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In the present article, the cell model (or self-consistent scheme) is used to derive
constitutive equations for rod suspensions in non-Newtonian viscous matrices such as
power-law, Ellis and Carreau fluids. It is found that the shear-thinning character of
the matrix influences considerably the rod contribution to the stress tensor, but has no
impact on the rod orientation dynamics: the same microstructure evolution as the one
encountered in Newtonian fluids is obtained. The rod suspension behaves differently
than the unfilled matrix in the sense that, depending on rod orientation, the onset of
shear thinning in the composite occurs at lower or higher shear rates. Our analysis also
provides a semi-analytical model for rod suspensions in an Ellis fluid, which appears
to be suitable for predicting a Newtonian plateau at low shear rates and a shear-
thinning behaviour at high shear rates. In addition, the model predictions are in good
agreement with the shear viscosity measurements of glass-fibre-filled polystyrene melts
(Chan et al., J. Rheol., vol. 22 (5), 1978, pp. 507–524), demonstrating its ability to
describe the rheological behaviour of such polymer composites. Finally, the proposed
approach is extended to a Carreau fluid although its solution requires the numerical
solution of a set of partial differential equations.
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1. Introduction
Suspensions of elongated particles in liquids are encountered in several natural and

engineered products, with particle size ranging from microscopic (e.g. glass and flax
fibres), down to nanoscopic scale (e.g. cellulose nanofibres and carbon nanotubes).
Such systems represent an important class of non-Newtonian fluids and therefore, a
large body of work in the literature has focused on them. Nevertheless, many unfilled
matrices (i.e. molten polymers) exhibit shear-thinning behaviours and the effect of the
presence of rods on the composite rheological properties remains unclear.

Composite materials are usually made of polymers which exhibit strong shear-
thinning behaviours. Chan, White & Oyanagi (1978) investigated the rheological
behaviour of glass-fibre-filled high-density polyethylene and polystyrene melts. It
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was reported that both unfilled matrices exhibit shear-thinning behaviour and both
glass-fibre-filled systems present viscosity functions of similar form. The viscosity is
especially increased by the fibres at low shear rates and the non-Newtonian character
of the pure matrix (i.e. shear-thinning behaviour) tends to be enhanced by the glass
fibres. These observations have been confirmed by several authors (Czarnecki &
White 1980; Kitano & Kataoka 1980; Kitano, Kataoka & Nagatsuka 1984; Becraft &
Metzner 1992; Greene & Wilkes 1995; Ramazani, Ait-Kadi & Grmela 2001; Nishitani
et al. 2007; Ouari et al. 2011) and especially for short glass-fibre-filled polypropylene
by Mobuchon et al. (2005) in shear flows and Férec et al. (2009) for extensional
flows. Poslinski et al. (1988) observed that if a polymeric matrix exhibits Newtonian
behaviour at low shear rates and power-law behaviour at high rates of deformation,
the addition of solid beads leads to a large increase of the shear viscosity in both
regimes, the enhancement being more pronounced in the Newtonian region.

Constitutive equations for fibre-filled systems may generally be written by
considering them as two-component fluids, in which the total stress in the composite
can be assumed to be (Azaiez 1996)

σ =−Pδ + τm + τ p, (1.1)

where P is the isotropic pressure, δ is the identity tensor, τm is the matrix contribution
and τ p is the particle contribution to the extra stress tensor. When dealing with a
Newtonian medium of viscosity η0, the particle contribution to the extra stress tensor,
τ p, takes the following general form up to moderate rod volume concentration φ

(Hinch & Leal 1975)

τ p = η0φ[µ1a4 : γ̇ +µ2(γ̇ · a2 + a2 · γ̇ )+µ3γ̇ + 2µ4a2Dr], (1.2)

where γ̇ is the deformation rate tensor and φ is the particle volume fraction. a2 =∫
p ppψ dp and a4 =

∫
p ppppψ dp are the second- and fourth-order moments of ψ ,

the probability distribution function, and
∫

p . . . ψ dp refers to an average over all
possible rod orientations (Advani & Tucker 1987). a2 and a4, the so-called orientation
tensors, describe the rod orientation statistics in a representative elementary volume in
an efficient and concise way without a significant loss of information. The coefficients
(µi, i = 1, 2, 3, 4) in (1.2) are geometric shape factors (see the table in Férec &
Ausias 2015), and Dr is the rotary diffusivity due to Brownian motion. For slender
rods, particle thickness can be ignored and this is achieved by setting µ2 and µ3
equal to zero. If the particle is large enough so that Brownian motion can be ignored,
the last term containing Dr can be omitted. Three regimes of rod concentrations are
proposed in the literature according to particle shape (Doi & Edwards 1986): dilute,
for which φ < 1/a2

r ; semi-dilute when 1/a2
r <φ < 1/ar and concentrated for 1/ar <φ,

where ar = L/D is the particle aspect ratio, L and D being its length and diameter,
respectively.

The creeping flow equations were solved by Jeffery (1922) for a rigid ellipsoid
freely suspended in a Newtonian fluid assuming a linearly varying flow and it
was found that the centre of the particle translates with the local fluid velocity.
Furthermore, the particle orientation is described by a unit vector p directed along its
principal axis, and Jeffery (1922) showed that

Dp
Dt
=−1

2
ω · p+ λ

2
(γ̇ · p− γ̇ : ppp)− CI|γ̇ |

ψ

∂ψ

∂p
, (1.3)
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where D/Dt denotes the material derivative and ω is the vorticity tensor (see Bird,
Armstrong & Hassager 1987a for its definition). The shape factor defined by λ= (a2

r −
1)/(a2

r + 1) equals unity for a slender body (ar→∞). The last term on the right-hand
side of (1.3) was later introduced by Folgar & Tucker (1984) to take into account
particle interactions. In their theory, |γ̇ | is the effective deformation rate (equal to the
shear rate in simple shear) and CI is a hydrodynamic diffusion coefficient. Bay (1991)
and Phan-Thien et al. (2002) have related CI to rod volume fraction, φ, and particle
aspect ratio, ar. Following (1.3), Advani & Tucker (1990) derived the time evolution
for the second-order orientation tensor, a2 and obtained

Da2

Dt
=−1

2
(ω · a2 − a2 ·ω)+ λ2 (γ̇ · a2 + a2 · γ̇ − 2a4 : γ̇ )+ 2CI|γ̇ |(δ − 3a2). (1.4)

Equation (1.4) represents the orientation dynamics for a rod population suspended in
a Newtonian fluid and required closure approximations to evaluate a4, the fourth-order
orientation tensor (Advani & Tucker 1990; Cintra & Tucker 1995; Dupret & Verleye
1999; Sepehr et al. 2004). The first two terms (in brackets) on the right-hand
side of (1.4) stand for the hydrodynamic contribution whereas the last part is
related to diffusion due to particle interactions. The dimensionless form of (1.4)
(convection–diffusion type) involves definition of a Péclet number such as Pe = 1/CI ,
which controls the steady-state orientation for the rods (i.e. low Pe refers to random
orientation whereas high Pe suggests rod alignment towards the flow direction in
simple shear flow).

The above mentioned constitutive equations do not account for the shear-thinning
character of the unfilled matrices, but some developments were proposed in order
to provide more realistic models and understand flow phenomena in composite
processing. Early attempts simply replaced the Newtonian viscosity in (1.2) by that of
the polymer η0= ηm(γ̇ ) which is shear-rate dependent, the equation of change for a2,
equation (1.4), being left unchanged. Azaiez (1996) developed constitutive equations
for fibre suspensions in polymer solutions based on the FENE-P (Finitely Extensible
Nonlinear Elastic – Peterlin), FENE-CR (Finitely Extensible Non-linear Elastic –
Chilcott and Rallison) and Giesekus models. A parameter was also introduced to
couple the effects of fibre orientation with the hydrodynamic drag acting on the
beads composing the dumbbells. For steady-state shear flow, Azaiez (1996) reported
a strong shear-thinning character in the coupled case for the three rheological models
although the FENE-CR model with the uncoupled case exhibits a constant steady-state
viscosity. Ait-Kadi & Grmela (1994) used the generalized Poisson bracket formalism
and their choice for the Helmholtz free energy function yielded a FENE-P type
matrix. In the case of the steady shear flow, their results showed that the presence of
fibres results in an increase of both the viscosity and the first normal stress coefficient
over the whole range of shear rates. Ramazani and coauthors (Ramazani, Ait-Kadi &
Grmela 1997; Ramazani et al. 2001) extended this work by introducing anisotropic
expressions for the mobility tensor in an attempt to capture fibre-matrix interactions.
Rajabian, Dubois & Grmela (2005) adopted a similar approach to account for fibre
flexibility and observed that the steady-state relative viscosity increases with fibre
flexibility, especially in the shear-thinning region. Beaulne & Mitsoulis (2003) used
the K-BKZ integral constitutive equation which described the experimental results of
Greene & Wilkes (1995) fairly well. Note that some authors (Kagarise et al. 2010,
2011) also used the multi-mode Giesekus model to predict the strain-rate-dependent
behaviour of the polymer matrix.
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In a second type of attempt, cell models (or self-consistent schemes) were used
to derive more realistic constitutive equations than those cited previously. This was
initiated with the seminal work of Batchelor (1971), who theoretically analysed the
elongational flow of a Newtonian fluid filament around a rod parallel to the flow
direction and contained in a cell. The same problem was then extended by Goddard
(1976a,b) to include the strain-thinning behaviour of the matrix by considering a
power-law model. Both authors attributed the viscous resistance of elongational
flow to the shearing of the fluid between parallel suspended fibres. In the case
of shear-thinning fluids, Goddard (1978) found that the particle influence on the
extensional flow as well as on the particle contribution to bulk stress are both greatly
diminished as compared to the Newtonian case, and the quantitative agreement
with some experimental data is discussed in White & Czarnecki (1980). Dinh &
Armstrong (1984) also used the Batchelor approach to develop a rheological equation
of state to describe non-dilute suspensions of fibres in Newtonian solvents undergoing
homogeneous extensional and shear flows. This work was then extended by Wang &
Cheau (1991) who proposed a constitutive model for semi-concentrated suspensions
of rigid fibres in an Ellis fluid. However, in their model derivation, it was assumed
that the outer boundary condition for the axial velocity is γ̇D/2 (γ̇ and D/2 being
respectively the shear rate and particle radius), which appears to be unphysical. In
addition, Wang & Cheau (1991) did not take into account the dependency of particle
orientation on the axial velocity. Souloumiac & Vincent (1998) improved the original
work of Batchelor (1971) and Goddard (1976a) by considering rod orientation and
their result is applicable to homogeneous flow, especially to shear flow. Souloumiac
& Vincent (1998) established a stress expression which includes the shear-thinning
behaviour of the matrix as represented by a power law and given by

τ p =Kφµ(m)1 γ̇ :

∫
p

pppp|γ̇ : pp|m−1ψ dp, (1.5)

where K is the matrix consistency (Pa sm) and m is the power-law index of the matrix
which was found by Souloumiac & Vincent (1998) to be the same for the suspension
as for the unfilled matrix. The dimensionless coupling coefficient µ(m)1 is given by

µ
(m)
1 =

am+1
r

2m−1(m+ 2)

[
1−m

m[1− (D/2h)(1−m)/m]
]m

. (1.6)

If m tends to 1, equation (1.6) reduces to the expression proposed by Dinh &
Armstrong (1984). Gibson & Toll (1999) developed a non-local relationship for
the stress generated in a planar suspension of rods where the local interactions
are governed by a power-law drag law. Note that indeed, most equations for rod
suspensions given in the literature are local, i.e. the stress at a material point depends
only on the rate of deformation at that same point. For homogeneous flows of
statistically homogeneous suspensions, their expression reduces to (1.5). In order to
reproduce a Newtonian plateau at low strain rates and a strain-thinning behaviour
at high strain rates, Férec et al. (2009) later proposed an empirical extension of the
Carreau model for suspended fibres in a polymeric fluid. As a final remark, it is also
important to note that none of the above theories aimed at tackling the description
of rod dynamics in such shear-thinning non-Newtonian fluids.

The purpose of this paper is firstly to revisit the cell model in order to derive
in details a constitutive equation for rod suspensions in fluids which exhibit a
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Newtonian plateau at low shear rates and a shear-thinning behaviour at high shear
rates. Our approach is validated, step by step, by recovering established results for
Newtonian and power-law unfilled matrices. Based on these results, the effect of
shear-thinning behaviour on rod orientation in filled systems is investigated: what is
the enhancement/decrease of the suspension shear viscosity in a power-law matrix
as compared to the Newtonian one? Does the onset of non-Newtonian behaviour
occur at the same characteristic time (shear rate) for unfilled and filled systems?
These are some of the questions we wish to address. Particular aspects of rod
orientation in such shear-thinning matrices are also discussed. Finally, the present
self-consistent approach is extended to formulate a constitutive equation describing
the rheological properties of semi-concentrated suspensions of rigid rods in Ellis and
Carreau fluids. In addition, the model predictions for an Ellis fluid are shown to be
in good agreement with rheological data for glass-fibre-filled polystyrene melts (Chan
et al. 1978), demonstrating its ability to describe the shear viscosities of rod/polymer
composites.

2. Cell model revisited

The rod (referred to throughout the article as rod, particle or fibre) is represented
by a straight cylinder of length L having a circular cross-section of radius R (or
equivalently of diameter D) and is considered to be a slender body. Its aspect ratio,
defined by ar = L/D� 1, enables us to neglect the particle end effects.

2.1. Cell model
The test rod is coaxially embedded into a cylindrical fluid cell of radius h and of
the same length as the particle (figure 1). This cell model assumes that the effect
of one fibre on its neighbours is approximated by an equivalent cylindrical boundary
around the test rod, and therefore simplifies the problem to a single-particle theory.
In order to determine the velocity field near a slender particle, a dimensional analysis
is carried out using a cylindrical coordinate system for convenience. First, the fluid
velocity field is considered in the vicinity (|z| < L/2 and r� L/2) of a particle in
the assumed equilibrium orientation, as shown schematically in figure 1. Provided that
the cross-sectional form of the particle is circular and does not vary with the axial
z-position, it is useful to adopt a dimensional scaling for the velocities and the velocity
gradients. Thus, the dimensionless quantities are distinguished by asterisks such as

r= Rr∗, θ = θ∗, z= L
2

z∗ and ur = R|γ̇ |u∗r , uθ = R|γ̇ |u∗θ , uz = L
2
|γ̇ |u∗z .

(2.1a,b)
We are concerned with the limiting forms of the dimensionless velocities u∗r , u∗θ and

u∗z and their r∗, θ∗, z∗-derivatives for ar→∞ in an inner region near the body, where
r∗, θ∗ and z∗ are all O(1). Since the gradient operator is given by

∇= δr
∂

∂r
+ δθ 1

r
∂

∂θ
+ δz

∂

∂z
= 1

R

(
∇
(0) + 1

ar
∇
(1)

)
, (2.2)

where

∇
(0) = δr

∂

∂r∗
+ δθ 1

r∗
∂

∂θ∗
and ∇

(1) = δz
∂

∂z∗
, (2.3a,b)
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R

r

z

h

L

0

FIGURE 1. (Colour online) Geometry of the cell surrounding the test rod.

one has formally for the velocity gradient

∇u= ar|γ̇ |[∇(0)(δzu∗z )] = ar|γ̇ |
[
δrδz

∂u∗z
∂r∗
+O(u/ar)

]
, (2.4)

where the θ∗-derivatives have been omitted due to the problem symmetry. Here, we
denote by O(u/ar) the terms which are O(1/ar) relative to the leading terms in (2.4).
The leading terms themselves suggest that a quasi-steady and shear-dominated flow
occurs in the near field, which implies the validity of a viscometric flow representation
for the fluid rheology (Batchelor 1971; Goddard 1976a,b). Therefore, this cell model
provides a useful approximation in the particle near field, with constant velocity
gradients along the rod.

For this axisymmetric problem, the axial velocity uz satisfies the following equation
of motion in terms of stress in cylindrical coordinates

1
r
∂

∂r
(rτrz)= 0, (2.5)

where τrz represents the shear stress. First, equation (2.5) can be integrated directly
to give the familiar elementary form for the shear stress τrz = τRR/r, where τR is the
unknown stress at the rod surface (a no-slip condition is considered at the particle
surface). Secondly, it is assumed that the rheological relationship can be inverted to
give the shear rate, γ̇ , as a function of the shear stress. Hence, following a change of
variable (i.e. r= RτR/τrz), the axial velocity uz can be expressed as

uz =
∫ r

R
γ̇ dr= τRR

∫ τR

τRR/r

γ̇

τ 2
rz

dτrz. (2.6)

Once the shear rheology of the fluid is known, this result provides a relationship
between the axial velocity distribution and the rod surface stress τR. At the same time,
it becomes evident that an outer boundary condition is required to determine τR. At
r= h, the relative fluid velocity field is assumed to be undisturbed by the particle. For
an inertialess particle, a force balance shows that its centre of mass translates affinely
with the bulk flow. Hence, the fluid velocity at distance zp from the centre of mass of
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the rod is ufluid = zκ · p, where κ is the transpose of the velocity gradient tensor (Bird
et al. 1987a), whereas the rod velocity at the same location is urod = zṗ. The relative
velocity is u = ufluid − urod, and hence its component along the z-direction, is found
to be u · p = zκ : pp, which gives the condition uz(h) = zγ̇ : pp/2 (when expressed
in the local coordinate system). z is the arc length measured along the rod axis of
direction p with z = 0 at the centre of the rod (figure 1). With this result in mind,
equation (2.6) yields

zγ̇ : pp/2= τRR
∫ τR

τRR/h

γ̇

τ 2
rz

dτrz. (2.7)

Note that γ̇ is the unperturbed deformation rate tensor taken at the outer boundary
of the cell and γ̇ = ∂uz/∂r is the disturbed shear rate close to the rod. Equation (2.7)
is a key formula used throughout this article in order to take into account the
contribution of particles suspended in nonlinear matrices. An elementary force balance
on the particle leads to the force per unit length f = 2πRτR. This axial tensile force is
parallel to the unit vector p, as Batchelor (1971) argued that the components normal
to the particle make no contribution in the case of a rod on which no external force
or couple acts.

The average force carried by the rod is then substituted into the Kramer expression
(Bird et al. 1987b) to derive the rod stress tensor, in which the volume fraction of
particles, φ, takes into account the contribution of each particle contained in a given
volume. Hence, the extra stress due to the particle contribution is

τ p = 2φ
πR2L

〈
pp
∫ z=L/2

z=0
zf dz

〉
, (2.8)

where the angular brackets denote the ensemble average with respect to the
distribution function of p. Equation (2.8) shows that the stress can be directly
computed once the drag force is known.

2.2. Results for Newtonian fluids
If a Newtonian medium of viscosity η0 is considered, the usual rheological constitutive
equation expressed in simple shear flow is γ̇ = τrz/η0 and (2.7) becomes

f = πη0

log(h/R)
zγ̇ : pp, (2.9)

which is the well-known parallel drag force for a rod suspended into a Newtonian
fluid. Combining (2.8) and (2.9) leads to the following particle contribution to the
stress tensor

τ p = η0φ
a2

r

3 log(h/R)
γ̇ : 〈pppp〉. (2.10)

In order to derive the evolution equation for the second-order tensor 〈pp〉, Giesekus
(1962) proposed an ingenious method to determine the stress tensor (which is
frequently used in the kinetic theory of polymer solutions and melts (Bird et al.
1987b)) and is referred to as the Giesekus stress tensor. This result can be used to
derive the extra stress due to the particle contribution and is given by

τ p =−nζ
4

D〈pp〉
D t

, (2.11)
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where n represents the number of particles per unit volume. In order to define this
derivative, we remark that the Giesekus formulation involves a convected derivative
of the contravariant components of a second-order tensor, ∆, defined by

D∆

D t
= D∆

Dt
+ 1

2
(ω ·∆−∆ ·ω)− 1

2
(γ̇ ·∆+∆ · γ̇ ). (2.12)

A comparison of (2.10) and (2.11) with the help of (2.12) leads to

D〈pp〉
Dt
=−1

2
(ω · 〈pp〉 − 〈pp〉 ·ω)+ 1

2
(γ̇ · 〈pp〉 + 〈pp〉 · γ̇ − 2γ̇ : 〈pppp〉), (2.13)

and the drag coefficient is found to be

ζ = η0πL3

3 log(h/R)
. (2.14)

These last results are in agreement with those obtained by Dinh & Armstrong
(1984) for semi-concentrated fibre suspensions in Newtonian fluids. Hence, a
rheological constitutive equation for slender rods in Newtonian fluids can be expressed
as follows

σ =−Pδ + η0γ̇ + η0φ
a2

r

3 log(h/R)
γ̇ : 〈pppp〉. (2.15)

3. Power-law fluids
3.1. Constitutive equation for suspensions in power-law fluids

For power-law fluids, the shear-rate versus shear-stress rheological relation can be
written as γ̇ = τrz/K|τrz/K|(1−m)/m. The latter expression is substituting in (2.7) to give
the following drag force

f = πK
(2R)m−1

[
1−m

m[1− (R/h)(1−m)/m]
]m

zm|γ̇ : pp|m−1γ̇ : pp. (3.1)

It is interesting to note the nonlinear dependency of the drag force on the magnitude
of the strain-rate tensor and the particle orientation through the dyadic product of p.
This expression is then inserted in (2.8) and an analytical integration along the arc
length can be performed to result in

τ p =Kφ
am+1

r

2m−1(m+ 2)

[
1−m

m[1− (R/h)(1−m)/m]
]m

γ̇ : 〈|γ̇ : pp|m−1pppp〉, (3.2)

which is exactly the stress contribution for rod suspensions in power-law fluids
obtained by Souloumiac & Vincent (1998) and Gibson & Toll (1999). In the special
case of m = 1, the solution reduces to (2.10) with K = η0. Examination of (3.2)
reveals that the slope of log τ

p
12 versus log γ̇ , where τ p

12 is the particle shear stress,
is given by the exponent of m, which is the same slope as the suspending fluid: the
model predicts that the presence of rods does not alter the slope with which the
suspension shear thins. A rheological constitutive equation for axisymmetric particles
in power-law fluids can then be represented as follows

σ =−Pδ +K|γ̇ |m−1γ̇ +Kφ
am+1

r

2m−1(m+ 2)

[
1−m

m[1− (R/h)(1−m)/m]
]m

γ̇ : 〈|γ̇ : pp|m−1pppp〉.
(3.3)
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To derive the time evolution equation for the rod microstructure, the Giesekus
expression is used again and yields to the following expression

D〈|γ̇ : pp|m−1pp〉
Dt

= −1
2
(ω · 〈|γ̇ : pp|m−1pp〉 − 〈|γ̇ : pp|m−1pp〉 ·ω)

+ 1
2
(γ̇ · 〈|γ̇ : pp|m−1pp〉 + 〈|γ̇ : pp|m−1pp〉 · γ̇

− 2γ̇ : 〈|γ̇ : pp|m−1pppp〉), (3.4)

where 〈|γ̇ : pp|m−1pp〉 is a symmetric second-order tensor. In order to gain insight
into the orientation evolution of a rod, the time evolution equation for the probability
distribution function, assuming the existence of a diffusive contribution as suggested
by Folgar & Tucker (1984), is given by

Dψ
Dt
=− ∂

∂p
· (ṗψ)+CI|γ̇ |∂

2ψ

∂p2
, (3.5)

where ∂/∂p is the differential operator on the surface of a unit sphere. ṗ remains to be
expressed considering that the suspending fluid follows a power-law behaviour. Hence,
it is assumed at this point that ṗ is given by the Jeffery equation (1.3) for a slender
body (i.e. λ= 1) with no diffusion (i.e. CI = 0). Although Jeffery (1922) solved the
velocity field around a single rigid ellipsoidal particle immersed in a Newtonian fluid
with negligible inertia, this assumption is justified as for a single material point in
simple shear flow, the Newtonian viscosity of the surrounding fluid can be replaced by
a local viscosity predicted by the power-law model (still a viscous fluid with no time
dependence and no normal stress differences). This assumption appears to be all the
more valid since the viscosity term does not appear in the Jeffery solution. In our cell
model, the velocity gradient is also assumed constant along the length of the particle.
Moreover, a force balance using (3.1) leads to the rod centroid moving affinely with
regards to the effective medium in the absence of any other forces besides those
imparted by the suspending fluid, as also suggested by Jeffery (1922). Thus the Jeffery
equation is substituted into (3.5) and the convective part for the time evolution of
〈|γ̇ : pp|m−1pp〉 is found to be (3.4) (details on the derivation are given in appendix A).
We were unfortunately unable to straightforwardly express the time evolution for the
diffusive term.

Dividing (3.4) by 〈|γ̇ : pp|m−1〉, which corresponds to the trace of 〈|γ̇ : pp|m−1pp〉,
equation (3.4) results in

Da(m)2

Dt
=−1

2
(ω · a(m)2 − a(m)2 ·ω)+

1
2
(γ̇ · a(m)2 + a(m)2 · γ̇ − 2γ̇ : a(m)4 ), (3.6)

where a(m)2 = 〈|γ̇ : pp|m−1pp〉/〈|γ̇ : pp|m−1〉 and a(m)4 = 〈|γ̇ : pp|m−1pppp〉/〈|γ̇ : pp|m−1〉
have been used. Similarly to the orientation tensors (Advani & Tucker 1987), a(m)2 and
a(m)4 describe an equivalent orientation state for the rods, for which the drift due to the
scalar potential |γ̇ : pp|m−1 is considered (note that the trace of a(m)2 always equals 1).

Equation (3.6) is structured as (1.4) which is expressed for a Newtonian matrix
with infinite particle aspect ratio (λ = 1) and no diffusion (CI = 0). Therefore, these
compact and efficient tensors are also called orientation tensors. The components of
the second-order orientation tensor have some simple physical interpretations. If all
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its diagonal components are 1/3, the orientation tensor indicates a three-dimensional
isotropic orientation state for the rods. When two diagonal components are equal to
1/2, the tensor implies a two-dimensional random, planar bi-axial or planar orientation.
Finally, a perfect uniaxial alignment results in one diagonal component value of 1.

The previous governing equations (3.3) and (3.4) are not satisfactory to completely
close the problem: one needs some approximations such as closure relations. The
objective of this work is not to focus on the development of such relations and the
accompanying issue of questionable accuracy. Therefore, equation (3.6) will no longer
be used in the rest of the paper and the results presented hereafter will be based on the
numerical solution of the Fokker–Planck equation (3.5) with CI 6= 0, where ṗ is given
by the Jeffery equation for slender bodies and a description of the numerical method
is detailed in Férec et al. (2008). Hence, once the probability distribution function is
numerically computed, the components of a(m)2 and a(m)4 are straightforwardly evaluated
and the stress tensor components obtained.

3.2. Model predictions
In order to investigate the model predictions, a first set of simulations was performed
imposing a fixed isotropic orientation distribution (i.e. ψ = 1/4π). All the results
presented in this section are obtained for the following parameters: K= 50 Pa sm, φ=
10 %, ar= 20 (L= 280 µm and R= 14 µm) and h=D

√
π/4φ (Chung & Kwon 1996).

This last parameter corresponds to the average distance between rods for an aligned
orientation state (Dinh & Armstrong 1984) and is kept constant over the different
simulations even if the particle microstructure orientation evolves.

A steady-state shear flow is considered (the imposed shear rate is 1 s−1), where
subscripts 1, 2 and 3 stand for flow, velocity gradient and vorticity directions,
respectively. Assuming an isotropic rod orientation distribution (ψ = 1/4π), figure 2
reports the particle shear-stress contribution, τ p

12, and the non-zero components of a(m)2
as functions of m. τ p

12 exhibits a decrease with increasing shear-thinning character
of the matrix (i.e. m decreases). Starting from an isotropic effective rod orientation
a(m)2 for m= 1, observation of a(m)2 reveals that the enhancement of the shear-thinning
character of the matrix results in a system which behaves effectively like a suspension
in which more and more rods would orient towards the vorticity axis: a(m)33 tends to 1
whereas a(m)22 and a(m)11 decrease to 0. Therefore, the effect of the scalar |γ̇ : pp|m−1 is
similar to a stretching force on the orientation distribution in the 3-direction as a(m)11

remains equal to a(m)22 .
The transient results are not shown here as the orientation states predicted by (3.5)

are similar to the ones considering a Newtonian matrix and are well known (Férec
et al. 2008). Note also that the influence of the rod aspect ratio and the particle
concentration on the coupling coefficient, µ(m)1 , have already been tested in Souloumiac
& Vincent (1998).

3.3. Newtonian versus power-law fluids
Regarding the stress expressions for the rod-filled systems in both Newtonian (2.10)
and power-law (3.2) matrices, some questions dealing with the enhancement/decrease
of the suspension shear viscosity in a power-law matrix and the departure from
Newtonian behaviour arise. In order to provide some answers, the specific shear
viscosities of the suspensions (ηsp = (η/ηm) − 1, where η and ηm are the shear
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FIGURE 2. (Colour online) Effect of the power-law index, m, on the shear stress τ p
12

and on the non-zero components of a(m)2 .

viscosities for the composite and the unfilled matrix, respectively) in both Newtonian
and pseudo-plastic matrices are given respectively by

ηN
sp = φ

2a2
r

3 log(h/R)
〈p1p1p2p2〉, (3.7)

and

ηPL
sp = φ

2am+1
r

2m−1(m+ 2)

[
1−m

m[1− (R/h)(1−m)/m]
]m

〈| ˜̇γ : pp|m−1p1p1p2p2〉, (3.8)

where ˜̇γ is the dimensionless strain-rate tensor. The quantities 〈p1p1p2p2〉 and 〈|γ̇ :
pp|m−1p1p1p2p2〉 are calculated from steady-state solutions of (3.5).

Figure 3 reports the Newtonian specific viscosity, ηN
sp, as a function of Péclet

number (Pe = 1/CI), as well as ηPL
sp for m = 0.6 and 0.3, respectively (note that CI

in (3.5) controls the diffusion due to rod interactions). Starting with an isotropic
rod orientation state (Pe � 1), the specific viscosity decreases with diminishing the
power-law index, the largest value being observed for the suspension in a Newtonian
fluid. In the region of Pe ≈ 10, the isotropic orientation distribution of the rods is
destroyed and the resulting microstructure leads to systems having the most flow
resistance. For Newtonian fluids, the maximum is reached for a configuration in
which the largest number of rods is in close alignment with the principal axis of
strain. At larger Pe, decrease in viscosity due to rod orientation is observed and is
more pronounced as m becomes close to 1: rods orient toward directions in which
the energy dissipation is the lowest. Finally at Pe > 103, the specific viscosity for the
most shear-thinning matrix (i.e. m= 0.3) becomes the highest.

In order to explain this behaviour, the a(m)11 and a(m)33 components of the second-order
orientation tensor are depicted as functions of Pe for the three different fluids
in figure 4. As previously mentioned, considering an isotropic orientation state
(i.e. ψ = const.) for rods suspended in shear-thinning fluids (i.e. m 6= 1) leads to
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FIGURE 3. (Colour online) Specific viscosities for rod suspensions in a Newtonian fluid
(N) and two power-law fluids with m= 0.6 and 0.3, respectively.
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FIGURE 4. (Colour online) a(m)11 and a(m)33 as a function of Pe for a Newtonian (N) and
two shear-thinning (m= 0.6 and 0.3) fluids, respectively.

a(m)11 6= a(m)33 6= 1/3. At large Pe and independently of m, a(m)11 and a(m)33 tend to reach
the same steady-state values close to 0.9 and 0.1, respectively. These results suggest
that the shear-thinning behaviour of the matrix has no effect on the rod orientation
dynamics in the case of strong flows. For Pe→∞, the steady-state solution for the
distribution function is simply a Dirac function that is ψ(p) = δ(p − δ1), where the
subscript 1 stands for the flow direction. Under these conditions, the steady-state
shear viscosity for the suspension is equal to the unfilled viscosity because of the
alignment of the rods in the planes of shear and the lack of inclusion of rod thickness
in the model. Hence, as Pe→∞, the specific viscosities converge to zero and all the
components of a(m)2 are null, except a(m)11 , which is 1.
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Unfilled system    N

Unfilled system    PL

Rod suspension    N

Rod suspension    PL

FIGURE 5. (Colour online) Diagram defining the critical shear rates, γ̇ φc and γ̇ φ=0
c .

4. Nonlinear viscous fluids
In view of this, we first consider a model in which an inelastic fluid whose shear

viscosity dependency on shear rate is described by a combination of Newtonian and
power-law models, as illustrated in figure 5. Note that such materials are usually
referred to as bi-viscous fluids. The Ellis and Carreau models are then considered as
potential candidates to overcome the shortcomings of the power-law model and the
present approach is applied to both these models below.

4.1. Bi-viscous model
To investigate the departure from the plateau region, the rod contribution to the stress
in the suspension is assumed to follow the Newtonian behaviour predicted by (2.15)
at low shear rates and the power-law form given by (3.3) at high shear rates. The
transition behaviour at intermediate shear rates is not necessary. Therefore, equating
the shear viscosities of the suspension in both these limiting regions enables defining
a critical shear rate γ̇ φc at which the transition occurs from the zero-shear-rate plateau
to the power-law regime (figure 5). After some straightforward calculus, the critical
shear rate of the suspension is given by

γ̇ φc =

 η0 + η0φ
2a2

r

3 log(h/R)
〈p1p1p2p2〉

K +Kφ
2am+1

r

2m−1(m+ 2)

(
1−m

m[1− (R/h)(1−m)/m]
)m

〈| ˜̇γ : pp|m−1p1p1p2p2〉


1/(m−1)

.

(4.1)
The critical shear rate for an unfilled system, γ̇ φ=0

c , is obtained by imposing
φ = 0 in (4.1) (see also figure 5). The ratio χ = γ̇ φc /γ̇ φ=0

c (or inversely the ratio
between the characteristic time for the unfilled and filled systems) is then introduced
to investigate the departure from Newtonian behaviour. Hence, if χ < 1, the rod
suspension shear thins before the unfilled matrix and the opposite behaviour is
observed for χ > 1. Figure 6 depicts the ratio χ as a function of the Péclet number
for three different values of the power-law index (m= 0.9, 0.6 and 0.3, respectively).
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FIGURE 6. (Colour online) χ as a function of Pe for three different values of the power-
law index; m= 0.9, 0.6 and 0.3, respectively (φ = 10 %). The dotted line indicates cases
when the onset of rod suspension and unfilled matrix shear thinning occur at the same
characteristic time.

These results are obtained with η0 = 1000 Pa s, φ = 10 % and K = 1000 Pa sm and
the dotted line in figure 6 indicates cases when the onset of rod suspension and
unfilled matrix shear thinning occur at the same characteristic time. In the following
analysis it will be useful to keep in mind the results for rod orientations presented in
figure 4. The rod suspension shear thins before the unfilled matrix up to a(m)11 6 0.7
(Pe ≈ 102), otherwise the opposite behaviour is observed and the range within which
this phenomenon is noticed increases when decreasing the power-law index. Moreover,
the largest departures from χ = 1 appear to match the specific viscosity peaks (see
figure 3), where the average rod orientation is the closest to the principal axis of
strain (Pe ≈ 10). As η0, K and φ have been fixed arbitrary, curves plotted in figure 6
cannot be considered as master curves.

4.2. Ellis model
The Ellis model has the advantage of expressing the shear rate as a function of the
shear stress. In simple shear flow, the Ellis fluid response can then be written in the
following form

γ̇

τrz
= 1+ (|τrz|/τ1/2)

α−1

η0
. (4.2)

This model exhibits a Newtonian fluid character at τrz → 0 (η0 plateau viscosity)
and a non-Newtonian power-law fluid character at high shear rates (α is related to
the power-law index by α = 1/m). While the index α is a measure of the degree of
shear-thinning behaviour (the greater the value of α, the greater is the extent of shear
thinning), τ1/2 represents the shear stress value at which the apparent matrix viscosity
has dropped to half its zero-shear-rate value (at high shear stress or shear rate,
K = (η0τ

α−1
1/2 )

1/α). Therefore, the choice of an Ellis fluid appears to be a reasonable
compromise as a constitutive model which captures more details of the viscosity
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trend observed experimentally. Substituting (4.2) into (2.7) leads to the following
expression for the drag force

z
2
γ̇ : pp= f

2πη0
log(h/R)+ f

2πη0

1
α − 1

( |f |
2πRτ1/2

)α−1

[1− (R/h)α−1]. (4.3)

The drag force f has to be obtained numerically from (4.3) by means of simple
numerical solvers based for example on a bi-section method. These do not require
high computational time and generally do not restrict the applicability of the model.
Hence, after computing the drag force numerically, the rod contribution to the stress
tensor components are straightforwardly obtained using (2.8).

The model predictions are analysed by comparing them with experimental data
obtained for glass-fibre-reinforced polystyrene melts. The experimental results are
taken from the work of Chan et al. (1978) and polystyrene (PS) polymers are filled
respectively with 0 wt% (PS0), 20 wt% (PS20) and 40 wt% (PS40) of glass fibre
of diameter equal to 12.7 µm and length of order 2 mm for the PS20 and 1 mm
for the PS40. A nonlinear least-squares algorithm is used to determine the Ellis
parameters for the pure PS matrix and the parameters η0= 750 kPa s, τ1/2= 120 kPa
and α= 2.93 were found. It can be seen in figure 7 that the viscosity of the unfilled
polystyrene (PS0) is well predicted for shear rates spanning over six orders of
magnitude.

Assuming a polystyrene density of ρPS = 1.00 g cm−3 and a glass-fibre density of
ρfib= 2.50 g cm−3, the calculated volume concentrations are found to be φPS20= 9.1 %
and φPS40 = 21.1 % for PS20 and PS40, respectively. The same fitting procedure is
applied to obtain the shear viscosities of PS20 and PS40, as shown in figure 7. Note
that the rod orientation state is given by the steady-state solution of the Fokker–Planck
equation (3.5) (that is a non-isotropic orientation for the distribution function) and,
h appearing in (4.3) with Pe are chosen as the two fitting parameters. Due to the
important particle length, fibre breakage during the measurements cannot be ruled out
and the values of h and Pe remain uncertain. The nonlinear least-squares algorithm
gives h= 14.0 µm and Pe= 8.70× 106 for PS20 and h= 7.8 µm and Pe= 9.85× 105

for PS40. As can be seen in figure 7, the model predictions are in good agreement
with the experimental findings. The obtained fitting values for Pe suggest that the rod
orientation state is in close to perfect alignment leading to a low contribution to the
shear stress. However, as the coupling coefficients are due to the high aspect ratios
(i.e. ≈160 and 80 for PS20 and PS40, respectively), the short glass fibres contribution
to the shear stress cannot be omitted. We speculate that the measurement for the
fibre dimensions have been performed before preparing the samples for the rheological
tests, leading to lower aspect ratios due to fibre length breakage. Chan et al. (1978)
also reported the existence of normal stresses for the polystyrene systems but their
measurements are not employed in our fitting procedure since the Ellis model predicts
no normal stresses in shear flows for the unfilled matrix.
χ can be estimated graphically by noting that γ̇ φc = (ηN

PS20|γ̇=0.001s−1/ηPL
PS20|γ̇=1s−1)1/(m−1)

and γ̇ φ=0
c = (ηN

PS0|γ̇=0.001s−1/ηPL
PS0|γ̇=1s−1)1/(m−1), where ηN

PS0|γ̇=0.001s−1 ≈ 7.5 × 105 Pa s,
ηPL

PS20|γ̇=1s−1 ≈ 5.0 × 105 Pa s, ηN
PS0|γ̇=0.001s−1 ≈ 7.5 × 105 Pa s and ηPL

PS0|γ̇=1s−1 ≈
2.5 × 105 Pa s, respectively. Note that ηPL

PS0|γ̇=1s−1 and ηPL
PS20|γ̇=1s−1 may be obtained

by extrapolation of the power-law viscosity curves up to γ̇ = 1s−1 (in our case, this
extrapolation is not necessary). It is then found that χ ≈ 0.6< 1, indicating that the
rod suspension shear thins before the unfilled matrix, as also observed experimentally
in figure 7.
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FIGURE 7. (Colour online) Comparison of the steady-shear viscosity for the glass-fibre-
filled polystyrene systems (Chan et al. 1978) with the model predictions.

4.3. Carreau model
Based on the previous results, we can extend our analysis to rod suspensions in
Carreau fluids. By neglecting the viscosity plateau at large shear rates, the Carreau
model writes

η= η0[1+ (λ0γ̇ )
2](m−1)/2, (4.4)

where the parameter λ0 is a time constant for the fluid. The value of λ0 determines the
shear rate at which the transition occurs from the zero-shear-rate plateau to the power-
law portion. This time, the micromechanical analysis at the rod scale is numerically
performed: equation (2.5) is solved along incremental particle segments to express the
shear stress at the wall considering that the fluid follows the Carreau model. Hence,
the extra stress due to the particle contribution (2.8) is numerically computed and the
material functions for the suspensions can be deduced.

Figure 8 depicts the specific shear viscosities, ηsp, when the rods are suspended in
a Newtonian, power-law and Carreau fluids, respectively. For the following simulation
results, an isotropic rod orientation distribution is assumed (ψ = 1/4π), the Newtonian
viscosity is η0= 1000 Pa s, the consistency is given by K= η0λ

m−1
0 , where the power-

law index is m= 0.3 and the characteristic time for the Carreau model is λ0 = 0.1 s.
The particle phase properties are φ= 10 %, ar= 20 and h=D

√
π/4φ. As expected, at

low shear rates, the specific viscosity obtained for rods suspended in a Carreau fluid
matched the one predicted for a Newtonian suspending fluid (2.15) and at high shear
rates, the observed trend is the power-law behaviour (3.3).

This approach to predicting the material functions for rod suspensions in Carreau
fluid is useful for viscometric flows but leads to the high computational times required
for non-homogenous problems. Although a micromechanical description at the particle
scale is of key importance to the understanding of the flow kinematics of suspensions
in shear-thinning fluids, the approach used in the case of a Carreau fluid appears to
be rather restricted for practical applications, at least for the moment.
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FIGURE 8. (Colour online) Specific viscosities for rod suspensions in Newtonian, power-
law and Carreau fluids, respectively.

5. Concluding remarks
In this paper, the cell model (or the self-consistent scheme) is revisited to derive

constitutive equations for rod suspensions in non-Newtonian viscous fluids such as
power-law, Ellis and Carreau models. The motion of particles in these generalized
Newtonian fluids is discussed and it is proposed that the Jeffery solution, developed
for Newtonian fluids, can be applied.

The effect of the shear-thinning behaviour of the suspending matrix on rod
suspensions is investigated and it appears to be similar to a stretching force on
the orientation distribution in the vorticity direction in simple shear flow. Moreover,
at a random rod orientation state, the specific shear viscosity for a suspension in
a Newtonian fluid is larger than the one in a power-law matrix but the opposite
behaviour is observed when most rods have a perfect alignment. It is also found
that the departure for rod suspensions from the Newtonian plateau behaviour as
compared to the unfilled matrix is dependent on the particle orientation: for rods
aligned close to the shear flow direction, the unfilled matrix begins to shear thin
before the suspensions. For the other orientation states (i.e. isotropic orientation or
rod orientation coincident with the principal axis of strain), the opposite behaviour is
observed. While this does not answer why the suspensions of aligned particle shear
thin later than the pure matrix, it can be speculated that non-aligned particles create
more disturbance in the flow field and hence generate higher local velocity gradients,
which in turn lead to earlier shear thinning.

A semi-analytical model for rod suspensions in Ellis fluid is also proposed and
the results obtained suggest that this approach is suitable for predicting a Newtonian
plateau at lower shear rates and a shear-thinning behaviour at high shear rates. The
good agreement between model predictions and experimental data for the shear
viscosities of glass-fibre-filled polystyrene melts (Chan et al. 1978) increases our
confidence in the proposed method. Finally, a micromechanical analysis is performed
at the particle scale by considering a Carreau fluid in order to predict some material
properties of the rod suspension but this strategy requires higher computational time,
especially in the case of suspensions in general flow fields.
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Although extensional flows are not investigated in this paper, and hence the effect
of strain-thinning behaviour on rod suspensions has not been considered, we expect
our approach to be valid in such flows as it is based on the works of Batchelor
(1971) and Goddard (1976a,b): the former considered the stress generated in a non-
dilute suspension of rods by pure straining motion for Newtonian fluids while the
latter studied the tensile stress contribution of rods in power-law fluids, both of them
assumed the slender particles to be aligned parallel to the direction of the greatest
principal rate of extension.

Acknowledgements
This work has been performed while J.F. was on sabbatical leave at the National

University of Singapore (NUS), as visitor Professor at the Department of Mechanical
Engineering. J.F. wishes to thank his hosts Professor N. Phan-Thien and Professor
B. C. Khoo for their kind hospitality and a very stimulating environment. The authors
are grateful to the reviewers for their useful and significant suggestions.

Appendix A. Derivation of the time evolution equation for 〈|γ̇ : pp|m−1 pp〉
The equation of change for 〈B〉, where B = |γ̇ : pp|m−1pp is a symmetric second-

order tensor function of p, γ̇ and m, is derived. Equation (3.5) is then multiplied by
B and integrated over all possible directions of p to give∫

p

Dψ
Dt

B dp=−
∫

p

∂

∂p
· (ṗψ)B dp+

∫
p

CI|γ̇ |∂
2ψ

∂p2
B dp. (A 1)

Equation (A 1) involves a convective term (the first term on the right-hand side)
and a diffusive term proportional to CI|γ̇ |. Since γ̇ and m are assumed to be time
independent and B is a function of p, the left-hand side can be rewritten as∫

p

Dψ
Dt

B dp= D
Dt
〈B〉. (A 2)

The term on the right-hand side of (A 1) is then expanded using integration by parts
with the assumption that CI|γ̇ | is not a function of p, this yields

D〈B〉
Dt
=
∫

p
ṗ ·
∂B

∂p
ψ dp−CI|γ̇ |

∫
p

∂ψ

∂p
·
∂B

∂p
dp. (A 3)

The second term on the right-hand side is again expanded using integration by parts
(Advani & Tucker 1987) resulting in

D〈B〉
Dt
=
〈

ṗ ·
∂B

∂p

〉
+CI|γ̇ |

〈
∂B2

∂p2

〉
. (A 4)

If the Jeffery equation for slender bodies is substituted into (A 4), the first term on
the right-hand side of (A 4) becomes, when B is replaced by |γ̇ : pp|m−1pp:〈

ṗ ·
∂

∂p
(|γ̇ : pp|m−1pp)

〉
=
〈
|γ̇ : pp|m−1ṗ ·

∂

∂p
(pp)

〉
+
〈

ṗ · pp
∂

∂p
(|γ̇ : pp|m−1)

〉
.

(A 5)
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Bird et al. (1987b) show that ∂/∂p(pp) = (δ − pp)p + [p(δ − pp)]t and by noting
that ṗ · p= 0 (the inextensibility condition), equation (A 5) results in〈

ṗ ·
∂

∂p
(|γ̇ : pp|m−1pp)

〉
= −1

2
(ω · 〈|γ̇ : pp|m−1pp〉 − 〈|γ̇ : pp|m−1pp〉 ·ω)

+ 1
2
(γ̇ · 〈|γ̇ : pp|m−1pp〉 + 〈|γ̇ : pp|m−1pp〉 · γ̇

− 2γ̇ : 〈|γ̇ : pp|m−1pppp〉) . (A 6)

Therefore, the convective part of equation (A 4) reads

D〈|γ̇ : pp|m−1pp〉
Dt

= −1
2
(ω · 〈|γ̇ : pp|m−1pp〉 − 〈|γ̇ : pp|m−1pp〉 ·ω)

+ 1
2
(γ̇ · 〈|γ̇ : pp|m−1pp〉 + 〈|γ̇ : pp|m−1pp〉 · γ̇

− 2γ̇ : 〈|γ̇ : pp|m−1pppp〉), (A 7)

which is precisely equation (3.4). Unfortunately, we are not able to derive a simple
expression for the diffusion part.
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