most 20 in total if
we do count the lines.

One could wonder whether a different set of rules may have
arisen if a different set of people other than us had been the
ones to observe the 55 Mondrian exemplars looking for pat-
terns. Although this is true, we do not think that too many vari-
ables different from and complementary to the ones listed in
the rules above (i.e., variables missed by us) would have
been found by others to be relevant or important to such a de-
gree that they would have produced radically different results.
To support this claim, we performed an experiment (Gómez de
Silva Garza & Zamora Lores, 2004) that shows the high degree
of agreement that occurs between the ranking of a preselected
set of potential solutions when evaluated using the rules imple-
mented in MONICA and the ranking of the same potential so-
lutions when evaluated by human subjects, where the ranking
was from the least to the most Mondrian-like. It is also worth
noting that our set of rules does assign a 100% fitness value
to each of the 55 Mondrian exemplars stored in MONICA,
which is a further sign that it is an appropriate set of rules.

The series of evaluation rules we implemented in MONICA,
as mentioned above, take into account what seem to us, after a
careful analysis of the exemplars, to be the general characteris-
tics and limits of Mondrian’s style. For other implementation
domains in which there are many more or many less exemplars
available, or the exemplars are very complex, perhaps it would
have been necessary to use neural networks or data mining
techniques, rather than doing the necessary knowledge engi-
neering manually. It is also not necessary for rules to be used
as the generic representation scheme for evaluating the style
to be imitated; design prototypes (Gero, 1990), genotypes as
in Ding and Gero (2001), or other knowledge representation
schemes can be used instead. Our process model is flexible
enough to allow these alternatives.

3.3. Representing Mondrian paintings

The variables of importance and patterns we observed in the
Mondrian exemplars, and the evaluation rules listed above,
led us to adopt the following internal genotype representation
scheme for the 55 exemplars and for all subsequent potential

solutions generated by our evolutionary algorithm in MON-
ICA. First, each painting is subdivided into 20 parts, one
for each of the 20 possible colored regions in the painting
(see rule 8 above). Figure 5 shows this representation scheme
for Mondrian paintings at the highest level.

In a Mondrian painting, each rectangular region can be de-
scribed by its color, its dimensions (width and height), and its
position (the x and y coordinates of its center with respect to
the center of the entire canvas). The position is the center
point of the painting because this is the standard way in which
OpenGL (Schreiner et al., 2007) represents positions. Figure 6
shows how each of the 20 subparts into which a painting is
subdivided is represented in this way.

Taking into account that each rectangular region in a Mon-
drian painting can only take one of four colors, OpenGL places
a limit of +4.0 as the value of any x or y coordinate, and each
painting in MONICA at the lowest level is represented as a bi-
nary number, we can determine how many bits are needed to
represent each of the five variables used to describe each of
the 20 regions into which a painting is subdivided. This lowest
level representation of each subpart of the description of a Mon-
drian painting in our system is shown in Figure 7.

Figure 7 shows 3 bits used to represent a color because ini-
tially we were considering the possibility of having to represent
white explicitly and perhaps having to represent gray (a few of
Mondrian’s paintings use gray as well as the primary colors),
although in the end, after we had decided on the representation
scheme for paintings, we discarded these two options. Thus,
only 2 of the 3 available bits are used to represent colors in
the implementation. The figure also shows the integer and frac-
tion part of only one of the four coordinates and dimensions
that go into representing each colored region, as shown in Fig-
ure 6, because the other three are represented in the same way.

In summary, each of the 55 paintings in MONICA is rep-
resented by following the scheme described above and shown
in Figures 5, 6, and 7, making MONICA require 1660 bits to
store the features of each painting, much less than if we had
stored the paintings in BMP, TIFF, JPG, or other similar
graphical formats. If a given Mondrian painting has less
than 20 colored regions (including lines), we fill the unneeded
parts of the bit-level representation of the painting with zeros.
To ensure that offspring genotypes produced by the crossover
operator in MONICA will be of the same length as their
parents (i.e., will also consist exactly of 20 parts, whether
filled with zeros or not), the implementation of that operator
chooses only one crossover point (which it applies to both
parent genotypes). For a different implementation domain in
which there is noupper bound on the sizeof a representeddesign,
a different scheme permitting variable-length genotypes (instead
of filling some parts of them with zeros, as needed) could

Fig. 5. The subdivision of a painting into 20 parts, one for each possible
colored region in a Mondrian painting.

Fig. 6. The internal description of each of the 20 subparts of a painting.
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be used. As a consequence, a different crossover point could
be chosen for each parent genotype, thus making it possible to
create offspring genotypes that have lengths different from
those of both their parent genotypes, as shown in the example
of crossover in Figure 2, which illustrates the general case.

4. EXPERIMENTAL SETUP AND RESULTS

To test the effectiveness of MONICA we designed an experi-
ment in which we would be able to determine whether people
in general are able to distinguish between paintings produced by
MONICA and original paintings produced by Mondrian. The
experiment was performed in two phases for reasons that will
be explained below. In both phases we used the five Mondrian-
style paintings produced by MONICA that are shown in Figure 8.

In both phases we tried two experimental setups. In the first
setup we put each one of the five MONICA-produced paintings
shown in Figure 8 next to the nine Mondrian paintings that
seemed to us to be closest to the set of five MONICA paintings.
These Mondrian paintings were probably the direct genetic pre-
decessors, which produced the MONICA paintings shown in
Figure 8 after a small number of evolutionary cycles, and are
shown in supplementary Figure S.1 (online only). The paintings
in the figure are shown with “MondrianX” (where X is a num-
ber) labels in order to be able to refer to them easily in the text of
Section 4, but supplementary Table S.1 (online only) provides
the reference numbers for these paintings given in the Catalogue
Raisonné for Mondrian (Welsh & Joosten, 1998). The idea in
this setup was to make it as difficult as possible for the experi-
mental subjects to identify each MONICA-produced painting
by putting it next to some very similar Mondrian paintings.

In the second setup we put each one of the five MONICA-
produced paintings shown in Figure 8 next to the nine Mondrian

paintings that seemed to us to be furthest from the five MON-
ICA paintings. These Mondrian paintings are shown in supple-
mentary Figure S.2 (online only). Supplementary Table S.2 (on-
line only) provides the reference numbers in the Catalogue
Raisonné for Mondrian (Welsh & Joosten, 1998) for the paint-
ings shown in the figure. The idea behind this setup was to serve
as a control for the first setup by making it easier for the subjects
to identify the MONICA-produced painting, because it would
be maximally different than the Mondrian paintings shown
to them, while in theory still fitting within the same style.

Trying the two experimental setups allowed us to avoid
“choosing sides” in a debate that still exists in situations
such as police lineups in which a set of people together with
a suspect are presented to a witness. If the set of people is cho-
sen to look too much like the suspect then the witness might
not be able to clearly identify the suspect (or would do so with
approximately the same probability as identifying anyone
else in the lineup). If the set of people is chosen to consist
of people that look too different from the suspect then the po-
lice can be accused of leading the witness by making the sus-
pect stand out. What we have done with our two setups in our
experiments is to try to find the middle ground by trying to
cancel out the disadvantages of the two approaches.

In all of the experiments that we performed, our subjects were
given a sheet of paper on which we presented 10 paintings, 9
painted by Mondrian and 1 produced by MONICA, in two
rows of five, the layout of which was different for each phase.
The sheet of paper contained the following text: “One of the fol-
lowing paintings was not painted by the same artist as all of the
others. Can you indicatewhich one?” The experimental subjects
were undergraduate students (mainly engineering, mathematics,
actuarial science, economics, and accounting) who participated
voluntarily, and they were told that they could take as much time
as they wanted to answer the survey. If the MONICA-produced
paintings are virtually indistinguishable from the Mondrian
paintings, and if none of the Mondrian paintings stand out com-
pared to the others, we would expect each painting on the sheet
of paper that was handed out to each participant to be chosen
approximately 10% of the time, because there are 10 of them.

4.1. Phase 1

The layout of the paintings that we presented to our experi-
mental subjects during phase 1 is shown in Figure 9.

Fig. 7. The bit-level representation of the subparts of a painting.

Fig. 8. Five Mondrian-style paintings produced by MONICA. Piet Mondrian 1872–1944. Reproduced with permission of the Mondrian/
Holtzman Trust, c/o HCR International, Warrenton, VA, USA. Copyright 2010 Mondrian/Holtzman Trust. [A color version of this figure
can be viewed online at journals.cambridge.org/aie]
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Phase 1 was split into two experiments. In the first experi-
ment, the nine Mondrian paintings in positions A–G, I, and J
from Figure 9 are the ones shown in supplementary Figure
S.1, the ones that are very similar ones to the MONICA paint-
ings, using an ordering that we chose at random but that
remained fixed across the experiments. In the second experi-
ment, the nine paintings in positions A–G, I, and J from
Figure 9 were the ones shown in online supplementary
Figure S.2, the ones that are relatively dissimilar to the MON-
ICA paintings, again choosing a random ordering for the
Mondrian paintings that then remained fixed.

Each of the two experiments had five variants, one for each
of the MONICA paintings shown in Figure 8. These MON-
ICA paintings were always shown in position H, the middle
position of the lower row of paintings on the paper handed
out to the participants, to avoid having the results of the ex-
periments vary according to the physical locations of the
paintings on the page. Thus, we numbered the experiments
1-1, 1-2, . . . , 1-5 and 2-1, 2-2, . . . , 2-5. In total we had
282 respondents whose answers were not cancelled, spread
equally among the different variants of the experiments, so
there were nearly 30 volunteers that performed each variant
of the experiments.

Figure 10 shows the results (the percentage of time that
each of the ten paintings shown on the handout was chosen)
for experiment 1, Figure 11 the results for experiment 2, and
Figure 12 the results for both experiments combined.

As can be seen in Figure 10, even though experiment 1 was
purposefully designed to be as difficult as possible for the
participants, because the Mondrian paintings that were cho-
sen to be shown next to the MONICA ones were as close
as possible to the MONICAs, the correct answer was chosen
37% of the time, at least 10% more frequently than any other
painting shown. However, there was also one Mondrian
painting (in position J, corresponding in this experiment to
the painting labeled Mondrian5 in online supplementary
Figure S.1) chosen with very high frequency (26%) and there-
fore deemed by many people to not fit Mondrian’s style (or at
least not to fit the style as much as the other paintings shown).

As can be seen in Figure 11, despite experiment 2 being de-
signed to be as “easy” as possible by choosing the Mondrian
paintings that were furthest from the MONICAs displayed, in
this experiment there were three Mondrian paintings that were
chosen more or as frequently as the MONICA painting, and
by a large difference. The MONICA paintings, in other
words, were on average deemed to be more Mondrian-like
than two of Mondrian’s own paintings. This is probably be-
cause there is more variance among the Mondrian paintings
that were presented to people in experiment 2, and thus less
opportunity for all our experimental subjects to come up
with the same intuitive mental model of what the 10 paint-
ings shown to them all have in common. Thus, in both experi-
ments 1 and 2 we observed the opposite effect of what we had
expected as far as the difficulty or ease of the identification.

As can be seen in Figure 12, after putting together all
the experiments from phase 1, the correct painting was iden-
tified a higher percentage of the time (23%) than any other.
We can also see from the figure that each of the five paintings
on the bottom row of the paper handed out to the participants
was chosen more frequently than any of the paintings from the
top row. This led us to believe there to be a bias toward choos-

Fig. 9. The layout of the paintings on the paper given to each participant in
phase 1.

Fig. 10. The results of experiment 1. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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ing a painting on the bottom row, on which people were per-
haps focusing their eyes more for some reason. This is the rea-
son we decided to perform phase 2 of the experiment.

4.2. Phase 2

In phase 2 we decided to flip the top and bottom rows of
paintings in the papers handed out to the experimental sub-
jects to eliminate the bias toward choosing one of the bottom-
row paintings. Although it was not printed on the handout, we
also asked the subjects to explain their reasons for choosing a
given painting over the others, if they could, to have addi-
tional information. The layout of the paintings that we pre-
sented to our experimental subjects during phase 2 is thus
shown in Figure 13.

Like phase 1, and for the same reasons, phase 2 was divided
into two experiments, each of which had five variants, labeled
experiments 3-1, 3-2, . . . , 3-5 and 4-1, 4-2, . . . , 4-5. In phase
2 we had a total of 145 respondents whose answers were not
cancelled (i.e., just under 15 for each variant of the experi-
ment), perhaps a low number, but these experiments were

complementary to the ones from phase 1, giving us further in-
formation on the same things, rather than designed to substi-
tute them.

Figure 14 shows the results (the percentage of time that
each of the ten paintings shown on the handout was chosen)
for experiment 3, Figure 15 the results for experiment 4, and
Figure 16 the results for both experiments combined.

As can be seen in Figure 14, picture E produced by Mon-
drian was chosen more frequently (33% of the time) than
picture C produced by MONICA (which was chosen 25%
of the time) as not fitting into the same style as the rest (pic-
ture E in this experiment corresponds to the picture labeled
Mondrian5 in online supplementary Figure S.1, just as in
experiment 1). However, the MONICA painting was still
identified more than the 10% of the time that would be ex-
pected if it were completely indistinguishable from the others.

Figure 15 demonstrates that pictures D and B produced by
Mondrian (labeled Mondrian17 and Mondrian16, respec-
tively, in online supplementary Figure S.2) were chosen
more frequently (22 and 20% of the time, respectively) than
picture C produced by MONICA (which was chosen 18%

Fig. 11. The results of experiment 2. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Fig. 12. The overall results of phase 1 (experiments 1 and 2 combined). [A color version of this figure can be viewed online at journals.
cambridge.org/aie]
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of the time) as not fitting into the same style as the rest. How-
ever, the MONICA painting was still identified more than the
10% of the time that would be expected if it were completely
indistinguishable from the others.

What we can observe from the overall results of phase 2
shown in Figure 16 is that the bias we observed in phase 1
toward choosing one of the paintings from the bottom row
is not present anymore. It is just the opposite: people were
now choosing paintings from the top row most of the time.
Therefore, it appears that that “bias” was not because of the
positions of the paintings on the handout, but because of
something more inherent to that particular set of 5 paintings
(actually 10 paintings, 5 used in experiments 1 and 3, and
5 different ones used in experiments 2 and 4), which were
on the bottom row in phase 1 and on the top row in phase
2, which continued to be chosen more frequently no matter
their position on the page with respect to the others.

Of the 32 respondents (22%) in phase 2 who chose the
MONICA-produced painting, most of them (17) gave reasons
caused by them picking up on unfortunate and unintended
visual cues whose existence we did not realize until after the ex-

periment was performed. These visual cues were artifacts of the
scanning process that we used to obtain most Mondrian paint-
ings before printing the handout that was given to the experi-
mental subjects, such as the “white” background of most paint-
ings scanned from books came out looking slightly grayish in
the digitized image (thus making the actual use of gray in a few
paintings difficult to determine, which is why we ended up not
representing gray explicitly in the exemplars we stored in
MONICA, as mentioned above). This contrasts quite clearly
with the pure white background of all the paintings produced
by MONICA. Thus, these 17 respondents gave reasons such
as “different colors and clarity,” “sharper image,” “more bril-
liant colors,” “different tones,” “different shade of blue/violet”
for choosing the MONICA painting. A further 10 respondents
gave what we would call nonsense reasons, or at least nonun-
derstandable reasons, for choosing the MONICA painting,
such as (our comments on each reason are given in brackets)
“the lines are thicker than in the other paintings shown [which
they’re not . . . many of the Mondrian paintings shown together
with the MONICA one had some lines of the same thickness as
the MONICA one],” “the painting looks too exact, without var-
iations [what does this mean?],” or “the color [which one?
There were several in the painting this particular person chose]
does not correspond/belong [to what/why?].” If we filter out
these two sets of experimental subjects, we are left with very
few people that chose the MONICA painting because of no-
ticing stylistic differences that were not caused by the scanning
process. Thus, we can conclude that our implementation of our
evolutionary method for style imitation manages to imitate
Mondrian’s style quite well.

5. DISCUSSION

In this paper we presented a computational method based on
evolutionary algorithms whose task is to imitate an existing
design style. A key aspect of the method is the existence of

Fig. 13. The layout of the paintings on the paper given to each participant in
phase 2.

Fig. 14. The results of experiment 3. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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exemplars of the style, which serve both as an important com-
ponent of the initial population of the algorithm and as the
source of knowledge needed for being able to perform the
evaluation phase of the algorithm effectively. Another key as-
pect of this method is that by using an evolutionary algorithm
to generate potential solutions we have shifted the need to
program domain knowledge to the evaluation (recognition)
phase rather than the generation phase. This is important be-
cause related research that has tried to imitate style, for in-
stance, using shape grammars or semantic networks require
investing a lot of time in performing the knowledge engineer-
ing needed to come up with the shape grammar or semantic
network for a particular domain. The shape grammars or se-
mantic networks embody generative domain knowledge. Our
intuition is that shifting the need for domain knowledge to the
recognition phase rather than the generative phase reduces the
time required for knowledge engineering both because recog-
nition is less complicated than generation and because, as a
consequence, domain experts would find it easier to articulate
recognition knowledge than generation knowledge. This intui-
tion can best be understood through an example: it is simpler

(both faster and requiring less cognitive effort) for someone
that is learning to speak Igbo, for instance, to recognize when
Igbo is being spoken by strangers encountered in the street,
and to even recognize some of the words being spoken and per-
haps even understand their meaning, than it is for the same Igbo
learner to generate correct and complete sentences in Igbo, or
even carry on an understandable conversation in Igbo.

After presenting the evolutionary method for design style
imitation we then described a particular style that we wanted
to imitate, the Dutch painter Mondrian’s, and a system called
MONICA, which implements our evolutionary method for
the Mondrian domain. The evaluation rules that were imple-
mented and the representation scheme used for the genotypes
in our system were also presented.

We then discussed and gave the results of a series of experi-
ments that were designed to test the effectiveness of MON-
ICA. Our final conclusion is that MONICA manages to imi-
tate Mondrian’s style quite well. In addition, the results of the
experiments also permit us to make several observations with
respect to the notion of style in general and the attempt to imi-
tate it computationally in particular.

Fig. 15. The results of experiment 4. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Fig. 16. The overall results of phase 2 (experiments 3 and 4 combined). [A color version of this figure can be viewed online at journals.
cambridge.org/aie]
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In some experiments Mondrian paintings were chosen by
people as being less Mondrian-like than the MONICA-pro-
duced paintings, despite them being specifically chosen to
be as close as possible to the MONICA paintings, so the con-
cept of style in general, and any given style in particular, seems
to be a radial category, as defined by Rosch (1988). These are
categories that are easier to describe to others by showing one
or more prototypical examples than by explicitly articulating a
generic linguistic definition of the concept. Implicit in this kind
of category is that different objects will have different degrees
of pertaining to the category, depending on their distance from
the prototypical exemplar(s). It is also implicit that the bound-
aries of the category are in general undefined or fuzzy. Hence,
people’s impressions on the differing degrees of Mondrian-
ness of even the Mondrian-produced paintings, not to mention
the MONICA paintings, are shown by the results of the experi-
ments (to paraphrase Orwell, all Mondrians are Mondrians, but
some are more Mondrian-like than others).

This observation about style as a radial category is also rein-
forced by the relatively large percentage of the people who
could not coherently articulate their reasons for choosing one
painting over another that we described in phase 2 of the experi-
ment. It also confirms the appropriateness of several aspects of
the design of our process model, for instance, that it is based on
using exemplars as starting points for coming up with new po-
tential solutions, its functioning is based on assigning a fitness
value according to the degree of Mondrian-ness of the indi-
viduals in the evolutionary algorithm population, and this value
is calculated based on measuring the distance of each individual
to the exemplars (i.e., the degree of fit of the individual ac-
cording to the rules and constraints derived from the exem-
plars). In the future, we want to continue using our evolution-
ary method to explore its effectiveness in imitating more
styles, both visual (other painters) and nonvisual (e.g., musi-
cal). For styles that are more complex than Mondrian’s, it may
not be feasible to come up with a set of rules that describe and
constrain the style (which can be seen as an explicit linguistic
definition of the style, as the rules make reference to certain
types of descriptive features and their values), and some other
form of knowledge representation that instead embodies pro-
totypical examples of the style may have to be used.
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