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Existence of non-negative weak solutions is shown for a full curvature thin-film model of a liquid
thin film flowing down a vertical fibre. The proof is based on the application of a priori estimates
derived for energy-entropy functionals. Long-time behaviour of these weak solutions is analysed and,
under some additional constraints for the model parameters and initial values, convergence towards
a travelling wave solution is obtained. Numerical studies of energy minimisers and travelling waves
are presented to illustrate analytical results.
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1 Introduction

Unstable thin viscous liquid films coating a vertical fibre display complex interfacial dynamics
and various flow regimes. Driven by Rayleigh–Plateau instability and gravity effects, a rich vari-
ety of dynamics can occur including the formation of droplets, regular travelling wave patterns
and irregular droplet coalescence. Such dynamics has attracted a lot of attention from researchers
in recent years due to its widespread applications in heat and mass exchangers [28], desalination
[22,29] and particle capturing systems [1].

With proper choices of flow rate, liquid, fibre radius and inlet geometry, three typical flow
regimes are observed in experiments [12,15,23]: a convective instability regime where bead coa-
lescence happens repeatedly, a travelling wave regime where a steady train of beads flow down
the fibre at a constant speed, and an isolated droplet regime where widely spaced large droplets
are separated by small wave patterns. When other system parameters are fixed, varying the flow
rate from high to low can lead to a flow regime transition from the convective to the travelling
wave regime, and eventually to the isolated droplet regime. A better understanding of the trav-
elling wave pattern is expected to provide insights for many engineering applications that utilise
steady trains of liquid beads.

https://doi.org/10.1017/S0956792521000255 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792521000255
mailto:hangjie@math.ucla.edu
mailto:taranets_r@yahoo.com
mailto:marina.chugunova@cgu.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956792521000255&domain=pdf
https://doi.org/10.1017/S0956792521000255
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At small flow rates, the dynamics of the axisymmetric flow on a cylinder is typically modelled
by classical lubrication theory. Under the assumption that the film thickness is much smaller
than the radius of the cylinder, Frenkel [9] proposed a weakly nonlinear thin-film equation for
the film thickness h (or the height of the film) that captures both stabilising and destabilising
effects of the surface tension in the dynamics. This evolution equation was further investigated
by Kalliadasis & Chang [15], Chang & Demekhin [4], and Marzuola et al. [18]. Similar models
for weakly rippled thin films were also studied in [19,24], and the paper of Rosenau & Oron [19]
incorporates fully nonlinear curvature terms that account for the deformation of the film interface
based on asymptotic analysis. To relax the thin-film assumption, Craster & Matar [6] developed
an asymptotic model which assumes that the film thickness is much smaller than the capillary
length. In 2000, Kliakhandler et al. [17] extended the thin-film model to consider a thick layer of
viscous fluid by introducing fully nonlinear curvature terms, which leads to an evolution equation
(1.1) for the film thickness h(x,t),

ht + 1

h + r0

[
Q(h)

(
1 + σ−1

[
hxx

(1 + h2
x)3/2

− 1

(h + r0)(1 + h2
x)1/2

]
x

)]
x

= 0, (1.1)

where σ > 0 is the Bond number, r0 > 0 is the dimensionless fibre radius and the mobility Q(h)
takes the form

Q(h) = 1
16

[
4(h + r0)4 log

( h+r0
r0

)− h
(
3h3 + 12r0h2 + 14r2

0h + 4r3
0

)]
. (1.2)

While equation (1.1) is a model equation that was not rigorously derived asymptotically, it con-
stitutes all the necessary terms to describe the corresponding physical process. The term [Q(h)]x

in (1.1) represents gravitational effects, hxx/(1 + h2
x)3/2 and (h + r0)−1(1 + h2

x)−1/2 describe the
stabilising and destabilising roles of the surface tension due to axial and azimuthal curvatures of
the interface, respectively.

In 2019, Ji et al. [10] studied a family of full lubrication models that incorporate slip bound-
ary conditions, fully nonlinear curvature terms and a film stabilisation mechanism. The film
stabilization term,

�(h) = − A

h3
, A> 0, (1.3)

is motivated by the form of disjoining pressure widely used in lubrication equations [7,26]
to describe the wetting behaviour of a liquid on a solid substrate, and the scaling parameter
A> 0 is typically selected based on a stable liquid layer in the coating film dynamics. Numerical
investigations against experimental results in [10] show that compared with previous studies, the
combined physical effects better describe the propagation speed and the stability transition of the
moving droplets. For higher flow rates, coupled evolution equations of both the film thickness
and local flow rate are developed [20,21,27]. These equations incorporate inertia effects and
streamwise viscous diffusion based on the integral boundary-layer approach. Recently, Ji et al.
[12] further extend a weighted-residual integral boundary-layer model to incorporate the film
stabilisation mechanism to address the effects of the inlet nozzle geometry on the downstream
flow dynamics.

While these previous studies primarily focus on the modelling of coating film dynamics, the-
oretical analysis of these models is still lacking. In this paper, we focus on the model (1.1) with
an additional generalised film stabilisation term motivated by [10,12]. Substituting u = h + r0
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into (1.1) and including the generalised film stabilisation term �̃(u) = −A/um, we obtain a
fourth-order nonlinear partial differential equation for u(t, x), namely,

u ut +
[
σ−1Q(u)

(
uxx

(1 + u2
x)3/2

− 1

u(1 + u2
x)1/2

+ A

um

)
x

+ Q(u)

]
x

= 0, (1.4)

where the scaling parameter A � 0, the exponent m> 0, and the mobility becomes

Q(u) := 1
4 u4 log

(
u
r0

)− 3
16

(
u2 − r2

0

) (
u2 − r2

0
3

)
.

A useful observation is that

Q(u) ∼ C u4 log
(

u
r0

)
as u → +∞ and u → r0.

In this paper, we will show the existence of non-negative weak solutions to (1.4) with a focus
on the travelling wave solutions. Under proper conditions, u(x,t) converges to a travelling wave
solution in long time.

The structure of the rest of the paper is as follows. In Section 2, we present the main theorem
on the existence of non-negative weak solutions to the problem, followed by the proof of the
existence theorem in Section 3. Section 4 focuses on the travelling wave solutions of the prob-
lem. Numerical studies based on the analytical results are included in Section 5, followed by
concluding remarks in Section 6.

2 Existence of non-negative weak solutions

In this section, we will define a generalised non-negative weak solution and formulate an
existence of the solution statement for the following problem:

|u| ut +
(
σ−1|Q(u)|

[
(�′(ux))x − f (ux)

u
+ A

um

]
x

+ |Q(u)|
)

x

= 0 in QT , (2.1)

|�| − periodic boundary conditions, (2.2)

u(x, 0) = u0(x), (2.3)

where �⊂R
1 is bounded domain, m> 0, A � 0, QT =�× (0, T), T > 0, Q(r0) = 0,

f (z) := (1 + z2)−
1
2 , and

�(z) = 1

f (z)
, �′(z) = z f (z), �′′(z) = f 3(z) ∀ z ∈R

1.

Assume that

0 � u0(x) ∈ L2(�) ∩ W 1
1 (�) :

∫
�

u0�(u0,x) dx + A

∫
�

u2−m
0 dx<∞. (2.4)

Integrating (2.1) in �× (0, t), by (2.2) we have∫
�

u2(x, t) dx =
∫
�

u2
0(x) dx =: M ∀ t � 0. (2.5)
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Let us denote by

J := (�′(ux))x − u−1f (ux) + A u−m.

Here, −J represents a dynamic pressure [10,13,14] that incorporates both axial and azimuthal
surface tension effects and the film stabilisation term.

Definition 2.1 A generalised weak solution of the problem (2.1)–(2.3) is a non-negative function
u(x, t) satisfying

u ∈ C(QT ) ∩ L∞(0, T ; W 1
1 (�)) ∩ L∞(0, T ; L2(�)), (2.6)

(u2)t ∈ L2(0, T ; (H1(�))∗), (2.7)

|Q(u)| 1
2 Jx ∈ L2(PT ), (2.8)

χ{|ux|<∞}�′′(ux)uxx ∈ L2(QT ), u−m ∈ L2(QT ), (2.9)

where PT = QT \ ({u = r0} ∪ {t = 0}) and u satisfies (2.1) in the following weak sense:

1
2

T∫
0

〈(u2(·, t))t, φ〉(H1)∗,H1 dt − σ−1
∫∫
PT

Q(u)Jxφx dxdt −
∫∫
QT

Q(u)φx dxdt = 0, (2.10)

∫∫
QT

Jψ dxdt =
∫∫
QT

(χ{|ux|<∞}�′′(ux)uxx − f (ux)
u + A

um )ψ dxdt (2.11)

for all φ ∈ L2(0, T ; H1(�)) and ψ ∈ L2(QT );

u(·, t) → u(·, 0) = u0 strongly in L2(�) as t → 0, (2.12)

(2.2) holds at all points of the lateral boundary, where {u �= r0}. (2.13)

Let us denote by G̃(α)
0 (z) the following function

G̃(α)
0 (z) :=

z∫
s0

|s|
( s∫

s0

|v|α
|Q(v)|dv

)
ds � 0, (2.14)

where s0 is a positive constant. The function G̃(α)
0 (z) is a generalisation of the entropy introduced

in [2].

Theorem 1 Assume that the initial function u0 satisfies (2.4). Then problem (2.1)–(2.3) has a
weak solution u(x, t) defined in QT for any T > 0, in the sense of Definition 2.1. Assume that the
initial function u0 � r0 > 0 also satisfies∫

�

G̃(1)
0 (u0) dx<∞.

Then the solution u(x, t) satisfies u � r0 > 0 and

ut ∈ L2(0, T ; (H1(�))∗),
∫∫
QT

u�′′(ux)u2
xx dxdt<∞.
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3 Proof of Theorem 1

3.1 Regularised problem

Note that (2.1) is a parabolic equation which degenerates when u = 0, u = r0 and |ux| → ∞.
Therefore, we have to apply a regularisation technique to this equation to overcome the
degeneracies. For given ε > 0 and δ > 0, we have

gε(u)ut + σ−1(Qε(u)[(�′(ux))x + δ(gε(u)ux)x − g′
ε(u)

gε(u) f (ux)+

A g′
ε(u)

gm
ε (u) + δ

g′
ε(u)

gβε (u)
]x)x + (Qε(u))x = 0 in QT , (3.1)

|�| − periodic boundary conditions, (3.2)

u(x, 0) = u0,εδ(x), (3.3)

where

gε(z) := (z2 + ε2)
1
2 , Qε(u) := |Q(u)| + ε,

u0,εδ(x) � u0(x) + εθ + δκ , u0,εδ(x) ∈ C4+γ (�̄),

u0,εδ(x) → u0,δ(x) strongly in H1(�) as ε→ 0,

u0,δ(x) → u0(x) strongly in L2(�) ∩ W 1
1 (�) as δ→ 0,

where γ ∈ (0, 1), β > 6, θ ∈ (0, 1
3 ), and κ ∈ (0, 1

β−2 ).
The positivity condition ε > 0 eliminates the degeneracies at u = 0, r0 in (2.1). This condi-

tion will ‘lift’ the initial data and smooth the initial data up to C4+γ (�). The δ > 0 condition
eliminates the degeneracy at |ux| → ∞ in (2.1). As a result, the regularised equation (3.1) is
uniformly parabolic. Moreover, the boundary conditions (3.3) are of Lopatinskii–Shapiro type
that implies the existence of a proper continuation of solutions to the whole line (cf. [25], for
example). Using the well-known parabolic Schauder estimates from [25], one can generalise
[8, Theorem 6.3, p. 302] and show that the regularised problem has a unique classical solution
uδε ∈ C4+γ ,1+γ /4

x,t (�× [0, τδε]) for some time τδε > 0. Here τδε is the local existence time from [8,
Theorem 6.3, p. 302].

3.2 A priori estimates

Now, we need to derive a priori estimates for energy-entropy functionals. Let us denote

Jεδ := (�′(ux))x + δ(gε(u)ux)x − g′
ε(u)

gε(u) f (ux) + A g′
ε(u)

gm
ε (u) + δ

g′
ε(u)

gβε (u)
.

Multiplying (3.1) by −Jεδ and integrating over �, we obtain

−
∫
�

gε(u)utJεδ dx + σ−1
∫
�

Qε(u)J2
εδ,x dx =

∫
�

(Qε(u))xJεδ dx.
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As

−
∫
�

gε(u)utJεδ dx =
∫
�

[
g′
ε(u)ux�

′(ux)ut + gε(u)�′(ux)uxt + g′
ε(u)f (ux)ut

]
dx+

δ

∫
�

[
g′
ε(u)gε(u)u2

xut + g2
ε (u)uxuxt

]
dx + A

m−2
d
dt

∫
�

g2−m
ε (u) dx + δ

β−2
d
dt

∫
�

g2−β
ε (u) dx =

∫
�

[
�(ux) d

dt gε(u) + gε(u) d
dt�(ux)

]
dx+

δ
2

∫
�

[
u2

x
d
dt g

2
ε (u) + g2

ε (u) d
dt u

2
x

]
dx + A

m−2
d
dt

∫
�

g2−m
ε (u) dx + δ

β−2
d
dt

∫
�

g2−β
ε (u) dx =

d
dt

∫
�

gε(u)�(ux) dx + δ
2

d
dt

∫
�

g2
ε (u)u2

x dx + A
m−2

d
dt

∫
�

g2−m
ε (u) dx + δ

β−2
d
dt

∫
�

g2−β
ε (u) dx,

∫
�

[Qε(u)]xJεδ dx = −
∫
�

Qε(u)Jεδ,x dx � σ−1

2

∫
�

Qε(u)J2
εδ,x dx + σ

2

∫
�

Qε(u) dx

then we get

d
dtEεδ(u) + σ−1

2

∫
�

Qε(u)J2
εδ,x dx � σ

2

∫
�

Qε(u) dx, (3.4)

where

Eεδ(u) :=
∫
�

[
gε(u)�(ux) + δ

2 g2
ε (u)u2

x + A
m−2 g2−m

ε (u) + δ
β−2 g2−β

ε (u)
]

dx.

Integrating (3.1) and taking into account periodic boundary conditions, we get∫
�

g̃ε(u) dx =
∫
�

g̃ε(u0,εδ) dx =: Mεδ , where g̃′
ε(z) = gε(z). (3.5)

By (3.5) we deduce that

∣∣∣g̃ε(u) − Mεδ

|�|
∣∣∣= ∣∣∣

x∫
x0

gε(u)ux dx
∣∣∣� ∫

�

gε(u)�(ux) dx,

whence

1
2 u2 � Mεδ

|�| +
∫
�

gε(u)�(ux) dx ⇒ |u|�√
2
(

Mεδ

|�| +
∫
�

gε(u)�(ux) dx
) 1

2
. (3.6)

Taking into account

|Q(z)|� C0(1 + z4 log
(

z
r0

)
),
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(3.5) and (3.6), from (3.4) we find that

d
dtEεδ(u) + σ−1

2

∫
�

Qε(u)J2
εδ,x dx �

σC0
2

∫
�

(1 + u4 log
(

u
r0

)
) dx � C0σ

2

[|�| + Mεδ sup(u2 log
(

u
r0

)
)
]
�

C0σ

2 |�| + C0σ

2 Mεδ

(
Mεδ

|�| +
∫
�

gε(u)�(ux) dx
)

log
(

2
r2
0

(Mεδ

|�| +
∫
�

gε(u)�(ux) dx
))

�

C1,εδEεδ(u) log(Eεδ(u)). (3.7)

By (3.7) we obtain

Eεδ(u) + σ−1

2

∫∫
Qt

Qε(u)J2
εδ,x dxdt � Kεδ(t) := Eεδ(u0,εδ)e

eC1,εδ t
(3.8)

for all t � 0. Let us denote by

G(α)
ε (z) : (G(α)

ε (z))′′ = gαε (z)
Qε(z) ∀ z ∈R

1.

Multiplying (3.1) by (G(α)
ε (u))′ and integrating over �, we obtain

d
dt

∫
�

G̃(α)
ε (u) dx−

σ−1
∫
�

gαε (u)ux

[
(�′(ux))x + δ(gε(u)ux)x − g′

ε(u)
gε(u) f (ux) + A g′

ε(u)
gm
ε(u)

+ δ
g′
ε(u)

gβε (u)

]
x

dx −
∫
�

gαε (u)ux dx = 0,

where (G̃(α)
ε (z))′ = gε(z) (G(α)

ε (z))′. By periodic boundary conditions, we have

d
dt

∫
�

G̃(α)
ε (u) dx + σ−1

∫
�

gαε (u)�′′(ux)u2
xx dx+

δσ−1
∫
�

gα−1
ε (u)(g̃ε(u))2

xx dx = −σ−1α

∫
�

gα−1
ε (u)g′

ε(u)u2
x�

′′(ux)uxx dx+

σ−1
∫
�

gα−1
ε (u)g′

ε(u)f (ux)uxx dx + σ−1α

∫
�

gα−2
ε (u)g′2

ε (u)u2
x f (ux) dx−

δσ−1(α− 1)
∫
�

gα−2
ε (u)g′

ε(u)ux(g̃ε(u))x(g̃ε(u))xx dx+

Aσ−1
∫
�

gαε (u)
( g′

ε(u)
gm
ε (u)

)′u2
x dx + δσ−1

∫
�

gαε (u)
( g′

ε(u)

gβε (u)

)′u2
x dx �

σ−1

2

∫
�

gαε (u)�′′(ux)u2
xx dx + σ−1Cα

∫
�

gα−2
ε (u)g′2

ε(u)�(ux) dx+
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δσ−1(α−1)
3

∫
�

(gα−3
ε (u)g′

ε(u))′
gε(u) (g̃ε(u))4

x dx+

Aσ−1
∫
�

gα−m−3
ε (u)[g2

ε (u) − (m + 1)u2]u2
x dx + δσ−1

∫
�

gα−β−3
ε (u)[g2

ε (u) − (β + 1)u2]u2
x dx �

σ−1

2

∫
�

gαε (u)�′′(ux)u2
xx dx + σ−1Cα

∫
�

gα−2
ε (u)�(ux) dx+

δσ−1|α−1|(1+|α−4|)
3

∫
�

gα−5
ε (u)(g̃ε(u))4

x dx+

Aσ−1
∫
�

gα−m−3
ε (u)[−m g2

ε (u) + (m + 1)ε2]u2
x dx

+ δσ−1
∫
�

gα−β−3
ε (u)[−β g2

ε (u) + (β + 1)ε2]u2
x dx,

where Cα = α2 + |α| + 1, whence

d
dt

∫
�

G̃(α)
ε (u) dx + m Aσ−1

∫
�

gα−m−1
ε (u)u2

x dx + δ βσ−1
∫
�

gα−β−1
ε (u)u2

x dx+

σ−1

2

∫
�

gαε (u)�′′(ux)u2
xx dx + δσ−1

∫
�

gα−1
ε (u)(g̃ε(u))2

xx dx �

σ−1Cα

∫
�

gα−2
ε (u)�(ux) dx + δσ−1|α−1|(1+|α−4|)

3

∫
�

gα−5
ε (u)(g̃ε(u))4

x dx+

ε2(m + 1)Aσ−1
∫
�

gα−m−3
ε (u)u2

x dx + ε2δ(β + 1)σ−1
∫
�

gα−β−3
ε (u)u2

x dx. (3.9)

From (3.9) we have

d
dt

∫
�

G̃(α)
ε (u) dx + σ−1

2

∫
�

gαε (u)�′′(ux)u2
xx dx+

m Aσ−1
∫
�

gα−m−3
ε (u)(g̃ε(u))2

x dx + δ βσ−1
∫
�

gα−β−3
ε (u)(g̃ε(u))2

x dx+

δσ−1
∫
�

gα−1
ε (u)(g̃ε(u))2

xx dx � σ−1Cα sup
�

(g−2
ε (u))

∫
�

gαε (u)�(ux) dx+

δσ−1|α−1|(1+|α−4|)
3

∫
�

gα−5
ε (u)(g̃ε(u))4

x dx+

ε2(m + 1)Aσ−1 sup
�

(g−2
ε (u))

∫
�

gα−m−3
ε (u)(g̃ε(u))2

x dx+

ε2δ(β + 1)σ−1 sup
�

(g−2
ε (u))

∫
�

gα−β−3
ε (u)(g̃ε(u))2

x dx. (3.10)
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Next, we will use the following lemma:

Lemma 3.1 [5, Lemma 3.1, p. 806] Let v ∈ H1(�) be a nonnegative function. Then for any p> 2,
there exists a constant C̃ depending on p and � such that

sup v−1 � C̃
[(∫

�

v−p dx
) 1

p +
(∫
�

v−p dx
) 1

p−2
(∫
�

v2
x dx

) 1
p
]
. (3.11)

Using (3.11) with v = g2
ε (u) and p = β−2

2 > 2, i.e. β > 6, we have

sup
�

(g−2
ε (u)) � C̃

[(∫
�

g2−β
ε (u) dx

) 2
β−2 +

(∫
�

g2−β
ε (u) dx

) 2
β−6
(∫
�

g2
ε (u)u2

x dx
) 2
β−2
]
, (3.12)

whence, due to (3.8), we find that

sup
�

(g−2
ε (u)) � C̃1,εδ(t) := C̃

[(
β−2
δ

Kεδ(t)
) 2
β−2 + 2

2
β−2 (β − 2)

2
β−6
(

1
δ
Kεδ(t)

) 4(β−4)
(β−2)(β−6)

]
. (3.13)

Choosing α = 1 and ε small enough in (3.10), taking into account (3.8) and (3.13), we deduce
that

d
dt

∫
�

G̃(1)
ε (u) dx + σ−1

2

∫
�

gε(u)�′′(ux)u2
xx dx + δσ−1

∫
�

(g̃ε(u))2
xx dx �

3σ−1C̃1,εδ(t)
∫
�

gε(u)�(ux) dx. (3.14)

Integrating (3.14) in time, taking into account (3.8), we arrive at

∫
�

G̃(1)
ε (u) dx + σ−1

2

∫∫
Qt

gε(u)�′′(ux)u2
xx dxdt + δσ−1

∫∫
Qt

(g̃ε(u))2
xx dx � C2,εδ(t) (3.15)

for all t � 0, where

C2,εδ(t) :=
∫
�

G̃(1)
ε (u0,εδ) dx + 3σ−1

t∫
0

C̃1,εδ(s)Kεδ(s) ds.

Let G̃ε(z) := G̃(1)
ε (z) and Gε(z) := G(1)

ε (z). Note that

|G ′′
ε(z) − G ′′

0(z)| =
∣∣∣ gε(z)

Qε(z) − |z|
|Q(z)|

∣∣∣= ∣∣∣ (gε(z)−|z|)|Q(z)|−ε|z|
|Q(z)|Qε(z)

∣∣∣�
gε(z)−|z|

Qε(z) + B ε
|Q(z)|Qε(z) �

ε
Qε(z) + B ε

|Q(z)|Qε(z) � C ε
1
2

|Q(z)| 3
2

https://doi.org/10.1017/S0956792521000255 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792521000255


Travelling waves of a fibre coating model 873

provided |z|� B, where C = 1
2 (B + C0(1 + B4 log( B

r0
))). So,

|G̃ε(z) − G̃0(z)| =
∣∣∣

z∫
B

gε(s)(G ′
ε(s) − G ′

0(s)) ds +
z∫

B

G ′
0(s)(gε(s) − |s|) ds

∣∣∣�

C ε
1
2

∣∣∣
z∫

B

v∫
B

dsdv

|Q(s)| 3
2

∣∣∣+ ε G0(z),

whence, due to |Q(z)| ∼ | log( z
r0

)| as z → r0, we find that

|G̃ε(u0,εδ) − G̃0(u0,εδ)|� C ε
1
2 (log(1 + εθ ))−

3
2 → 0 as ε→ 0

provided θ ∈ (0, 1
3 ). As a result, we deduce that∫

�

G̃ε(u0,εδ) dx →
∫
�

G̃0(u0,δ) dx as ε→ 0. (3.16)

Therefore, due to (3.16) we have

C2,εδ(t) →
ε→0

C2,δ(t).

Note that, after taking limit ε→ 0, we obtain the limit solution uδ � r0 > 0 (the proof is similar
to [3, Theorem 4.1]), and for this reason, instead of (3.13), we use sup

�

(u−2
δ ) � r−2

0 for the limit

process on δ→ 0.

3.3 Construction of a weak solution

We will construct a weak non-negative solution using Arzela–Ascoli theorem. By (3.8) we
deduce a uniform boundedness of the following sequences

{uεδ}ε>0,δ>0 in L∞(0, T ; W 1
1 (�)), (3.17)

{gε(uεδ)�(uεδ,x)}ε>0,δ>0 in L∞(0, T ; L1(�)), (3.18)

{δ 1
2 g̃ε(uεδ)}ε>0,δ>0 in L∞(0, T ; H1(�)), (3.19)

{Q
1
2
ε (uεδ)Jεδ,x}ε>0,δ>0 in L2(QT ), (3.20)

{(g̃ε(uεδ))t}ε>0,δ>0 in L2(0, T ; (H1(�))∗). (3.21)

{g2−m
ε (uεδ)}ε>0,δ>0 in L∞(0, T ; L1(�)). (3.22)

{δg2−β
ε (uεδ)}ε>0,δ>0 in L∞(0, T ; L1(�)). (3.23)

https://doi.org/10.1017/S0956792521000255 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792521000255


874 H. Ji et al.

By (3.15) and (3.19) we arrive at ∫
�

G̃(1)
ε (uεδ) dx � C, (3.24)

{g
1
2
ε (uεδ)�′′ 1

2 (uεδ,x)uεδ,xx}ε>0,δ>0 in L2(QT ), (3.25)

{�′′ 1
2 (uεδ,x)uεδ,xx}δ>0 in L2(QT ), (3.26)

{δ 1
2 g̃ε(uεδ)}ε>0,δ>0 in L2(0, T ; H2(�)). (3.27)

By (3.19) and (3.21) we have (see, e.g. [3])

{g̃ε(uεδ)}ε>0 is u.b. in C
1
2 , 1

8
x,t (Q̄T ). (3.28)

From (3.17) and (3.28) we obtain that

g̃ε(uεδ) →
ε→0

g̃0(uδ) := 1
2 u2
δ uniformly in QT . (3.29)

By (3.29) and (3.27) we find that

g̃ε(uεδ) →
ε→0

g̃0(uδ) strongly in L2(0, T ; H1(�)), (3.30)

g̃ε(uεδ) →
ε→0

g̃0(uδ) weakly in L2(0, T ; H2(�)). (3.31)

By (3.29) and (3.24) we deduce that

uδ(x, t) � r0 > 0 in QT . (3.32)

By (3.29) and (3.21) we get

(g̃ε(uεδ))t →
ε→0

(g̃0(uδ))t weakly in L2(0, T ; (H1(�))∗). (3.33)

By (3.20) and (3.29) we have

Qε(uεδ)Jεδ,x →
ε→0

χ{uδ>r0}Q(uδ)Jδ,x strongly in L2(QT ). (3.34)

By regularity theory of uniformly parabolic equations and by the uniformly Hölder continuity of
the uεδ , we deduce that

uεδ,t, uεδ,x, uεδ,xx, uεδ,xxx, uεδ,xxxx are uniformly convergent

in any compact subset of {uδ > r0}. (3.35)

It follows that

Jδ =�′′(uδ,x)uδ,xx + δ(g̃0(uδ))xx − u−1
δ f (uδ,x) + A u−m

δ + δu−β
δ on {uδ > r0}. (3.36)
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Next, multiplying (3.1) by φ and integrating in QT , we have∫∫
QT

(g̃ε(uεδ))tφ dxdt − σ−1
∫∫
QT

Qε(uεδ)Jεδ,xφx dxdt −
∫∫
QT

Qε(uεδ)φx dxdt = 0 (3.37)

∫∫
QT

Jεδψ dxdt =
∫∫
QT

[
�′′(uεδ,x)uεδ,xx + δ(g̃ε(uεδ))xx − g′

ε(uεδ )
gε(uεδ ) f (uεδ,x) + A g′

ε(u)
gm
ε (u) + δ

g′
ε(u)

gβε (u)

]
ψ dxdt (3.38)

for all φ ∈ L2(0, T ; H1(�)) and ψ ∈ L2(QT ). Due to (3.29)–(3.35), letting ε→ 0 in (3.37) and
(3.38), we arrive at∫∫

QT

(g̃0(uδ))tφ dxdt − σ−1
∫∫
QT

χ{uδ>r0}Q(uδ)Jδ,xφx dxdt −
∫∫
QT

Q(uδ)φx dxdt = 0 (3.39)

∫∫
QT

Jδψ dxdt =
∫∫
QT

[
�′′(uδ,x)uδ,xx + δ(g̃0(uδ))xx − f (uδ,x)

uδ
+ A

um
δ

+ δ

uβδ

]
ψ dxdt (3.40)

for all φ ∈ L2(0, T ; H1(�)) and ψ ∈ L2(QT ).
Next, we pass to the limit δ→ 0 in (3.39). Note that a solution uδ(x, t) � r0 in QT . By (3.17),

(3.18) and (3.5) we get

uδ →
δ→0

u strongly in C(QT ), (3.41)

uδ,x →
δ→0

ux a. e. in QT , (3.42)

uδ →
δ→0

u* weakly in L∞(0, T ; W 1
1 (�)) ∩ L∞(0, T ; L2(�)) (3.43)

and a. e. in QT . By (3.21) and (3.41)

(g̃0(uδ))t →
δ→0

(g̃0(u))t weakly in L2(0, T ; (H1(�))∗). (3.44)

By (3.26), (3.27) and (3.42) we get

�′′(uδ,x)uδ,xx →
δ→0

χ{|ux|<∞}�′′(ux)uxx strongly in L2(QT ), (3.45)

δ(g̃0(uδ))xx →
δ→0

0 strongly in L2(QT ). (3.46)

Letting δ→ 0 in (3.39) and (3.40), in view of (3.41)–(3.46), we get a solution u(x,t) which
satisfies (2.10) and (2.11).
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4 Travelling wave solutions

We introduce a change of variables to the reference frame of the travelling wave,

u(x, t) = v(ξ , t), where ξ = x − V t.

Substituting the change of variables to the PDE (1.4) leads to the following PDE for v(ξ , t)

vvt + σ−1[Q(v)
(
(�′(vξ ))ξ − v−1f (vξ ) + Av−m

)
ξ
]ξ + (μQ(v) − V

2 v
2)ξ = 0 (4.1)

with L-periodic boundary conditions on ξ , where μ= 0 corresponds to the case without gravity
and μ= 1 corresponds to the case with gravity. Note that the total mass of the film M satisfies
the conservation-of-mass condition,

L∫
0

v2(ξ , t)dξ =
L∫

0

v2
0(ξ )dξ =: M , where v0(ξ ) := v(ξ , 0).

Let us denote

E(v) :=
L∫

0

{v�(vξ ) + A
m−2v

2−m}dξ , L(v) := E(v) + λ
2

L∫
0

v2 dξ ∀ λ ∈R
1, (4.2)

P(v) := {ξ ∈ (0, L) : v(ξ )> r0}, Z(v) := {ξ ∈ (0, L) : v(ξ ) = r0},
J (v) := (�′(vξ ))ξ − v−1f (vξ ) + Av−m, M̄ := M

L ,

M :=
{
v ∈ L2(0, L) ∩ W 1

1 (0, L) : v � r0 > 0, v(0) = v(L), v′(0) = v′(L),

L∫
0

v2dξ = M
}

.

Here, E(v) is an energy functional that combines the surface tension of the liquid and a local
free energy that corresponds to the film stabilisation mechanism, λ is a Lagrange multiplier and
L(v) incorporates both E(v) and the total mass of the film M = ∫ L

0 v
2dξ . The functional −J (v)

represents dynamic pressure of the liquid, and M̄ is the average film thickness.
In the Subsection 4.1–4.3, we consider the case of μ= 0 (without gravity), and the case μ= 1

(with gravity) is studied in the Subsection 4.4.

4.1 Critical points of the energy functional

Lemma 4.1 Let m> 2 and μ= 0. Then, for every M , the functional E attains its minimum vmin

on M. Moreover, if 0 � A< rm−1
0 , then

E(v) �
√

2M(r−1
0 −A M̄

− m
2 )(A+(m−2)rm−1

0 )

(m−2)(rm−1
0 −A)

as t → +∞.

Proof of Lemma 4.1. First of all, we will show that E(v) dissipates. Multiplying (4.1) by −J
and integrating on ξ , we find that

d
dtE(v) + σ−1

L∫
0

Q(v)J2
ξ (v)dξ = −V

2

L∫
0

(v2)ξJ (v)dξ . (4.3)
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As

L∫
0

(v2)ξJ (v)dξ = 0

then by (4.3)

d
dtE(v) + σ−1

L∫
0

Q(v)J2
ξ (v)dξ = 0, (4.4)

whence

d
dtE(v) � 0 ⇒ E(v(t)) � E(v0(ξ )) ∀ t � 0.

Moreover, taking into account

L∫
0

v�(vξ )dξ � r0L,

L∫
0

v2−mdξ � L M̄− m−2
2 ,

we deduce that

E(v) � K0 := (r0 + A
m−2 M̄− m−2

2 )L.

The functional E(v) is non-increasing and bounded from below therefore it attains its minimum
vmin on the set M.

Let us denote by

J̄ := − 1
L

L∫
0

v−1f (vξ ) dξ + A
L

L∫
0

v−m dξ �−r−1
0 + A M̄− m

2 .

Note that

L∫
0

(v2 − r2
0)(J (v) − J̄ ) dξ =

L∫
0

v2J (v) dξ − M J̄

= −2

L∫
0

v�(vξ ) dξ +
L∫

0

v f (vξ ) dξ + A

L∫
0

v2−m dξ − M J̄ �

−
L∫

0

v�(vξ ) dξ + A

L∫
0

v2−m dξ − M J̄ ,

whence

L∫
0

v�(vξ ) dξ − A

L∫
0

v2−m dξ �−
L∫

0

(v2 − r2
0)(J (v) − J̄ ) dξ − M J̄ .
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As

L∫
0

v�(vξ ) dξ − A

L∫
0

v2−m dξ � K1E(v),

where

K1 := (m−2)(rm−1
0 −A)

A+(m−2)rm−1
0

∈ (0, 1] provided 0 � A< rm−1
0 ,

then

K1E(v) �−
L∫

0

(v2 − r2
0)(J (v) − J̄ ) dξ − M J̄ . (4.5)

On the other hand, we have

−
L∫

0

(v2 − r2
0)(J (v) − J̄ ) dξ = −

L∫
0

(v2 − r2
0)
( ξ∫
ξ0

Js(v(s)) ds
)

dξ �

( L∫
0

Q(v)J2
ξ (v) dξ

) 1
2

L∫
0

(v2 − r2
0)
( ξ∫
ξ0

ds
Q(v(s))

) 1
2

dξ � K2

( L∫
0

Q(v)J2
ξ (v) dξ

) 1
2
.

So, from (4.5) we obtain

K3E2(v) �
L∫

0

Q(v)J2
ξ (v)dξ + K4, (4.6)

where

K3 = 1
2

(
K1
K2

)2
, K4 =

(
M
K2

)2 (
r−1

0 − A M̄− m
2

)2

+
.

Then by (4.4) we arrive at

d
dtE(v) + σ−1K3E2(v) � σ−1K4. (4.7)

Compare (4.7) with a solution of the following problem

y′(t) � α
(
β2 − y2(t)

)
with y(0) = y0, (4.8)

where y(t) := E(v)> 0,

α = σ−1K3, β2 = K4
K3

= 2( M
K1

)2(r−1
0 − A M̄− m

2 )2
+.

Then we have

y(t) � β
1 + y0−β

y0+β e−2αβt

1 − y0−β
y0+β e−2αβt

∀ t � 0.

https://doi.org/10.1017/S0956792521000255 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792521000255


Travelling waves of a fibre coating model 879

As a result, we obtain that

E(v) � β as t → +∞ (4.9)

provided

0 � A< rm−1
0 .

4.2 Structure of energy functional minimisers

The Euler–Lagrange equation for E(v) under the constraint
L∫
0

v2dξ = M is given by

(�′(v′))′ − v−1f (v′) + Av−m = λ, (4.10)

where λ is the Lagrange multiplier. We also need to incorporate the constraint v � r0 > 0. If
v ∈M, we decompose (0,L) according to the value of v into two sets, P(v) and Z(v).

We compute the first variation of L(v) about vmin and obtain

d
dεL(vmin + ε)

∣∣∣
ε=0

=
L∫

0

{v�′(vξ )φ′ + (�(vξ ) − Av1−m + λv)φ}dξ ,

where φ is a smooth test function supported in P(v). Since the first variation of L(v) along
vmin + ε must vanish for every such test function φ, the Euler–Lagrange equation (4.10) holds.

Similarly, when we take φ to be a smooth test function supported in Z(v), the first variation of
L(v) along vmin + ε must vanish for every such φ, and we obtain

λ= Ar−m
0 − r−1

0 on Z(v).

Therefore, the energy minimiser vmin satisfies (4.10) on (0,L) in the sense of distributions as λ
in (4.10) is a piece-wise constant function, namely,

λ(ξ ) =
{

λ∗ for ξ ∈ P(v),

Ar−m
0 − r−1

0 for ξ ∈ Z(v).

Lemma 4.2 Let m> 2, μ= 0, and 0 � A< rm−1
0 . If vmin minimizes E on M, then it solves (4.10)

with λ(ξ ) on (0, L). The Lagrange multiplier λ(ξ ) is negative and λ∗ satisfies

Ar−m
0 − r−1

0 � λ∗ = − 2
r2
0
(r0 − C0 + A

m−2 r2−m
0 ), (4.11)

where

1
2 (r0 + A m

m−2 r2−m
0 ) � C0 < r0 + A

m−2 r2−m
0 .

Furthermore, vmin is of class C1, and v′
min = 0 on ∂P(vmin).

Proof of Lemma 4.2. Next, we consider (4.10) on P(v). By the substitution

v′(ξ ) = z(v) �= 0,
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we have

zf 3(z)z′ − v−1f (z) + Av−m = λ⇔ (f (z))′ + v−1f (z) − Av−m = −λ
⇔ (vf (z))′ = Av1−m − λv, where v �= 0. (4.12)

On the other hand, if v′ = 0, then

v = M̄
1
2 and λ= M̄− m

2 (A − M̄
m−1

2 ).

The equation (4.12) has the following general solution

f (z) = A
2−mv

1−m − λ
2v + C0v

−1, (4.13)

where C0 ∈R
1. For the rest of the proof, we will separately consider the case A = 0 and the case

A> 0, m> 2.
Case A = 0: In this case, by (4.13) we get

f (z) = v−1(C0 − λ
2v

2) (4.14)

provided

v2 + 2
λ
v− 2C0

λ
� 0 ⇒ v1 � v � v2, − 1

2 � λC0 < 0,

where

v1 := − 1
λ

(1 −√
1 + 2C0λ), v2 := − 1

λ
(1 +√

1 + 2C0λ). (4.15)

Note that here we only consider the case λ< 0 and C0 > 0. This is because for λ� 0 or C0 � 0,
equation (4.14) does not have any real-valued non-trivial periodic solution v � 0. In particular,
since 0 � f (z) = (1 + z2)−

1
2 � 1, the case λ� 0 and C0 � 0 cannot lead to any real-valued solu-

tion v � 0 to (4.14). For the case λ> 0 and C0 > 0, we have v � v1 or v � v2 where v1 and v2

are defined in (4.15) and v1 < 0< v2. Smooth periodic solutions that satisfy these criteria do
not exist. Moreover, for C0 < 0 and λ< 0, we have v1 < 0< v � v2 and non-negative smooth
periodic solutions do not exist for this case.

From here we arrive at

z2(v) = v′2(ξ ) = − (v2 − v2
1)(v2 − v2

2)

(v2 − 2C0
λ

)2
.

This equation has a periodic solution with the period

τ = 2

v2∫
v1

√
− (s2 − 2C0

λ
)2

(s2 − v2
1)(s2 − v2

2)
ds. (4.16)

In the limit case when the droplet touches the substrate surface, we have the minimum and the
maximum of the periodic solution given by

v1 = r0, v2 = C0r0

r0 − C0
, where

r0

2
� C0 < r0, (4.17)

and the corresponding λ∗ satisfies

− r−1
0 � λ∗ = −2(r0 − C0)

r2
0

. (4.18)
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A typical smooth periodic solution v(ξ ) defined on a � ξ � a + τ with v(a) = v(a + τ ) = v1 = r0,
v′(a) = v′(a + τ ) = 0, and P(v) = (a, a + τ ) ⊂ (0, L) is given by

v(ξ )∫
v1

√
− (s2 − 2C0

λ
)2

(s2 − v2
1)(s2 − v2

2)
ds = ξ for ξ ∈ [a, a + τ

2 ],

v(ξ )∫
v2

√
− (s2 − 2C0

λ
)2

(s2 − v2
1)(s2 − v2

2)
ds = a + τ

2 − ξ for ξ ∈ [a + τ
2 , a + τ ].

(4.19)

If we set C0 = r0
2 , then from (4.18) and (4.19) we obtain λ∗ = −r−1

0 and the trivial solution v≡ r0.
Case A> 0, m> 2: Similar to the case A = 0, we only need to consider the case λ< 0 and

C0 > 0. In this case, by (4.13) we get

f (z) = v1−m(− λ
2v

m + C0v
m−2 − A

m−2 )

provided

0 �− λ
2v

m + C0v
m−2 − A

m−2 � v
m−1 ⇒ g(v) := vm−2(v− v1)(v− v2) �− 2A

λ(m−2) . (4.20)

So, if

max{− λ(m−2)
2 g(ṽmin), 0}< A � A∗ := − λ(m−2)

2 g(ṽmax),

where

ṽmax := −m−1
mλ (1 −

√
1 + 2m(m−2)

(m−1)2 λC0), ṽmin := −m−1
mλ (1 +

√
1 + 2m(m−2)

(m−1)2 λC0),

and − (m−1)2

2m(m−2) <λC0 < 0, then there exist v∗
1 (A) and v∗

2 (A) such that

0< v∗
1 (A)< v1 < v2 < v

∗
2 (A), v∗

i (A) → vi as A → 0,

and (4.20) is true for v∗
1 (A) � v � v∗

2 (A). From here we arrive at

z2(v) = v′2(ξ ) = − [vm−2(v−v1)(v−v2)+ 2A
λ(m−2) ][vm−2(v+v1)(v+v2)+ 2A

λ(m−2) ]

[vm−2(v2− 2C0
λ

)+ 2A
λ(m−2) ]2

.

This equation has a smooth periodic solution with the period

τ = 2

v∗2 (A)∫
v∗1 (A)

√
− [sm−2(s2− 2C0

λ
)+ 2A

λ(m−2) ]2

[sm−2(s−v1)(s−v2)+ 2A
λ(m−2) ][sm−2(s+v1)(s+v2)+ 2A

λ(m−2) ]
ds. (4.21)

Taking the minimum of the solution v∗
1 (A) = r0, we have

Ar−m
0 − r−1

0 � λ∗ = − 2
r2
0
(r0 − C0 + A

m−2 r2−m
0 ), (4.22)

1
2 (r0 + A m

m−2 r2−m
0 ) � C0 < r0 + A

m−2 r2−m
0 , 0 � A< rm−1

0 . (4.23)
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If we set v(a) = v(a + τ ) = v1 = r0 and P(v) = (a, a + τ ) ⊂ (0, L), then our smooth periodic
solution v(ξ ) is given by

v(ξ )∫
v∗1 (A)

√
− [sm−2(s2− 2C0

λ
)+ 2A

λ(m−2) ]2

[sm−2(s−v1)(s−v2)+ 2A
λ(m−2) ][sm−2(s+v1)(s+v2)+ 2A

λ(m−2) ]
ds = ξ for ξ ∈ [a, a + τ

2 ],

v(ξ )∫
v∗2 (A)

√
− [sm−2(s2− 2C0

λ
)+ 2A

λ(m−2) ]2

[sm−2(s−v1)(s−v2)+ 2A
λ(m−2) ][sm−2(s+v1)(s+v2)+ 2A

λ(m−2) ]
ds = a + τ

2 − ξ for ξ ∈ [a + τ
2 , a + τ ],

and v′(a) = v′(a + τ ) = 0. Furthermore, if C0 = 1
2 (r0 + A m

m−2 r2−m
0 ), then we obtain the trivial

solution v ≡ r0 on (0,L).
On the other hand, if λ> 0 and C0 > 0, then

f (z) = v1−m(− λ
2v

m + C0v
m−2 − A

m−2 )

provided

0 �− λ
2v

m + C0v
m−2 − A

m−2 � v
m−1 ⇒ g(v) := vm−2(v− v1)(v− v2) �− 2A

λ(m−2) .

Since v2 < 0< v1, smooth periodic solutions do not exist.
If λ= 0 and C0 > 0 then

f (z) = v1−m(C0v
m−2 − A

m−2 )

provided

0 � C0v
m−2 − A

m−2 � v
m−1 ⇒ v � ( A

C0(m−2) )
1

m−2 and vm−2(v− C0) �− A
m−2 .

Therefore, we do not have any smooth periodic solutions.

4.3 Convergence to an energy minimiser without gravity

Next, we study the long-time behaviour of solutions to (4.1). We start by considering the case
without the gravitational term (μ= 0).

Theorem 2 Let m> 2, μ= 0, v(ξ , t) be a weak solution to (4.1) with periodic boundary
conditions and vmin(ξ ) be a solution from Lemma 4.2. Assume that

0 � A< rm−1
0 , E(vmin) � E∗ := M(r−1

0 −A M̄
− m

2 )(A+(m−2)rm−1
0 )

(m−2)(rm−1
0 −A)

.

Then there exist B0 > 0 and B1 > 0 such that

0 � E(v) − E(vmin) � B0
1+B1 t ,

and

v(., t) → vmin(.) weakly in W 1
1 (0, L) as t → +∞. (4.24)
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Proof of Theorem 2. Let us denote

E(v|vmin) := E(v) − E(vmin).

Similar to (4.6), we deduce that

K3E2(v|vmin) �
L∫

0

Q(v)J2
ξ (v)dξ + K̃4, (4.25)

where

K3 = 1
2 ( K1

K2
)2, K̃4 = 1

K2
2

(
M(r−1

0 − A M̄− m
2 ) − K1E(vmin)

)2

+.

Then by (4.25), similar to (4.7), we arrive at

d
dtE(v|vmin) + σ−1K3E2(v|vmin) � σ−1K̃4. (4.26)

Compare (4.26) with a solution of the following problem

y′(t) � α
(
β2 − y2(t)

)
with y(0) = y0, (4.27)

where y(t) := E(v|vmin) � 0,

α = σ−1K3, β2 = K̃4
K3

.

As β = 0 provided E(vmin) � E∗ then from (4.27) we have

y′(t) �−αy2(t) with y(0) = y0. (4.28)

Solving (4.28), we deduce that

y(t) � y0

1 + αy0 t
.

As a result, we arrive at

0 � E(v|vmin) � B0

1 + B1 t
→ 0 as t → +∞, (4.29)

where

B0 = E(v0|vmin), B1 = σ−1E(v0|vmin)K3,

provided

0 � A< rm−1
0 and E(vmin) � E∗.

Since the energy E(v) is bounded by (4.29) and v � r0 > 0, it follows that ‖v‖W1
1 (0,L) � C̄, where

C̄ is a constant, and the conclusion (4.24) holds.
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4.4 Convergence to a travelling wave with gravity

The case with the gravitational term (μ= 1) is more complicated and will require us to introduce
additional conditions to compare to the case without gravity. Let us denote by

F(ξ , t) := −σ
ξ∫

0

(1 − V
2
v2(y)

Q(v(y)) + ν
Q(v(y)) ) dy ∀ ν ∈R

1, (4.30)

Ẽ(v(t)) :=
L∫

0

{v�(vξ ) + A
m−2v

2−m + 1
2v

2F(ξ , t)} dξ , (4.31)

where Ẽ(v) is a modified energy functional that incorporates surface energy, the stabilisation
mechanism and a gravitational potential energy represented by

∫ L
0

1
2v

2F(ξ , t) dξ .

Lemma 4.3 Let m> 2 and μ= 1. Assume that

F(0, t) = F(L, t) ⇔
L∫

0

( V
2
v2(y)

Q(v(y)) − ν
Q(v(y)) ) dξ = L, (4.32)

and

L∫
0

v2Ft(ξ , t) dξ � 0. (4.33)

Then, for every M , the functional Ẽ attains its minimum vmin on M.

Proof of Lemma 4.3. Multiplying (4.1) with μ= 1 by −(J − F(ξ , t)) and integrating on ξ , we
deduce that

d
dt Ẽ(v(t)) − 1

2

L∫
0

v2Ft(ξ , t) dξ + σ−1

L∫
0

Q(v)(J (v) − F(ξ , t))2
ξ dξ = 0. (4.34)

Then from (4.34), due to (4.33), we get

d
dt Ẽ(v(t)) � 0. (4.35)

Moreover, taking into account

L∫
0

v�(vξ )dξ � r0L,

L∫
0

v2−mdξ � L M̄− m−2
2 ,

L∫
0

v2F(ξ , t) dξ �−σLM ,

we deduce that

Ẽ(v) � K̃0 := (r0 + A
m−2 M̄− m−2

2 − 1
2σM)L.

As the functional Ẽ(v) is non-increasing and bounded from bottom it attains its minimum vmin

on the set M.
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The Euler–Lagrange equation for Ẽ(v) under the constraint
L∫
0

v2dξ = M is given by

(�′(v′))′ − v−1f (v′) + Av−m = F∞(ξ ) + λ, (4.36)

where λ is a Lagrange multiplier and

F∞(ξ ) := lim
t→+∞ F(ξ , t).

We also need to incorporate the constraint v � r0 > 0. If v ∈M, we decompose (0,L) according
to the value of v into the set P(v) and the set Z(v). As equation (4.36) is not autonomous, we have
meas(Z(v)) = 0.

Lemma 4.4 Let m> 2, μ= 1, and 0 � A< rm−1
0 . The functional Ẽ has the minimiser vmin on M

such that vmin ∈ C1[0, L], vmin(0) = vmin(L) and v′
min(0) = v′

min(L) = 0 and solves (4.36) with

Ar−m
0 − r−1

0 � λ= − 2
r2
0
(r0 − C0 + A

m−2 r2−m
0 )< 0,

where

1
2 (r0 + A m

m−2 r2−m
0 ) � C0 < r0 + A

m−2 r2−m
0 ,

provided

V = 2

L
L∫
0

v2
mindξ

Q(vmin) − M
L∫
0

dξ
Q(vmin)(

L∫
0

v2
mindξ

Q(vmin)

)2

−
(

L∫
0

dξ
Q(vmin)

)(
L∫
0

v4
mindξ

Q(vmin)

) ,

ν =
L

L∫
0

v4
mindξ

Q(vmin) − M
L∫
0

v2
mindξ

Q(vmin)(
L∫
0

v2
mindξ

Q(vmin)

)2

−
(

L∫
0

dξ
Q(vmin)

)(
L∫
0

v4
mindξ

Q(vmin)

) .

Proof of Lemma 4.4. Note that equation (4.36) has a periodic solution provided

F∞(0) = F∞(L) = 0 ⇔
L∫

0

( V
2

v2
min

Q(vmin) − ν
Q(vmin) ) dξ = L. (4.37)

Multiplying (4.36) by −v vξ (vξ �= 0), we obtain that(
vf (vξ ) + A

m−2v
2−m

)
ξ
= −(F∞(ξ ) + λ)vvξ . (4.38)

We will look for the first integral to (4.38) in the form:

f (vξ ) = a(ξ )v+ b(ξ )v−1 − A
m−2v

1−m, (4.39)
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where a(0) = a(L) and b(0) = b(L). Substituting (4.39) into (4.38), we find that

a(ξ ) = − 1
2 (F∞(ξ ) + λ), b(ξ ) = C0 + 1

2

ξ∫
0

F′∞(y)v2(y) dy ∀ C0 ∈R
1.

By b(0) = b(L) we have

L∫
0

( V
2

v4
min

Q(vmin) − νv2
min

Q(vmin) ) dξ = M . (4.40)

In particular, from (4.37) and (4.40) it follows that

V = 2

L
L∫
0

v2
mindξ

Q(vmin) − M
L∫
0

dξ
Q(vmin)(

L∫
0

v2
mindξ

Q(vmin)

)2

−
(

L∫
0

dξ
Q(vmin)

)(
L∫
0

v4
mindξ

Q(vmin)

) ,

ν =
L

L∫
0

v4
mindξ

Q(vmin) − M
L∫
0

v2
mindξ

Q(vmin)(
L∫
0

v2
mindξ

Q(vmin)

)2

−
(

L∫
0

dξ
Q(vmin)

)(
L∫
0

v4
mindξ

Q(vmin)

) .

As a result, by (4.39) we arrive at

v2
ξ = 1 − (a(ξ )v+ b(ξ )v−1 − A

m−2v
1−m)2

(a(ξ )v+ b(ξ )v−1 − A
m−2v

1−m)2
. (4.41)

If v(0) = v(L) = r0, then v′(0) = v′(L) = 0 provided

λ= − 2
r2
0
(r0 − C0 + A

m−2 r2−m
0 ). (4.42)

5 Numerical studies

To simulate the fibre coating dynamics and explore beyond the analytical results presented in
previous sections, we numerically investigate the problem (2.1)–(2.3). Specifically, we are inter-
ested in the structure of energy minimisers and the travelling wave solutions governed by the
PDE (4.1).

Firstly, we investigate the energy minimisers vmin(ξ ) discussed in Lemma 4.2 and their struc-
tures. For λ≡ λ∗ and A = 0, the profile of vmin(ξ ) has a unique maximum maxξ (vmin) = v1 and
minimum minξ (vmin) = v2, where λ∗, v1 and v2 are defined in Lemma 4.2 by (4.18) and (4.17),
respectively. For given values of λ∗ and r0, the corresponding value of C0 = r0 + λ∗r2

0/2 is
obtained based on (4.18), and the period τ of the minimiser is obtained from (4.16). Then we
numerically solve the ODE (4.10) for the solution profile vmin(ξ ) on −τ/2 � ξ � τ/2 subject to
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FIGURE 1. Typical profiles of the energy minimiser vmin(ξ ) obtained by numerically solving the ODE
(4.10) for A = 0 and λ= λ∗ for a range of λ∗ values with (left) r0 = 0.2 and (right) r0 = 1. The minimum
and maximum of the profiles are consistent with (4.17) where C0 = r0 + λ∗r2

0/2 from (4.18). The periods of
the solutions are given by (4.16).

FIGURE 2. (Left) Profiles of the energy minimiser vmin(ξ ) satisfying (4.10) for A = 0, 0.1, 0.2 with fixed
r0 = 1 and λ= λ∗ = −0.3, showing that an increasing A leads to smaller spatial variations. (Right) The
period τ of energy minimisers given by (4.21) for a varying λ= λ∗ satisfying (4.11) with different values
of A and r0. The parameter m = 3 is used in both figures.

the Neumann boundary conditions v′(ξ ) = 0 at ξ = ±τ/2. When other system parameters are
fixed, a larger absolute value of λ∗, |λ∗| = −λ∗, leads to an energy minimiser vmin(ξ ) with a
smaller magnitude and a smaller period (see Figure 1). The comparison between the two plots
with the fibre radius r0 = 0.2 and r0 = 1 in Figure 1 also shows that with identical λ∗ values, a
larger value of r0 leads to a vmin(ξ ) profile with a larger period and smaller spatial variations.
This implies that with identical dynamic pressure, droplets on a thick fibre tend to have a smaller
bead size than those on a thinner fibre.

Figure 2 (left) presents the effects of the stabilisation term A/um, showing that with other
system parameters fixed, a positive A> 0 yields smaller spatial variations in vmin. This is also
consistent with the observation drawn in [10]. Similar to the A = 0 case, the energy minimisers
vmin(ξ ) for A> 0 presented in Figure 2 (left) are numerically obtained by solving the ODE (4.10)
for −τ/2 � ξ � τ/2, where the period τ is given by (4.21) and the constant C0 is obtained from
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FIGURE 3. Dynamics of (2.1)–(2.3) without gravity effects for 0 � t � 20 starting from the initial data
u0(x) = v(x) (dashed line) satisfying (4.10) with C0 = 0.5, λ= −0.5. (Left) The solution profile u(x,t) and
(right) the energy dissipation E(t) show that a two-hump solution is reached in long time. The inset plot
shows the dynamics near the touch-down point where u ≈ r0. Other system parameters are A = 0, r0 = 0.2,
σ = 0.01.

(4.11) with the fibre radius r0 = 1, λ= λ∗ = −0.3, and m = 3. With different values of A and r0,
Figure 2 (right) shows a comparison of the period τ of energy minimisers based on (4.21) for a
varying λ= λ∗ that satisfies (4.11). This plot shows that when other system parameters are fixed,
larger values of r0 and A typically lead to a larger period τ for the energy minimiser.

Next we explore the dynamics of the problem (2.1)–(2.3) without gravity effects, that is, with-
out the last term [Q(u)]x. Typical dynamic simulation results of (2.1) without gravity modulation
subject to periodic boundary conditions are plotted in Figure 3. The initial data for this simulation
are given by u0(x) = v(x) which satisfies the ODE (4.10) with C0 = 0.5, λ= −0.5 over 0 � x � L
for the period L = τ = 10.79 obtained from (4.16). Other system parameters are A = 0, r0 = 0.2,
σ = 0.01 and M = ∫ L

0 u2 dx = 68.6. We note that the parameter pair (λ, C0) do not satisfy the con-
dition (4.11), which implies that the initial profile u0(x) is not an energy minimiser of the system.
Starting from the initial profile, the dynamic solution quickly evolves into a two-hump solution
with an additional local maximum at the edge x = 0 and x = L. Moreover, a local singularity,
u = r0, is approached at two global minima near x = 0.9 and x = 9.9 where the two hump solu-
tions are connected. An inset plot is also included in Figure 3 (left) to display the dynamics near
the region where the two humps are connected. The history of the energy E(t) in Figure 3 (right)
shows that the energy is dissipating as the solution approaches to the two-hump profile. This con-
firms the conclusion in Theorem 2. These numerical studies are conducted using fully implicit
finite differences with a uniformly spaced grid, and the numerical scheme is second-order accu-
rate in space and first-order accurate in time. In our numerical studies, we also observed cases
when a single-hump initial profile can evolve into three or more humps. We suspect that linear
stability analysis for steady states of the governing PDE can lead to an estimate of the number
of humps and the structure of long-time dynamics. However, a systematic investigation of this
problem is beyond the scope of this paper, and we may further study this aspect of the problem
in the future.

Figure 4 (right) presents the plot of λ(ξ ) corresponding to the dynamic solution in Figure 3 at
time t = 20. It shows that λ(ξ ) approaches a piece-wise constant function where the values of crit-
ical λ∗ are given by λ∗

A = −0.523 and λ∗
B = −3.955, respectively. Using these critical λ∗ values,

we numerically solve for the energy minimisers vmin(ξ ) derived in Lemma 4.2 that correspond to
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FIGURE 4. (Left) Energy minimiser vmin and (right) corresponding λ(ξ ) corresponding to the long-time
dynamic solution u(x) at time t = 20 in Figure 3 (left), showing that the PDE solution presented in Figure 3
approaches to a two-hump energy minimiser characterised by a piece-wise constant function λ(ξ ). The inset
plot shows the two-hump energy minimiser near the touch-down point.

FIGURE 5. (Left) Solution profiles u(x) and (right) the corresponding λ(x) profiles of a travelling wave
solution satisfying (1.4) with gravity effects at a speed V = 5.12 compared with long-time dynamic solution
shown in Figure 3 without gravity effects. System parameters are identical to those used in Figure 3.

λ= λ∗
A,B and compare them (see Figure 4 (left)) against the long-time dynamic solution presented

in Figure 3 (left). The two solutions, vmin(λ= λ∗
A) and vmin(λ= λ∗

B), are connected at the point
where the common minimum value v = r0 is reached (see the inset plot in Figure 4 (left)). This
comparison shows that the two-hump solution obtained from the direct numerical calculation is
in good agreement with the energy minimiser characterised by vmin with a piece-wise constant
function λ(ξ ) = λ∗

A,B.
The gravity effects incorporated in (2.1)–(2.3) can lead to a travelling wave solution at a speed

V characterised in the travelling wave PDE (4.1). To better understand the influence of gravity
effects in the model, we numerically solve the equation (2.1) starting from the two-hump profile
obtained from the simulation shown in Figure 3 where gravity effects are excluded. The system
parameters are also set to be identical to those used in Figure 3. The simulation shows that
the dynamic solution quickly converges to a travelling wave at a constant speed V = 5.12. A
comparison of this travelling wave solution and the two-hump profile without gravity is shown
in Figure 5 (left), where the spatial symmetry around x = L/2 in the travelling wave solution is
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broken due to the presence of gravitational effects. Figure 5 (right) depicts the corresponding
λ profiles for the two solutions. This plot reveals that without gravity the λ profile for the two-
hump solution approaches a piece-wise constant function, while the travelling wave solution only
keeps the large hump corresponding to λ= λ∗

A and the small hump with λ= λ∗
B is saturated by

the gravity. In addition, the global minimum of the travelling wave solution is above the fibre
radius parameter r0 = 0.2, which indicates that the gravitational effects prevent the singularity
observed in the no-gravity case from happening.

Finally, we investigate the convergence to travelling wave solutions with the presence of grav-
ity using the PDE (4.1) in the moving reference frame with μ= 1. A travelling wave solution
vmin(ξ ) at a propagating speed V is a steady state of PDE (4.1) and satisfies the fourth-order ODE
(5.1) for v(ξ ) on a periodic domain 0 � ξ � L,

σ−1[Q(v)
(
(�′(vξ ))ξ − v−1f (vξ ) + Av−m

)
ξ
]ξ + (Q(v) − V

2 v
2)ξ = 0. (5.1)

The profile of the travelling wave is determined by the period L and the mass M = ∫ L
0 v

2 dξ .
For a given (L, M) pair, we numerically solve the travelling wave ODE (5.1) for vmin(ξ ) and the
speed V simultaneously on a periodic domain 0 � ξ � L using finite differences. A continuous
family of travelling wave solutions to (5.1) parametrised by (L, M) can be identified. Using a
branch continuation method, we numerically track the travelling waves as the parameter L or M
changes. Similar parametric and pseudo-arclength continuation methods are commonly used for
bifurcation analysis [11,14,16]. For L = 9 and M = 57.2, we obtain a travelling wave solution
vmin(ξ ) with the associated velocity V = 4.24 (see the solid curve in Figure 6 (top left)). This
velocity agrees with the analytical expression for V provided in Lemma 4.4. The other system
parameters are identical to those used in Figure 3.

Starting from a perturbed initial condition

v0(ξ ) = vmin(ξ ) + ε̄ sin(2π f̄ ξ/L), (5.2)

where ε̄ is the magnitude and f̄ /L is the frequency of the perturbation, we numerically solve the
travelling wave PDE (4.1) and observe that the PDE solution converges to the travelling wave
vmin(ξ ) as t → ∞. Here we select the magnitude of the perturbation

ε̄ = − 4

L

∫ L

0
vmin(ξ ) sin(2π f̄ ξ/L) dξ , (5.3)

such that the initial data satisfy the condition
∫ L

0 v
2
0 dξ = ∫ L

0 v
2
min dξ = M which is necessary for

the convergence to the travelling wave vmin due to the conservation of mass condition. For the
simulation shown in Figure 6, we set f̄ = 1 which corresponds to the magnitude ε̄ = 0.51 based
on the formula (5.3) for L = 9. To calculate the modified energy Ẽ(t) defined in (4.31), we specify
ν(t) in the definition of F(ξ , t) in (4.30) based on the formula

ν =
V
2

∫ L
0

v2(ξ ,t)
Q(v(ξ ,t)) dξ − L∫ L

0
1

Q(v(ξ ,t)) dξ
(5.4)

so that condition (4.32) is satisfied. Figure 6 (top right) depicts the evolution of F(ξ , t) in time as
the PDE solution converges to the travelling wave, showing that the condition F(0, t) = F(L, t) =
0 in (4.34) is satisfied. The plot in Figure 6 (bottom) shows that as the travelling wave vmin(ξ )
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FIGURE 6. PDE simulation of (4.1) with μ= 1 starting from the initial data v0(ξ ) in (5.2) with f̄ = 1,
showing (top left) the convergence of the PDE solution v(ξ , t) to the travelling wave vmin(ξ ), (top right)
the corresponding evolution of F(ξ , t) and (bottom) the decay of modified energy Ẽ and

∫ L
0 v

2Ftdξ in time.
The travelling wave vmin(ξ ) satisfies the ODE (5.1) and is associated with L = 9 and M = 57.2. A scaling
constant c = 5 × 10−5 is used to display both curves Ẽ and

∫ L
0 v

2Ftdξ in a comparable range. Other system
parameters are identical to those used in Figure 3.

is approached, both the modified energy Ẽ(t) and the corresponding
∫ L

0 v
2Ft dξ decay in time,

which is consistent with the result shown in Lemma 4.3. We note that while the simulations in
Figures 4 and 6 are conducted with A = 0, similar dynamics are observed for simulations with
small stabilisation parameter A> 0.

6 Conclusions

The main contribution of this paper is showing the existence and long-time behaviour of non-
negative weak solutions for the generalised nonlinear PDE (2.1)–(2.3) using a priori estimates
for energy-entropy functionals. Typical numerical studies of the energy functional minimis-
ers and dynamic simulations of the PDE with and without gravitational effects are presented
in support of the analytical results. The travelling wave solutions of the model are inves-
tigated both analytically and numerically. As t → ∞, with proper system parameters and
initial conditions, the solution to (2.1) converges to a travelling wave solution characterised
by (4.1).
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