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Abstract We consider a nonlinear Robin problem driven by a non-homogeneous differential operator
plus an indefinite potential term. The reaction function is Carathéodory with arbitrary growth near
±∞. We assume that it is odd and exhibits a concave term near zero. Using a variant of the symmetric
mountain pass theorem, we establish the existence of a sequence of distinct nodal solutions which converge
to zero.
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1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper, we study the

following nonlinear non-homogeneous Robin problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−div a(Du(z)) + ξ(z)|u(z)|p−2u(z) = f(z, u(z)) in Ω,

∂u

∂na
+ β(z)|u|p−2u = 0 on ∂Ω,

1 < p < +∞.

(1.1)

In this problem, the map a : R
N −→ R

N involved in the definition of the differential
operator is continuous and monotone (and hence also maximal monotone) and satisfies
certain other regularity and growth conditions listed in hypotheses H(a) below. These
hypotheses are general enough to incorporate in our framework many differential oper-
ators of interest, such as the p-Laplacian (1 < p < +∞) and the (p.q)-Laplacian (that
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is, the sum of a p-Laplacian and a q-Laplacian, with 1 < q < p < +∞). The poten-
tial function ξ ∈ L∞(Ω) is indefinite (that is, sign changing). The reaction term f is
a Carathéodory function (that is, for all ζ ∈ R, the map z �−→ f(z, ζ) is measurable, and
for almost all (a.a.) z ∈ Ω, the map ζ �−→ f(z, ζ) is continuous). We do not impose any
growth restriction on f(z, ·) near ±∞. All the conditions on f(z, ·) concern its behaviour
near zero. So, we assume that near zero f(z, ·) is odd and exhibits a concave term (that
is, a (p− 1)-superlinear term).

In the boundary condition, (∂u/∂na) is the generalized normal derivative (conormal
derivative), defined by extension of the map

u �−→ (a(Du), n)RN, ∀u ∈ C1(Ω),

with n being the outward unit normal on ∂Ω. This kind of directional derivative is dictated
by the nonlinear Green’s identity (see, for example, Gasiński-Papageorgiou [3]) and is also
used by Lieberman [18], whose nonlinear regularity theory is employed in this work. The
boundary coefficient β ∈ C0,α(∂Ω) with 0 < α < 1 and β � 0 for all z ∈ ∂Ω. When β ≡ 0,
we recover the Neumann problem.

We are looking for nodal (that is, sign changing) solutions. Using an abstract mul-
tiplicity result due to Heinz [16], Wang [31] and Kajikiya [17], together with suitable
truncation and perturbation techniques, we establish the existence of a whole sequence
{un}n�1 ⊆ C1(Ω) of distinct nodal solutions such that

un −→ 0 in C1(Ω).

Recently, nodal solutions for nonlinear Robin problems were obtained by Papageorgiou
and Rădulescu [24,28]. However, they do not prove the existence of a sequence of nodal
solutions. Very recently, Papageorgiou and Rădulescu [26] proved the existence of a
sequence of nodal solutions when ξ ≡ 0 and under stronger conditions on the reaction
term f . Finally, we mention also the works of He et al. [15], who studied the Neu-
mann problem (that is, β ≡ 0) driven by the p-Laplacian (that is, a(y) = |y|p−2y for all
y ∈ R

N with 1 < p < +∞); Gasiński et al. [14], where the existence of positive solutions
was obtained; and Gasiński and Papageorgiou [6–8,11,13], where some other types of
boundary value problems with non-homogeneous operators were considered.

2. Mathematical background

Let X be a Banach space and let X∗ denote its topological dual. By 〈·, ·〉, denote the
duality brackets for the pair (X∗,X). Given ϕ ∈ C1(X; R), we say that ϕ satisfies the
Palais–Smale condition if the following property holds:

Every sequence {un}n�1 ⊆ X such that {ϕ(un)}n�1 ⊆ R is bounded and

ϕ′(un) −→ 0 in X∗,

admits a strongly convergent subsequence.
The next result is a variant of the so-called ‘symmetric mountain pass theorem’ and is

due to Heinz [16], Wang [31] and Kajikiya [17] (the most general version of the result is
that of Kajikiya [17]).
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Theorem 2.1. If X is a Banach space, ϕ ∈ C1(X; R) satisfies the Palais–Smale con-
dition and is even and bounded below, ϕ(0) = 0, and for every n � 1 there exist an
n-dimensional subspace Vn ⊆ X and �n > 0 such that

sup{ϕ(u) : u ∈ Vn, ‖u‖ = �n} < 0,

then there exists a sequence {un}n�1 ⊆ X of critical points of ϕ such that

un �= 0, ∀n � 1 and un −→ 0 in X.

Let ϑ ∈ C1(0,+∞) be such that ϑ(t) > 0 for all t > 0 and assume that

0 < ĉ0 � ϑ′(t)t
ϑ(t)

� ĉ1 and c1t
p−1 � ϑ(t) � c2(tτ−1 + tp−1) 1 � τ < p, (2.1)

for some c1, c2 > 0. Then the conditions on the map y �−→ a(y) are the following:

H(a): a(y) = a0(|y|)y for all y ∈ R
N with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0,+∞), t �−→ a0(t)t is strictly increasing on (0,+∞), a0(t)t −→ 0+ as t→
0+ and

lim
t→0+

a′0(t)t
a0(t)

> −1;

(ii) there exists c3 > 0 such that

|∇a(y)| � c3
ϑ(|y|)
|y| , ∀y ∈ R

N \ {0};

(iii) we have

(∇a(y)ξ, ξ)RN � ϑ(|y|)
|y| |ξ|2, ∀y ∈ R

N \ {0}, ξ ∈ R
N ;

(iv) if G0(t) =
∫ t

0
a0(s)sds for t > 0, then there exists q ∈ (1, p) such that the map

t �−→ G0(t
1
q ) is convex and

lim sup
t→0+

qG0(t)
tq

� c3,

for some c3 > 0.

Remark 2.2. Hypotheses H(a)(i),(ii),(iii) are motivated by the nonlinear regularity
theory of Lieberman [18] and the nonlinear maximum principle of Pucci and Serrin [29].
Hypothesis H(a)(iv) serves the needs of our problem, but it is not restrictive and it is
satisfied in most cases of interest, as the examples below illustrate.

Hypotheses H(a) imply that the map t �−→ G0(t) is strictly increasing and strictly
convex.
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We set
G(y) = G0(|y|), ∀y ∈ R

N .

Then the map y �−→ G(y) is convex and G(0) = 0.
Also, we have

∇G(y) = G′
0(|y|)

y

|y| = a0(|y|)y = a(y), ∀y ∈ R
N \ {0}, ∇G(0) = 0.

Hence, G is the primitive of the map a.

The above properties lead to the following inequality

G(y) � (a(y), y)RN , ∀y ∈ R
N . (2.2)

The next lemma summarizes the main properties of the map a. It is an easy con-
sequence of hypotheses H(a)(i),(ii) and (iii) and of (2.1) (see also Papageorgiou and
Rădulescu [25]).

Lemma 2.3. If hypotheses H(a)(i),(ii) and (iii) hold, then:

(a) the map y �−→ a(y) is continuous, strictly monotone (and hence also maximal
monotone);

(b) |a(y)| � c4(|y|τ−1 + |y|p−1) for all y ∈ R
N and some c4 > 0;

(c) (a(y), y)RN � (c1/p− 1)|y|p for all y ∈ R
N .

This lemma and (2.2) lead to the following growth estimate for the primitive G.

Corollary 2.4. If hypotheses H(a)(i),(ii) and (iii) hold, then

c1
p(p− 1)

|y|p � G(y) � c5(1 + |y|p), ∀y ∈ R
N ,

for some c5 > 0.

Next, we present some examples of maps a which satisfy hypotheses H(a) above. These
examples illustrate the generality of our conditions on a.

Example 2.5. The following maps y �−→ a(y) satisfy hypotheses H(a).

(a) a(y) = |y|p−2y with 1 < p < +∞. This map corresponds to the p-Laplacian differ-
ential operator defined by

Δpu = div (|Du|p−2Du), ∀u ∈W 1,p(Ω).

(b) a(y) = |y|p−2y + |y|q−2y with 1 < q < p < +∞. This map corresponds to the (p, q)-
Laplace differential operator defined by

Δpu+ Δqu, ∀u ∈W 1,p(Ω).

Such operators arise in problems of mathematical physics. Recently, there have
been some multiplicity results for equations driven by such operators. We mention
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the works of Aizicovici et al. [1]; Gasiński and Papageorgiou [5,9,10,12]; Mugnai
and Papageorgiou [20]; Papageorgiou and Rădulescu [21,23]; Sun et al. [30]; and
Yang and Bai [32].

(c) a(y) = (1 + |y|2)(p−2/2)y with 1 < p < +∞. This map corresponds to the general-
ized p-mean curvature differential operator defined by

div ((1 + |Du|2)(p−2/2)Du), ∀u ∈W 1,p(Ω).

(d) a(y) = |y|p−2y + ((|y|p−2y)/(1 + |y|p)) with 1 < p < +∞. This map corresponds to
the following differential operator

Δpu+ div
( |Du|p−2Du

1 + |Du|p
)
, ∀u ∈W 1,p(Ω),

which arises in problem of plasticity.

We will use the following function spaces in the study of problem (1.1):

• the Sobolev space W 1,p(Ω), for 1 < p < +∞;

• the Banach space C1(Ω);

• the ‘boundary’ Lebesgue space Lr(∂Ω), for 1 � r � +∞.

By ‖ · ‖ we denote the norm of the Sobolev space W 1,p(Ω), defined by

‖u‖ = (‖u‖p
p + ‖Du‖p

p)
1/p, ∀u ∈W 1,p(Ω).

The Banach space C1(Ω) is an ordered Banach space with positive (order) cone given by

C+ = {u ∈ C1(Ω) : u(z) � 0 for all z ∈ Ω}.
This cone has a non-empty interior containing the set

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.
On ∂Ω, we consider the (N − 1)-dimensional Hausdorff (surface) measure σ. Using this
measure, we can define in the usual way the ‘boundary’ Lebesgue spaces Lr(∂Ω) for
1 � r � +∞. We know that there exists a unique continuous, linear map γ0 : W 1,p(Ω) −→
Lp(∂Ω), known as the ‘trace operator’, such that

γ0(u) = u|∂Ω, ∀u ∈W 1,p(Ω) ∩ C(Ω).

So, the trace map assigns boundary values to the Sobolev functions.
The trace map is compact into Lq(∂Ω) for all q ∈ [1, ((Np− p)/(N − p))) if 1 < p < N

and into Lq(∂Ω) for all q � 1 if p � N . Also, we have

imγ0 = W (1/p′),p(∂Ω) and ker γ0 = W 1,p
0 (Ω).

In what follows, for the sake of notional simplicity, we drop the use of the map γ0. All
restrictions of Sobolev functions on ∂Ω are understood in the sense of traces.
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Let A : W 1,p(Ω) −→W 1,p(Ω)∗ be the nonlinear map defined by

〈A(u), h〉 =
∫

Ω

(a(Du),Dh)RN dz, ∀u, h ∈W 1,p(Ω).

We know that this map is continuous, monotone and of type (S)+ (that is, if un
w−→ u in

W 1,p(Ω) and lim supn→+∞〈A(un), un − u〉 � 0, then un −→ u in W 1,p(Ω); see Gasiński
and Papageorgiou [4]).

Finally, let us conclude this section with some basic notation, which will be used in the
sequel.

If ϕ ∈ C1(X; R), then by Kϕ we denote the critical set of ϕ defined by

Kϕ = {u ∈ X : ϕ′(u) = 0}.
Also, let ζ ∈ R, let ζ± = max{±ζ, 0}. Then for u ∈W 1,p(Ω) we define u±(·) = u(·)±. We
know that

u± ∈W 1,p(Ω), u = u+ − u−, |u| = u+ + u−.

3. Infinitely many nodal solutions

Our hypotheses on the other data of problem (1.1) are the following:

H(ξ): ξ ∈ L∞(Ω);

H(β): β ∈ C0,α(∂Ω) with α ∈ (0, 1) and β(z) � 0 for all z ∈ ∂Ω.

Remark 3.1. When β ≡ 0, we recover the Neumann problem.

H(f): f : Ω × [−c, c] −→ R (with c > 0) is a Carathéodory function such that for a.a.
z ∈ Ω, f(z, 0) = 0, f(z, ·) is odd on [−c, c] and

(i) there exists ac ∈ L∞(Ω)+ such that

|f(z, ζ)| � ac(z) for a.a. z ∈ Ω, all |ζ| � c;

(ii) if q ∈ (1, p) is as in hypothesis H(a)(iv), then

lim
ζ→0

f(z, ζ)
|ζ|q−2ζ

= +∞ uniformly for a.a. z ∈ Ω.

Remark 3.2. Hypothesis H(f)(ii) implies the presence of a concave term near zero.

In what follows,

F (z, ζ) =
∫ ζ

0

f(z, s) ds

(the primitive of the reaction term f(z, ζ)). Hypotheses H(f)(i) and (ii) imply that, given
any η > 0 and r > p, we can find c4 = c4(η, r) > 0 such that

f(z, ζ)ζ � η|ζ|q − c4|ζ|r for a.a. z ∈ Ω all |ζ| � c. (3.1)
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Also, consider the following nonlinear eigenvalue problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−Δsu(z) + ξ(z)|u(z)|s−2u(z) = λ̃|u(z)|s−2u(z) in Ω,

∂u

∂ns
+ β(z)|u|s−2u = 0 on ∂Ω,

1 < s < +∞.

(3.2)

In this case, ∂u/∂ns = |Du|s−2(Du, n)RN .
Let γ̃ : W 1,s(Ω) −→ R be the C1-functional defined by

γ̃(u) = ‖Du‖s
s +

∫
Ω

ξ(z)|u|s dz +
∫

∂Ω

β(z)|u|s dσ, ∀u ∈W 1,s(Ω).

From Mugnai and Papageorgiou [19] and Papageorgiou and Rădulescu [22], we know that
problem (3.2) has smallest eigenvalue λ̃1(s) ∈ R (note that if ξ = 0 and β ≡ 0 (Neumann
case), then λ̃1(s) = 0). This eigenvalue is simple and isolated, and the corresponding
eigenfunctions are of constant sign. Moreover, we have

λ̃1(s) = inf
{
γ(u)
‖u‖s

s

: u ∈W 1,s(Ω), u �= 0
}

(3.3)

and the infimum is realized on the corresponding one-dimensional eigenspace. Let
ũ1(s) ∈W 1,s(Ω) be the positive Ls-normalized (that is, ‖ũ1(s)‖s = 1) eigenfunction cor-
responding to the eigenvalue λ̃1(s). From the nonlinear regularity theory (Lieberman
[18]) and the nonlinear maximum principle (Pucci and Serrin [29, pp. 111, 120]), we
have that

ũ1(s) ∈ D+.

Motivated by the unilateral growth estimate (3.1) and with μ > ‖ξ‖∞ (see hypothesis
H(ξ)), we consider the following auxiliary Robin problem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−div a(Du(z)) + ξ+(z)|u(z)|p−2u(z)

= η|u(z)|q−2u(z) − c4|u(z)|r−2u(z) in Ω,
∂u

∂na
+ β(z)|u|p−2u = 0 on ∂Ω.

(3.4)

Proposition 3.3. If hypothesesH(a),H(ξ) andH(β) hold, then problem (3.4) admits
a unique positive solution

u ∈ D+

and, since the equation is odd, it follows that

v = −u ∈ D+

is the unique negative solution of (3.4).
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Proof. Let ψ+ : W 1,p(Ω) −→ R be the C1-functional defined by

ψ+(u) =
∫

Ω

G(Du) dz +
1
p

∫
Ω

ξ+(z)|u|p dz +
1
p

∫
∂Ω

β(z)|u|p dσ

− η

q
‖u+‖q

q +
c4
r
‖u+‖r

r, ∀u ∈W 1,p(Ω).

From Corollary 2.4 and since q < p < r, we see that ψ+ is coercive.
Also, using the Sobolev embedding theorem and the compactness of the trace map, we

infer that ψ+ is sequentially weakly lower semicontinuous.
So, by the Weierstrass theorem, we can find u ∈W 1,p(Ω) such that

ψ+(u) = inf
u∈W 1,p(Ω)

ψ+(u). (3.5)

Hypothesis H(a)(iv) implies that, given ε ∈ (0, c2), we can find δ ∈ (0, 1) such that

G(y) � 1
q
(c2 + ε)|y|q, ∀|y| � δ. (3.6)

Recall that ũ1(q) ∈ D+. So, we can find t ∈ (0, 1) small such that

tũ1(q)(z) � δ and |D(tũ1(q))(z)| � δ, ∀z ∈ Ω. (3.7)

We can always assume that c2 � 1 (see hypothesis H(a)(iv)). Then we have

ψ+(tũ1(q)) � 1
q
(c2 + ε)

(
‖D(tũ1(q))‖q

q +
∫

Ω

ξ+(z)(tũ1(q))q dz

+
∫

∂Ω

β(z)(tũ1(q))q dσ
)

+
c4
r
‖tũ1(q)‖r

r −
η

q
tq

� tq

q
(2c2|λ̃1(q)| − η) +

tr

r
c4‖ũ1(q)‖r

r (3.8)

(since c2 + ε > 1, δ ∈ (0, 1], q < p, ‖ũ1(q)‖q = 1 and ε ∈ (0, c2)). Recall that η > 0 is
arbitrary. So, if we choose η > 2c2λ̃1(q), then from (3.8) and since q < p < r, by choosing
t ∈ (0, 1) small, we have

ψ+(tũ1(q)) < 0,

so

ψ+(u) < 0 = ψ+(0)

(see (3.5)) and hence u �= 0.
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From (3.5) we have

ψ′
+(u) = 0,

so

〈A(u), h〉 +
∫

Ω

ξ+(z)|u|p−2uhdz +
∫

∂Ω

β(z)|u|p−2uhdσ

=
∫

Ω

(η(u+)q−1 − c4(u+)r−1)hdz, ∀h ∈W 1,p(Ω). (3.9)

In (3.9) we choose h = −u− ∈W 1,p(Ω). Then

c1
p− 1

‖Du−‖p
p +

∫
Ω

ξ+(z)(u−)p dz +
∫

∂Ω

β(z)(u−)p dσ � 0

(see Lemma 2.3), so

c5‖u−‖p � 0

for some c5 > 0 (see hypothesis H(β)), and thus

u � 0, u �= 0.

Then from (3.9) it follows that

⎧⎨
⎩
−div a(Du(z)) + ξ+(z)u(z)p−1 = ηu(z)q−1 − c4u(z)r−1 for a.a. z ∈ Ω,
∂u

∂na
+ β(z)up−1 = 0 on ∂Ω

(3.10)

(see Papageorgiou and Rădulescu [22]).
From Papageorgiou and Rădulescu [27], we have

u ∈ L∞(Ω).

Then the regularity theory of Lieberman [18] implies that

u ∈ C+ \ {0}.

From (3.10) we have

div a(Du(z)) � (‖ξ‖∞ + c4‖u‖r−p
∞ )u(z)p−1 for a.a. z ∈ Ω,

so u ∈ D+ (see Pucci and Serrin [29, pp. 111, 120]).
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Next, we show the uniqueness of this positive solution. To this end, we introduce the
integral functional j : L1(Ω) −→ R = R ∪ {+∞} defined by

j(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Ω
G(Du1/q) dz +

1
p

∫
Ω
ξ+(z)up/q dz +

1
p

∫
∂Ω
β(z)up/q dσ

if u � 0, u1/q ∈W 1,p(Ω),

+∞ otherwise.

Let u1, u2 ∈ dom j = {u ∈ L1(Ω) : j(u) < +∞} (the effective domain of j) and set

u = ((1 − t)u1 + tu2)1/q with t ∈ [0, 1].

Using Lemma 1 of Diaz and Saa [2], we have

|Du(z)| � ((1 − t)|Du1(z)1/q|q + t|Du2(z)1/q|q)1/q for a.a. z ∈ Ω.

Hence, we have

G0(|Du|) � G0(((1 − t)|Du1/q
1 |q + t|Du1/q

2 |q)1/q)

� (1 − t)G0(|Du1/q
1 |) + tG0(|Du1/q

2 |) for a.a. z ∈ Ω

(since G0 is increasing and using hypothesis H(a)(iv)), so

G(Du) � (1 − t)G(|Du1/q
1 |) + tG(|Du1/q

2 |) for a.a. z ∈ Ω,

and thus j is convex (recall that q < p and see hypothesis H(β)).
Also, by Fatou’s lemma, j is lower semicontinuous.
Let ũ be another positive solution of the auxiliary problem (3.4). As for u, we show

that

ũ ∈ D+.

Then u, ũ ∈ dom j, and for all h ∈ C1(Ω) and for |t| < 1 small we have

uq + th ∈ dom j, ũq + th ∈ dom j.

We can easily see that j is Gâteaux differentiable at uq and at ũq in the direction h ∈
C1(Ω). Moreover, by the chain rule and the nonlinear Green’s theorem (Gasiński and
Papageorgiou [3, p. 210]), we have

j′(uq)(h) =
1
q

∫
Ω

−div a(Du) + ξ+(z)up−1

uq−1
hdz, ∀h ∈W 1,p(Ω)

and

j′(ũq)(h) =
1
q

∫
Ω

−div a(Dũ) + ξ+(z)ũp−1

ũq−1 hdz, ∀h ∈W 1,p(Ω).
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The convexity of j implies the monotonicity of j′. Hence

0 �
∫

Ω

(−div a(Dũ)
ũq−1 − −div a(Du)

uq−1

)
(uq − ũq) dz

=
∫

Ω

(ξ+(z)(ũp−q − up−q) + c4(ũ
r−q − ur−q))(uq − ũq) dz,

so
u = ũ

(since q < p < r and μ > ‖ξ‖∞).
So, u ∈ D+ is the unique positive solution of (3.4).
Since problem (1.1) is odd, it follows that

v = −u ∈ −D+

is the unique negative solution of (3.4). �

Let S+ (respectively S−) be the set of positive (respectively negative) solutions u
(respectively solutions v) of problem (1.1) such that

u(z) ∈ [0, c] (respectively v(z) ∈ [−c, 0]) for a.a. z ∈ Ω.

The nonlinear regularity theory and the nonlinear maximum principle imply that

S+ ⊆ (D+ ∩ [0, c]) ∪ {0} and S− ⊆ ((−D+) ∩ [−c, 0]) ∪ {0}.
Proposition 3.4. If hypotheses H(a), H(ξ), H(β) and H(f) hold, then

(a) u � u for all u ∈ S+;

(b) v � v for all v ∈ S+.

Proof. (a) Let u ∈ S+ and consider the Carathéodory function e+ : Ω × R −→ R

defined by

e+(z, ζ) =

⎧⎪⎨
⎪⎩

0 if ζ < 0,

ηζq−1 − c4ζ
r−1 + μζp−1 if 0 � ζ � u(z),

ηu(z)q−1 − c4u(z)r−1 + μu(z)p−1 if u(z) < ζ.

(3.11)

Let E+(z, ζ) =
∫ ζ

0
e+(z, s) ds and consider the C1-functional ϕ̂+ : W 1,p(Ω) −→ R defined

by

ϕ̂+(u) =
∫

Ω

G(Du) dz +
1
p

∫
Ω

(ξ+(z) + μ)|u|p dz

+
1
p

∫
∂Ω

β(z)|u|p dσ −
∫

Ω

E+(z, u) dz, ∀u ∈W 1,p(Ω).

Corollary 2.4, together with (3.11) and the fact that μ > ‖ξ‖∞, imply that ϕ̂+ is coercive.
Also, ϕ̂+ is sequentially weakly lower semicontinuous. So, we can find ũ∗ ∈W 1,p(Ω) such
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that
ϕ̂+(ũ∗) = inf

u∈W 1,p(Ω)
ϕ̂+(u). (3.12)

As in the proof of Proposition 3.3, using (3.6), we see that for t ∈ (0, 1) small (at least
such that tũ1(q) � u, recall that u ∈ D+), we have

ϕ̂+(tũ1(q)) < 0,

so
ϕ̂+(ũ∗) < 0 = ϕ̂+(0)

(see (3.12)), and thus
ũ∗ �= 0.

From (3.12) we have
ϕ̂′

+(ũ∗) = 0,

so

〈A(ũ∗), h〉 +
∫

Ω

(ξ+(z) + μ)|ũ∗|p−2ũ∗hdz +
∫

∂Ω

β(z)|ũ∗|p−2ũ∗hdσ

=
∫

Ω

e+(z, ũ∗)hdz, ∀h ∈W 1,p(Ω). (3.13)

In (3.13), first we choose h = −ũ−∗ ∈W 1,p(Ω). Then

c1
p− 1

‖Dũ−∗ ‖p
p +

∫
Ω

(ξ+(z) + μ)(ũ−∗ )p dz +
∫

∂Ω

β(z)(ũ−∗ )p dσ � 0

(see Lemmas 2.3 and (3.11)), so
c6‖ũ−∗ ‖p � 0,

for some c6 > 0 (recall that μ > ‖ξ‖∞), and thus

ũ∗ � 0, ũ∗ �= 0.

Also, in (3.13) we choose h = (ũ∗ − u)− ∈W 1,p(Ω). Then

〈A(ũ∗), (ũ∗ − u)+〉 +
∫

Ω

(ξ+(z) + μ)ũp−1
∗ (û∗ − u)+dz

+
∫

∂Ω

β(z)ũp−1
∗ (ũ∗ − u)+dσ

=
∫

Ω

(ηuq−1 − c4u
r−1 + μup−1)(ũ∗ − u)+dz

�
∫

Ω

(f(z, u) + μup−1)(ũ∗ − u)+dz

� 〈A(u), (ũ∗ − u)+〉 +
∫

Ω

(ξ+(z) + μ)up−1(ũ∗ − u)+dz

+
∫

∂Ω

β(z)up−1(ũ∗ − u)+dσ
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(see (3.11), (3.1) and recall that u ∈ S+), so

ũ∗ � u.

Thus, we have proved that

ũ∗ ∈ [0, u], ũ∗ �= 0, (3.14)

where [0, u] = {y ∈W 1,p(Ω) : 0 � y(z) � u(z) for a.a. z ∈ Ω}.
From (3.11) and (3.14), it follows that equation (3.13) becomes

〈A(ũ∗), h〉 +
∫

Ω

ξ+(z)ũp−1
∗ hdz +

∫
∂Ω

β(z)ũp−1
∗ hdσ

=
∫

Ω

(ηũq−1
∗ − c4ũ

r−1
∗ )hdz, ∀h ∈W 1,p(Ω),

so ⎧⎨
⎩
−div a(Dũ∗(z)) + ξ+(z)ũ∗(z)p−1 = ηũ∗(z)q−1 − c4ũ∗(z)r−1 for a.a. z ∈ Ω,
∂ũ∗
∂na

+ β(z)ũp−1
∗ = 0 on ∂Ω

(see Papageorgiou and Rădulescu [22]), and then

ũ∗ = u ∈ D+

(see Proposition 3.3), thus

u � u, ∀u ∈ S+.

(b) Similarly, we show that v � v for all v ∈ S−. �

Consider the Carathéodoty function f̂ : Ω × R −→ R defined by

f̂(z, ζ) =

⎧⎪⎨
⎪⎩
f(z,−c) − μcp−1 if ζ < −c,
f(z, ζ) + μ|ζ|p−2ζ if −c � ζ � c,

f(z, c) + μcp−1 if c < ζ.

(3.15)

Let F̂ (z, ζ) =
∫ ζ

0
f̂(z, s) ds and consider the C1-functional ϕ̂+ : W 1,p(Ω) −→ R defined by

ϕ̂+(u) =
∫

Ω

G(Du) dz +
1
p

∫
Ω

(ξ(z) + μ)|u|p dz

+
1
p

∫
∂Ω

β(z)|u|p dσ −
∫

Ω

F̂ (z, u) dz, ∀u ∈W 1,p(Ω).

It is clear that the functional ϕ̂ has the following properties:

• ϕ̂ is even and ϕ̂(0) = 0;

• ϕ̂ is coercive (see (3.15) and recall that μ > ‖ξ‖∞).
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So, ϕ̂ is bounded below and satisfies the Palais–Smale condition. Moreover, the nonlinear
regularity theory implies that

Kϕ̂ ⊆ C1(Ω).

Proposition 3.5. If hypotheses H(a), H(ξ), H(β) and H(f) hold, then there exists

M̂ > 0 such that

‖u‖∞ < M̂, ∀u ∈ Kϕ̂.

Proof. From hypothesis H(f)(i), (3.15) and since μ > ‖ξ‖∞, we see that we can find
M̂ > 0 big such that

|f̂(z, ζ)| � (ξ(z) + μ)M̂p−1 for a.a. z ∈ Ω all ζ ∈ R. (3.16)

Let u ∈ Kϕ̂. We have
|ϕ̂′(u)| = 0,

so ∣∣∣∣〈A(u),h〉 +
∫

Ω

(ξ(z) + μ)|u|p−2uh dz +
∫

∂Ω

β(z)|u|p−2uh dσ
∣∣∣∣

=
∣∣∣∣
∫

Ω

f̂(z, u)hdz
∣∣∣∣ �

∫
Ω

|f̂(z, u)||h|dz �
∫

Ω

(ξ(z) + μ)M̂p−1|h|dz

�
∫

Ω

(ξ(z) + μ)M̂p−1|h|dz +
∫

∂Ω

β(z)M̂p−1|h|dσ (3.17)

(see hypothesis H(β)).
Let h = (u− M̂)+ ∈W 1,p(Ω). Then |h| = h, and note that A(M̂) = 0. From (3.17), we

have

〈A(u) −A(M̂), (u− M̂)+〉

+
∫

Ω

(ξ(z) + μ)(|u|p−2u− M̂p−1)(u− M̂)+ dz

+
∫

∂Ω

β(z)(|u|p−2u− M̂p−1)(u− M̂)+ dσ � 0,

so u � M̂ .
Similarly, if we choose h = (−M̂ − u)+ ∈W 1,p(Ω), then |h| = h and we have

0 �〈A(−M̂) −A(u), (−M̂ − u)+〉

+
∫

Ω

(ξ(z) + μ)(| − M̂ |p−2(−M̂) − |u|p−2u)(−M̂ − u)+ dz

+
∫

∂Ω

β(z)(| − M̂ |p−2(−M̂) − |u|p−2u)(−M̂ − u)+ dσ,

so u � −M̂ .
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So, we conclude that

‖u‖∞ � M̂, ∀u ∈ Kϕ̂. �

Proposition 3.6. If hypotheses H(a), H(ξ), H(β) and H(f) hold, and Vn ∈W 1,p(Ω)
is an n-dimensional subspace, then we can find �n > 0 such that

ϕ̂(u) < 0, ∀u ∈ Vn, ‖u‖ = �n.

Proof. Hypothesis H(a)(iv) and Corollary 2.4 imply that we can find c7 > 0 such that

G(y) � c7(|y|q + |y|p), ∀y ∈ R
N . (3.18)

Also, from hypothesis H(f)(ii), we see that given any η̂ > 0, we can find δ = δ(η̂) > 0
such that

F (z, ζ) � η̂|ζ|p for a.a. z ∈ Ω all |ζ| � δ. (3.19)

Since Vn is finite dimensional, all norms are equivalent. So, we can find �n ∈ (0, 1) small
such that

if un ∈ V, ‖u‖ � � then |un(z)| � δ for a.a. z ∈ Ω. (3.20)

Then for u ∈ Vn with ‖u‖ = �n, we have

ϕ̂(u) � c7(‖Du‖q
q + ‖Du‖p

p) + c8‖u‖p − η̂c9‖u‖q

� (c7 − η̂c9)‖u‖q + c10‖u‖p,

for some c8, c9, c10 > 0 (see (3.18)–(3.20) and recall that q < p < r, �n ∈ (0, 1) and all
norms on Vn are equivalent). Since η̂ > 0 is arbitrary, we choose η̂ > c7/c9. Then

ϕ̂(u) � −c11‖u‖q + c10‖u‖p, ∀u ∈ Vn, ‖u‖ = �n,

for some c11 > 0. Because q < p, by choosing �n ∈ (0, 1) even smaller if necessary, we
have

ϕ̂(u) < 0, ∀u ∈ Vn, ‖u‖ = �n. �

Now we are ready for the multiplicity result concerning nodal solutions for problem
(1.1).

Theorem 3.7. If hypotheses H(a), H(ξ), H(β) and H(f) hold, then problem (1.1)
admits a whole sequence of distinct nodal solutions {un}n�1 such that

un ∈ C1(Ω), ∀n � 1 and un −→ 0 in C1(Ω).
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Proof. According to Theorem 2.1, we can find a sequence {un}n�1 ⊆W 1,p(Ω) such
that

un ∈ Kϕ̂, ∀n � 1 and un −→ 0 in W 1,p(Ω). (3.21)

From Proposition 3.5 and the nonlinear regularity theory of Lieberman [18], we know
that we can find α ∈ (0, 1) and M̃ > 0 such that

un ∈ C1,α(Ω) and ‖u‖C1,α(Ω) � M̃, ∀n � 1. (3.22)

Exploiting the compactness of the embedding C1,α(Ω) ⊆ C1(Ω), from (3.21) and (3.22)
it follows that

un −→ 0 in C1(Ω). (3.23)

Let m∗ < min{minΩ u,−minΩ v} (recall that u ∈ D+ and v ∈ −D+; see Proposition 3.3).
Then, from (3.23), we see that

un ∈ [−m∗,m∗], ∀n � n0,

so {un}n�n0 is the sequence of nodal solutions of (1.1) (see Proposition 3.4). �
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8. L. Gasiński and N. S. Papageorgiou, Nonlinear periodic equations driven by a
nonhomogeneous differential operator, J. Nonlinear Convex Anal. 14 (2013), 583–600.
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21. N. S. Papageorgiou and V. D. Rădulescu, Qualitative phenomena for some classes
of quasilinear elliptic equations with multiple resonance, Appl. Math. Optim. 69 (2014),
393–430.
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23. N. S. Papageorgiou and V. D. Rădulescu, Resonant (p, 2)-equations with asymmetric
reaction, Anal. Appl. (Singap.) 13 (2015), 481–506.
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