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Abstract In the present paper, which is a direct sequel of our paper [14] joint with Roozbeh Hazrat, we
prove an unrelativized version of the standard commutator formula in the setting of Chevalley groups.
Namely, let Φ be a reduced irreducible root system of rank ≥ 2, let R be a commutative ring and let I, J be
two ideals of R. We consider subgroups of the Chevalley group G(Φ, R) of type Φ over R. The unrelativized
elementary subgroup E(Φ, I) of level I is generated (as a group) by the elementary unipotents xα(ξ),
α ∈ Φ, ξ ∈ I, of level I. Obviously, in general, E(Φ, I) has no chance to be normal in E(Φ, R); its normal
closure in the absolute elementary subgroup E(Φ, R) is denoted by E(Φ, R, I). The main results of
[14] implied that the commutator [E(Φ, I), E(Φ, J)] is in fact normal in E(Φ, R). In the present paper
we prove an unexpected result, that in fact [E(Φ, I), E(Φ, J)] = [E(Φ, R, I), E(Φ, R, J)]. It follows that
the standard commutator formula also holds in the unrelativized form, namely [E(Φ, I), C(Φ, R, J)] =
[E(Φ, I), E(Φ, J)], where C(Φ, R, I) is the full congruence subgroup of level I. In particular, E(Φ, I) is
normal in C(Φ, R, I).

Keywords: Chevalley groups; elementary subgroups; generation of mixed commutator subgroups;
standard commutator formula
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In the present paper, which is a direct sequel of our paper [14] joint with Roozbeh
Hazrat, we continue the study of mutual commutator subgroups of relative elementary
subgroups E(Φ, R, I), unrelative elementary subgroups E(Φ, I) and congruence sub-
groups G(Φ, R, I) of level I � R in a Chevalley group G(Φ, R), rk(Φ) ≥ 2. For GL(n,R)
at the stable level such commutator formulas first occurred in the groundbreaking work
of Hyman Bass [2]. Soon thereafter, they were extended, still at the stable level, to other
classical groups by Anthony Bak, and to Chevalley groups by Michael Stein [22]. At
about the same time, Alec Mason and Wilson Stothers obtained such birelative formulas
for GL(n,R), see [20].

The next important breakthrough came with the work of Andrei Suslin [29], who, again
for GL(n,R), n ≥ 3, established one of Bass’s key results, normality of the relative ele-
mentary subgroup E(n,R, I), not at the stable level, but for arbitrary commutative rings.
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This work was then immediately extended, by Suslin himself, Vyacheslav Kopeiko, Leonid
Vaserstein, Zenon Borewicz, the first author and many others to other classical groups,
and to other Bass commutator formulas. Eventually, both the normality of E(Φ, R, I)
and the second Bass commutator formula were proven in the context of Chevalley groups
by Giovanni Taddei and Vaserstein [30,32].

One extremely pregnant intermediary result asserts that the relative elementary
subgroup E(Φ, R, I) is generated by the Stein–Tits–Vaserstein generators zα(ξ, η) =
x−α(η)xα(ξ)x−α(−η), where ξ ∈ I for α ∈ Φ, while η ∈ R.

Later, Hong You, Alexei Stepanov, the authors and Roozbeh Hazrat also initiated
the generalization of birelative commutator formulas to arbitrary commutative rings and
to other types of groups, including Chevalley groups, see, for instance, [12,25,38] and
references there. In particular, in the process of this work we obtained a generaliza-
tion of the above generation result, proving that the birelative commutator subgroup
[E(Φ, R, I), E(Φ, R, J)] is generated as a group by the following three types of genera-
tor: (i) zα(ξζ, η), (ii) [xα(ξ), x−α(ζ)] and (iii) [xα(ξ), zα(ζ, η)], where α ∈ Φ, ξ ∈ I, ζ ∈ J ,
η ∈ R, see [14].

In the second part of this work, we perform another unexpected feat in this direction.
Namely, in the Main Lemma we establish that the third type of the above generators
are redundant. In particular, both remaining types of generators already belong to the
mutual commutator of unrelative commutator subgroups [E(Φ, I), E(Φ, J)]. This, in par-
ticular, implies the following amazing commutator formula: [E(Φ, R, I), E(Φ, R, J)] =
[E(Φ, I), E(Φ, J)]. As we describe in the introduction below, this formula generalizes and
explains a great number of preceding results.

1. Introduction

Let Φ be a reduced irreducible root system of rank ≥ 2, let R be a commutative ring with
1 and let G(Φ, R) be a Chevalley group of type Φ over R. For background on Chevalley
groups over rings see [33] or [35], where one can find many further references. We fix a
split maximal torus T (Φ, R) in G(Φ, R) and consider root unipotents xα(ξ) elementary
with respect to T (Φ, R). The subgroup E(Φ, R) generated by all xα(ξ), where α ∈ Φ,
ξ ∈ R, is called the absolute elementary subgroup of G(Φ, R).

Now, let I � R be an ideal of R. Then the unrelativized elementary subgroup E(Φ, I) of
level I is defined as the subgroup of E(Φ, R), generated by all elementary root unipotents
xα(ξ) of level I,

E(Φ, I) = 〈xα(ξ) | α ∈ Φ, ξ ∈ I〉.

In general, this subgroup has no chance to be normal in E(Φ, R). Its normal closure
E(Φ, R, I) = E(Φ, I)E(Φ,R) is called the relative elementary subgroup of level I.

The starting points of the present paper are the following (Theorems A–C below)
three observations contained in [14]. The first one is the leftmost (nontrivial) inclusion in
Theorem 3.1, whereas the other two are Corollary 5.2 and Corollary 5.1 of Theorem 1.3,
respectively. In these results some additional assumptions are necessary in the cases
Φ = Cl,G2. The first of these results relies on a calculation that is immediate for simply
laced systems, but rather nontrivial in the exceptional cases Φ = C2,G2. The other two
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are easy corollaries of this result and the main result of [14], describing generators of the
mixed commutator subgroup [E(Φ, R, I), E(Φ, R, J)].

In the rest of this paper we impose the following umbrella assumption.
(*) In the cases Φ = C2,G2, assume that R does not have residue fields F2 of two

elements, and in the case Φ = Cl, l ≥ 2, assume additionally that any θ ∈ R is contained
in the ideal θ2R + 2θR.

This condition arises in the computation of the lower level of [E(Φ, I), E(Φ, J)] in
[12, Lemma 17, 14, Theorem 3.1]; see also further related results and discussion of this
condition in [24,25].

Theorem A. Let Φ be a reduced irreducible root system of rank ≥ 2 and let I, J be two
ideals of a commutative ring R. Then one has the following inclusion:

E(Φ, R, IJ) ≤ [E(Φ, I), E(Φ, J)].

Theorem B. Let Φ be a reduced irreducible root system of rank ≥ 2 and let I, J be two
ideals of a commutative ring R. Then the mixed commutator subgroup [E(Φ, I), E(Φ, J)]
is normal in E(Φ, R).

Theorem C. Let Φ be a reduced irreducible root system of rank ≥ 2 and let I, J be two
ideals of a commutative ring R. Then

[E(Φ, I), E(Φ, R, J)] = [E(Φ, R, I), E(Φ, R, J)].

What we have not considered when writing [14] is that modulo some further elementary
calculations involving our generators of [E(Φ, R, I), E(Φ, R, J)], Theorems A–C admit the
following common generalization.

Theorem 1.1. Let Φ be a reduced irreducible root system of rank ≥ 2 and let I, J be
two ideals of a commutative ring R. Then

[E(Φ, I), E(Φ, J)] = [E(Φ, R, I), E(Φ, R, J)].

As a matter of fact, Theorem 1.1 can be derived from the main result of [14,
Theorem 1.3]. That theorem, which we recall as Theorem F in § 2, lists three types
of generators of [E(Φ, R, I), E(Φ, R, J)]. Of those three types, the last two are contained
already in [E(Φ, I), E(Φ, J)], the second one by the definition itself and the last one by
Theorem A above. It remains to be shown that the first type of generators, those of the
form [xα(ξ), zα(ζ, η)] (see § 2 for precise definitions) are already in [E(Φ, I), E(Φ, J)]. Let
us record the result for future reference.

Theorem 1.2. Let Φ be a reduced irreducible root system of rank ≥ 2. In the cases
Φ = B2,G2 assume that R does not have residue fields F2 of 2 elements, and in the case
Φ = B2 assume additionally that any c ∈ R is contained in the ideal c2R + 2cR.

Further, let I and J be two ideals of a commutative ring R. Then the mixed commutator
subgroup [E(Φ, R, I), E(Φ, R, J)] is generated as a group by the elements of the form

• zα(ξζ, η),

• [xα(ξ), x−α(ζ)],

where in both cases α ∈ Φ, ξ ∈ I, ζ ∈ J , η ∈ R.
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This generalization of Theorem F is exactly the main new calculation in the present
paper; the rest was mostly either known before, or is contained in [14] or easily follows.

Actually, our Theorem 1.1 also allows us to unrelativize the birelative standard com-
mutator formula, established in this context by You Hong [38] via level calculations,
and by ourselves [12] via a version of relative localization. Namely, let ρI : R −→ R/I
be the reduction modulo I. By functoriality, it defines the group homomorphism ρI :
G(Φ, R) −→ G(Φ, R/I). The kernel of ρI is denoted by G(Φ, R, I) and is called the prin-
cipal congruence subgroup of G(Φ, R) of level I. In turn, the full pre-image of the centre of
G(Φ, R/I) with respect to the reduction homomorphism ρI is called the full congruence
subgroup of level I and is denoted by C(Φ, R, I). Now, the birelative standard commutator
formula, see [12, Theorem 1], can be stated as follows.

Theorem D. Let Φ be a reduced irreducible root system of rank ≥ 2. Further, let R be
a commutative ring, and let I, J � R be two ideals of R. Then

[E(Φ, R, I), C(Φ, R, J)] = [E(Φ, R, I), E(Φ, R, J)].

Now, Theorems 1.1 and D immediately imply the following result.

Theorem 1.3. Let Φ be a reduced irreducible root system of rank ≥ 2 and let I, J be
two ideals of a commutative ring R. Then

[E(Φ, I), C(Φ, R, J)] = [E(Φ, I), E(Φ, J)].

Proof. Indeed, one has

[E(Φ, I), E(Φ, J)] ≤ [E(Φ, I), C(Φ, R, J)]

≤ [E(Φ, R, I), C(Φ, R, J)] = [E(Φ, R, I), E(Φ, R, J)],

where the first two inclusions are obvious, whereas the last equality is Theorem D. On
the other hand, the left-hand side equals the right-hand side by Theorem 1.1. �

Setting I = J in Theorem 1.3, we get the following freakish corollary.

Theorem 1.4. Let Φ be a reduced irreducible root system of rank ≥ 2 and let I be an
ideal of a commutative ring R. Then E(Φ, I) is normal in C(Φ, R, I).

For the special case of G = GL(n,R), Theorems 1.1 and 1.3 were first verified by the
first-named author in [34], while Theorem 1.4 in that case was proven already in [21].
However, in [34] the proof proceeded differently. First, Theorem 1.3 was derived from
Theorems A and B by the same birelative version of decomposition of unipotents [27]
that was already used in [36] to establish the respective special case of Theorem D.
Then, Theorem 1.1 was derived as a corollary of Theorems 1.3 and D. Thereupon, the
second author immediately suggested that per case one could achieve the same directly,
by looking at the elementary generators in [14, Theorem 1.3]. This is exactly what we
accomplish in the present paper. Technically, the proofs are not ticklish; the main difficulty
was to convince ourselves that Theorems 1.1–1.4 could be true as stated!

This paper is organized as follows. In § 2 we recall notation and some background facts
that will be used in our proofs. Also, we recall Theorem 1.3 of [14] and reduce the proof
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of Theorem 1.1 to a calculation in groups of rank 2. The technical core of the paper is
§ 3, where we consecutively verify our Main Lemma for types A2, C2 (which is the most
difficult case) and G2. After that, in § 4, we establish another related result, generation of
E(Φ, R, I) by long root elements. Finally, in § 5 we mention some further related results
and applications.

2. Notation and preliminary facts

To make this paper independent of [14], here we recall basic notation and the requisite
facts which will be used in our proofs. For more background information on Chevalley
groups over rings, see [4,33,35] and references therein.

2.1. Notation

Let G be a group. For any x, y ∈ G, xy = xyx−1 denotes the left x-conjugate of y.
As usual, [x, y] = xyx−1y−1 denotes the (left normed) commutator of x and y. We shall
make constant use of the obvious commutator identities, such as [x, yz] = [x, y] · y[x, z]
or [xy, z] = x[y, z] · [x, z], usually without any specific reference.

As in the introduction, we denote by xα(ξ), α ∈ Φ, ξ ∈ R, the elementary generators
of the (absolute) elementary Chevalley subgroup E(Φ, R). For a root α ∈ Φ we denote
by Xα the corresponding (elementary) root subgroup Xα = {xα(ξ) | ξ ∈ R}. Recall that
any conjugate gxα(ξ) of an elementary root unipotent, where g ∈ G(Φ, R), is called a
root element or root unipotent; it is called long or short, depending on whether the root
α itself is long or short.

As in the introduction, let I be an ideal of R. We denote by Xα(I) the intersection
of Xα with the principal congruence subgroup G(Φ, R, I). Clearly, Xα(I) consists of all
elementary root elements xα(ξ), α ∈ Φ, ξ ∈ I, of level I:

Xα(I) = {xα(ξ) | ξ ∈ I}.

By definition, E(Φ, I) is generated by Xα(I), for all roots α ∈ Φ. The same subgroups
generate E(Φ, R, I) as a normal subgroup of the absolute elementary group E(Φ, R).
Generators of E(Φ, R, I) as a group are recalled in the next subsection.

All results of the present paper are based on the Steinberg relations among the elemen-
tary generators, which will be repeatedly used without any specific reference. Especially
important for us is the Chevalley commutator formula:

[xα(ξ), xβ(ζ)] =
∏

iα+jβ∈Φ

xiα+jβ(Nαβijξ
iζj),

where α �= −β and Nαβij are the structure constants which do not depend on ξ
and ζ. However, for Φ = G2, they may depend on the order of the roots in the prod-
uct on the right-hand side. See [3,22,23,35] for more details regarding the structure
constants Nαβij .
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2.2. Generation of mixed commutator subgroups

We shall extensively use the two following generation theorems. The first one is a
classical result by Michael Stein [22], Jacques Tits [31] and Leonid Vaserstein [32]. The
second one is the main result of [15, Theorem 1.3].

Theorem E. Let Φ be a reduced irreducible root system of rank ≥ 2 and let I be an
ideal of a commutative ring R. Then, as a group, E(Φ, R, I) is generated by elements of
the form:

zα(ξ, η) = x−α(η)xα(ξ)x−α(−η),

where ξ ∈ I, η ∈ R and α ∈ Φ.

Theorem F. Let Φ be a reduced irreducible root system of rank ≥ 2. In the cases
Φ = C2,G2, assume that R does not have residue fields F2 of two elements, and in the case
Φ = Cl, l ≥ 2, assume additionally that any θ ∈ R is contained in the ideal θ2R + 2θR.

Further, let I and J be two ideals of a commutative ring R. Then the mixed commutator
subgroup [E(Φ, R, I), E(Φ, R, J)] is generated as a group by elements of the form:

• [xα(ξ), zα(ζ, η)],

• [xα(ξ), x−α(ζ)],

• zα(ξζ, η),

where in all cases α ∈ Φ, ξ ∈ I, ζ ∈ J , η ∈ R.

Now, the generators of the second type belong to [E(Φ, I), E(Φ, J)] by definition. Gen-
erators of the third type belong to [E(Φ, I), E(Φ, J)] by Theorem A. Thus, Theorem F
implies that to prove Theorem 1.1 it suffices to establish the following result.

Main Lemma. Let Φ be a reduced irreducible root system of rank ≥ 2 and let I, J be
two ideals of a commutative ring R. Then

[xα(ξ), zα(ζ, η)] ∈ [E(Φ, I), E(Φ, J)],

for all α ∈ Φ, ξ ∈ I, ζ ∈ J , η ∈ R.

Obviously, the proof of the Main Lemma immediately reduces to rank 2 systems. Thus,
we only have to verify it for groups of types A2, B2 and G2. For Φ = A2 we reproduce an
authentic calculation at the level of individual elementary generators, with actual signs
(which in this case is an adaptation of an argument from [34]). We could do the same for
Φ = C2,G2, and this was, as a matter of fact, how we originally verified it. However, to
make the text more readable, we prefer the following short-cut. Since we already know
Theorems A and B, we can perform calculations modulo the subgroups E(n,R, IJ) and
[E(n, I), E(n, J)]. In turn, in many cases the easiest way to verify that some commutators
fall into these subgroups is Levi decomposition, which we now recall in a slightly more
precise form than the one used in [14].

https://doi.org/10.1017/S0013091519000555 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091519000555


Generation of relative commutator subgroups II 503

2.3. Parabolic subgroups

An important part in the proof of the Main Lemma for Φ = C2,G2 is played by
Levi decomposition for (elementary) parabolic subgroups. Classically, it asserts that
any parabolic subgroup P of G(Φ, R) can be expressed as the semi-direct product
P = LP � UP of its unipotent radical UP � P and a Levi subgroup LP ≤ P . However, as
in [14], we do not have to recall the general case.

• Since we calculate inside E(n,R), we can limit ourselves to the elementary parabolic
subgroups, spanned by some root subgroups Xα.

• Since we can choose the order on Φ arbitrarily, we can always assume that α is
fundamental and, thus, limit ourselves to standard parabolic subgroups.

• Since the proof of the Main Lemma reduces to groups of rank 2, we could only consider
rank 1 parabolic subgroups, which in this case are maximal parabolic subgroups.

Thus, we consider only elementary rank 1 parabolics, which are defined as follows.
Namely, we fix an order on Φ, and let Φ+ and Φ− be the corresponding sets of positive
and negative roots, respectively. Further, let Π = {α1, . . . , αl} be the corresponding fun-
damental system. For any r, 1 ≤ r ≤ l, and we define the rth rank 1 elementary parabolic
subgroup as:

Pαr
= 〈U,X−αr

〉 ≤ E(Φ, R).

Here U =
∏

Xα, α ∈ Φ+, is the unipotent radical of the standard Borel subgroup B.
Then the unipotent radical of Pαr

has the form:

Uαr
=

∏
Xα, α ∈ Φ+, α �= αr,

whereas Lαr
= 〈Xαr

,X−αr
〉 is the (standard) Levi subgroup of Pr. Clearly, Lαr

is
isomorphic to the elementary subgroup E(2, R) in SL(2, R), or to its projectivized
version PE(2, R) in PGL(2, R). In the sequel we usually (but not always) abbreviate
Pαr

, Uαr
, Lαr

, etc., to Pr, Ur, Lr, etc.
Levi decomposition (which in the case of elementary parabolics immediately follows

from the Chevalley commutator formula) asserts that the group Pr is the semi-direct
product Pr = Lr � Ur of Ur � Pr and Lr ≤ Pr. The most important part is the (obvious)
claim is that Ur is normal in Pr.

Simultaneously with Pr, one considers the opposite parabolic subgroup P−
r defined as:

P−
r = 〈U−,Xαr

〉 ≤ E(Φ, R).

Here U− =
∏

Xα, α ∈ Φ−, is the unipotent radical of the Borel subgroup B− opposite
to the standard one. Clearly, Pr and P−

r share the common (standard) Levi subgroup
Lr, whereas the unipotent radical U−

r of P−
r is opposite to that of Pr and has the form:

U−
r =

∏
Xα, α ∈ Φ−, α �= −αr.

Now, Levi decomposition takes the form P−
r = Lr � U−

r with U−
r � P−

r . In other words,
Ur and U−

r are both normalized by Lr.
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Actually, we need a slightly more precise form of this last statement. Namely, let
I be an ideal of R. Denote by Lr(I) the principal congruence subgroup of level I in Lr

and by Ur(I) and U−
r (I) the respective intersections of Ur and U−

r with G(Φ, R, I), or,
equivalently, with E(Φ, R, I):

Ur(I) = Ur ∩ E(Φ, R, I), U−
r (I) = U−

r ∩ E(Φ, R, I).

Obviously, Ur(I), U−
r (I) ≤ E(Φ, I) are normalized by Lr. The following fact will be

repeatedly used in the proof of the Main Lemma.

Lemma. Let I and J be two ideals of R. Then

[Lr(I), Ur(J)] ≤ Ur(IJ), [Lr(I), U−
r (J)] ≤ U−

r (IJ).

In particular, both commutators are contained in E(Φ, IJ) ≤ E(Φ, R, IJ).

Proof. This is classically known. For a recent reference, see, for instance,
[2, Lemma 3.1]. �

3. Proof of Main Lemma

In this section we prove the Main Lemma, and thus also Theorems 1.1–1.4. As above, let
x = [xα(ξ), zα(ζ, η)], where ξ ∈ I, ζ ∈ J , η ∈ R. We divide the proof into four cases.

(i) α can be embedded in a root subsystem of type A2. This proves the Main Lemma
for simply laced Chevalley groups and for the Chevalley group of type F4. It also
proves the inclusion in the Main Lemma for short roots in Chevalley groups of type
Cl, l ≥ 3, for long roots in Chevalley groups of type Bl, l ≥ 3, and for long roots in
the Chevalley group of type G2.

(ii) α can be embedded in a root subsystem of type C2 as a long root. This proves the
Main Lemma for Chevalley groups of type Cl, l ≥ 3.

(iii) α can be embedded in a root subsystem of type C2 as a short root. This proves the
Main Lemma for Chevalley groups of type Bl, l ≥ 3, and finishes the proof for the
case C2.

(iv) α can be embedded in a root subsystem of type G2 as a short root. This proves the
Main Lemma for the last remaining case, the group of type G2.

For the first case, we reproduce an actual computation at the level of root elements that
could ultimately be refined to an explicit formula expressing x = [xα(ξ), zα(ζ, η)] as a
product of conjugates of commutators of the form [xγ(ε), xδ(θ)], for some roots γ, δ ∈ Φ
and some ε ∈ I, θ ∈ J . This argument is a transcript of the initial argument from [34],
which corresponds to the first (and difficult) item in the proof of [34, Theorem 1].
• First, assume that α can be embedded in a root system of type A2. We wish to

prove that [xα(ξ), zα(ζ, η)] ∈ [E(A2, I), E(A2, J)]. Indeed, in this case there exist roots

https://doi.org/10.1017/S0013091519000555 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091519000555


Generation of relative commutator subgroups II 505

β, γ ∈ Φ, of the same length as α such that α = β + γ and Nβγ11 = 1. Then

x = [xα(ξ), zα(ζ, η)] = xα(ξ) · zα(ζ,η)xα(−ξ) = xα(ξ) · zα(ζ,η)[xβ(1), xγ(−ξ)].

Thus,

x = xα(ξ) · [zα(ζ,η)xβ(1), zα(ζ,η)xγ(−ξ)]

= xα(ξ) · [xβ(1 − ζη)x−γ(−ηζη), x−β(−ξηζη)xγ(−ξ(1 − ηζ))]

= xα(ξ) · [xβ(1)y, xγ(−ξ)z],

where

y = xβ(−ζη)xγ(−ηζη) ∈ E(A2, J), z = x−β(−ξηζη)xγ(ξηζ) ∈ E(A2, IJ).

Since xγ(ξ) ∈ E(A2, I), the second factor of the above commutator belongs to E(A2, I).
Thus,

[xβ(1)y, xγ(−ξ)z] = xβ(1)[y, xγ(−ξ)z] · [xβ(1), xγ(−ξ)z].

Now the first commutator on the right-hand side belongs to [E(A2, I), E(A2, J)], which
is normal in E(A2, R), so that the conjugation by xβ(1) still leaves us there.

On the other hand, the second commutator equals

[xβ(1), xγ(−ξ)] · xγ(−ξ)[xβ(1), z].

The second commutator in the last expression belongs to E(A2, R, IJ) and remains there
after elementary conjugations, whereas the first commutator equals xα(−ξ).

Summarizing the above, we see that

x ∈ xα(ξ)[E(A2, I), E(A2, J)]xα(−ξ) · E(A2, R, IJ) ≤ [E(A2, I), E(A2, J)],

as claimed.
For the three remaining cases, where Φ = C2 or Φ = G2, the idea of the proof is simi-

lar, but its implementation requires more care because of the more complicated form of
the Chevalley commutator formula. In these cases too we could come up with explicit
formulas, but to restrain the length, we prefer to repeatedly invoke the above Lemma
on unipotent radicals, and Theorems A, B. In other words, all calculations are per-
formed modulo [E(Φ, I), E(Φ, J)], which is already normal in E(Φ, R). At the moment
we discover that a certain factor falls into E(Φ, R, IJ) or into [E(Φ, I), E(Φ, J)] itself, we
immediately lose interest in the explicit form of this factor.

Remark. The referee suggested that the proof for these three cases could be written
uniformly by arguing not in terms of individual elements but rather in terms of the
subgroups E(Φ, R, IJ), [E(Φ, I), E(Φ, J)], etc. This is indeed the case, and this is how
this proof was organized in the first draft of the present paper. However, later, in view of
prospective applications to width problems, we decided to add some more careful analysis,
with explicit calculations in each case, since we will need these details in our next paper.

The argument proceeds as follows. When α is short, we express it in the form α = β + γ,
where β is long and γ is short. Similarly, when α is long, we express it in the form
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α = β + 2γ, with the same β, γ as above. Since we are only looking at one instance of the
Chevalley commutator formula, the parametrization of the corresponding root subgroups
can be chosen in such a way that all the resulting structure constants are positive, so
that the formula takes the form

[xβ(ξ), xγ(θ)] = xβ+γ(ξθ)xβ+2γ(ξθ2)

in the case of Φ = C2, and the form

[xβ(ξ), xγ(θ)] = xβ+γ(ξθ)xβ+2γ(ξθ2)xβ+3γ(ξθ3)x2β+3γ(2ξ2θ3)

in the case of Φ = G2; see [3,23] or [35] and references there.
As above, we rewrite x as x = xα(ξ) · zα(ζ,η)xα(−ξ) and plug in the expression of

xα(−ξ) as the commutator [xβ(ξ), xγ(1)]−1 = [xγ(1), xβ(ξ)] times the tail consisting of
the remaining factors xδ(η) from the above instances of the Chevalley commutator for-
mula, which up to sign are equal to ξ or 2ξ2 and in any case belong to E(Φ, I). By the
above Lemma, the conjugates zα(ζ,η)xδ(η) of the remaining factors are congruent to these
factors themselves, modulo E(Φ, R, IJ). As in the first case, this leaves us with analysis of
the commutator zα(ζ,η)[xγ(1), xβ(ξ)], slightly different between cases, owing to disparate
configurations of roots. Anyway, in each case the result will be that modulo elementary
conjugations and factors that cancel with xα(ξ), or with the outstanding factors coming
from the Chevalley commutator formula, the relevant part of the commutator falls into
[E(Φ, I), E(Φ, J)].

Now we pass to the case-by-case analysis.
• First, assume that α can be embedded into C2 as a long root. In this case there

exist a long root β and a short root γ such that α = β + 2γ. Choosing the signs in the
Chevalley commutator formula as above, we can write xα(−ξ) = [xγ(1), xβ(ξ)]xβ+γ(ξ).
Plugging this into the expression for x, we get

x = xα(ξ) · zα(ζ,η)[xγ(1), xβ(ξ)] · zα(ζ,η)xβ+γ(ξ).

As we know from the Lemma,

zα(ζ,η)xβ+γ(ξ) ≡ xβ+γ(ξ) (mod E(C2, IJ)),

so that zα(ζ,η)xβ+γ(ξ) can be rewritten in the form xβ+γ(ξ)z, for some E(C2, IJ).
Next, we look at the second factor. Clearly,

y = zα(ζ,η)[xγ(1), xβ(ξ)] = [zα(ζ,η)xγ(1), zα(ζ,η)xβ(ξ)] = [zα(ζ,η)xγ(1), xβ(ξ)].

As we know from the Lemma, zα(ζ,η)xγ(1) ≡ xγ(1) (mod E(C2, J)). Rewriting
zα(ζ,η)xγ(1) in the form zα(ζ,η)xγ(1) = xγ(1)w, for some w ∈ E(C2, J), we get

y = [xγ(1)w, xβ(ξ)] = xγ(1)[w, xβ(ξ)] · [xγ(1), xβ(ξ)],

where the first commutator belongs to [E(C2, I), E(C2, J)] and stays there after
elementary conjugation.
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Combining the above, and expanding [xγ(1), xβ(ξ)] by the Chevalley commutator
formula, we see that

x = xα(ξ) · xγ(1)[xβ(ξ), w] · xα(−ξ)xβ+γ(−ξ) · xβ+γ(ξ)z ∈ [E(C2, I), E(C2, J)],

as claimed.
• Next, assume that α can be embedded in C2 as a short root. Choose β and γ such

that α = β + γ, while Nβγ11 = Nβγ12 = 1. Then, clearly, xα(−ξ) can be expressed as
xα(−ξ) = [xγ(1), xβ(ξ)]xβ+2γ(ξ). Thus,

x = xα(ξ) · zα(ζ,η)[xγ(1), xβ(ξ)] · zα(ζ,η)xβ+2γ(ξ).

Again by the Lemma zα(ζ,η)xβ+2γ(ξ) = xβ+2γ(ξ)z for some z ∈ E(C2, IJ).
Looking at the second factor, we see that

y = zα(ζ,η)[xγ(1), xβ(ξ)] = [zα(ζ,η)xγ(1), zα(ζ,η)xβ(ξ)].

The tail consisting of the remaining factors xδ(η) from the above instances of the
Chevalley commutator formula, which in any case belong to E(Φ, IJ).

• This leaves us with the analysis of the case when α is a short root of Φ = G2. Choose
a long root β and a short root γ such that α = β + γ, and the structure constants are as
above, Nβγ11 = Nβγ12 = Nβγ13 = 1, Nβγ23 = 2. Then xα(−ξ) can be expressed as:

xα(−ξ) = [xγ(1), xβ(ξ)] · xβ+2γ(ξ)xβ+3γ(ξ)x2β+3γ(2ξ2).

Plugging this into the expression for x, we get

x = xα(ξ) · zα(ζ,η)[xγ(1), xβ(ξ)] · zα(ζ,η)(xβ+2γ(ξ)xβ+3γ(ξ)x2β+3γ(2ξ2)).

By the same token, we see that the last factor belongs to the unipotent radical of the
parabolic subgroup Pα and, thus, by the Lemma can be rewritten as:

zα(ζ,η)(xβ+2γ(ξ)xβ+3γ(ξ)x2β+3γ(2ξ2)) = xβ+2γ(ξ)xβ+3γ(ξ)x2β+3γ(2ξ2) · z,

for some z ∈ E(G2, IJ). Now, repeating exactly the same calculation as in the previous
case, we see that the second factor in the above expression for x has the form

xγ(1)[w, zα(ζ,η)xβ(ξ)] · [xγ(1), xβ(ξ)] · xβ(ξ)[xγ(1), v],

for some w ∈ E(G2, J) and v ∈ E(G2, IJ).
Combining the above, and once more expanding [xγ(1), xβ(ξ)] by the Chevalley

commutator formula, we see that

x = xα(ξ) · xγ(1)[w, zα(ζ,η)xβ(ξ)] · xα(−ξ)xβ+2γ(−ξ)xβ+3γ(−ξ)x2β+3γ(−2ξ2)

· xβ(ξ)[xγ(1), v] · xβ+2γ(ξ)xβ+3γ(ξ)x2β+3γ(2ξ2) · z
(recall that for the above choice of structure constants, [xa(ξ), xβ+2γ(η)] = x2β+3γ(3ξη),
whereas root elements corresponding to the roots β + 2γ, β + 3γ, 2β + 3γ commute).
Here, the first commutator belongs to [E(G2, I), E(G2, J)] and stays there after ele-
mentary conjugation, and the second commutator belongs to E(G2, R, IJ) and stays
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there after elementary conjugation, while the outstanding factor z already belongs to
E(G2, IJ), as claimed.

This completes the proof of the Main Lemma, and thus also of all other new results
stated in the Introduction.

4. Generation of elementary subgroups by long root unipotents

In this section we prove another result pertaining to generation of relative elementary
subgroups, closely related to the contents of [14] and the present paper. Namely, we prove
that E(Φ, R, I) is generated by long root unipotents. There is no doubt that this result
has been known for several decades and is immediately obvious to experts. However, we
are not aware of any explicit source.

The purpose of including this result here is twofold. First, we need it for future reference
in work by the first-named author on the width of root type unipotents in Sp(2l, R) and
in G(F4, R) with respect to the elementaries. Second, it would be very interesting to
understand what this result means for the generation of relative commutator subgroups
[E(Φ, R, I), E(Φ, R, J)] and whether one could accordingly reduce their sets of generators
obtained in [14, Theorem 1.3].

Theorem 4.1. Let rk(Φ) ≥ 2; for Φ = G2 assume additionally that R does not have
residue field F2 of two elements. Then for any ideal I � R the relative elementary group
E(Φ, R, I) is generated by long root elements.

Proof. For Φ = Al,Dl, El there is nothing to prove. Thus, let Φ = Bl,Cl, F4 or G2.
It suffices to prove that any elementary short root element xβ(ξ), where β ∈ Φs and ξ ∈ I,
is a product of long root elements x1, . . . , xm ∈ E(Φ, R, I). If this is the case, then for any
g ∈ E(Φ, R), its conjugate gxβ(ξ) = gx1 · . . . · gxm is also a product of long root elements
from E(Φ, R, I).

First, let Φ �= G2. Then there exists a long root α and a short root γ such that β =
α + γ. Then the root α + 2γ = β + γ is long, and, carrying the corresponding factor to
the left-hand side in the commutator formula

[xα(ξ), xγ(1)] = xβ(±ξ)xβ+γ(±ξ),

we express xβ(±ξ) as the product of three long root unipotents

xβ(±ξ) = xα(ξ)(xγ(1)xα(−ξ)xγ(−1))xβ+γ(∓ξ),

sitting in E(Φ, R, I).
On the other hand, for the case Φ = G2 there exists a long root α and a short root γ such

that β = α + 2γ. Then the root α + γ = β − γ is short, whereas the roots α + 3γ = β + γ
and 2α + 3γ = 2β − γ are both long. Plugging in the Chevalley commutator formula,

[xα(η), xγ(ζ)] = xα+γ(±ηζ)xβ(±ηζ2)xβ+γ(±ηζ3)x2β−γ(±η2ζ3)

first with η = ξ ∈ I and ζ = θ ∈ R and then with η = ξθ and ζ = 1, for the same ξ ∈ I and
θ ∈ R, and carrying over the factors corresponding to the long roots β + γ and 2β − γ to

https://doi.org/10.1017/S0013091519000555 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091519000555


Generation of relative commutator subgroups II 509

the left-hand side of the resulting commutator formulas, we get the following expressions.
First,

y = xα+γ(±ξθ)xβ(±ξθ2) = xα(ξ)(xγ(θ)xα(−ξ)xγ(−θ))xβ+γ(∓ξθ3)x2β−γ(∓ξ2θ3)

is a product of four long root unipotents sitting in E(Φ, R, I). Similarly,

z = xα+γ(±ξθ)xβ(±ξθ) = xα(ξθ)(xγ(1)xα(−ξθ)xγ(−1))xβ+γ(∓ξθ)x2β−γ(∓ξ2θ2)

is a product of four such long root unipotents. Comparing these equalities, we get an
expression

xβ(±ξ(θ2 − θ)) = yz−1

as a product of not more than six long root elements from E(Φ, R, I). Since R does not
have a residue field of two elements, the ideal generated by θ2 − θ, where θ ∈ R, is not
contained in any maximal ideal and thus coincides with R. This means that xβ(ξ) is a
product of finitely many long root elements from E(Φ, R, I). �

5. Final remarks

The main results presented here were completely unexpected to us and to several other
experts in the structure theory of algebraic groups over rings, with whom we discussed
the subject of the present paper. Once more, these results highlight the relative commu-
tator subgroups [E(Φ, R, I), E(Φ, R, J)] as an ubiquitous class of subgroups that occur
surprisingly often.

For the general linear group GL(n,R), these and other concomitant birelative groups
were first considered in the seminal work of Hyman Bass [2] and then systematically
studied by Alec Mason and Wilson Stothers [17–20]. At that stage, the standing premise
was that n ≥ sr(R) + 1.

In [36,37] the first author and Alexei Stepanov observed that the standard commutator
formula holds for arbitrary commutative rings, and in [6,7] Roozbeh Hazrat and the
second author proposed an approach based on localization. As part of that approach, in
the linear case they found generators of relative commutator groups, which was a starting
point for the present work.

Later, we together with Roozbeh Hazrat generalized the relative and birelative versions
of localization, the commutator formulas themselves, and results on generation of relative
commutator groups to unitary groups [9,15] and to Chevalley groups [12,14]. Luckily,
at that time we were not aware of the pioneering work by Hong You [38]; see the footnote
on page 265 of [12].

These results were instrumental in the work by Alexei Stepanov on the commutator
width of Chevalley groups, see [25,26,28]. See also [1,8] for other interesting occurrences
of the above commutator subgroups in the theory of Chevalley groups. One can find many
further related results, applications and open problems in our surveys and conference
papers [10,11,13,16].

So far, we have not even mentioned another extremely important line of research, which
initially was our main motivation to focus on relative commutator subgroups. Namely, the
study of subgroups normalized by a relative elementary subgroup; see [5,10,11,13,16]
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for an outline and further references. We plan to return to this problem in the context of
Chevalley groups in our next publication.
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