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SUMMARY
This paper presents a novel method for localization of
mobile robots in structured environments. The estimation
of the position and orientation of the robot relies on the
minimisation of the partial Hausdorff distance between
ladar range measurements and a floor plan image of the
building. The approach is employed in combination with an
extended Kalman filter to obtain accurate estimates of the
robot’s position, heading and velocity. Good estimates of
these variables were obtained during tests performed using a
differential drive robot, thus demonstrating that the approach
provides an accurate, reliable and computationally feasible
alternative for indoor robot localization and autonomous
navigation.

KEYWORDS: Mobile robot localization; Hausdorff
distance; Map-matching.

1. Introduction
Fully autonomous mobile robots rely significantly on self-
localization techniques to accomplish navigation tasks.1,2,3

It is well known that methods based on propioceptive
sensors alone, such as encoders or inertial measurement
units, cannot robustly solve the localization problem.4 This is
because errors from odometry readings accumulate, leading
to unbounded position errors. In view of this limitation,
several alternatives to dead reckoning techniques have
been developed employing exteroceptive sensors, such as
sonar,5,6,7 ladar,8,9,10 visual sensors,11 or their combination
through sensor fusion techniques.12,13,14 In general, these
techniques involve a process commonly known as scan
matching or model matching, which consists of matching
features extracted from sensor measurements to features in a
global map of the environment.

This paper presents a novel approach for mobile robot
localization and pose estimation based on matching raw
ladar range information to a relatively simple user-created
floor plan of a building. Although the idea of matching raw
sensor measurements directly to a model of the environment
is not new (see, for example, the work by R. Chatila and J.-P.
Laumond,15 and J. Crowley et al.16), our approach differs
from exising methods in that it relies on the computation of a
set of transformations (translation, rotation and scaling) that
minimise the partial Hausdorff distance (HD) between the
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observations and the model as proposed by W. Rucklidge17

or D. Sim and R. Park18 for 2D pattern matching. The
localization procedure also draws on ideas from our earlier
work on radar-based ship positioning.19

The contribution of this approach is that it does not require
a complex perception process to extract the features of
the environment, such as different forms of line detection
and association procedures predominant in vision-based
approaches; the reader is referred to the survey paper by G.
DeSouza and A. Kak11 for an exhaustive review on vision-
based navigation techniques. Furthermore, the experimental
results obtained using a differential-drive robot demonstrate
that the method can be implemented to perform in real time
and that it is robust to sensor noise and dynamic environment
perturbations, such as people crossing the sensor’s field of
view or arbitrary position changes of small furniture, such as
chairs or cabinets.

The only assumptions required by the proposed approach
are that the dimensions of the rooms in the building do not
exceed the sensor’s maximum scanning range and that all the
rooms have a uniquely identifiable shape. These assumptions
are not really restrictive, since they are often satisfied by
existing commercial range sensors and regular home or
indoor office environments. On the other hand, it is possible to
combine the proposed method and the traversed path history
to deal with ambiguous or out of scan-range situations.

The paper is organized as follows. Section 2 reviews
the existing localization approaches. Section 3 presents the
mathematical background associated to the HD and explains
how it can be employed to measure the dissimilarity between
two shapes. The robustness and accuracy of the approach is
demonstrated in Section 4 using simulated data. Section 5
presents the sensor model and explains the solution of the
localization problem using the HD. Experimental results
confirming the good performance of the proposed approach
applied in a real environment are presented in Section 6.
Finally, Section 7 presents the conclusions of this work and
discusses some aspects of ongoing and future research.

2. Existing Localization Approaches
A large number of localization techniques have been
proposed in the last few decades. These approaches can
be classified according to different criteria, such as sensor
type, environment of applicability, map type, supporting
mathematical model, or globality of the solution, to name
a few. J.-S. Gutmann et al.20 suggest three basic localization
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approaches: behavioral-based, landmark-based, and those
based on scan-matching techniques. This section will focus
on scan-matching techniques for reasons of brevity and
because behavioral approaches have limited localization
abilities, while landmark-based techniques often require
modifying the environment to provide reliable landmarks.20

The reader is referred to the work by S. Thrun et al.,1 D. Filliat
and J.-A. Meyer,21 G. Dudek and M. Jenkin,2 C. F. Olson,22

J. Borenstein et al.3 and R. Talluri and J. Aggarwal33 for
in-depth reviews of the different localization techniques.

An important characteristic of dense sensor-matching
techniques is that they rely on probabilistic models to
take into account not only sensor noises and process
disturbances, but also uncertainty in the environment. The
general formulation of the robot localization problem in
a probabilistic framework can be stated as an estimation
problem in which the state of the robot (typically given by its
position, velocity, heading and rate of turn) must be inferred
at every time-step from the knowledge about its initial state
and all measurements up to the current time. More formally,
let xk

def= [xk, ẋk, yk, ẏk, θk, θ̇k]T denote the state of the robot
at a time instant tk = kT , k = 0, 1, 2, . . ., where xk , yk are the
robot’s global position coordinates in the Cartesian plane,
ẋk , ẏk are the robot’s velocity components along the x and
y coordinates, θk is the robot’s orientation, θ̇k is the turning
rate, and T is the sampling period. Denote the set of all sensor
measurements up to time tk by Zk

def= {zi , i = 1, 2, . . . , k}.
The robot localization problem can then be defined as the
problem of finding a state estimate x̂k , which maximizes the
posterior density p(xk|Zk) of the current state conditioned
over all measurements. To this end, it will be necessary
to recursively compute at each time instant k, the posterior
probability density p(xk|Zk) in two steps:

• Prediction step: In this first step, the motion model of the
robot is employed to predict its current position in the form
of a predictive probability density function p(xk|Zk−1).
The motion model is defined by a conditional density
function p(xk|xk−1, uk−1) assuming that the current state
xk is Markovian (i.e. only depends on the previous state
xk−1) and the control input uk−1. The predictive density is
computed by integration:

p(xk|Zk−1) =
∫

p(xk|xk−1, uk−1)p(xk−1|Zk−1) dxk−1. (1)

• Update step: The second step involves incorporating in-
formation from the sensors using a measurement model to
obtain the posterior density p(xk|Zk). The usual assump-
tions are that the measurement zk at the kth time instant
is conditionally independent of previous measurements
Zk−1 given xk , and that the measurement model is given
by a likelihood p(zk|xk), which expresses the probability
of observing zk given a predicted robot location xk . Using
the Bayes rule, the posterior density of the current state xk

given all measurements Zk is obtained as:

p(xk|Zk) = p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
. (2)

Considering this Bayesian formulation of the localization
problem, the existing algorithms can be classified into the

following general categories depending on the proposed
representation of the posterior density (2):

• Kalman filtering approaches: In this case, the motion
and measurement model, as well as the initial state, are
assumed to be Gaussian. Hence, Eq. (2) remains Gaussian
at all times. Furthermore, linearization of the motion and
measurement equations yields closed-form expressions
for Eqs. (1) and (2), which constitute the classical Kalman
filter.6,24−26

• Markov localization: This approach is based on the
computation of a discrete approximation of a probability
distribution over all possible states. The distribution also
evolves according to Eqs. (1) and (2). It is possible to
distinguish two types of Markov localization strategies
depending on whether the state space of possible robot
positions is represented in terms of the environment’s
topological structure or using a grid. Topological Markov
localization approaches are often employed in landmark-
based navigation strategies.27−31 Grid-based Markov
localization methods involve discretizing the state space
and approximating the posterior density in Eq. (2) by, for
example, piece-wise constant functions.32−34

• Sampling-based methods: These approaches represent
the posterior density p(xk|Zk) by a set of samples
that are randomly drawn from it.35−37 It is posible
to reconstruct the density from the samples using a
histogram or kenel-based density estimation techniques.
Recursive algorithms to compute the samples have been
proposed by several authors. These algorithms are known
as bootstrap filters,38 Monte Carlo filters39 condensation
algorithms,40,41 or generically as particle filters.42

There exist other localization methods that employ
probabilistic approaches for sensor and motion modelling
which are worth mentioning, but that do not fit in the
previous categories as they do not rely on standard Bayesian
techniques. The first of such approaches is that of H. Moravec
and A. Elfes,43 who proposed a map-based technique in
which the map is defined in terms of an occupancy-
grid containing the probabilities of grid elements being
occupied or not. The occupancy-grid method differs from
the grid-based Markov localization approaches in that it
does not make explicit use of conditional probabilities
over previous measurements and robot actions. Nonetheless,
this approach is important as it opened the way to the
more advanced grid-based Markov localization techniques.
More recently, P. Jensfelt and K. Kristensen44 proposed an
approach known as multiple-hypothesis localization based
on multiple-hypothesis tracking techniques to exploit the
accuracy of Kalman filtering localization methods and allow
the representation of non-Gaussian probability distributions
for the robot’s state as a mixture of Gaussians. Alternative
refinements of localization methods based on Monte Carlo
sampling methods and multiple-hypothesis tracking can be
found in the papers by J.-S. Gutmann and D. Fox,45 and
K. Kristensen and P. Jensfelt.46 It has been demonstrated that
grid-based Markov localization is in general more robust than
approaches using Kalman filters, but that the latter can be
more accurate than the former.20 On the other hand, Markov
localization techniques tend to be computationally more
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demanding than localization strategies based on Kalman
filtering. Recent comparisons indicate that approaches based
on Monte Carlo localization or multi-hypothesis localization
are both accurate and robust, performing slightly better at a
reasonable computational cost.45,46 For detailed comparative
studies, the reader is referred to the work by B. Schiele and
J. L. Crowley,24 J.-S. Gutmann et al.,20 J.-S. Gutmann and
D. Fox,45 K. Kristensen and P. Jensfelt,46 G. Schaffer et al.47

and L. Marchetti et al.48

On the same level of importance as the probabilistic
approach for tracking the robot’s pose is the process of
interpreting its sensors’ raw measurements. This process
is a fundamental part of the measurement model and its
role is to extract pose information from the raw data
provided by the sensors. In contrast to motion models,
which in general are one of the few possible different
formulations of the kinematic and dynamic equations for
a given robot, the measurement model, and more specifically
the process of extracting meaningful information from raw
sensor data, can take a variety of forms for a given sensor.
Thus, another key aspect that distinguishes the different
existing localization methods is the way pose information
is obtained from raw measurements. In broad terms, the
problem of interpreting measurements to quantify changes
in a robot’s pose is a problem of finding displacements
or geometrical misaligments between current and previous
measurements or between current measurements and a
map of the environment. The techniques to find the
correspondances and compute the degree of misalignment
between current scan features and reference features are
commonly known as scan or map-matching techniques. Most
of the scan-matching methods originated from template or
shape-matching techniques49 conceived for computer vision
applications. The different scan-matching approaches for
mobile robot localization can be classified into the following
general categories25:

• Point-to-segment: This technique relies on asigning
current scan points to an existing model consisting of line
segments.8 It is best suited for polygonal environments.

• Point-to-point: This strategy computes changes in pose
by finding the correspondance between each point in
the current scan and each point in a previous scan.
Since this technique does not require the extraction of
geometric features from the raw measurements, it is
applicable to nonpolygonal environments. The point-to-
point correspondence approach was first employed for
mobile robot localization by F. Lu and E. Milios50,51 and is
arguably the most popular technique.25,52−54 Most point-
to-point correspondance methods employ the Iterative
Closest Point55 (ICP) algorithm or some variant.56−58

More recently, A. Diosi and L. Kleeman59 have proposed
a method called Polar Scan Matching, which is faster than
ICP since the point-to-point correspondances are sought
by matching points with the same bearing in the native
polar coordinates of the sensor rather than in a Cartesian
coordinate frame.

• Feature-to-feature: These approaches are based on
representing the measurements in terms of their
properties, which may not necessarily be of geometrical

nature. For example, Weiss et al.9,60 proposed a method
based on the computation of the cross-correlation
between the histograms of the scanned distances and
those of the reference scan. However, this particular
approach is mostly limited to polygonal environments
with perpendicular walls. Modifications of this approach
are possible for nonperpendicular environments.25 Other
approaches that do not require explicit geometrical
features are those that employ occupancy grids and
compute 2D cross-correlations between the scanned grid
and the reference map in a manner similar to template-
matching in image processing, i.e. by multiplying
ovelapping grid cells and summing the result of each
multiplication.30,61,62 Another approach that is as common
as the ICP is to perform line-to-line matching.10,14,25,63,64

Several variants of the latter exist and differ in the way
lines are extracted from the raw measurements.65 The
performance of the line-to-line matching approaches is
strongly related to each algorithm’s ability to correctly
identify the line segments. Within this class of matching
approaches, it is possible to distinghish two groups. Some
of the approaches perform scan-to-scan matching, i.e.
the current scan is matched to a previous scan in order
to determine relative displacements of the robot, while
other approaches match the features extracted from the
scans to the features in a previously existing map created
offline or a map created by the robot while navigating the
environment. The latter can thus be referred to as scan-to-
map matching approaches.
The localization approach proposed in this paper may

be regarded as scan-to-map matching approach with the
following advantages over other methods:

• It does not require the extraction of geometrical features
nor to find explicit point-to-point correspondences, which
are harder to establish in the pressence of dynamic changes
and disturbances of the environment.

• Unlike point-to-point methods, our approach does not
have problems of converence to local minima instead of
the global minimum when the initial pose estimate is not
close to the actual pose.

• It can be as computationally efficient as point-to-point
or line-to-line matching strategies by using the Voronoi
matrix of the reference map, which can be computed
offline once.

• It is not limited to polygonal environments as many point-
to-point or line-to-line matching strategies.

• It is more robust to map errors, non-Gaussian disturbances
and occlusions affecting the measurements than line-to-
line matching approaches because it seeks to minimise a
measure of dissimilarity rather than to maximise similarity
between the scan and the reference data.

• It exploits the accuracy and computational efficiency of
the extended Kalman filter to update the estimate of the
robot’s state.

3. Matching Based on the Hausdorff Distance
The computation of the Hausdorff distance (HD) is a
technique to measure the degree of dissimilarity among
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different objects. By taking two sets of points, one being
the reference model and the other the actual measurements,
the HD between them is small when every point in one
of the sets is near to some point in the other. Given two
sets, A = {a1, a2, . . . , ap} and B ={b1, b2, . . . , bq}, the HD
between A and B is defined as:

H (A, B)
def= max(h(A, B), h(B, A)) (3)

where

h(A, B)
def= max

a∈A
min
b∈B

‖a − b‖ (4)

is the directed HD between sets A and B.
Numerical procedures to compute this distance, sort the

points in A according to their distance to the nearest point in
B, and then select the farthest one as the result. For instance,
if h(A, B) = h∗, then every point in A is at the most at a
distance h∗ of a point in B. The point with distance h∗ is
the point that most deviates from set B. Figure 1 shows
a geometric representation of the HD as applied to pattern
recognition. Here, sets A and B are the reference model and
measurements, respectively. By rotating and translating the
measurements, a satisfactory matching is obtained as the one
that minimises H (A, B).

In order to reduce the number of calculations, a distance
transform in the form of a Voronoi matrix is computed first.
By doing so, set A is processed only once. Further details
can be found in the paper by W. Rucklidge.17

In most applications, the sets A and B are not identical,
as would typically occur in the presence of occlusions,
measurement noise and image distortions. The latter is
particularly valid for ladar images generated through the
application of a transformation of the raw measurements
in polar coordinates to a set of measurements in Cartesian
coordinates; thus, offsets in range will cause a shrinkage or
enlargement of the objects. Sometimes these differences can
also be introduced at intermediate stages, such as expansion,
rotation and translation, among others. To cope with this

Fig. 1. Pattern matching employing the Hausdorff Distance.

problem, some modifications to the previous criteria based
on the HD must be introduced as explained next.

3.1. Partial Hausdorff distance
The previously mentioned sources of error will generate
some false-positive matches with HDs significantly larger
than the one of any true-positive match. Taking advantage of
the fact that the HD computation procedure determines the
distance of the farthest point in B by ranking the distances
of its points to points in A, a way of reducing erroneous
matches is to select the Kth distance in the ranking, instead
of the largest one.17 In other words, some of the the points
in B with the largest distances are ignored and only a subset
is used. The HD with respect to A of this subset of B is the
so-called partial (directed) HD. In order to formally define
the partial HD, it is convenient to introduce first a mapping
d�:

d� : x → d�(x) = min
ω∈�

‖x − ω‖

that measures the distance of the closest point ω in a set � to
some point x. Then, the partial HD of the K best matching
points of the measurements set B to the model set A can be
defined recursively for K = q, q − 1, q − 2, . . . , 2, 1 as:

hK (B, A) = max
b∈BK

dA(b) (5)

where BK = BK+1 − {
b∗

K+1

}
b∗

K = arg max
b∈BK

dA(b)

and the initial values Bq+1 =B, b∗
q+1 ={∅}. It is worth

noting that hq(B, A) = h(B, A), and that hq(B, A) ≥
hq−1(B, A) ≥ · · · ≥ h1(B, A), since Bq ⊃ Bq−1 ⊃ · · · ⊃
B1. Hence, this definition automatically implies that there are
K measurement points in B within a distance hK (B, A) from
A (the Kth partial HD). Since more than one transformation
of the image associated with the measurements set may
result in similar values for hK (B, A), an effective criteria
for successful matching is to minimise the average of partial
HDs smaller or equal to hK (B, A) for some chosen K . This
average, also known as modified HD,18 is given by:

h̄K (B, A) = 1

K

K∑
i=1

hi(B, A). (6)

Employing the modified HD ensures that more points in the
image will resemble the model. For practical purposes, it
is convenient to define the ratio of model points employed
in the calculation of the average as λ =K/q. Then, K may
be selected in terms of the ratio λ, simply as K = λ q, with
1/q ≤ λ ≤ 1. The value of λ is found empirically as the one
that minimises the matching error for a set of image and
model pairs.

3.2. Matching strategy and its computational cost
The search for the optimal solution is based on the application
of translation, rotation and scaling transformations to the sets
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or images in such a way as to minimise Eq. (6), thus yielding a
set of transformations that maximises the similarity between
A and B. Formally, the matching problem can be stated as
that of finding a transformation T : � → T (�) such that it
minimises:

min
T

hK (T (B), A). (7)

Here, T was chosen to be Tδ,θ,α : � → α Rθ (� + δ), i.e. a
transformation that first applies a translation δ in the plane,
followed by a rotation of angle θ and finally a scaling
transformation of magnitude α. In order to solve Eq. (7),
a reliable and rapidly converging approach to minimise
Eq. (6) was implemented in terms of standard gradient
methods.

The computational cost of the matching strategy is
the product of the computational effort involved in the
calculation of the modified HD, the complexity of the
minimization procedure and the number of iterations required
to attain a minimum. Assuming the Voronoi matrix of the
reference map has been pre-computed offline, a closed-form
expression for the cost of the modified HD computation is
given by:

CHD = Ns(7C1 + 2C2 + C3) + C4Ns log(Ns) + C5 (8)

where Ns is the number of samples per scan, C1,
C2, C3, C4 and C5 are the number of CPU cycles
required by additions/subtractions, transcendental functions,
rounding operations, memory fetch operations and multi-
plications/divisions, respectively. The term C4Ns log(Ns) in
Eq. (8) is the cost of sorting the list of partial HDs. Thus
for large number of samples Ns , the complexity of the HD
computation is CHD ≈ O (Ns log(Ns)). This complexity is
comparable to that of the split and merge algorithm for line
extraction, which has been reported to be the fastest of the
line extraction algorithms for mobile robot localization.65

The minimisation strategy requires the computation of
the modified HD eight times, once in each direction of the
eight adjacent neighbors in a Cartesian grid, in order to
obtain a numerical approximation of the gradient along the
x and y coordinates. Similarly, to find the proper direction
of rotation that minimises Eq. (7), the modified HD needs
to be computed twice. Initial iterations do not attempt to
minimise the possible error in the orientation angle between
the current scan and the reference map. This is because
correct orientations may yield a larger modified HD than
incorrect ones when the initial translation error is large.
Hence, attempting to reduce the angular misaligment before
having reduced the position misalignment to a minimum may
result in wasted effort.

The rate of convergence will be determined by the
distance function employed to compute the Voronoi matrix.
Convergence in a finite number of iterations can be
guaranteed if a city-block (�1) or Euclidean (�2) metric is
employed.66 In order to reduce the computational burden
in calculating the modified HD, it is common to employ
the city-block metric.67 This will guarantee a constant
convergence rate with respect to translation for a fixed step

size. A way to reduce the number of iterations required
for convergence is to adjust the step size as the solution
approaches the optimal value. In our implementation, a
simple mechanism was adopted in which initial steps of size
�̄ =�x =�y > 1 grid units are taken in the directions x

and y until no further decrease of the objective function
can be achieved. The minimisation process is then repeated
using a step size half of that in the previous set of iterations.
This action is repeated until the step size cannot be further
reduced, i.e. until �̄= 1 grid unit, unless sub-pixel accuracy
is sought. A similar procedure is employed to minimise
the angular error and the scaling corrections employing
an initial angle step size �̄	 and a scaling factor step
�̄s . Assuming that the range sensor has been properly
calibrated offline, then scaling errors can be neglected
and the matching problem reduces to finding optimal
translation and rotation, thus reducing the computational
burden. Thus, if the city-block distance is employed in
the computation of the Voronoi matrix, and if the initial
positional and angular errors are given by D̄ =‖p̂ − p‖�1

and 	̄ =‖θ̂ − θ‖�1 , then the minimisation approach will
converge in at most NI =N(D̄, �̄) + N(	̄, �̄	) iterations,
where:

N(D, �)
def=

n∑
i=0

round (yi(D, �)) (9)

and

yi(D, �)
def= yi−1(D, �) − trunc(yi−1 (D, �))

�
2i

y0(D, �)
def= D

�
.

with n= sup {i ∈ N : �
2i ≥ 1}, i.e. n is the largest integer

which satisfies �
2n ≥ 1.

Considering the total number of iterations, the total
computational cost of the matching strategy satisfies

CT ≤ (8N(D̄, �̄) + 2N(	̄, �̄	))CHD (10)

where CHD is given in Eq. (8).
It is important to note that by Eqs. (9) and (10), the total

computational cost directly depends on the initial errors D̄

and 	̄, as well as the number of range samples per scan. This
cost may initially be large, since the true robot’s position and
orientation may have been badly guessed. However, if the
initial guess required by the minimisation strategy is based on
the predictions obtained from the robot’s dynamic model and
the knowledge of the steering inputs through an estimation
filter, such as an extended Kalman filter, then subsequent
iterations of the localization strategy will incur very small
computational costs. This is because, given good predictions,
the misalignments �̄ and 	̄ will be kept small throughout
the following iterations as the robot moves. Hence, the
application of the strategy for real-time localization is made
possible, as will be shown in Section 6.
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Table I. Simulation results of the positioning accuracy.

Noise
percentage

[%]

Noise level
σ

[pixels]

Final match
position error

[pixels]

Final match
heading error

[◦]

Initial
h̄K (A,B)
[pixels]

Final
h̄K (A,B)
[pixels]

0 0 0 0 165.16 0
20 10 0 0 165.02 0
20 20 0 0 165.77 0
50 10 0 0 165.27 0.66
50 20 0 0 164.50 1.22

100 10 0 0.17 164.60 4.33
100 20 1.00 0 163.03 8.42

4. Robustness and Accuracy of the Matching Method
In this section, the robustness and accuracy of the matching
method based on the modified HD is tested in terms of
simulated data. The simulations consider a 500 × 500 pixels
reference image containing a 116 × 116 pixels square in its
center. The simulated data representing the contour obtained
by the ladar is generated by: (i) adding noise to a given
percentage of samples of the original reference square,
(ii) rotating this simulated measurements 10◦ counter-
clockwise, and (iii) translating the set of points 150 pixels
to the left and 150 pixels up. Two different parameters are
adjusted for the different scenarios of measured data: (i) the
percentage of outliers or measurements affected by noise and
(ii) the average magnitude of the noise. The noise affecting
each measurement sample, if any, is assumed to be zero-mean
Gaussian with standard deviation equal to the scenario’s
noise level.

The results obtained throughout the simulations are
summarised in Table I. The robustness of matching method
based on the modified HD is apparent from this results, which
show practically no variation in the position or heading error
for different percentage values of noisy samples and noise
levels. The quality of the match may be appreciated from
Figs. 2 and 3, which show the initial measurements and their
final position after matching, respectively. Figure 4 shows the
convergence of the modified HD to a minimum in an almost
linear fashion for all the different scenarios. The final value of
the averaged partial HD increases proportionally to the noise
level. However, it is worth noting that this value remains zero
for the simulations in which only 20% of the samples are
corrupted by noise. This is because the ratio λ for calculation
of the modified HD was set at 0.7, which means that only
70% of the total number of samples that best match the
reference set are used, while the remaining 30% samples that
include those corrupted by noise are automatically discarded
from the calculation of the modified HD. Figure 5 clearly
shows that the regular HD curves have largest values beyond
the threshold. While scenarios with noise percentages below
30% yield final h̄K (A, B) equal to zero, scenarios with noise
percentages above 30% yield final h̄K (A, B) which are non-
zero and are proportional to the standard deviation of the
noise for a fixed threshold λ; see Table I. The results in
Table I also confirm that the accuracy is high, as expected
according to the theoretical result by D. P. Huttenlocher
et al.67 (Claim 3), which states that the matching error due
to spatial sampling is at most one rasterization unit for the

noise-free situation. This result may also be extended to the
zero-mean Gaussian noise situation.

5. Localization Problem
For convenience of exposition, let x and y denote the position
coordinates of the robot in the global 2D Cartesian frame
of reference, and let θ denote its orientation with respect
to the vertical axis. The first step to determine the robot’s
position and heading is to express each of the N raw
range measurements zs

i = [ri, θ
s
i ], i = 1, 2, . . . , N , obtained

in polar coordinates relative to the sensor coordinate frame
Os , as Cartesian coordinates relative to the global coordinate
frame Ow. To this end, the following measurement model is
employed:

zw
i =

[(
rs
i + βr

)
cos

(
θs
i + θ + βθ

) + x + ηx(
rs
i + βr

)
sin

(
θs
i + θ + βθ

) + y + ηy

]
(11)

where ηx and ηy are assumed to be zero-mean Gaussian
noises arising from errors in the matching, as will be

Fig. 2. Initial misalignment between simulated data (dots) and the
reference data (line).
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Fig. 3. Final match of simulated data (dots) and the reference data
(line).

explained next. The variables βr and βθ are assumed to be
common to all points and account for sensor measurement
errors induced by biases in range and bearing, respectively.
The range bias βr results from errors in leveling the sensor
(azimuth error). The bearing bias βθ describes the rotation
that suffers the measurement image due to misalignments
of the sensor base with respect to the robot. Since normally
ladar sensors are fixed and do not rotate with respect to the
platform, it becomes difficult to determine βθ without an
additional heading sensor, such as a compass, because the
main rotation of the measurement image results from the
rotation θ of the robot as it moves and turns. Thus, it is
assumed here that βθ = 0.

Fig. 4. Convergence of the modified Hausdorff distance for the
different scenarios with percentages of noisy samples NP and noise
levels NL.

Fig. 5. Sorted Hausdorff distances for the simulation with
NP = 100% and NL = 10.

Employing Eq. (11), a measurement image can be created
from the N measurement samples by setting all pixels to
zero except for those at the coordinates zw

i , i = 1, . . . , N ,
which must be set to one. Similarly, the CAD floor plan
drawing must be rasterized, i.e. the drawing must be sampled
discretely to create a model image in which pixels are set
to one, wherever there is a geometric element, or to zero
otherwise. The resolution of both (measurement and model)
images should be sufficiently large in order to allow for
accurate position estimates, but should not exceed a value
such that each pixel represents a dimension far smaller than
the precision of the sensor itself.

Labeling the model image by A and the measurement
image by B, the matching algorithm presented previously
can be employed to estimate the values of x, y and θ , as
well as ηr , through the solution of Eq. (7), which yields a
transformation T ∗ that minimises Eq. (6). The transformation
T ∗ can be parameterized by a translation δ = (x, y), a rotation
by θ , and scaling factor α, such that α rs

i = rs
i + E(ηr ),

where E(ηr ) denotes the expected value of ηr . Thus, the
solution of Eq. (6) that minimises the difference between
the model and measurement image naturally results in a
measurement of the robot’s location and orientation. In
practice, the matching process is not perfect, since the sensor
and the model have finite resolutions, and because sensor
measurements are always subject to clutter and occlusions,
which limit the precision of the results. On the other hand, the
actual transformation from polar to Cartesian coordinates in
Eq. (11) also produces deformations of the objects in the
image. Thus, to account for these sources of error, the noises
ηx and ηy need to be included in the measurement model
given in Eq. (11).

Despite these errors, the accuracy of the position and
orientation estimates can be further improved using an
extended Kalman filter (EKF), which also allows to obtain
estimates of the robot’s velocity and the sensor range bias βr ,
as shown in the next section in terms of experimental results.
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Fig. 6. Magellan differential drive robot and Sick PLS-101.

6. Experimental Results
The proposed approach for localization and pose estimation
was tested using a WRI Magellan Pro R© differential drive
robot equipped with a Sick R© PLS-101 Laser range finder,
shown in Fig. 6. The sensor is set to scan 180◦ with a range
span of 0–50 m. The range accuracy is of the order of ±0.05 m
with a resolution of 0.07 m or better, while the angular
resolution is 0.5◦. With this configuration, the 360 samples
stretching along the full distance range and angular sweep
have proven sufficient to ensure a reasonably good matching
and estimation accuracy.

In order to implement the EKF, the following simplified
model equation is employed to describe the motion of the
robot: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ

θ̇

v̇R

v̇L

β̇r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vR + vL

2 sin(θ) + ξx

vR + vL

2 cos(θ) + ξy

vR − vL

L
+ ξθ

u1 + ξu1

u2 + ξu2

u3 + ξu3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

def= f (x, u) (12)

where ξx , ξy , ξθ , ξu1 , ξu2 and ξu3 are all assumed to be
zero-mean i.i.d. Gaussian process noises. The above model
corresponds to the standard kinematic model for a differential
drive robot,2 augmented to include the accelerations v̇R

and v̇L of the left and right wheels, which are controlled
through the commands u1 and u2, respectively. It is to be
noted that using the velocities of each wheel is equivalent
to including terms for the longitudinal velocity v and the
angular rate of change ω of the mass center of the robot, since
v = (vR + vL)/2 and ω = (vR − vL)/L. Inertia moments and
masses are not explicitly considered in the model since
the EKF can automatically compensate and adjust the gain

dynamically as needed. The model has also been augmented
to include the unknown range bias, which is assumed to be
constant throughout the experiment, and hence, the virtual
input u3 is set to zero.

A simple measurement model is assumed considering that
the matching strategy automatically outputs the observations
that feed the EKF. Therefore, the measurement model is given
by:

⎡
⎢⎢⎢⎢⎣

z1

z2

z3

z4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

x + ζx

y + ζy

θ + ζθ

βr + ζβr

⎤
⎥⎥⎥⎥⎦

def= h(x) (13)

where ζx , ζy , ζθ and ζδr
are assumed to be zero-mean i.i.d.

Gaussian measurement noises.
From Eqs. (12) and (13), the process and measurement

Jacobians can be easily calculated as:

∇xf =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 vR + vL

2 cos(θ) 1
2 sin(θ) 1

2 sin(θ) 0

0 0 − vR + vL

2 sin(θ) 1
2 cos(θ) 1

2 cos(θ) 0

0 0 0 1
L

− 1
L

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∇uf =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∇xh =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

To evaluate the performance of the proposed approach,
a reference trajectory of known geometry was first defined.
The experiment consisted in scanning the environment every
second while the robot followed the reference trajectory
at a constant velocity of 5 cm/s. Thus, the change in
position between scans was about 5 cm. Figure 7 shows
the model (floor plan) image to which the measurement
(ladar) image must be matched. The superposition of the
first measurement image to the model image in Fig. 8
clearly shows a mismatch due to the large error in the
initial position and heading values, as would occur if the
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Fig. 7. Model image from the rasterization of the floor plan.

initial estimate is wrongly or poorly chosen. The initial
misalignment was deliberately made larger by starting the
HD-based matching procedure with a significantly larger
initial estimated angle θ0 = 30◦, even if it was known to be
around 0◦. In order to find the transformation that minimises
the modified HD, h̄K (B, A) given in Eq. (6), the matching
strategy described in Section 3 is applied with λ = 0.7,
resulting in an almost perfect match, as shown in Fig. 9.
This may also be corroborated in Fig. 10, which shows the
convergence of the modified HD from an initial value of 47.87
to a value of 2.43 pixels after 11 iterations. The convergence
of the set {hK (B, A); K = 1, 2, . . . , q} of partial HDs to
the resulting optimal set {hK (T ∗(B), A); K = 1, 2, . . . , q} is

Fig. 8. Initial misalignment of the floor plan model (thin lines) and
ladar measurement (scattered points).

Fig. 9. Matching of the measurements to the model.

shown in Fig. 11. The latter figure clearly shows that there is
a relatively small reduction in the standard directed HD, i.e.
h(B, A) = h360(B, A), which decreases only from 238 to 154
in the third iteration, and none thereafter. Moreover, while the
modified HD, h̄K (B, A), exhibits a decrease of 94.92%, the
standard HD, h(B, A), has a reduction of only 35.29%. These
facts support the use of the averaged partial HDs as a better
matching criteria, which is more robust to outliers arising
from the presence of unmodeled objects or noise, as was
also demonstrated by the simulations presented in Section 4.
The chosen value of λ = 0.7 implies that only 70% of the
measurements with the smallest partial HDs are employed
in the calculation of the modified HD; this amounts to 252
measurements of the 360 measurements that are obtained
per scan, as shown by the threshold mark in Fig. 11. It is
worth pointing out that the matching procedure is carried
out successfully in spite of the large initial estimated state
error and the presence of noise due to furniture features and
chairs not considered in the original floor plan drawing. These

Fig. 10. Convergence of the averaged partial Hausdorff distance
h̄K (B,A) using λ= 0.7.
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Fig. 11. Sorted partial Hausdorff distances hK (B,A) and their
convergence to the optimal set hK (T ∗(B), A) using λ= 0.7.

objects appear as spurious measurements mainly around the
table support as can be seen in Fig. 9.

The matching procedure is repeated after every ladar scan,
yielding position, orientation and radar bias measurements
that are fed to the EKF, in order to obtain smoothed estimates
of the robot’s state vector. The estimated trajectory traversed
in 100 s is shown in Fig. 12. The magnitude of the error
between the estimated position and the actual trajectory
coordinates is shown in Fig. 13. Similarly, the estimated
heading angle is compared to the true heading that the robot
should have followed in Fig. 14. The heading error shown

Fig. 12. Estimated trajectory (black) and reference trajectory (gray)
starting from (x0, y0, θ0) = (312 cm, 135 cm, 0◦) in t0 = 0 s, and
ending at (xf , yf , θf ) ≈ (169 cm, 428 cm, 130◦) in t0 = 100 s, with
constant forward speed v ≈ 5 cm/s.

Fig. 13. Magnitude of the error between the estimated position and
the real trajectory coordinates.

in Fig. 15 confirms that the estimation is relatively good
for most part of the trajectory except at points in which the
heading changes on t = 13, 22, 46, 60 s. The heading error
becomes larger when the robot starts the constant turning
ratio maneuver as it follows the circular trajectory.

The velocity estimates can be derived using the model
equations (12). Thus, the forward velocity estimate is given
by v̂(k|k) = (x̂4(k|k) + x̂5(k|k))/2, while the turning velocity
estimate is given ω̂(k|k) = (x̂4(k|k) − x̂5(k|k))/L, where L is
the distance between wheels, and x̂i(k|k), i = 4, 5, are the
right and left wheel estimated velocities, respectively. Since
the commands issued to the robot are constant throughout
the piecewise linear trajectory and the circular trajectory, the
estimates remain constant and close to zero for most part
of the trajectory, except at points where there are heading
step changes. The turning ratio estimate is also constant, but
non-zero for the circular part of the trajectory. The latter
is equivalent to a ramp change in the heading as shown in
Fig. 14. Similarly, the estimated range bias remained constant

Fig.14. Estimated robot heading angle θ .
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Fig. 15. Error between the estimated heading angle and the real
trajectory direction.

throughout the experiment because the resolution of the
rasterized model is equal to 5 cm per pixel and the resolution
of the scanner is better than 7 cm, while its precision is within
±5 cm.

The algorithm was implemented in Matlab R© running on a
2.8 GHz Pentium computer with 512 MB RAM. Its execution
period was verified to be 0.7 ms per scan on average.
This amount of processing time is larger than that of many
point-to-point algorithms, such as the Polar Scan Matching
approach,59 or line extraction-based techniques, such as the
Split and Merge algorithm,65 which are among the fastest
reported in the literature and should, respectively, require
around 0.01 ms and 0.2 ms of processing time per scan for
the same number of samples when implemented in C/C++
on a computer with similar characteristics. However, the
processing time of our approach can be further improved to
similar levels by implementing the algorithm in C/C++ rather
than an interpreted language. This is because the complexity
of our algorithm is similar to that of the best point-to-point
or line-to-line localization approaches65 as mentioned in
Section 3.2.

It should be pointed out that the number of iterations
required to solve the localization problem after each scan is
relatively small as can be observed in Fig. 10, which shows
that after the sixth iteration there is no further significant
decrease of the modified HD. This is posible because the
minimisation is solved starting with an initial guess equal to
the position and orientation of the robot predicted by the EKF.
In the experiments, it was observed that the minimisation
problem is solved in less than eight iterations on average.
The number of iterations can be above several hundreds only
for the first run of the localization algorithm when the initial
guess is far from the true robot’s location. In practice, this
does not constitute a real problem since the operator can
set a reasonable guess of the robot’s location at start up, or
the robot may be allowed to explore the environment for an
initially longer time. By reasonable guess it is meant any
point in the actual room or area of the building where the
robot is.

It is also important to note that even if the method is not an
explicit global localization approach, its positioning accuracy
does not degrade when people walk around the robot since the
matching procedure based on the modified HD takes care of
removing spurious measurements as explained in Section 4.
On the other hand, the EKF allows to keep track of the
robot’s position and feed adequate position predictions to the
minimisation procedure. If the sensor is almost completely
blocked during several scans in such a way that there is
not enough information to solve the matching problem, the
localization accuracy will not necessarily degrade because
under such a situation the collision avoidance schemes would
be triggered and the current robot’s position would be held
until no obstacles appear in the robot’s path. The only
possible failure mode may arise when there is no unique
minimum for the averaged partial HD function h̄K (B, A).
This ill condition may occur when the range scans do not
contain enough information to solve ambiguities which may
result when there are several similar sections or symmetries
in the reference map. To avoid this problem, the search space
must be constrained according to the initial guess from a
previous prediction and, if necessary, the robot must be
allowed to collect more information of the surroundings
in order to perform the matching between the reference
map and a compounded set of scans that solve possible
ambiguities which would otherwise occur if only single scans
are employed.

7. Conclusions
An approach for estimating the position, heading and velocity
of a mobile robot in a structured environment was presented.
The approach relies on matching ladar measurements to
an image of a rasterized CAD floor plan drawing, thus
freeing the robot from any dependence on landmark-based
positioning systems, triangulation-based techniques relying
on optic, ultrasonic or RF beacons, or from combinations of
these. The latter may be difficult to employ in many indoor
environments due to signal path occlusions or interferences.

Central to the matching process is the identification of
a set of image transformations that minimise the average
of the partial Hausdorff distances given by Eq. (6). These
transformations directly translate into raw position and
orientation measurements that are then passed to an EKF
in order to obtain better estimates of the position, heading
and velocity of the robot. The approach also allows to readily
obtain the sensor’s range bias as part of the matching process,
and can be easily modified to obtain the sensor’s bearing
bias, if a heading sensor is added to the robot. The results
obtained demonstrate the effectiveness of the approach as it
yields rapidly converging accurate estimates. Furthermore,
the approach is amenable for real-time implementation.

Continuing work is concerned with:

• Combining odometric techniques and methods for visual
recognition of natural landmarks with the proposed
approach in order to improve its performance in the
presence of multiple minimising solutions of the modified
HD, thus improving the ability of the proposed approach
to robustly solve the global localization problem in
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ambiguous situations, for example in large buildings with
several rooms or storeys with very similar floor plan
geometries.

• Investigating alternatives to further reduce the computa-
tional cost of the approach. For example, by exploting
the characteristics of the city-block metric used in
the construction of the Voronoi matrix to reduce the
computational complexity of the optimisation procedure
and achieve convergence to the optimum in a single step
per scan. Other reductions in the total computational cost
may be achieved using multiscale techniques, such as the
one proposed by Kwon etal.68 to improve the processing
time of the modified HD.

• Extending the approach for simultaneous localization and
mapping, and exploring possible benefits and costs of
using a Markovian or Monte Carlo sampling approach
to update the estimate of the robot’s state.

Finally, in view of the fact that the vulnerability of global
positioning system to spoofing or satellite denial is a matter
of particular concern in countries that do not conform to the
military elite69 since this would affect most of the modern
navigation systems, the proposed approach can provide a
valuable alternative to differential global positioning system
for mobile ground platforms in structured environments that
are equipped with range sensors, or for ship positioning and
maneuvering at locations from the coast within their radar’s
range. In the latter application, the ship would have to employ
the electronic charts as models to be matched by the radar
measurements as suggested by A. Guesalaga.19
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