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Abstract. This paper gives a first application of the reduced-phase-space
Lagrangian for kinetic theories obtained in a sister paper in this issue by means
of Kruskal’s averaging coordinates. The approximations made within Kruskal’s
formalism are of first order in the smallness parameter ε, given by the ratio of the
gyroperiod to the macroscopic time scale, which is the same as the ratio of the
gyroradius to the macroscopic scale length in the drift-kinetic case, or as the ratio
of the amplitudes of the fluctuations to the background fields in the gyrokinetic
case. This paper presents methods and results concerning local conservation laws
for the density of gyrocentres and the charge, energy, momentum and angular
momentum. A very important feature of our treatment is that throughout the
theory is gauge invariant. The methods consist of a modified Noether formalism
with gauge-invariant shift variations which in a very straightforward way lead to,
in particular, the symmetric energy–momentum tensor instead of the canonical
tensor. The shift variations are defined both within the reduced phase space, which
does not contain the gyroangle, and also for gyroangle-dependent quantities which
subsequently have to be averaged. A clear definition of the Lagrange density needed
for the derivation of the local conservation laws for energy, momentum and angular
momentum is given. The discovery of combinations of terms such as the polarization
and the magnetization allows the conservation laws to be cast in a very clear form
affording insight into their structure.

1. Introduction
This is the second of two closely related papers. The previous paper [1, 2] dealt
with the basic theory, which is throughout gauge invariant, and in which a new
method of deriving local energy and momentum-conserving Maxwell-collisionless
drift-kinetic and gyrokinetic theories is described. This is in contrast to the usual
treatment based on pseudo-canonical and Lie-transform theory [3–9]. Our method
is closely related to the theory derived in [10] and [11], which uses, in partic-
ular, the Hamilton–Jacobi description of the particle motion as a tool. At the
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beginning of the present paper an expression is given for the exact Lagrangian
for the kinetic theories based on the reduced-phase-space gyroangle-independent
particle Lagrangian, which agrees, in the case of the drift-kinetic theory, with the
Lagrangian obtained by Larsson [12]. The expression for the exact Lagrangian was
the concluding result of the previous paper mentioned [1,2]. There, use was made of
Kruskal’s formalism [13] in its inverse form, as also introduced by Larsson [12], for
obtaining averaging coordinates by a formal infinite-series method with a parameter
of smallness ε given by the ratio of the gyroperiod to the macroscopic time scale,
which is the same as the ratio of the gyroradius to the macroscopic scale length in
the drift-kinetic case, or as the ratio of the amplitudes of the fluctuations to the
background fields in the gyrokinetic case. From this Lagrangian for the kinetic
theories together with the Maxwell Lagrangian, the coupled system of Maxwell’s
and kinetic equations can be derived by Hamilton’s principle. An important point
is to define the kinetic Lagrange density needed in Noether’s formalism for deriving
local conservation laws for energy, momentum and angular momentum. We were
unable to find a clear definition of such a density for the gyrokinetic theory in the
literature. We use a modified form of Noether formalism with gauge-invariant shift
variations in time and space which directly yield the symmetric energy–momentum
tensor instead of the non-symmetric canonical tensor in the case of the exact
Vlasov theory [14] and of the drift-kinetic theory, as follows from this paper, and
in agreement with the results derived in [11]. In the case of the gyrokinetic theory
the method leads to the symmetric energy–momentum tensor, albeit not directly,
but nevertheless in a very straightforward way. Special consideration concerns the
shift variations for the kinetic part within the reduced phase space. As opposed to
the definition of the shift variations in the full phase space, a rather subtle problem
is posed by their definition in the present case, which involves not only gyroangle-
independent quantities defined in the reduced phase space, but also gyroangle-
dependent quantities which subsequently have to be averaged. In solving this
problem it is crucial that the whole theory is throughout gauge invariant. This
allows one to cast the conservation laws into the mentioned transparent form. A
result of our method is the discovery of a combination of terms such as the electric
polarization P and the magnetization M.
The paper is organized as follows. Section 2 presents the required results from

the previous basic paper [1,2] concerning the Maxwell-kinetic theory; a proof of the
gauge invariance of the Lagrangian of this theory is added. Section 3 describes the
general structure of the variational principle and the elimination of the Hamilton–
Jacobi functions. Section 4 contains the derivation of the Euler–Lagrange equations
consisting of the Hamilton–Jacobi equations, the kinetic equations and the in-
homogeneous Maxwell equations with the expression for the charge and current
densities. Section 5 contains the derivation of all conservation laws and of the
energy–momentum tensor, which is symmetric in the spatial components, this being
the only symmetry required for non-relativistic theories. Appendix A introduces
definitions which are useful for describing variations involving the variations δ̄Φ
and δ̄A of the electric and magnetic potential, respectively. Appendix B presents
transformations which are used in the derivation of the variation of the kinetic
Lagrange density with respect to Φ and A. Appendix C contains the definition
of the gauge-invariant shift variations. For illustration, in Appendix D the local
energy conservation law is also derived in a pedestrian way from the equations of
motion of the gyrocentres. It demonstrates the elegance of Noether’s formalism.
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Without knowledge of the final result we would hardly have been able to find the
necessary steps in this direct derivation. Finally, in Appendix E, some expressions
are derived which are very useful for giving the conservation laws a clear form.

2. Maxwell-kinetic theory
2.1. The Lagrangian

The following Lagrangian for general Maxwell-kinetic theories in a reduced phase
space was obtained in [1,2]:

Ltot(t) = LM(t) + LK(t), (1)

with

LM =
∫

d3r
1
8π

[E2(r, t) − B2(r, t)] (2)

and

LK(t) = −
∑
p.s.

∫
d3R dU d4α dJ fp(R, U ;αi;J ; t)

×
[
∂S

∂t
(R, U ;αi;J ; t) + HDS(R, U ;αi;J ; t)

]
. (3)

Here,
∑

p.s. denotes summation over the particle species and fp(R, U ;αi;J ; t) is the
primary form of the distribution functions. The explicit expressions for the other
quantities appearing in LK(t) are

HDS(R, U ;αi;J ; t) = HD

(
with PR → ∂S

∂R
, PU → ∂S

∂U

)
= eΦ̂ + VR ·

(
∂S

∂R
− e

c
Â

)
+ VU

(
∂S

∂U
− e

c
ÂU

)
, (4)

VR(R, U ;J ; t) =
e

mB

[
B̂

(
∂Φ̂
∂U

+
1
c

∂ÂU

∂t

)
+ Ê×

(
∂Â
∂U

− ∂ÂU

∂R

)]
, (5)

VU (R, U ;J ; t) =
e

mB B̂ · Ê, (6)

Â(R, U ;J ; t) =
c

e

〈
∂x

∂R
· p

〉
, (7)

ÂU(R, U ;J ; t) =
c

e

〈
∂x

∂U
· p

〉
, (8)

eΦ̂(R, U ;J ; t) = 〈H〉 −
〈

p · ∂x

∂t

〉
, (9)

B = B̂ · e

mc

(
∂Â
∂U

− ∂ÂU

∂R

)
, (10)

B̂ = ∇R × Â, (11)

Ê = −1
c

∂Â
∂t

− ∇RΦ̂, (12)

v = u‖b+ u⊥n1 + vE , (13)
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p = mv+
e

c
A(x, t), (14)

H =
m

2
v2 + eΦ(x, t), (15)

b =
B(x, t)
B(x, t)

, (16)

n1(x, θ, t) = −sin θ e1 − cos θ e2, (17)

e1 =
b · ∇b

|b · ∇b| , e2 = b× e1, e3 = b. (18)

The quantities u‖, u⊥, θ, and x in (13)–(18) have to be expressed in terms of the
time t and the averaging Kruskal variables R, U , J , φ, which depend on the electric
and magnetic fields and their derivatives. One then has, in particular,

x = x(R, U, J, φ; t) = R+ ρ(R, U, J, φ; t), v = v(R, U, J, φ; t), (19)

p = p(R, U, J, φ; t) = mv +
e

c
A(x, t). (20)

Explicitly, the vector v is given by the expression

v = u‖ (R, U, J, φ; t) b(x, t)

+ u⊥ [−sin θ (R, U, J, φ; t) e1(x, t) − cos θ (R, U, J, φ; t) e2(x, t)]

+ c
E(x, t) × B(x, t)

B2(x, t)
, (21)

with

e1(x, t) =
b(x, t) · ∇b(x, t)

|b(x, t) · ∇b(x, t)| , e2(x, t) = b(x, t) × e1(x, t). (22)

The symbol 〈· · ·〉 denotes averaging with respect to the gyroangle φ at constant
R, U, J and t:

〈· · ·〉 =
∫ 1

0

· · · dφ. (23)

Note that it is necessary to differentiate between v(R, U, J, φ; t) and dx/dt =
dR/dt + dρ(R, U, J, φ; t)/dt = VR + dρ/dt. The velocities v and dx/dt are equal for
exact single-particle theories in the form of equations of motion and for exact
Lagrangian theories. In the latter case, v(R, U, J, φ; t) is one of the dependent
quantities to be varied; the equality v(R, U, J, φ; t) = dx/dt follows from Hamilton’s
principle as one of the Euler–Lagrange equations. In approximate theories this
Euler–Lagrange equation is modified and v is no longer equal to dx/dt. For in-
stance, in guiding-centre theory one might have v = Ub(R, t) + vE(R, t) in the
Lagrangian, while VR = Ṙ(R, U, J ; t) contains all the drifts obtained from the
Euler–Lagrange equations. The distinction between v and dx/dt is important in
the following treatment.

2.2. Some explicit expressions

The results required are presented in [1,2].

Zeroth order. We have

x = R, u‖ = U, u⊥ =

√
Ω(R, t)J

π m
, ϑ = φ (24)
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with

Ω(R, t) =
eB

mc
= O

(
1
ε

)
, J =

2πmc

e
× lowest-order magnetic moment. (25)

Within the Kruskal formalism the lowest-order magnetic moment is of first order
in ε (see below).

First order. The first-order corrections are needed only for x. Up to the first order
one has

x = R+
1

Ω(R)
u⊥n2(R, φ, t)

= R+ ρ, (26)

n2(R, φ, t) = cos 2πφ e1(R, t) − sin 2πφ e2(R, t), (27)

from which it follows, in particular, that

J =
2π

Ω(R, t)
mu2

⊥
2

. (28)

All the other quantities are again the zeroth-order quantities.

2.3. Gauge invariance of the Lagrangian

It is only necessary to prove that

∂S

∂t
(R, U ;αi;J ; t) + HDS(R, U ;αi;J ; t) (29)

is gauge invariant. We show that this expression is left unchanged by the gauge
transformation

A(x, t) → A(x, t) + ∇Ψ(x, t),

Φ(x, t) → Φ(x, t) − 1
c

∂Ψ(x, t)
∂t

,

S(R, U, J ;αi; t) → S(R, U, J ;αi; t) +
e

c
〈Ψ(x = x(R, U, J, φ; t), t)〉. (30)

With this transformation, one obtains

∂S

∂t
+ eΦ̂ =

∂S

∂t
+

〈
m

2
v2 + eΦ(x = x, t)

〉
−

〈
∂x

∂t
· p

〉
→ ∂S

∂t
+

e

c

∂

∂t

∣∣∣∣
R,U,J

〈Ψ(x = x(R, U, J, φ; t), t)〉

+ eΦ̂ − e

c

〈
∂

∂t

∣∣∣∣
x
Ψ(x, t) +

∂x

∂t

∣∣∣∣
R,U,J,φ

∂Ψ(x, t)
∂x

〉
=

∂S

∂t
+ eΦ̂ (31)

since the time derivatives of Ψ(x, t) cancel each other. Here, use was made of the
fact that the potentials do not enter either x or v; only the fields appear in these
quantities.
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Furthermore, one has
∂S

∂R
− e

c
Â =

∂S

∂R
−

〈
∂x

∂R
· p

〉
→ ∂S

∂R
+

e

c

∂

∂R

∣∣∣∣
U,J,t

〈Ψ(x = x(R, U, J, φ; t), t)〉

− e

c
Â− e

c

〈
∂x

∂R

∣∣∣∣
U,J,φ,t

· ∂

∂x

∣∣∣∣
t

Ψ(x, t)

〉
=

∂S

∂R
− e

c
Â. (32)

The gauge invariance of ∂S/∂U − (e/c)ÂU can be shown in a similar way. Since
the potentials do not appear in the velocities VR and VU , it is thus shown that the
Lagrangian is gauge invariant.

3. The variational principle
The variational principle for the total Maxwell-kinetic Lagrangian is

δ̄Atot = δ̄AM + δ̄AK = 0, (33)

AM =
∫ t2

t1

LM dt, AK =
∫ t2

t1

LK dt, (34)

with δ̄fp = δ̄S = δ̄Φ= δ̄A= 0 on the boundaries of the whole integration space, in-
cluding time. Here, the symbol δ̄ is used to denote variations, in contrast to δ, which
is reserved for the δ-functions. When the Euler–Lagrange equations obtained from
the variational principle are taken into account in order to obtain ‘macroscopic’
quantities, such as charge and current densities, integrals containing the primary
distribution functions fp(R, U ;αi;J ; t) appear. In these integrals, the αi are elimin-
ated by re-introducing the original canonical momenta PR and PU , which have to
satisfy the Dirac constraints PR − (e/c)Â = 0 and PU − (e/c)ÂU = 0. As explained
in [1, 2, Sec. 2.4], a consequence of this is that the following substitutions must be
made in the expressions concerned:

∂S

∂R
→ PR,

∂S

∂U
→ PU ,

fp d4α → B(R, U ;J ; t)δ
(
PR − e

c
Â

)
δ

(
PU − e

c
ÂU

)
f(R, U ;J ; t) d3PR dPU . (35)

Here, f(R, U ;J ; t) is the distribution function, which, as follows from the variational
principle, is the solution of the kinetic equation

∂f

∂t
+ VR · ∂f

∂R
+ VU

∂f

∂U
= 0. (36)

The functionB(R, U ;J ; t), which is the Jacobian for the coordinate transformation
from (x, v; t) to the averaging coordinates (R, U ;J, φ; t), was shown in [1,2] to satisfy
a continuity equation in the space (R, U ;J ; t). Therefore, the phase-space volume
element dτ defined as

dτ := |B(R1, . . . , R3, U ;J ; t)| dR1 dR2 dR3 dU dJ (37)

is Liouvillian.
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The substitution procedure in expressions (35) is similar to that employed in de-
riving the kinetic equation for f , (36), from the continuity equation for fp(R, U ;αi;
J ; t), this being obtained further below as one of the Euler–Lagrange equations
derived from (33).
As an illustration of the substitution procedure we now consider variations with

respect to the potentials Φ and A in the kinetic part of the action integral. Let
δ̄potAK be the variation of the integral AK owing to a variation of the potentials
Φ and A:

δ̄potAK = −
∑
p.s.

∫
dt d3R dU d4α dJ fp(R, U ;αi;J ; t)δ̄potHDS(R, U ;αi;J ; t)

= −
∑
p.s.

∫
dt d3R dU d4α dJ fp

[
δ̄poteΦ̂ − VR · e

c
δ̄potÂ− VU

e

c
δ̄potÂU

+
(
δ̄potVR

)
·
(

∂S

∂R
− e

c
Â

)
+ (δ̄potVU )

(
∂S

∂U
− e

c
ÂU

)]
. (38)

Transformation of the integrals, eliminating fp and αi and introducing f , PR and
PU instead, yields

δ̄potAK = −
∑
p.s.

∫
dt d3R dU d3PR dPU dJ B(R, U ;J ; t)

× f(R, U ;J ; t)δ
(
PR − e

c
Â

)
δ

(
PU − e

c
ÂU

)
δ̄potHD(R, U ;PR, PU ;J ; t)

= −
∑
p.s.

∫
dt d3R dU dJ B(R, U ;J ; t)f(R, U ;J ; t)(δ̄potHD)con, (39)

where the subscript con means that the constraints PR = (e/c)Â and PU = (e/c)ÂU

have been applied. Equation (39) is the same as would have been obtained by setting

δ̄potAK = −
∑
p.s.

∫
dt d3R dU d4α dJ fp

[
δ̄poteΦ̂ − VR · e

c
δ̄potÂ− VU

e

c
δ̄potÂU

]
(40)

from the outset in the expression for δ̄potAK. It is clear that it is not necessary to
vary the Φ and A-dependent quantities VR and VU in LK, since their variations are
multiplied by fp and the constraints. Owing to the properties of fp, as described by
the substitutions (35), this means multiplication by zero.

4. Euler–Lagrange equations
4.1. Variations with respect to fp and S

4.1.1. Hamilton–Jacobi equation. The variation of the action integral with respect
to fp(R, U ;αi;J ; t) is

δ̄δ̄fpAtot = −
∑
p.s.

∫
dt d3R dU d4α dJ δ̄fp (R, U ;αi;J ; t)

×
[
∂S

∂t
(R, U ;αi;J ; t) + HDS(R, U ;αi;J ; t)

]
. (41)
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The vanishing of this expression yields the Hamilton–Jacobi equation
∂S

∂t
(R, U ;αi;J ; t) + HDS(R, U ;αi;J ; t) = 0. (42)

4.1.2. Kinetic equations. Variation of the action integral with respect to S(R, U ;
αi;J ; t) yields

δ̄δ̄SAtot = −
∑
p.s.

∫
dt d3R dU d4α dJ fp(R, U ;αi;J ; t)

×
[
∂δ̄S

∂t
+ VR · ∂δ̄S

∂R
+ VU

∂δ̄S

∂VU

]
. (43)

After some partial integrations, with δ̄S = 0 on the boundaries of the integration
domain taken into account, Hamilton’s principle yields the following continuity
equation for the primary form fp of the distribution functions:

∂fp
∂t

(R, U ;αi;J ; t) +
∂

∂R
· (VRfp) +

∂

∂U
(VUfp) = 0. (44)

By applying the standard method previously discussed in [1,2, Sec. 2.4], which leads
from the primary form fp(R, U ;αi;J ; t) of the distribution functions to the actual
distribution functions f(R, U ;J ; t), one obtains from (44) the kinetic equation for
each particle species:

∂f

∂t
(R, U ;J ; t) + VR · ∂f

∂R
+ VU

∂f

∂U
= 0. (45)

4.2. Variations with respect to Φ and A
The variations with respect to Φ and A are more difficult to do than those with
respect to fp and S, the reason for this being that the potentials and fields appear
both as functions of (R, t) and/or as functions of (x(R, U, J, φ; t), t), x itself being
a function of the fields. In both cases the variations have to be performed at the
same point and time (r, t) as appear in the Maxwell part of the Lagrangian. For
describing these variations, it is convenient to introduce some additional symbols
and definitions; this is done mainly in Appendix A.
As already explained in the derivation of (39) and (40), the quantity of interest is

(δ̄potHD)con, which is obtained by varying (4), re-introducing PR and PU according
to (35) and applying the Dirac constraints PR = (e/c)Â, PU = (e/c)ÂU. As men-
tioned before, it is not necessary to vary the Φ- and A-dependent quantities VR and
VU , since the variations of these quantities are multiplied by zero after applying
the constraints. This procedure yields

(δ̄potHD)con = δ̄pot

〈
eΦ +

1
2
mv2 − ∂x

∂t
· p

〉
− VR · e

c
δ̄potÂ− VU

e

c
δ̄potÂU. (46)

With the definitions of Â and ÂU, (7) and (8), this can be written as

(δ̄potHD)con = δ̄pot

〈
eΦ +

1
2
mv2

〉
−

〈[
∂δ̄potx

∂t
+ VR ·

∂δ̄potx

∂R
+ VU

∂δ̄potx

∂U

]
· p

〉
−

〈[
∂x

∂t
+ VR · ∂x

∂R
+ VU

∂x

∂U

]
· δ̄potp

〉
= δ̄pot

〈
eΦ +

1
2
mv2

〉
−

〈[
Dδ̄potx

Dt

]
· p

〉
−

〈
Dx

Dt
· δ̄potp

〉
, (47)
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with

D

Dt
≡ d

dt
− φ̇

∂

∂φ
(48)

being the time derivative without the fast gyroangle dependence, as defined in (A 8).
Some quantities in (47) depend directly on R, while other quantities depend

on x(R, U, J, φ; t), which depends on the magnetic field B(R, t) and its derivatives
through ρ:

ρ ≡ x(R, U, J, φ; t) − R. (49)

Thus, when the potentials and the fields depend on x, they have to be varied in
two respects: the functions and the arguments of the functions. We then write, for
example,

δ̄potΦ(x, t) = δ̄Φ(x, t) + δ̄potx · ∂Φ
∂x

= δ̄Φ(x, t) + δ̄potρ · ∂Φ
∂x

. (50)

Thus, δ̄Φ(x, t) and δ̄A(x, t), without any subscripts, always mean the variation of
the functions alone, without the contribution from the variation of the argument.
For functions which only depend on the values of the potentials and fields at R, e.g.
B(R, t), δ̄pot and δ̄ are the same. For all purposes of interest here, as will be specified
later, x and ρ are also such functions. Explicitly, δ̄potx and δ̄potρ = δ̄ρ are equal and
are given by

δ̄potx = δ̄ρ = δ̄B(R, t) · ∂ρ

∂B(R, t)
+ δ̄B, Ri

· ∂ρ

∂B, Ri
(R, t)

= (∇R × δ̄A) · ∂ρ

∂B
+

(
∇R × ∂δ̄A

∂Ri

)
· ∂ρ

∂B, Ri

, (51)

with B, Ri
(R, t) = ∂B(R, t)/∂Ri. Multiplication of the third term in (47) by fp and

some transformations yields

−fp

[
Dδ̄potx

Dt

]
· p = −fp

[
Dδ̄ρ

Dt

]
· p

= − ∂

∂t
[fp(δ̄ρ · p)] − ∂

∂R
[VRfp(δ̄ρ · p)] − ∂

∂U
[VUfp(δ̄ρ · p)]

+ fpδ̄ρ ·
[
m

Dv

Dt
+

e

c

Dx

Dt
· ∂A(x, t)

∂x
+

e

c

∂A(x, t)
∂t

]
, (52)

where use has been made of the Euler–Lagrange equation for fp, (44). The fourth
term in (47) can be transformed in a similar way:

−fp
Dx

Dt
· δ̄potp = −fp

Dx

Dt
·
[
δ̄(mv) + δ̄ρ ·

∂(x,t)(mv)
∂x

+
e

c
δ̄A(x, t) +

e

c
δ̄ρ · ∂A

∂x

]
. (53)

The operator ∂(x,t) used in this expression is defined in Appendix A.
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From (46)–(53) one obtains, after some steps,
fp(δ̄potHD)con

= fp

〈
eδ̄Φ(x, t) − e

c

Dx

Dt
· δ̄A(x, t) + δ̄

(
m

2
v2

)
− δ̄(mv) · Dx

Dt
+ δ̄ρ · G

〉
− ∂

∂t
[fp〈δ̄ρ · p〉] − ∂

∂R
· [VRfp〈δ̄ρ · p〉] − ∂

∂U
[VUfp〈δ̄ρ · p〉], (54)

with G given by (A 14). The last three terms in (54) will not contribute to the Euler–
Lagrange equations, since they vanish after integration in the action integral.
However, the terms ∼∂/∂t and ∼∂/∂R do contribute to the local conservation
laws, while the last term vanishes locally after U -integration.

4.2.1. Charge density. For calculation of the charge density fp(δ̄δ̄ΦHD)con is re-
quired. In this expression the electric potential appears undifferentiated only in
the term δ̄Φ(x, t). Otherwise, there are only derivatives of Φ. From (51) and (54)
one obtains after some steps
fp(δ̄δ̄ΦHD)con

= fp

[
e〈δ̄Φ(x, t)〉 +

∂δ̄Φ(R, t)
∂R

·
∂̂(R,U,J;t)〈Tv〉
∂∇RΦ(R, t)

+

〈
∂δ̄Φ(x, t)

∂x
·

∂̂(x,t)Tv

∂∇xΦ(x, t)

〉]
.

(55)

The quantity Tv is defined in (A 10). The definition of the operator ∂̂, which acts
only on the first term of a product, is given in (A 12)–(A 16). The variations δ̄Φ have
to be localized at the same point and time (r, t) which appear in the Maxwell part
of the Lagrangian. A convenient way of doing this is to express the variations in
the following way:

δ̄Φ(x, t) =
∫

d3rδ (r− x) δ̄Φ(r, t), δ̄Φ(R, t) =
∫

d3rδ (r− R) δ̄Φ(r, t). (56)

Then, with ∂/∂∇Φ ∼ −∂/∂E, ∂δ(r − R)/∂R = −∂δ(r − R)/∂r, ∂δ(r − x)/∂x =
−∂δ(r− x)/∂r and the substitution of Sec. 3, and taking into account the vanishing
of some terms at the r-boundaries, one obtains∫

d4αfp(δ̄δ̄ΦHDS)

= Bf(δ̄δ̄ΦHD)con

=
∫

d3rδ̄Φ(r, t)

[
eBf〈δ(r− x)〉 +

∂

∂r
·
(

δ(r− R)Bf
∂̂(R,U,J;t)〈Tv〉

∂E(R, t)

)

+
∂

∂r
·
〈

δ(r− x)Bf
∂̂(x,t)Tv

∂E(x, t)

〉]
. (57)

The variational principle
0 = δ̄δ̄ΦAtot = δ̄δ̄ΦAM + δ̄δ̄ΦAK

=
∫

dt d3r

[
δ̄Φ(r, t)

1
4π

∇ · E(r, t)
]

−
∑
p.s.

∫
dt d3R dU dJ Bf(δ̄δ̄ΦHD)con (58)
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yields the charge density as a sum of particle-like and polarization charge densities:

ρ(r, t) =
1
4π

∇ · E(r, t) = ρp-like(r, t) + ρpol(r, t), (59)

with

ρp-like =
∑
p.s.

e

∫
d3R dU dJ Bf〈δ(r− x)〉 (60)

and
ρpol = −∇r · P, (61)

where the polarization P is given by the expression

P ≡ −
∑
p.s.

∫
d3R dU dJ Bf

[
δ(r− R)

∂̂(R,U,J;t)〈Tv〉
∂E(R, t)

+

〈
δ(r− x)

∂̂(x,t)Tv

∂E(x, t)

〉]

= −
∑
p.s.

[∫
dU dJ Bf

∂̂(R,U,J;t)〈Tv〉
∂E(R, t)

]
R=r

−
∑
p.s.

∫
d3R dU dJ Bf

〈
δ(r− x)

∂̂(x,t)Tv

∂E(x, t)

〉
. (62)

4.2.2. Current density. Equation (54) yields preliminary results for obtaining the
current density:∫

d4αfp(δ̄δ̄AHDS)

= Bf(δ̄δ̄AHD)con

= Bf

{
−e

c
VR · 〈δ̄A(x, t)〉 − e

c

〈
Dρ

Dt
· δ̄A(x, t)

〉

− 1
c

∂δ̄A(R, t)
∂t

∣∣∣∣
R

·
∂̂(R,U,J;t)〈Tv〉

∂E(R, t)
−

〈
1
c

∂δ̄A(x, t)
∂t

∣∣∣∣
x

·
∂̂(x,t)T
∂E(x, t)

〉

+ (∇R × δ̄A(R, t)) ·
∂̂(R,U,J;t)〈T〉

∂B(R, t)
+

〈
(∇x × δ̄A(x, t)) ·

∂̂(x,t)T
∂B(x, t)

〉

+
(

∂

∂Ri
∇R × δ̄A(R, t)

)
·
∂̂(R,U,J;t)〈T〉
∂B, Ri

(R, t)

+

〈(
∂

∂xi
∇x × δ̄A(x, t)

)
·

∂̂(x,t)T
∂B, xi

(x, t)

〉}

− ∂

∂t
[Bf〈p · δ̄δ̄Aρ〉] − ∂

∂R
· [VRBf〈p · δ̄δ̄Aρ〉]

− ∂

∂U
[VU Bf〈p · δ̄δ̄Aρ〉], (63)

where B, Ri
(R, t) = ∂B(R, t)/∂Ri, B, xi

(x, t) = ∂B(x, t)/∂xi, and summation with
respect to the index i is implied. The xi are the Cartesian components of the vector x.
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The quantity T = Tv + Tρ is defined in (A 10)–(A 16). Equation (63) can be
transformed by applying the same method which led to the charge density. Several
terms which are important for the local conservation laws will not contribute,
however, to the action integral, since they vanish after integration. The variational
principle

0 = δ̄δ̄AAtot = δ̄δ̄AAM + δ̄δ̄AAK

=
∫

dt d3r
1
c
δ̄A ·

[
1
4π

∂E(r, t)
∂t

− c

4π
∇ × B(r, t)

]
−

∑
p.s.

∫
dt d3R dU dJ Bf(δ̄δ̄AHD)con (64)

then yields, after some steps, the current density as a sum of p-like, polarization
and magnetization current densities:

j(r, t) =
c

4π
∇ × B(r, t) − 1

4π

∂E(r, t)
∂t

= jp-like(r, t) + jpol(r, t) + jmag(r, t), (65)

with

jp-like =
∑
p.s.

e

∫
d3R dU dJ Bf

[
VR〈δ(r− x)〉 +

〈
Dρ

Dt
δ(r− x)

〉]
, (66)

jpol = − ∂

∂t

∑
p.s.

∫
d3R dU dJ Bf

[
δ(r− R)

∂̂(R,U,J;t)〈Tv〉
∂E(R, t)

+

〈
δ(r− x)

∂̂(x,t)Tv

∂E(x, t)

〉]

=
∂P
∂t

(67)

and

jmag = c∇r ×M, M = M1 +M2, (68)

where M = M1 +M2 is the magnetization, defined by the equations

M1 ≡ −
∑
p.s.

∫
d3R dU dJ Bf

[
δ(r− R)

∂̂(R,U,J;t)〈T〉
∂B(R, t)

+

〈
δ(r− x)

∂̂(x,t)Tv

∂B(x, t)

〉]
(69)

and

M2 ≡ ∂

∂ri
Mi, (70)

Mi ≡
∑
p.s.

∫
d3R dU dJ Bf

[
δ(r− R)

∂̂(R,U,J;t)〈T〉
∂B, Ri

(R, t)
+

〈
δ(r− x)

∂̂(x,t)Tv

∂B, xi
(x, t)

〉]
.

(71)

Summation with respect to i = 1, 2, 3 is implied in (70) and (A 19) and (A 20) were
used in the transformations.
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5. Local conservation laws
5.1. Conservation of the density of gyration centres

Integration of (44) with respect to α, with the Dirac constraints taken into account
according to (35), yields for B(R, U, J ; t)f(R, U, J ; t) the equation

∂

∂t
(Bf) +

∂

∂R
· (VRBf) +

∂

∂U
(VU Bf) = 0. (72)

Integration of this equation in velocity space, i.e. with respect to U and J , yields
the conservation law for the density of each species:

∂

∂t

∫
dU dJ Bf +

∂

∂R
·
∫

dU dJ VRBf = 0. (73)

5.2. Charge conservation

It will be shown, on the basis of (59)–(62) and (65)–(71), that the electric charge is
locally conserved, i.e.

∂ρ(r, t)
∂t

+ ∇ · j(r, t) = 0, (74)

which is valid for the total charge and current densities, but also separately for
the particle-like, electric polarization and magnetization contributions (the latter
without a counterpart in the charge density). While the conservation law is evident
for the polarization and magnetization contributions, it must be proved for the
particle-like charge and current densities.
Multiplication of (72) by δ(r− x(R, U, J, φ; t)) and integration with respect to R,

U , J and φ, with the vanishing of some terms at the boundaries of R and U taken
into account, yields

∂

∂t

∣∣∣∣
r

∫
d3R dU dJ Bf 〈δ(r− x)〉

=
∫

d3R dU dJ dφ Bf

[
∂δ(r− x)

∂t
+ VR · ∂δ(r− x)

∂R
+ VU

∂δ(r− x)
∂U

]
=

∫
d3R dU dJ dφ Bf

Dδ(r− x)
Dt

= − ∂

∂r

∣∣∣∣
t

·
∫

d3R dU dJ Bf

[
VR〈δ(r− x)〉 +

〈
Dρ

Dt
δ(r− x)

〉]
, (75)

where the time derivative of δ(r − x) was transformed according to the relation
Dδ(r − x)/Dt = Dx/Dt · ∂δ(r − x)/∂x = −Dx/Dt · ∂δ(r − x)/∂r, and Dx/Dt =
VR + Dρ/Dt was inserted. Multiplication of (75) by the charge e and summation
over the particle species then yields the conservation law

∂

∂t
ρp-like(r, t) + ∇ · jp-like(r, t) = 0. (76)

5.3. Local energy, momentum and angular momentum conservation

Derivation of local energy and momentum conservation laws by means of Noether’s
procedure requires an expression for the total Lagrange density, and one has to
consider the kinetic Lagrange density at the same space–time point (r, t) as appears
in the Lagrange density of the Maxwell part. There is an infinitely large manifold
of equivalent definitions for the Lagrange density of the kinetic part. Within the
framework of Kruskal’s theory, it is most natural to identify the gyrocentre position
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R with the point r. As shown in [1,2], R can be defined in any finite-order Kruskal
theory, but not in an exact theory. The latter feature reflects the fact that Kruskal’s
theory does not yield a convergent series, in agreement with the fact that the
adiabatic invariants are not exact constants of motion.
The Lagrange density LK(r, t) for the kinetic part of the whole theory then

follows from (3) and the expression

AK =
∫

dt d3r LK(r, t) (77)

as

LK(r, t) = −
∑
p.s.

∫
d3R dU d4α dJ δ(r− R)fp

[
∂S

∂t
+ HDS

]
. (78)

The variation of this density owing to variations of fp, S and the potentials Φ and
A can be written as

δ̄LK(r, t) = δ̄δ̄fpLK(r, t) + δ̄δ̄SLK(r, t) + δ̄δ̄potLK(r, t). (79)

The contribution of δ̄fp is

δ̄δ̄fpLK(r, t) = −
∑
p.s.

∫
d3R dU d4α dJ δ(r− R)δ̄fp

[
∂S

∂t
+ HDS

]
. (80)

After inserting the Euler–Lagrange equations for S, i.e. the Hamilton–Jacobi
equations, this expression vanishes:

δ̄ELδ̄fp
LK(r, t) = 0. (81)

Here, the superscript EL means that the Euler–Lagrange equations were used.
The variation of S yields

δ̄δ̄SLK(r, t) = −
∑
p.s.

∫
d3R dU d4α dJ δ(r− R)fp ×

[
∂δ̄S

∂t
+ VR · ∂δ̄S

∂R
+ VU

∂δ̄S

∂U

]

= −
∑
p.s.

∫
d3R dU d4α dJ

[
∂

∂t
[δ(r− R)fpδ̄S]−fpδ̄SVR · ∂

∂R
δ(r− R)

+
∂

∂R
· [δ(r− R)VRfpδ̄S] +

∂

∂U
[δ(r− R)VUfpδ̄S]

− δ(r− R)δ̄S
[
∂fp
∂t

+
∂

∂R
· (VRfp) +

∂

∂U
(VUfp)

]]
. (82)

The terms in brackets in the last line of this equation vanish after inserting the
Euler–Lagrange equations for fp, (44). The two terms which are divergences in R
and U , respectively, vanish at the boundaries after integration. After transforma-
tion from αi and fp to PR, PU and f , with the Dirac constraints taken into account
in the usual way, one obtains

δ̄ELδ̄S LK(r, t) = −
∑
p.s.

∂

∂t

∫
dU dJ [Bf(δ̄S)con]R=r

−
∑
p.s.

∂

∂r
·
∫

dU dJ [BfVR(δ̄S)con]R=r. (83)
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The variation of LK owing to δ̄Φ is

δ̄δ̄ΦLK(r, t) = −
∑
p.s.

∫
d3R dU d4α dJ δ(r− R)fpδ̄δ̄ΦHDS

= −
∑
p.s.

∫
d3R dU dJ Bδ(r− R)f(δ̄δ̄ΦHD)con

= −
∑
p.s.

∫
d3R dU dJ Bδ(r− R)f

[
e〈δ̄Φ(x, t)〉 − ∂δ̄Φ(R, t)

∂R

×
∂̂(R,U,J;t)〈Tv〉

∂E(R, t)
−

〈
∂δ̄Φ(x, t)

∂x
·
∂̂(x,t)Tv

∂E(x, t)

〉]
, (84)

where (55) was used. After some trivial transformations, and with the results of
(B 1) and (B 2), one obtains

δ̄δ̄ΦLK(r, t) = −
∑
p.s.

∫
d3R dU dJ

[
δ̄Φ(r, t)eBf〈δ(r− x)〉

+ eBf〈(δ(r− R) − δ(r− x))δ̄Φ(x, t)〉

− ∂

∂r
·
[
δ(r− R)δ̄Φ(r, t)Bf

∂̂(R,U,J;t)〈Tv〉
∂E(R, t)

]

+ δ̄Φ(r, t)
∂

∂r
·
[
δ(r− R)Bf

∂̂(R,U,J;t)〈Tv〉
∂E(R, t)

]

− ∂

∂r
·
[
δ̄Φ(r, t)Bf

〈
δ(r− x)

∂̂(x,t)Tv

∂E(x, t)

〉]

+ δ̄Φ(r, t)
∂

∂r
·
[

Bf

〈
δ(r− x)

∂̂(x,t)Tv

∂E(x, t)

〉]

− Bf

〈
(δ(r− R) − δ(r− x))

∂δ̄Φ(x, t)
∂x

·
∂̂(x,t)Tv

∂E(x, t)

〉]
. (85)

After inserting the Euler–Lagrange equations for Φ, i.e. the equations for the
electric charge density (59)–(62), one obtains

δ̄ELδ̄ΦLK(r, t) = −δ̄Φ(r, t)
1
4π

∇ · E(r, t) − ∇ · [δ̄Φ(r, t)P(r, t)]

−
∑
p.s.

∫
d3R dU dJ Bf

×
[〈

(δ(r− R) − δ(r− x))

[
eδ̄Φ(x, t) − ∂δ̄Φ(x, t)

∂x
·
∂̂(x,t)Tv

∂E(x, t)

]〉]
.

(86)
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Note that the last term in this equation, like a divergence, has the property of van-
ishing after r-integration. It represents a finite Larmor radius effect contribution
to the local conservation laws. It will appear in the gyrokinetic theory, but not in
the drift-kinetic theory.
The variation of LK owing to δ̄A is

δ̄δ̄ALK(r, t) = −
∑
p.s.

∫
d3R dU d4α dJ δ(r− R)fpδ̄δ̄AHDS

= −
∑
p.s.

∫
d3R dU dJ Bδ(r− R)f(δ̄δ̄AHD)con

=
∑
p.s.

∫
d3R dU dJ δ(r− R)

×
[

Bf

{
e

c
VR · 〈δ̄A(x, t)〉 +

e

c

〈
Dρ

Dt
· δ̄A(x, t)

〉

+
1
c

∂δ̄A(R, t)
∂t

∣∣∣∣
R

·
∂̂(R,U,J;t)〈Tv〉

∂E(R, t)
+

〈
1
c

∂δ̄A(x, t)
∂t

∣∣∣∣
x

·
∂̂(x,t)Tv

∂E(x, t)

〉

− (∇R × δ̄A(R, t)) ·
∂̂(R,U,J;t)〈T〉

∂B(R, t)
−

〈
(∇x × δ̄A(x, t)) ·

∂̂(x,t)Tv

∂B(x, t)

〉

−
(

∂

∂Ri
∇R × δ̄A(R, t)

)
·
∂̂(R,U,J;t)〈T〉
∂B, Ri

(R, t)

−
〈(

∂

∂xi
∇x × δ̄A(x, t)

)
·

∂̂(x,t)Tv

∂B, xi
(x, t)

〉}

+
∂

∂t
[Bf〈p · δ̄δ̄Aρ〉] +

∂

∂R
· [VRBf〈p · δ̄δ̄Aρ〉]

]
, (87)

where (A 19) and (A 20) were used, and (63) was inserted, with its last term vanishing
afterU -integration. The equation for δ̄δ̄ALK(r, t) can be transformed by taking into
account (B 3)–(B 8) and the Euler–Lagrange equations for A, i.e. the equations for
the current density, (65)–(71). One obtains

δ̄ELδ̄ALK(r, t) = δ̄A(r, t) ·
[

1
4π

∇ × B(r, t) − 1
4πc

∂E(r, t)
∂t

]
+

∑
p.s.

∂

∂t

∣∣∣∣
r

∫
d3R dU dJ B

× 1
c
δ̄A(r, t) ·

[
δ(r− R)

∂̂(R,U,J;t)〈Tv〉
∂E(R, t)

+

〈
δ(r− x)

∂̂(x,t)Tv

∂E(x, t)

〉]

−
∑
p.s.

∂

∂r
·
∫

d3R dU dJ Bf
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×
[
δ̄A(r, t)×

[
δ(r−R)

∂̂(R,U,J;t)〈T〉
∂B(R, t)

− ∂

∂ri

[
δ(r−R)

∂̂(R,U,J;t)〈T〉
∂B, Ri

(R, t)

]]

+ δ̄A(r, t) ×
〈

δ(r− x)
∂̂(x,t)Tv

∂B(x, t)
− ∂

∂ri

[
δ(r− x)

∂̂(x,t)Tv

∂B, xi
(x, t)

]〉]

−
∑
p.s.

∂

∂ri

∫
d3R dU dJ Bf

×
[
δ̄B(r, t) ·

[
δ(r− R)

∂̂(R,U,J;t)〈T〉
∂B, Ri

(R, t)
+

〈
δ(r− x)

∂̂(x,t)Tv

∂B, xi
(x, t)

〉]]

+
∑
p.s.

∫
d3R dU dJ Bf

〈
(δ(r− R) − δ(r− x))

×
[

e

c
δ̄A(x, t) ·

[
VR +

Dρ

Dt

]
+

1
c

∂δ̄A(x, t)
∂t

∣∣∣∣
x

·
∂̂(x,t)Tv

∂E(x, t)

− δ̄B(x, t) ·
∂̂(x,t)Tv

∂B(x, t)
−

(
∂δ̄B(x, t)

∂xi

)
·

∂̂(x,t)Tv

∂B, xi
(x, t)

]〉

+
∑
p.s.

∂

∂t

∫
dU dJ [Bf〈p · δ̄δ̄Aρ〉]R=r

+
∑
p.s.

∂

∂r
·
∫

dU dJ [VRBf〈p · δ̄δ̄Aρ〉]R=r. (88)

This equation can be simplified when (62) and (68)–(71) for the polarization P and
the magnetization M are taken into account:

δ̄ELδ̄ALK(r, t) = δ̄A(r, t) ·
[

1
4π

∇ × B(r, t) − 1
4πc

∂E(r, t)
∂t

]
− ∂

∂t

[
δ̄A(r, t) · 1

c
P(r, t)

]
+

∂

∂r
· [δ̄A(r, t) ×M(r, t)]

− ∂

∂ri
[δ̄B(r, t) · Mi] +

∑
p.s.

∫
d3R dU dJ Bf

〈
(δ(r− R) − δ(r− x))

×
[

e

c
δ̄A(x, t) ·

[
VR +

Dρ

Dt

]
+

1
c

∂δ̄A(x, t)
∂t

∣∣∣∣
x

·
∂̂(x,t)Tv

∂E(x, t)

− δ̄B(x, t) ·
∂̂(x,t)Tv

∂B(x, t)
−

(
∂δ̄B(x, t)

∂xi

)
·

∂̂(x,t)Tv

∂B, xi
(x, t)

]〉

+
∑
p.s.

∂

∂t

∫
dU dJ [Bf〈p · δ̄δ̄Aρ〉]R=r

+
∑
p.s.

∂

∂r
·
∫

dU dJ [VRBf〈p · δ̄δ̄Aρ〉]R=r. (89)
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The quantity δ̄δ̄Aρ, which appears in the last two terms, is given by (51). As will
be seen later, these terms combine with contributions from δ̄S, (83), to form an
expression which can be made gauge invariant.

5.3.1. Local energy conservation. The local energy conservation law is obtained by
means of the usual Noether procedure, but using a particularly appropriate, non-
standard kind of variations. As explained in [14], we take the variations to be the
gauge-invariant result of a shift plus an infinitesimal gauge transformation, as given
in Appendix C, instead of taking the usual non-gauge-invariant shift variations of
S, Φ and A. As a consequence of this, the expressions entering the conservation
laws are immediately gauge invariant, as they should be.
Owing to a time shift εt, the Euler variation of the total Lagrange density is

δ̄Ltot(r, t) = −εt
∂

∂t
Ltot(r, t). (90)

For the actual development of the system, the kinetic Lagrange density LK(r, t)
does not contribute, because it vanishes after inserting the Euler–Lagrange equa-
tions for S, i.e. the Hamilton–Jacobi equations (42). One thus has

δ̄Ltot(r, t) = δ̄ELLtot(r, t) = δ̄LM(r, t) = −εt
∂

∂t
LM(r, t)

= −εt
∂

∂t

[
1
8π

[E2(r, t) − B2(r, t)]
]

, (91)

where, again, the superscript EL means that the Euler–Lagrange equations were
used. On the other hand, one has the relation

δ̄Ltot(r, t) = δ̄LM(r, t) + δ̄LK(r, t)

= δ̄LM(r, t) + δ̄δ̄fpLK(r, t) + δ̄δ̄SLK(r, t) + δ̄δ̄ΦLK(r, t) + δ̄δ̄ALK(r, t).

(92)

After inserting the Euler–Lagrange equations for S, fp, Φ and A, one obtains

δ̄Ltot(r, t) = δ̄LM(r, t) + δ̄ELδ̄S LK(r, t) + δ̄ELδ̄ΦLK(r, t) + δ̄ELδ̄ALK(r, t), (93)

with

δ̄LM(r, t) = δ̄Φ
1
4π

∇ · E+ δ̄A ·
[

1
4πc

∂E
∂t

− 1
4π

∇ × B
]

− ∇ ·
[

1
4π

δ̄ΦE
]

− 1
4πc

∂

∂t
[δ̄A · E] − ∇ ·

[
1
4π

δ̄A× B
]

, (94)

and with δ̄ELδ̄S LK(r, t), δ̄ELδ̄ΦLK(r, t) and δ̄ELδ̄ALK(r, t) given by (83), (86) and (89),
respectively. The term δ̄ELδ̄fp

LK(r, t) does not contribute, since it vanishes owing to
the Hamilton–Jacobi equations.
Following a displacement εt in time and a simultaneous infinitesimal gauge trans-

formation, the variations of S, Φ and A are, according to (C 31) and (C 22)–(C 25),

(δ̄combS)con + εt

〈
∂ρ

∂t
· p

〉
= εt

〈m

2
v2

〉
, (95)

δ̄combΦ = 0, δ̄combA = εtcE. (96)
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By setting the right-hand side of (91) equal to that of (93), one obtains the local
energy conservation law at the space–time point (r, t),

∂

∂t

[
1
8π

[E2 + B2]
]

+
∂

∂t

∑
p.s.

∫
dU dJ

[
Bf

〈
m

2
v2

〉]
R=r

+
∂

∂t
[E · P] + ∇r ·

[
c

4π
E× (B− 4πM)

]
+ ∇r ·

∑
p.s.

∫
dU dJ

[
BfVR

〈
m

2
v2

〉]
R=r

− ∇r ·
[
êi

(
∂B
∂t

· Mi

)]

−
∑
p.s.

∫
d3R dU dJ Bf

×
〈

(δ(r− R) − δ(r− x))

[
eE(x, t) ·

[
VR +

Dρ

Dt

]
+

∂̂(x,t)Tv

∂t

]〉
= 0, (97)

where the last term ∂̂(x,t)Tv/∂t was obtained according to (A 22). Summation with
respect to i = 1, 2, 3 is implied and the vectors êi are Cartesian basis vectors. In
Appendix D, the same expression for the conserved local energy will be derived by
a different method based on the equations of motion for the gyrocentres.
With (E 1) taken into account, the expression containing the difference of the

delta functions can be transformed to read

−∇r ·
∑
p.s.

∫
d3R dU dJ Bf

〈
d(r;R, x)

[
eE(x, t) ·

[
VR +

Dρ

Dt

]
+

∂̂(x,t)Tv

∂t

]〉
. (98)

Integration of (97) with respect to r yields the following expression for the total
energy E of the system:

E =
∫ {

1
8π

[E2 + B2] + E · P+
∑
p.s.

∫
dU dJ

[
Bf

〈
m

2
v2

〉]
R=r

}
d3r. (99)

5.3.2. Local momentum conservation. By proceeding as in the derivation of the
local energy conservation law, one obtains, as a consequence of a space shift εtrans,
an expression corresponding to (91):

δ̄Ltot(r, t) = δ̄ELLtot(r, t) = δ̄LM(r, t) = −εtrans · ∇LM(r, t)

= −εtrans · ∇
[

1
8π

[E2(r, t) − B2(r, t)]
]

. (100)

The variations of S, Φ and A owing to a displacement εtrans (and a simultaneous
gauge transformation) are given by (C 31) and (C 22)–(C 25):

(δ̄combS)con + εtrans

〈
∂ρ

∂R
· p

〉
= −εtrans · 〈mv〉, (101)

δ̄combΦ = εtrans · E, δ̄combA = εtrans × B. (102)

The equation corresponding to (94) is then

δ̄LM(r, t) = δ̄Φ
1
4π

∇ ·E+ δ̄A ·
[

1
4πc

∂E
∂t

− 1
4π

∇ × B
]

− εtrans · 1
4π

∇ • (EE)

+ εtrans · 1
4πc

∂

∂t
(E× B)+ εtrans · 1

4π
∇(B2) − εtrans · 1

4π
∇ • (BB) . (103)
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To obtain this expression, Maxwell’s equations were used, and also the relations
∇ · (Eδ̄combΦ) = εtrans · (∇ • (EE)) and ∇ · [(δ̄combA) ×B] = −εtrans · ∇B2 + εtrans · (∇ •
(BB)), where ∇ • denotes the divergence of a dyadic. The terms ∼ δ̄Φ and δ̄A
compensate for equal terms in δ̄ELδ̄ΦLK(r, t) and δ̄ELδ̄ALK(r, t), respectively.
By setting the right-hand side of (100) equal to that of (93), evaluated with

(101)–(102), one obtains the local momentum conservation law at (r, t):

+
∂

∂t

[
1

4πc
(E× B)

]
+

∂

∂t

∑
p.s.

∫
dU dJ [Bf〈mv〉]R=r +

∂

∂t

[
1
c
P× B

]

+ ∇r
[

1
8π

[E2 + B2]
]

− ∇r •
[

1
4π

[EE+ BB]
]

+ ∇r •
∑
p.s.

∫
dU dJ [Bf(VR〈mv〉)]R=r − ∇r • [PE]

+ ∇r • [BM] − ∇r[B ·M] + ∇r •
[
êi

(
∂B
∂r

· Mi

)]
+

∑
p.s.

∫
d3R dU dJ Bf

{〈
(δ(r− R) − δ(r− x))

[
G− m

Dv

Dt

]〉}
= 0, (104)

where the last term was obtained by making use of (A 23) for ∂̂(x,t)Tv/∂x and (A 14)
for G. Summation with respect to i = 1, 2, 3 is implied and the êi are Cartesian
basis vectors. The terms which are gradients could be written as divergences, e.g
∇r[B ·M] = ∇r • [(B ·M)I], where I is the unity tensor. As in the case of the energy
conservation law, the expression containing the difference of the delta functions
can be transformed, with (E 1) taken into account, to read

∇r •
∑
p.s.

∫
d3R dU dJ Bf

{〈
d(r;R, x)

[
G− m

Dv

Dt

]〉}
. (105)

Integration of (104) with respect to r yields the following expression for the total
momentum P of the system:

P =
∫ {

1
4πc

(E× B) +
1
c
(P× B) +

∑
p.s.

∫
dU dJ [Bf〈mv〉]R=r

}
d3r. (106)

After the following derivation of the local angular momentum conservation law,
we obtain an alternative expression for the local momentum conservation law in
which all the tensors appearing in the spatial part are obviously symmetric.

5.3.3. Local angular momentum conservation. As usual, the local angular mo-
mentum conservation law is obtained from infinitesimal rotational invariance. We
consider infinitesimal rotations ζR = εrot ×R or, with the argument r, ζr = εrot × r,
as defined by (C 1) with vanishing parallel shifts εtrans = 0. As in the derivation of
the local energy and momentum conservation laws, one obtains an expression for
δ̄Ltot(r, t) corresponding to (91) and (100), namely

δ̄Ltot(r, t) = δ̄ELLtot(r, t) = δ̄LM(r, t) = −ζr · ∇LM(r, t)

= −(εrot × r) · ∇LM(r, t)

= εrot · ∇ ×
[

1
8π

[E2(r, t) − B2(r, t)]r
]

. (107)

https://doi.org/10.1017/S0022377804003034 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377804003034


Kinetic theories: conservation laws 777

The variations of S, Φ and A owing to an infinitesimal rotation (and a simultan-
eous gauge transformation) are given by (C 31) and (C 22)–(C 25),

(δ̄combS)con − 〈(δ̄δ̄Aρ) · p〉 = −εrot · 〈x × mv〉, (108)

δ̄combΦ(x, t) = εrot · (x × E(x, t)), δ̄combΦ(r, t) = εrot · (r× E(r, t)), (109)

δ̄combA(x, t) = (εrot × x) × B(x, t), δ̄combA(r, t) = (εrot × r) × B(r, t). (110)

The equation corresponding to (94) is

δ̄LM(r, t) = δ̄Φ
1
4π

∇ · E+ δ̄A ·
[

1
4πc

∂E
∂t

− 1
4π

∇ × B
]

− εrot · 1
4π

∇ • [E(r× E)] + εrot · 1
4πc

∂

∂t
[r× (E× B)]

− εrot · 1
4π

∇ × (B2r) − εrot · 1
4π

∇ • [B(r× B)], (111)

where E(r × E) and B(r × B) are dyadics built by the vectors E and r × E and B
and r × B, respectively. Use was made of Maxwell’s equations and of the relations
∇ · (Eδ̄combΦ) = εrot · (∇ • [E(r×E)]) and ∇ · [(δ̄combA) ×B] = εrot · ∇ × (B2r) + εrot ·
(∇ • [B(r×B)]). The terms ∼δ̄Φ and δ̄A compensate for equal terms in δ̄ELδ̄ΦLK(r, t)
and δ̄ELδ̄ALK(r, t), respectively.
By setting the right-hand side of (107) equal to that of (93), evaluated with

(108)–(111), one obtains the local angular momentum conservation law at (r, t):
∂

∂t

∣∣∣∣
r

[
1

4πc
r× (E× B)

]
+

∂

∂t

∣∣∣∣
r

∑
p.s.

∫
dU dJ [Bf〈x × mv〉]R=r +

∂

∂t

∣∣∣∣
r

[
r×

[
1
c
P× B

]]

− ∇r ×
[

1
8π

[E2 + B2]r
]

− ∇r •
[

1
4π

[E(r× E) + B(r× B)]
]

+ ∇r •
∑
p.s.

∫
dU dJ [Bf(VR〈x × mv〉)]R=r − ∇r • [P(r× E)]

+ ∇r • [B(r×M)] + ∇r × [(B ·M)r] +
∂

∂ri

[
r×

[
∂B
∂r

· Mi

]
+ Mi × B

]
+

∑
p.s.

∫
d3R dU dJ Bf

×
{〈

(δ(r− R) − δ(r− x))
[
x ×

(
G− m

Dv

Dt

)
+ mv × Dx

Dt

]〉}
= 0, (112)

where the last terms multiplying the delta functions were obtained by making use
of (A 14), (A 23) and (E 8). Summation with respect to i = 1, 2, 3 is, again, implied.
As in the case of the energy and momentum conservation laws, the expression

containing the difference of the delta functions can be transformed, with (E 1) taken
into account, to read

∇r •
∑
p.s.

∫
d3R dU dJ Bf

{〈
d(r;R, x)

[
x ×

(
G− m

Dv

Dt

)
+ mv × Dx

Dt

]〉}
. (113)
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Integration of (112) with respect to r yields the following expression for the total
angular momentum L of the system:

L =
∫ {

r×
[

1
4πc

(E× B) +
1
c
(P× B) +

∑
p.s.

∫
dU dJ [Bf〈mv〉]R=r

]

+
∑
p.s.

∫
dU dJ [Bf〈ρ × mv〉]R=r

}
d3r, (114)

where the relation δ(r− R)〈x × mv〉 = δ(r− R)[r× 〈mv〉 + 〈ρ × mv〉] was used.

5.3.4. Alternative form for the local momentum conservation law. In the following,
the local momentum conservation law is expressed in a form in which all the tensors
appearing in the spatial part are obviously symmetric. This expression, together
with the local energy conservation law, then immediately allows one to obtain the
symmetric (with respect to the spatial components) energy–momentum tensor.
By building the vector product of the momentum conservation law (104) with

r and subtracting the result from the angular momentum conservation law (112),
one obtains in a few steps,∑

p.s.

∫
dU dJ [BfVR × 〈mv〉]R=r − P× E+ B×M+ êi ×

[(
∂B
∂r

· Mi

)]

+
∑
p.s.

∫
d3R dU dJ Bf

〈
d(r;R, x) ×

[
G− m

Dv

Dt

]〉

= − ∂

∂t

∣∣∣∣
r

∑
p.s.

∫
dU dJ [Bf〈(x − r) × mv〉]R=r

− ∇r •
∑
p.s.

∫
dU dJ [Bf(VR〈(x − r) × mv〉)]R=r

− ∇r • [êi(Mi × B)]

− ∇r •
∑
p.s.

∫
d3R dU dJ Bf

×
{〈
d(r;R, x)

[
(x − r) ×

(
G− m

Dv

Dt

)
+ mv × Dx

Dt

]〉}
. (115)

The validity of this expression can be confirmed in a complicated way by direct
calculation using the definitions of P, M, Mi and several expressions from
Appendix A. The curl of (115), with the generally valid relations

∇ × [c× f ] = −∇ • [cf − fc] (116)

and

∇ × [∇ • (gh)] =
∂

∂ri
[∇ × gih] = ∇ • [êi(∇ × (gih))]

= ∇ • [êi(∇ × (gih)) + (∇ × (gih))êi] (117)
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for arbitrary vectors c, f , g, h taken into account, yields

∇r •
∑
p.s.

∫
dU dJ [Bf(VR〈mv〉 − 〈mv〉VR)]R=r − ∇r • [PE− EP]

+ ∇r • [BM−MB] + ∇r •
[
êi

(
∂B
∂r

· Mi

)
−

(
∂B
∂r

· Mi

)
êi

]
+ ∇r •

∑
p.s.

∫
d3R dU dJ Bf

{〈
d(r;R, x)

(
G− m

Dv

Dt

)

−
(
G− m

Dv

Dt

)
d(r;R, x)

〉}
=

∂

∂t

∣∣∣∣
r
∇r ×

[ ∑
p.s.

∫
dU dJ [Bf〈(x − r) × mv〉]R=r

]

+ ∇r ×
[

∇r •
∑
p.s.

∫
dU dJ [Bf(VR〈(x − r) × mv〉)]R=r

]
+ ∇r × [∇r • [êi (Mi × B)]]

+ ∇r ×
[

∇r •
∑
p.s.

∫
d3R dU dJ Bf

×
{〈

d(r;R, x)
[
(x − r) ×

(
G− m

Dv

Dt

)
+ mv × Dx

Dt

]〉}]
=

∂

∂t

∣∣∣∣
r
∇r ×

[ ∑
p.s.

∫
dU dJ [Bf〈(x − r) × mv〉]R=r

]

+ ∇r •
[
êi

(
∇r ×

∑
p.s.

∫
dU dJ [Bf(VR · êi)〈(x − r) × mv〉]R=r

)

+
(

∇r ×
∑
p.s.

∫
dU dJ [Bf(VR · êi)〈(x − r) × mv〉]R=r

)
êi

]
+ ∇r • [êi(∇r × [Mi × B]) + (∇r × [Mi × B])êi]

+ ∇r •
[
êi

(
∇r ×

∑
p.s.

∫
d3R dU dJ Bf

×
{〈

(d(r;R, x) · êi)
[
(x − r) ×

(
G− m

Dv

Dt

)
+ mv × Dx

Dt

]〉})
+

(
∇r ×

∑
p.s.

∫
d3R dU dJ Bf

{〈
(d(r;R, x) · êi)

×
[
(x − r) ×

(
G− m

Dv

Dt

)
+ mv × Dx

Dt

]〉})
êi

]
. (118)

By introducing the definitions

s := ρ × mv, (119)
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Wis(r, t) := ∇r ×
∑
p.s.

∫
dU dJ [Bf(VR · êi)〈s〉]R=r, (120)

WMi
(r, t) := ∇r × [Mi × B], (121)

Wid(r, t) := ∇r ×
∑
p.s.

∫
d3R dU dJ Bf

×
{〈

(d(r;R, x) · êi)
[
(x − r) ×

(
G− m

Dv

Dt

)
+ mv × Dx

Dt

]〉}
, (122)

Wi = Wis +WMi
+Wid, (123)

the right-hand side of (118) can be written as

∂

∂t

∣∣∣∣
r

[
∇r ×

∑
p.s.

∫
dU dJ [Bf〈s〉]R=r

]
+ ∇r • [êiWi +Wiêi]. (124)

This result allows one to express the spatial part of the local momentum conserva-
tion law (104) in terms of symmetric tensors only. By writing PE = [PE+EP]/2 +
[PE− EP]/2, and similarly for other terms, one then obtains

∂

∂t

[
1

4πc
(E× B)

]
+

∂

∂t

∑
p.s.

∫
dU dJ [Bf〈mv〉]R=r

+
∂

∂t

[
1
c
P× B

]
+

∂

∂t

[
∇r × 1

2

∑
p.s.

∫
dU dJ [Bf〈s〉]R=r

]

+ ∇r
[

1
8π

[E2 + B2]
]

− ∇r •
[

1
4π

[EE+ BB]
]

+ ∇r •
∑
p.s.

∫
dU dJ

[
Bf

1
2
(VR〈mv〉 + 〈mv〉VR)

]
R=r

− ∇r • 1
2
[PE+ EP] + ∇r • 1

2
[BM+MB]

− ∇r[B ·M] + ∇r • 1
2

[
êi

(
∂B
∂r

· Mi

)
+

(
∂B
∂r

· Mi

)
êi

]
+ ∇r •

∑
p.s.

∫
d3R dU dJ Bf

×
{

1
2

〈
d(r;R, x)

[
G− m

Dv

Dt

]
+

[
G− m

Dv

Dt

]
d(r;R, x)

〉}
+ ∇r • 1

2
[êiWi +Wiêi] = 0. (125)

Again, summation with respect to i = 1, 2, 3 is implied.

5.3.5. Energy–momentum tensor. For describing the energy–momentum tensor it
is convenient to introduce a four-vector representation with

r0 = ct, r = (r1, r2, r3).
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The metric tensor gµν for this system is diagonal, with elements g00 = −1, g11 =
g22 = g33 = 1, which means that the 0-components change their sign when the
index 0 is shifted up and down.
The components of the energy–momentum tensor T can be read from the ex-

pressions for the energy and momentum conservation, (97) and (125), respectively.
From the energy conservation law one obtains

T 00 =
1
8π

[E2 + B2] + E · P+
∑
p.s.

∫
dU dJ

[
Bf

〈
m

2
v2

〉]
R=r

, (126)

T k0 =

[
1
4π
E× (B− 4πM) −

i=3∑
i=1

êi

(
1
c

∂B
∂t

· Mi

)

+
1
c

∑
p.s.

∫
dU dJ

[
BfVR

〈
m

2
v2

〉]
R=r

− 1
c

∑
p.s.

∫
d3R dU dJ Bf

〈
d(r,R, x)

[
eE(x, t) · Dx

Dt
+

∂̂(x,t)Tv

∂t

]〉]
k

,

k = 1, 2, 3. (127)

The momentum conservation law yields the components T 0k and the obviously
symmetric spatial part (T)space of the energy–momentum tensor:

T 0k =
[

1
4π

(E× B) + P× B+ c
∑
p.s.

∫
dU dJ [Bf〈mv〉]R=r

+ c∇r × 1
2

∑
p.s.

∫
dU dJ [Bf〈s〉]R=r

]
k

, (128)

k = 1, 2, 3, and
(T)space = T ik êiêk

=
1
8π

[E2 + B2]I− 1
4π

[EE+ BB] − 1
2
[PE+ EP]

+
1
2
[BM+MB] − (B ·M)I

+
1
2

j=3∑
j=1

[
êj

(
∂B
∂r

· Mj

)
+

(
∂B
∂r

· Mj

)
êj

]

+
1
2

∑
p.s.

∫
dU dJ [Bf(VR〈mv〉 + 〈mv〉VR)]R=r

+
1
2

∑
p.s.

∫
d3R dU dJ Bf

×
{〈
d(r,R, x)

[
G− m

Dv
Dt

]
+

[
G− m

Dv
Dt

]
d(r,R, x)

〉}

+
1
2

j=3∑
j=1

[êjWj +Wj êj ] , (129)
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where I is the unity tensor. It should again be remarked that the symmetry of
the energy–momentum tensor with respect to the spatial components is the only
symmetry required for non-relativistic theories. Within the framework of drift-
kinetic theory, the symmetric spatial part of the energy–momentum tensor can be
obtained directly from the momentum conservation law in the form given by (104).
It is not very difficult to show, although at some length, that the conservation

laws for energy, momentum and angular momentum, and the negative of the
energy–momentum tensor obtained here reduce in the drift-kinetic case to the
expressions found in [11].

6. Summary
This paper is a continuation of the work on local energy- andmomentum-conserving
Maxwell-collisionless kinetic theories begun in [1,2]. These theories are based on a
fully gauge-invariant Lagrangian. As concerns the kinetic part of this Lagrangian,
three specific methods are used: first, Kruskal’s formal infinite-series formalism for
finding gyrophase-averaging coordinates for the particle orbits [13]; second, Dirac’s
constraint theory for obtaining a Hamiltonian for the particle motion from the non-
standard phase-space particle Lagrangian in averaging coordinates [15, 16]; and,
third, the Hamilton–Jacobi equation as an intermediate tool providing a Eulerian
description of the particle motion. Within this kind of theory the following results
were obtained.
1. A clearly defined kinetic density (78).

2. The kinetic equation for each particle species (45).

3. The polarization P (62).

4. The magnetization M (68)–(71).

5. The charge density ρ (59)–(61).

6. The current density j (65)–(71).

7. The local energy conservation law (97).

8. The local momentum conservation law (104) and (125).

9. The local angular momentum conservation law (112).

10. Physically very clear expressions for the total energy, momentum and angular
momentum, (99), (106) and (114), respectively.

11. The symmetric energy–momentum tensor (symmetric with respect to the spa-
tial components only, as required in non-relativistic theories) (126)–(129).

The conservation laws for energy, momentum and angular momentum became
very clear by expressing them in terms of the polarization, the magnetization and
a third, very transparent expression Tv defined in (A 10). This transparency also
concerns the occurrence of a non-local term in each of the three conservation laws.

Appendix A. Symbols and useful definitions
The following definitions are useful for describing variations involving δ̄Φ
and δ̄A.
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Let K (gi(R, U ;J ; t), hj(x, t)) be any function depending on a set of functions
gi(R, U ;J ; t) and/or functions hj(x, t), e.g. K = (m/2)U2 + const.B(R, t) + eΦ(x, t).
We then define the following quantities and operators referring to the arguments
of the functions gi(R, U ;J ; t) and hj(x, t):

∂(R,U ;J;t)K

∂R
=

∑
i

∂gi

∂R

∣∣∣∣
U,J,t

∂K

∂gi
, (A 1)

∂(R,U ;J;t)K

∂t
=

∑
i

∂gi

∂t

∣∣∣∣
R,U,J

∂K

∂gi
, (A 2)

∂(x,t)K

∂x
=

∑
j

∂hj

∂x

∣∣∣∣
t

∂K

∂hj
, (A 3)

∂(x,t)K

∂t
=

∑
j

∂hj

∂t

∣∣∣∣
x

∂K

∂hj
, (A 4)

and, correspondingly, for the derivatives with respect to U and J in gi(R, U ;J ; t).
The time derivative at constant R,U, J, φ is therefore given by

∂K

∂t

∣∣∣∣
R,U,J,φ

=
∂(R,U ;J;t)K

∂t
+

∂(x,t)K

∂t
+

∂x

∂t
·
∂(x,t)K

∂x
, (A 5)

and, correspondingly,

∂K

∂R

∣∣∣∣
U,J,φ,t

=
∂(R,U ;J;t)K

∂R
+

∂x

∂R
·
∂(x,t)K

∂x
, (A 6)

∂K

∂U

∣∣∣∣
R,J,φ,t

=
∂(R,U ;J;t)K

∂U
+

∂x

∂U
·
∂(x,t)K

∂x
. (A 7)

The time derivative in the coordinates R, U, J, φ; t, without the fast gyroangle
dependence, is defined as

D

Dt
≡ ∂

∂t

∣∣∣∣
R,U,J,φ

+ VR · ∂

∂R
+ VU

∂

∂U
, (A 8)

and, therefore,

DK

Dt
=

∂K

∂t
+ VR · ∂K

∂R
+ VU

∂K

∂U

=
∂(x,t)K

∂t
+

∂x

∂t
·
∂(x,t)K

∂x
+ VR · ∂x

∂R
·
∂(x,t)K

∂x
+ VU

∂x

∂U
·
∂(x,t)K

∂x

+
∂(R,U ;J;t)K

∂t
+ VR ·

∂(R,U ;J;t)K

∂R
+ VU

∂(R,U ;J;t)K

∂U

=
∂(x,t)K

∂t
+

Dx

Dt
·
∂(x,t)K

∂x
+

∂(R,U ;J;t)K

∂t
+ VR ·

∂(R,U ;J;t)K

∂R
+ VU

∂(R,U ;J;t)K

∂U
.

(A 9)

We further define

Tv ≡ m

2
v2 − mv · Dx

Dt
=

m

2
v2 − mv ·

[
VR +

Dρ

Dt

]
, (A 10)
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with

ρ ≡ x(R, U, J, φ; t) − R. (A 11)

∂̂Tv ≡ m

2
∂v2 − m (∂v) ·

[
VR +

Dρ

Dt

]
, (A 12)

∂̂(x,t)Tv ≡ m

2
∂(x,t)v

2 − m
(
∂(x,t)v

)
·
[
VR +

Dρ

Dt

]
, (A 13)

G ≡ m
Dv

Dt
− eE(x, t) − e

c

[
VR +

Dρ

Dt

]
× B(x, t) +

∂̂(x,t)Tv

∂x
, (A 14)

Tρ ≡ ρ · G, ∂̂Tρ = (∂ρ) · G, (A 15)

T ≡ Tv + Tρ. (A 16)

Thus, in the case of a product, the differential operator ∂̂ acts only on the first
term.
In all cases of interest here, ρ depends neither on the electric field nor on B(x, t).

It depends on the fields only through B(R, t) and B, Ri
(R, t). One can then sim-

plify some quantities in δ̄δ̄ΦLK(r, t) and δ̄δ̄ALK(r, t) according to the following
relations:

∂̂(R,U,J;t)〈T〉
∂E(R, t)

=
∂̂(R,U,J;t)〈Tv〉

∂E(R, t)
, (A 17)

∂̂(x,t)T
∂E(x, t)

=
∂̂(x,t)Tv

∂E(x, t)
, (A 18)

∂̂(x,t)T
∂B(x, t)

=
∂̂(x,t)Tv

∂B(x, t)
, (A 19)

∂̂(x,t)T
∂B, xi

(x, t)
=

∂̂(x,t)Tv

∂B, xi
(x, t)

. (A 20)

Further useful relations are

∂̂Tv

∂t

∣∣∣∣∣
R,U,J,φ

=
∂̂(R,U,J;t)Tv

∂t
+

∂̂(x,t)Tv

∂t
+

∂x

∂t
·
∂̂(x,t)Tv

∂x
, (A 21)

∂̂(x,t)Tv

∂t
=

∂E(x, t)
∂t

·
∂̂(x,t)Tv

∂E(x, t)
+

∂B(x, t)
∂t

·
∂̂(x,t)Tv

∂B(x, t)
+

∂B, xi
(x, t)

∂t
·

∂̂(x,t)Tv

∂B, xi
(x, t)

,

(A 22)

∂̂(x,t)Tv

∂x
=

∂E(x, t)
∂x

·
∂̂(x,t)Tv

∂E(x, t)
+

∂B(x, t)
∂x

·
∂̂(x,t)Tv

∂B(x, t)
+

∂B, xi
(x, t)

∂x
·

∂̂(x,t)Tv

∂B, xi
(x, t)

,

(A 23)
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∂̂(R,U,J;t)Tv

∂t
=

∂E(R, t)
∂t

·
∂̂(R,U,J;t)Tv

∂E(R, t)
+

∂B(R, t)
∂t

·
∂̂(R,U,J;t)Tv

∂B(R, t)

+
∂B, Ri

(R, t)
∂t

·
∂̂(R,U,J;t)Tv

∂B, Ri
(R, t)

, (A 24)

and

∂̂Tρ

∂t

∣∣∣∣∣
R,U,J,φ

=
∂̂(R,U,J;t)Tρ

∂t
, (A 25)

∂̂(R,U,J;t)Tρ

∂t
=

∂B(R, t)
∂t

·
∂̂(R,U,J;t)Tρ

∂B(R, t)
+

∂B, Ri
(R, t)

∂t
·
∂̂(R,U,J;t)Tρ

∂B, Ri
(R, t)

. (A 26)

There is no term (∂E(R, t)/∂t) · (∂̂(R,U,J;t)Tρ/∂E(R, t)) in the last expression be-
cause ρ does not depend on E(R, t).

Appendix B. Transformations used in the derivation of δ̄δ̄ΦLK(r, t)
and δ̄δ̄ALK(r, t)

The generally valid relation g(x)δ(x − x0) = g(x0)δ(x − x0), for any function g(x),
can be used to transform several expressions which appear in δ̄δ̄ΦLK(r, t) and
δ̄δ̄ALK(r, t). Owing to the properties of the delta function, it is possible to write
the terms in different, equivalent forms. The following are, therefore, not the only
possible expressions.
The following expressions are required for evaluation of δ̄δ̄ΦLK(r, t):

B(R, U, J ; t)f(R, U, J ; t)δ(r − R)
∂δ̄Φ(R, t)

∂R
·
∂̂(R,U,J;t)〈Tv〉

∂E(R, t)

= B(R, U, J ; t)f(R, U, J ; t)δ(r − R)
∂δ̄Φ(r, t)

∂r
·
∂̂(R,U,J;t)〈Tv〉

∂E(R, t)

=
∂

∂r
·
[
δ(r− R)δ̄Φ(r, t)B(R, U, J ; t)f(R, U, J ; t)

∂̂(R,U,J;t)〈Tv〉
∂E(R, t)

]

− δ̄Φ(r, t)
∂

∂r
·
[
δ(r− R)B(R, U, J ; t)f(R, U, J ; t)

∂̂(R,U,J;t)〈Tv〉
∂E(R, t)

]
, (B 1)

and

B(R, U, J ; t)f(R, U, J ; t)

〈
δ(r− x)

∂δ̄Φ(x, t)
∂x

·
∂̂(x,t)Tv

∂E(x, t)

〉

= B(R, U, J ; t)f(R, U, J ; t)

〈
δ(r− x)

∂δ̄Φ(r, t)
∂r

·
∂̂(x,t)Tv

∂E(x, t)

〉
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=
∂

∂r
·
[
δ̄Φ(r, t)B(R, U, J ; t)f(R, U, J ; t)

〈
δ(r− x)

∂̂(x,t)Tv

∂E(x, t)

〉]

− δ̄Φ(r, t)
∂

∂r
·
[

B(R, U, J ; t)f(R, U, J ; t)

〈
δ(r− x)

∂̂(x,t)Tv

∂E(x, t)

〉]
. (B 2)

As in (85), some terms in (87) can be transformed by setting δ(r − R)g(x) =
δ(r−x)g(x)+[δ(r−R)−δ(r−x)]g(x). The following terms then appear in δ̄δ̄ALK(r, t):

δ(r− R)Bf
1
c

∂δ̄A(R, t)
∂t

∣∣∣∣
R

·
∂̂(R,U,J;t)〈Tv〉

∂E(R, t)

= δ(r− R)Bf
1
c

∂δ̄A(r, t)
∂t

∣∣∣∣
r

·
∂̂(R,U,J;t)〈Tv〉

∂E(R, t)

=
1
c

∂

∂t

∣∣∣∣
r

[
δ̄A(r, t) · Bfδ(r− R)

∂̂(R,U,J;t)〈Tv〉
∂E(R, t)

]

− δ̄A(r, t) · 1
c

∂

∂t

∣∣∣∣
r

[
Bfδ(r− R)

∂̂(R,U,J;t)〈Tv〉
∂E(R, t)

]
, (B 3)

δ(r− x)Bf
1
c

∂δ̄A(x, t)
∂t

∣∣∣∣
x

·
∂̂(x,t)Tv

∂E(x, t)
= δ(r− x)Bf

1
c

∂δ̄A(r, t)
∂t

∣∣∣∣
r

·
∂̂(x,t)Tv

∂E(x, t)

=
1
c

∂

∂t

∣∣∣∣
r

[
δ̄A(r, t) · Bfδ(r− x)

∂̂(x,t)Tv

∂E(x, t)

]

− δ̄A(r, t) · 1
c

∂

∂t

∣∣∣∣
r

[
Bfδ(r− x)

∂̂(x,t)Tv

∂E(x, t)

]
,

(B 4)

δ(r− R)Bf(∇R × δ̄A(R, t)) ·
∂̂(R,U,J;t)〈T〉

∂B(R, t)

= δ(r− R)Bf(∇r × δ̄A(r, t)) ·
∂̂(R,U,J;t)〈T〉

∂B(R, t)

=
∂

∂r
·
[
δ̄A(r, t) × Bfδ(r− R)

∂̂(R,U,J;t)〈T〉
∂B(R, t)

]

= δ̄A(r, t) · ∇r ×
[

Bfδ(r− R)
∂̂(R,U,J;t)〈T〉

∂B(R, t)

]
, (B 5)
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δ(r− x)Bf(∇x × δ̄A(x, t)) ·
∂̂(x,t)T
∂B(x, t)

= δ(r− x)Bf(∇r × δ̄A(r, t)) ·
∂̂(x,t)T
∂B(x, t)

=
∂

∂r
·
[
δ̄A(r, t) × Bfδ(r− x)

∂̂(x,t)T
∂B(x, t)

]

= δ̄A(r, t) · ∇r ×
[

Bfδ(r− x)
∂̂(x,t)T
∂B(x, t)

]
, (B 6)

δ(r− R)Bf

(
∂

∂Ri
∇R × δ̄A(R, t)

)
·
∂̂(R,U,J;t)〈T〉
∂B, Ri

(R, t)

= δ(r− R)Bf

(
∂

∂ri
∇r × δ̄A(r, t)

)
·
∂̂(R,U,J;t)〈T〉
∂B, Ri

(R, t)

=
∂

∂ri

[
Bf(∇r × δ̄A(r, t)) · δ(r− R)

∂̂(R,U,J;t)〈T〉
∂B, Ri

(R, t)

]

− (∇r × δ̄A(r, t)) · ∂

∂ri

[
Bfδ(r− R)

∂̂(R,U,J;t)〈T〉
∂B, Ri

(R, t)

]

=
∂

∂ri

[
Bf(∇r × δ̄A(r, t)) · δ(r− R)

∂̂(R,U,J;t)〈T〉
∂B, Ri

(R, t)

]

− ∂

∂r
·
[
δ̄A(r, t) × ∂

∂ri

[
Bfδ(r− R)

∂̂(R,U,J;t)〈T〉
∂B, Ri

(R, t)

]]

− (δ̄A(r, t)) · ∇r × ∂

∂ri

[
Bfδ(r− R)

∂̂(R,U,J;t)〈T〉
∂B, Ri

(R, t)

]
, (B 7)

δ(r− x)Bf

(
∂

∂xi
∇x × δ̄A(x, t)

)
·

∂̂(x,t) 〈T〉
∂B, xi

(x, t)

= δ(r− x)Bf

(
∂

∂ri
∇r × δ̄A(r, t)

)
·

∂̂(x,t)〈T〉
∂B, xi

(x, t)

=
∂

∂ri

[
Bf(∇r × δ̄A(r, t)) · δ(r− x)

∂̂(x,t)〈T〉
∂B, xi

(x, t)

]

− (∇r × δ̄A(r, t)) · ∂

∂ri

[
Bfδ(r− x)

∂̂(x,t) 〈T〉
∂B, xi

(x, t)

]
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=
∂

∂ri

[
Bf(∇r × δ̄A(r, t)) · δ(r− x)

∂̂(x,t)〈T〉
∂B, xi

(x, t)

]

− ∂

∂r
·
[
δ̄A(r, t) × ∂

∂ri

[
Bfδ(r− x)

∂̂(x,t)〈T〉
∂B, xi

(x, t)

]]

− (δ̄A(r, t)) · ∇r × ∂

∂ri

[
Bfδ(r− x)

∂̂(x,t)〈T〉
∂B, xi

(x, t)

]
. (B 8)

Appendix C. Gauge-invariant shift variations
The goal here is to describe the effect of shifts in space and time by gauge-invariant
shift variations of the quantities which appear in δ̄L(r, t). One thus directly obtains
the necessarily gauge-invariant expressions entering the local energy, momentum
and angular momentum conservation laws. This is done as explained in detail in
[14], although the problem of interest here has additional difficulties because in
some terms the potentials depend on (R, t), and in other terms on (x(R, U, J, φ; t), t).
This requires special treatment.
We consider here Eulerian variations of scalars and vectors, brought about by

infinitesimal time shifts, spatial translations and rotations of the whole system to
which they belong.
Let the shifted quantities be characterized by an asterisk ∗. Any point r of the

unshifted system is moved to a corresponding, shifted point r∗ given by

r∗ = r+ ζr, ζr ≡ εtrans + εrot × r, (C 1)

where εtrans and εrot are constant vectors. The new time in the shifted system relates
to the old time in the unshifted system according to

t∗ = t + εt, (C 2)

εt being a constant. In the present context we consider arbitrary points r. In
particular, we consider the gyrocentre position R and the particle position x.
For any scalar quantity, the new value at the shifted position and time is equal

to the old value at the unshifted position and time:

Φ∗(r∗, t∗) = Φ(r, t). (C 3)

The Eulerian variation of a quantity is defined as the difference between the new
and old values, both taken at the old, unshifted point and time. For a scalar, one
has

δ̄shiftΦ(r, t) = Φ∗(r, t) − Φ(r, t)

= −ζr · ∂Φ(r, t)
∂r

− εt
∂Φ(r, t)

∂t
. (C 4)

Any vector w(r, t) transforms like the gradient of a scalar. The transformation law
is obtained in the following way. The relation

∂

∂r
Φ∗(r∗, t∗) =

∂

∂r
Φ(r, t) (C 5)

is valid because of (C 3). Then, by identifying the vector w(r, t) with the gradient
of Φ,

w(r, t) ≡ ∂Φ(r, t)
∂r

, (C 6)
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one obtains

w∗(r∗, t∗) =
∂Φ∗(r∗, t∗)

∂r∗
=

∂r
∂r∗

· ∂Φ∗(r∗, t∗)
∂r

=
∂r
∂r∗

· ∂Φ(r, t)
∂r

=
∂r
∂r∗

·w(r, t). (C 7)

With r∗ expressed through r by inverting (C 1), this yields

w∗(r∗, t∗) = w(r, t) + εrot × w(r, t). (C 8)

With the first-order expansion

w∗(r∗, t∗) = w∗(r, t) + ζr · ∂w(r, t)
∂r

, (C 9)

the expression for δ̄shiftw(r, t) is then given by

δ̄shiftw(r, t) = w∗(r, t) − w(r, t) = −ζr · ∂w
∂r

+ εrot × w− εt
∂w
∂t

. (C 10)

Details concerning these transformations can be found in, for example, Appen-
dix D of [17]. The following properties of the displacements are easily derived:

∇r · ζr = 0, ∇r × ζr = 2εrot, (w · ∇r)ζr = εrot × w. (C 11)

It is important to observe that in scalars and vectors which also depend on the
gyroangle φ, and on U and J , these three quantities must not be varied, since
they are defined relatively to system vectors which are essentially related to the
magnetic field. Examples of such vectors are ρ(R, U, J, φ; t) and the particle position
x = R + ρ. In particular, it is interesting to illustrate the validity of (C 10) for the
variation δ̄shiftρ of ρ(R, U, J, φ; t). This can be seen in the following way. A point

x = R+ ρ(R, U, J, φ; t) (C 12)

is taken by shifts ζR, εt to a new point

x∗ = (R+ ζR) + ρ∗(R+ ζR, U, J, φ; t + εt). (C 13)

On the other hand, one also has

x∗ = x + ζx

= R+ ρ(R, U, J, φ; t) + ζR + εrot × ρ(R, U, J, φ; t) (C 14)

since ζx = εrot × x + εtrans = ζR + εrot × ρ. The equality of the right-hand sides of
(C 13) and (C 14) yields

ρ∗(R+ ζR, U, J, φ; t + εt) = ρ(R, U, J, φ; t) + εrot × ρ(R, U, J, φ; t), (C 15)

from which it follows that

δ̄shiftρ = −ζR · ∂ρ

∂R
+ εrot × ρ − εt

∂ρ

∂t
. (C 16)

The origin of this change lies in the fact that the gyromotion at the old point in the
shifted system is different from the gyromotion at the old point in the unshifted
system.
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The shift variations of A(x, t) are

δ̄shiftA(x, t) = −ζx · ∂A(x, t)
∂x

+ εrot × A(x, t) − εt
∂A(x, t)

∂t

= − ∂

∂x
[ζx · A(x, t)] + A(x, t) ·

∂ζx

∂x
+ ζx × B(x, t)

+ A(x, t) × (∇x × ζx) + εrot × A(x, t) − εt
∂A(x, t)

∂t

= ζx × B(x, t) + εtcE(x, t) − ∂

∂x
[ζx · A(x, t) − εtcΦ(x, t)], (C 17)

where use was made of (C 11). The shift variations of Φ(x, t) are

δ̄shiftΦ(x, t) = −ζx · ∂Φ(x, t)
∂x

− εt
∂Φ(x, t)

∂t

= ζx · E(x, t) +
1
c

∂

∂t

∣∣∣∣
x

[ζx · A(x, t) − εtcΦ(x, t)]. (C 18)

With Ψ(x, t) taken as the generating function for an infinitesimal gauge transform-
ation, the gauge variations of A(x, t) and Φ(x, t) are, respectively,

δ̄gaugeA(x, t) =
∂

∂x
Ψ(x, t) (C 19)

and

δ̄gaugeΦ(x, t) = −1
c

∂

∂t
Ψ(x, t). (C 20)

By choosing the generating function Ψ(x, t) for the infinitesimal gauge transform-
ations as

Ψ(x, t) = ζx · A(x, t) − εtcΦ(x, t), (C 21)

one then obtains the combined gauge-invariant expressions

δ̄combA(x, t) = δ̄shiftA(x, t) + δ̄gaugeA(x, t) = ζx × B(x, t) + εtcE(x, t) (C 22)

and

δ̄combΦ(x, t) = δ̄shiftΦ(x, t) + δ̄gaugeΦ(x, t) = ζx · E(x, t). (C 23)

The corresponding expressions with the argument (r, t) are

δ̄combA(r, t) = δ̄shiftA(r, t) + δ̄gaugeA(r, t) = ζr × B(r, t) + εtcE(r, t) (C 24)

and

δ̄combΦ(r, t) = δ̄shiftΦ(r, t) + δ̄gaugeΦ(r, t) = ζr · E(r, t). (C 25)

The shift variation of S is obtained by requiring that the orbits in the shifted system
be equal to those in the unshifted system. This means

S∗(R+ ζR, U ;αi;J ; t + εt) = S(R, U ;αi;J ; t), (C 26)

which yields, as expected,

δ̄shiftS = −ζR · ∂S

∂R
− εt

∂S

∂t
. (C 27)
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After re-introducing PR and PU instead of the αi, substituting ∂S/∂R→PR,
∂S/∂t → − HD and applying the Dirac constraints PR = (e/c)Â and PU = (e/c)ÂU,
one obtains

(δ̄shiftS)con = −ζR ·
〈

∂x

∂R
· p

〉
− εt

〈
∂x

∂t
· p

〉
+ εt〈H〉

= −ζR · 〈p〉 − ζR ·
〈

∂ρ

∂R
· p

〉
− εt

〈
∂ρ

∂t
· p

〉
+ εt〈H〉

= −〈ζx · p − (εrot × ρ) · p〉 − ζR ·
〈

∂ρ

∂R
· p

〉
− εt

〈
∂ρ

∂t
· p

〉
+ εt〈H〉

= −〈ζx · mv〉 + εt

〈
m

2
v2

〉
+

〈(
−εt

∂ρ

∂t
− ζR · ∂ρ

∂R
+ (εrot × ρ)

)
· p

〉
− e

c
〈ζx · A(x, t) − εtcΦ(x, t)〉

= −〈ζx · mv〉 + εt

〈
m

2
v2

〉
+ 〈(δ̄shiftρ) · p〉 − e

c
〈Ψ(x, t)〉, (C 28)

where (C 16) and (C 21) were used. The change of S owing to a gauge transformation
with the generating function Ψ(x, t) is given by (30):

δ̄gaugeS =
e

c
〈Ψ(x, t)〉. (C 29)

Thus, the effect on S of a shift and a simultaneous gauge transformation is

(δ̄combS)con = (δ̄shiftS)con + δ̄gaugeS

= −〈ζx · mv〉 + εt

〈
m

2
v2

〉
+ 〈(δ̄shiftρ) · p〉. (C 30)

Owing to the dependence of some terms on (x ≡ R + ρ, t), the quantity entering
δ̄LK(r, t) is not simply the usual contribution δ̄S, but δ̄S − 〈(δ̄δ̄Aρ) · p〉, as can be
seen by adding the contribution from δ̄ELδ̄S LK(r, t), (83), and the δ̄δ̄Aρ-dependent
contribution of δ̄ELδ̄ALK(r, t), given by the last two terms of (89), which include the
product (δ̄δ̄Aρ) · p. For shift variations, δ̄δ̄Aρ and δ̄shiftρ are equal since ρ depends
on shift-influenced quantities only through B and its derivatives, and hence on A.
This can be explicitly proved at some length. One thus obtains

(δ̄combS)con − 〈(δ̄δ̄Aρ) · p〉 = −〈ζx · mv〉 + εt

〈
m

2
v2

〉
+ 〈(δ̄shiftρ − δ̄δ̄Aρ) · p〉

= −〈ζx · mv〉 + εt

〈
m

2
v2

〉
= −εtrans · 〈mv〉 − εrot · 〈x × mv〉 + εt

〈m

2
v2

〉
. (C 31)

Appendix D. Energy conservation from the equations of motion
In this appendix, energy conservation is derived from the equations of motion for
the gyrocentres. Owing to the complexity of the problem, this is a good test of the
correctness of the local energy conservation law (97), derived from the variational
principle.
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A relation which will be used, valid for functions F(R, U, J, φ; t), is obtained by
multiplying (72) by δ(r − R)F(R, U, J, φ; t) and integrating in phase space. Since
some terms vanish at the boundaries after integration, and with ∂δ(r − R)/∂R =
−∂δ(r− R)/∂r taken into account, one immediately obtains the relation

∂

∂t

∣∣∣∣
r

∫
d3R dU dJ Bfδ(r− R)〈F〉 =

∫
d3R dU dJ Bfδ(r− R)

〈
DF
Dt

〉
− ∇r ·

∫
d3R dU dJ Bfδ(r− R)VR〈F〉.

(D 1)

The following equation of motion for gyrocentres was derived in [1,2]:

Ê− 1
c
VU

(
∂Â
∂U

− ∂ÂU

∂R

)
+

1
c
VR × B̂ = 0. (D 2)

The definition of the relevant quantities is given in (5)–(23). Scalar multiplication
of (D 2) by VR and the relation

VR ·
(

∂Â
∂U

− ∂ÂU

∂R

)
= c

(
∂Φ̂
∂U

+
1
c

∂ÂU

∂t

)
, (D 3)

which is obtained by scalar multiplication of (5) by (∂Â/∂U − ∂ÂU/∂R), yields the
equation

VR · eÊ− VU

(
e
∂Φ̂
∂U

+
e

c

∂ÂU

∂t

)
= 0. (D 4)

The term eÊ is

eÊ = −e

c

∂Â
∂t

− e
∂Φ̂
∂R

= − ∂

∂t

∣∣∣∣
R,U,J

〈
∂x

∂R
· p

〉
− ∂

∂R

∣∣∣∣
U,J,t

〈
m

2
v2 + eΦ(x, t)

〉
+

∂

∂R

∣∣∣∣
R,U,J

〈
p · ∂x

∂t

〉

=
〈

−
(

∂

∂R
∂x

∂t

)
· p − ∂x

∂R
· ∂(mv)

∂t
− e

c

∂x

∂R
· ∂x

∂t
· ∂A(x, t)

∂x

∣∣∣∣
t

− e

c

∂x

∂R
· ∂A(x, t)

∂t

∣∣∣∣
x

− ∂

∂R

(m

2
v2

)
− e

∂x

∂R
· ∂Φ(x, t)

∂x

∣∣∣∣
t

+
∂(mv)

∂R
· ∂x

∂t
+

(
∂

∂R
∂x

∂t

)
· mv

+
e

c

∂x

∂R
· ∂A(x, t)

∂x

∣∣∣∣
t

· ∂x

∂t
+

e

c

(
∂

∂R
∂x

∂t

)
· A(x, t)

〉
=

〈
∂x

∂R
· eE(x, t) − ∂x

∂R
· ∂(mv)

∂t
− ∂

∂R

(m

2
v2

)
+

∂(mv)
∂R

· ∂x

∂t

+
e

c

∂x

∂R
·
(

∂x

∂t
× B(x, t)

)〉
. (D 5)
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By proceeding in a similar way, the term proportional to VU in (D 4) yields

−
(

e
∂Φ̂
∂U

+
e

c

∂ÂU

∂t

)
=

〈
∂x

∂U
· eE(x, t) − ∂x

∂U
· ∂(mv)

∂t
− ∂

∂U

(
m

2
v2

)

+
∂(mv)

∂U
· ∂x

∂t
+

e

c

∂x

∂U
·
(

∂x

∂t
× B(x, t)

)〉
. (D 6)

Equation (D4) can then be written as〈(
VR · ∂x

∂R
+ VU

∂x

∂U

)
· eE(x, t) −

(
VR · ∂x

∂R
+ VU

∂x

∂U

)
· ∂(mv)

∂t

−
(
VR · ∂

∂R
+ VU

∂

∂U

) (
m

2
v2

)
+

(
VR · ∂(mv)

∂R
+ VU

∂(mv)
∂U

)
· ∂x

∂t

+
e

c

(
VR · ∂x

∂R
+ VU

∂x

∂U

)
·
(

∂x

∂t
× B(x, t)

)〉
= 0 (D 7)

or else〈(
Dx

Dt
− ∂x

∂t

)
·
[
eE(x, t) − ∂(mv)

∂t
+

e

c

∂x

∂t
× B(x, t)

]
− D

Dt

(
m

2
v2

)
+

∂

∂t

(
m

2
v2

)
+

(
D(mv)

Dt
− ∂(mv)

∂t

)
· ∂x

∂t

〉
= 0. (D 8)

With the definition of G in (A 14), this can be expressed as〈
Dx

Dt
· eE(x, t) − D

Dt

(
m

2
v2

)
+

∂

∂t

(
m

2
v2

)
− ∂(mv)

∂t
· Dx

Dt
+

∂x

∂t
·
[
G−

∂̂(x,t)Tv

∂x

]〉

=

〈
Dx

Dt
· eE(x, t) − D

Dt

(
m

2
v2

)
+

∂̂Tv

∂t

∣∣∣∣∣
R,U,J,φ

+
∂̂Tρ

∂t

∣∣∣∣∣
R,U,J,φ

−∂x

∂t
·
∂̂(x,t)Tv

∂x

〉
= 0, (D 9)

where ∂x/∂t = ∂ρ/∂t and (A 12) and (A 15) were used. After multiplication of this
equation by δ(r − R)Bf , summation over the particle species and integration in
phase space, one obtains

∑
p.s.

∫
d3R dU dJ Bfδ(r− R)

〈
Dx

Dt
· eE(x, t) − D

Dt

(
m

2
v2

)

+
∂̂Tv

∂t

∣∣∣∣∣
R,U,J,φ

+
∂̂Tρ

∂t

∣∣∣∣∣
R,U,J,φ

− ∂x

∂t
·
∂̂(x,t)Tv

∂x

〉
= 0. (D 10)

With (65)–(71) and with the substitution

δ(r− R)E(x, t) = δ(r− x)E(x, t) + (δ(r− R) − δ(r− x))E(x, t)

= δ(r− x)E(r, t) + (δ(r− R) − δ(r− x))E(x, t) (D 11)
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taken into account, the first term in (D10) yields∑
p.s.

∫
d3R dU dJ Bfδ(r− R)

〈
Dx

Dt
· eE(x, t)

〉
= E(r, t) · jp-like(r, t)

+
∑
p.s.

∫
d3R dU dJ Bf

〈
(δ(r− R) − δ(r− x))eE(x, t) · Dx

Dt

〉

= E(r, t) ·
[

c

4π
∇r × B(r, t) − 1

4π

∂E(r, t)
∂t

− ∂P(r, t)
∂t

− c∇r ×M(r, t)
]

+
∑
p.s.

∫
d3R dU dJ Bf

〈
(δ(r− R) − δ(r− x))eE(x, t) · Dx

Dt

〉

= − ∂

∂t

[
1
8π

[E2(r, t) + B2(r, t)]
]

+M(r, t) · ∂B(r, t)
∂t

− ∇r ·
[ c

4π
E(r, t) × [(B(r, t) − 4πM(r, t)]

]
− E(r, t) · ∂P(r, t)

∂t

+
∑
p.s.

∫
d3R dU dJ Bf

〈
(δ(r− R) − δ(r− x))eE(x, t) · Dx

Dt

〉
. (D 12)

From the term D(mv2/2)/Dt, one obtains

−
∑
p.s.

∫
d3R dU dJ Bfδ(r− R)

〈
D

Dt

(m

2
v2

)〉

= − ∂

∂t

∣∣∣∣
r

∑
p.s.

∫
d3R dU dJ Bfδ(r− R)

〈m

2
v2

〉
− ∇r ·

∑
p.s.

∫
d3R dU dJ Bfδ(r− R)VR

〈m

2
v2

〉
, (D 13)

where (D 1) was used.
The Tv and Tρ-dependent terms in (D10) yield, with (A 21) and (A 25) taken

into account, the following expression:∑
p.s.

∫
d3R dU dJ Bfδ(r− R)

〈
∂̂Tv

∂t

∣∣∣∣∣
R,U,J,φ

+
∂̂Tρ

∂t

∣∣∣∣∣
R,U,J,φ

− ∂x

∂t
·
∂̂(x,t)Tv

∂x

〉

=
∑
p.s.

∫
d3R dU dJ Bfδ(r− R)

〈
∂̂(R,U,J;t)Tv

∂t
+

∂̂(x,t)Tv

∂t
+

∂̂(R,U,J;t)Tρ

∂t

〉

=
∑
p.s.

∫
d3R dU dJ Bf

〈
δ(r− R)

∂̂(R,U,J;t)Tv

∂t
+ δ(r− x)

∂̂(x,t)Tv

∂t

+ δ(r− R)
∂̂(R,U,J;t)Tρ

∂t
+ (δ(r− R) − δ(r− x))

∂̂(x,t)Tv

∂t

〉
. (D 14)
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With (A 22)–(A 24), (A 26) and the definitions of the polarization P and the mag-
netization M = M1 +M2, M2 = ∂Mi/∂ri in (62) and (68)–(71), this can be written
as ∑

p.s.

∫
d3R dU dJ Bfδ(r− R)

〈
∂̂Tv

∂t

∣∣∣∣∣
R,U,J,φ

+
∂̂Tρ

∂t

∣∣∣∣∣
R,U,J,φ

− ∂x

∂t
·
∂̂(x,t)Tv

∂x

〉

= −∂E(r, t)
∂t

· P(r, t) − ∂B(r, t)
∂t

·M1(r, t) +
(

∂

∂ri

∂B(r, t)
∂t

)
· Mi(r, t)

+
∑
p.s.

∫
d3R dU dJ Bf

〈
(δ(r− R) − δ(r− x))

∂̂(x,t)Tv

∂t

〉
. (D 15)

Here, summation with respect to i = 1, 2, 3 is implied. By inserting (D 12), (D 13)
and (D15) in (D 10), one obtains the local energy conservation law given by (97).
We have thus proved that both the variational principle with Noether’s procedure
and judicious manipulation of the equations of motion of the gyrocentres lead to
the same expression for the local energy conservation law. Noether’s method is,
however, the more elegant way to obtain conservation laws.

Appendix E. Transforming some expressions in the conservation laws
In the expressions for the energy, momentum and angular momentum conservation
laws, (97), (104) and (112), there are terms containing the difference (δ(r−R)−δ(r−
x)). These delta functions are to be considered as functions of r taken at the points
R and x, respectively. We look for a vector field d (r;R, x) satisfying the relation

∇r · d(r;R, x) = δ(r− R) − δ(r− x). (E 1)

This equation is formally the same as that for an electrostatic field 4π|e|d(r;R, x)
produced at r by a positive point charge |e| located at R and a negative point charge
located at x. The solution for d (r;R, x) is the well-known expression

d(r;R, x) =
1
4π

∫
(δ(r′ − R) − δ(r′ − x))

(r− r′)
|(r− r′)|3 d3r′

= − 1
4π

∇r
∫

(δ(r′ − R) − δ(r′ − x))
1

|(r− r′)| d3r′. (E 2)

Finally, we derive a relation concerning the variation of Tv, (A 10), due to
variations of E(x, t), B(x, t) and B, xi

(x, t) brought about by infinitesimal rotations
εrot × x. The results are needed for obtaining a convenient form of the angular
momentum conservation law. The expression in question is the following:

δ̄̂(x,t)Tv ≡ δ̄E(x, t) ·
∂̂(x,t)Tv

∂E(x, t)
+ δ̄B(x, t) ·

∂̂(x,t)Tv

∂B(x, t)
+ δ̄B, xi

(x, t) ·
∂̂(x,t)Tv

∂B, xi
(x, t)

, (E 3)

with

∂̂(x,t)Tv =
m

2
∂(x,t)v

2 − m(∂(x,t)v) ·
[
VR +

Dρ

Dt

]
= m(∂(x,t)v) ·

[
v − Dx

Dt

]
, (E 4)
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where Dx/Dt = VR + Dρ/Dt was used. Therefore, one has

δ̄̂(x,t)Tv =

[
δ̄E(x, t) ·

∂̂(x,t)v

∂E(x, t)
+ δ̄B(x, t) ·

∂̂(x,t)v

∂B(x, t)

+ δ̄B, xi
(x, t) ·

∂̂(x,t)v

∂B, xi
(x, t)

]
· m

[
v − Dx

Dt

]
, (E 5)

which can also be written as

δ̄̂(x,t)Tv = (δ̄δ̄E(x,t),...v) · m

[
v − Dx

Dt

]
. (E 6)

The vector v is given by (21) and (22), and one obtains
(δ̄δ̄E(x,t),...v) = u‖δ̄b(x, t) + u⊥[−sin θδ̄e1(x, t) − cos θδ̄e2(x, t)]

+ δ̄

[
c
E(x, t) × B(x, t)

B(x, t)2

]
= u‖

[
−(εrot × x) · ∂b(x, t)

∂x
+ εrot × b

]
+ · · ·

= −(εrot × x) ·
∂(x,t)v(x, t)

∂x
+ εrot × v. (E 7)

Together with (E 6) this yields

δ̄̂(x,t)Tv = −εrot ·
[
x ×

∂̂(x,t)Tv

∂x
+ mv × Dx

Dt

]
. (E 8)
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