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An approximation to the motion of two rotating electrical doublets
in a plane. By P. A. TAYLOR, B.A., Emmanuel College.

[Received 22 May, read 26 July, 1926.]

§ 1. Introduction. This problem was suggested by an article of
Debye's* in which, he considers the effect on a free electron of an
electrical doublet constrained to rotate uniformly about a line
through itself perpendicular to its own axis. Assuming that the
free electron is initially at rest, he shows that to a first approxima-
tion it performs simple harmonic vibrations about its initial
position. Proceeding to a second approximation, he shows that
the free electron appears to be repelled by the rotating doublet.
In this paper, instead of considering an electron and a rotating
doublet, we consider two rotating doublets. In order to simplify
the calculations we suppose that the two doublets are constrained
to lie in a plane, but are otherwise free. The principal results of the
calculations will be found collected in the summary at the end.

The problem is of interest as it might give a clue to the origin
of forces between atoms. For Debye shows that the field due to a
hydrogen atom at any distance greater than about ten times its
radius is to a close approximation the same as the field of the
equivalent rotating doubletf. We shall find that two rotating
doublets behave as if they acted on each other with a force of the
same general type as the interatomic forces found empirically by
Lennard-Jones and the present author|. Comparison can only be
made as regards order of magnitude for three reasons. We have
constrained our doublets to lie in a plane. Secondly, we shall
consider the moment of inertia and the electrical moment of a
doublet as constant, whereas in an encounter between two hydrogen
atoms the radius vector from the proton to the electron of the same
atom might suffer perturbations, so that the moment of inertia
and the electrical moment may be variable. Thirdly, no gas so
simple as a gas of hydrogen atoms exists.

s

§ 2. The plane of the paper is the plane in which the doublets
are constrained to lie.
G is the centre of gravity of the two doublets Ox and O2.

* P. Debye, "Molekularkrafte und ihre elektrische Deutung, § 6," Phya. Zeit.,
voL xxn, p. 306 (1921).

t P. Debye, loc. cit.
\ J. E. Jones, Proc. Soy. Soc. A, voL ovi, pp. 441, 483, 709 (1924); voL ovn,

p. 157 (1925); J. E. Lennard-Jones and P. A. Taylor, Proc. Soy. Soc. A, voL crx,
p. 476 (1925).
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270 Mr Taylor, An approximation to the motion of

m^ and w, are the masses of the two doublets 0x and 02 re-
spectively.

/xj and fi2 are the electrical moments of the two doublets Ox and O2
respectively.

7X and 1% are the moments of inertia of the two doublets 0x and O8
respectively.

Gx and (?t/ are rectangular axes through G parallel to directions
fixed in space.

The rest of the notation is as in the figure.

We write also

Then, if T is the kinetic energy of the motion relative to G, and if
F is the potential energy, we find

2T = M (r2 + r2^) + h<f>2 + /a^
2

2V

where M =
+ JM2

+ rW) + Irf + /aV
2 (2-0),

{cos e — 3 cos (<f> — 6) cos (if> — d)}

{3 cos (<f> + </> - 26) + cos {<f> - <p)} . . . (2-1) ,

(2-2),

and we have at once Lagrange's equations of motion.
Suppose now that the doublets are at such a great distance

apart that the coupling (i.e. the influence of one doublet on the
motion of the other) is small. If there were no coupling each doublet
would move with uniform velocity in a straight line and would
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two rotating electrical doublets in a plane 271

rotate with constant angular velocity. Thus, neglecting the coupling,
we have as an approximate solution

r cos 8 = vi + a

<j> = fat + fa
ifi = fat + ij/0

The arbitrary constants a, /}, <f>0, ifi0, u, v, fa, fa may be so chosen
that the equations (2-3) determine the exact values of r, 6, <f>, ijj,
r, 6, <f>, \jr at any given instant of time (say t — 0). Now let u, v, fa,
fa be chosen in this manner, i.e. the vector [u, v] is the relative
linear velocity of the two doublets, and fa and ^ the angular
velocities of the doublets at time t = 0. Then a, j8, <f>0, tfi0 may be
taken as new variables, defined in terms of r, d, (j>, ip, t by equations
(2-3). We have seen that an approximate solution of the equations
of motion is given by a = const., /} = const., </>0 = const., ip0 = const.
Therefore in the exact solution d, /}, <f>0, yjr0 will be small, and so also
will be a, 0, <̂ o, ijro. (Also from the way in which u, v, <f>0, i/r0 were
chosen, at time t = 0 we have a = 0, ft = 0, <j>0 = 0, yjro= 0 ac-
curately.)

We may express the equations of motion after some algebraic
reduction in the following form:

a = A cos (fa + fa) t + B sin (fa -
+ C cos (fa — fa)t + D sin (fa — fa) t

$ = A' cos (fa + fa)t + B' sin (fa + fa)t+ ...
<f> = A" cos (fa + fa) t + ...

The A'B, B'B, etc. are expressions of which the following are
typical:

(2-5).

The right-hand sides of equations (2-4) are functions of t, both
directly and via the A'B, B'B, C'B, D'B, which are given as functions
of r, 6, <f>0, \(i0 by equations (2-5) and other equations of similar form.
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272 Mr Taylor, An approximation to the motion of

The two variables r and 8 are given by equations (2-3) as functions
of t, both directly and via a and j3. To a first approximation we
may neglect the variation of the four quantities a, /3, <f>0, ip0, as we
have shown that they are approximately constant. If the angular
velocities of the doublets are large compared with the ratio of
their linear relative velocity to their distance apart, we can con-
sider r and 0 as approximately constant. Thus for a first approxi-
mation we can consider the A's, B's etc. as constant, i.e. their
variations are slow compared with the variations of

We can now integrate equations (2-4) and obtain equations like

K& + & ) « - s i n

+ ,, D. v8 Utk -fat- sin (& - fc) t] ...(2-6),

where Ob, $>» ôo> Aw a r e the values of a, fi, <j>0, ift0 respectively when
t = 0.

For a second approximation we must no longer consider the
.4's, B'a, etc. as constants. Let r0, rl3 90, 8t be the values at time
t = 0 of r, r, 6, d respectively. Then since we have already assumed
that the linear relative velocity of the doublets is small, we may
write, for a few periods of revolution of the doublets at least

r = r0 + rxt,

Expanding the A'a etc. to the first order in r1; 8lt and also in
(a — OQ), (fi — £0), etc., we have (letting the suffix 0 denote the
values at time t = 0)

Ea + Fat + Ga cos (& + 0J t + Ha sin (^ + ^ ) t
+ Ka cos (^ — t/i^t + La sin (^ —

(2-71).
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Fbt+ ...
Fet+ ...
Fdt + ...

+ La

+ Lb

+ LC

+ I'd

s in (<f>i —
sin (ff>t —

sin ( ^ —

sin (^j —

\f)^) t) COS (<)

if/j) t} s i n (<f

Ipj) t} COS (<j

if/i) t) s i n (()

1̂ + ri) *

W + »Ai) t
<>! - ^ ) t

W - *Pi) *
(2-8).
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The Ea's, Fa's, etc. are constants whose values may be found by
substituting in equation (2-70) from (2-6) and similar equations
and comparing the result with equation (2-71). Similarly

Substituting in equations (2-4) from equations (2-71) we have

a= {Ea+Fat + Gacos(<f>1 + ipi)t + Hasin(<f>1+ &) t + Kacos (& -

{Eb

§ 3. We will first suppose that neither (^ + ^ ) nor (^ — ^ ) is
small, i.e. (^ + r̂x) and (^x — ^x) are to be considered as large and
of the same order of magnitude as <f>t and ifit. We will find the
average relative acceleration of the doublets over a time t = — T
to t = + T, where the time 2T is sufficiently large to contain a large
number of periods of

. (6, + t/t,) t and . (<L — di,) t,sin v r i r i / sm r ~
and yet sufficiently small for r and 0 to be effectively constant*.
Letting a bar denote the average value with respect to t over the
time — T to + T we have

t COB <x)t = 0 ,

where a> denotes either (^ + tfij) or (^ — ^ ) .

1
t sin a>< = — - cos WT H -„ sin COT.

CO TCO"8

The first term in this expression fluctuates, going through a cycle
of values, equally positive and negative, in the time of one period

COS

of . co<. We are trying to compare the actual motion with one
in which the effects of individual rotations are smoothed out; and
this term (— cos COT/CO) contributes nothing permanent to the

* This is possible as regards (<j>x +^>t) t, but not as regards (4>i - ipi) U when the
doublets represent normal Bohr hydrogen atoms, rotating in the same sense, and
whose relative velocity is the kinetic theory velocity appropriate to a temperature
of 0°C. For then the distance travelled in 30 periods of revolution of the doublets
is about tV °f the radius of a hydrogen atom, and hence a considerably smaller
fraction of the distance apart of the two doublets. To make a suitable choice of r
possible as regards both (<f>1+>pl)t and (tfr.-tpjt we should have to make our
doublets correspond to hydrogen atoms with different quantum numbers.

,19—s
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274 Mr Taylor, An approximation to the motion of

averaged acceleration. Besides, owing to the factor 1/w, the ex-
treme values of (— cos O>T/O>) would be small compared with
cos2a>< (i.e. \). A fortiori, the term (sin wr/raj2), which also fluctuates
through positive and negative values, tends to zero as T increases,
and contains a factor 1/w2, contributes nothing permanent to the
averaged acceleration. So we write

t sin iot = 0.
Similarly

O OS ^ ^ — ^ — COS

. oit = 0, cos at sin cot = 0, . 2<t)t=%,

c o s (& + &) tcos (& - &) t = o.
sin v" sm r

Applying these results to equation (2*8) we have
S = } (0B + Hb + Kc + Ld) (3-0).

We can evaluate the constants occurring in this equation by some-
what lengthy algebra, and we find

13 1 |

1 ]
(^-^)i!J

c o o g

Also a = p cos 6 — r sin 8,

where p and T are the radial and transverse averaged relative
accelerations respectively in the directions of r and 6 increasing.
Therefore

13 1
2Mr»

1 I
+ —

where R and T are the apparent forces corresponding to the,
accelerations p and T. Thus we see that the doublets repel each other
with a force (Xr~7 + /j.r-°), where A and j * are positive constants
which may be found by comparison with equation (3-l);

We now have to consider what is the influence of one doublet
on the angular velocity of the other. Similarly to equation (3-0)
we find _

_i_ J7 " _L JT " j ^ T "\ /0.O\
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When we evaluate explicitly the constants occurring on the right-
hand side of this equation we find

Ga + Hb. =b" = 0)

and so <j> = 0 (3-22).
Thus to our order of approximation the angular velocities of

the two doublets remain constant throughout the interaction; and
the coefficients A and fi remain constant, their values depending
on the constant values (fa and fa) of the angular velocities of the
doublets. That is to say, during the whole of an encounter (pro-
vided the doublets do not approach each other too closely), the
doublets appear to repel each other with a force (Ar~7 + fir~9), where
A and p. are constants, given by

Z^WVi + I,) f 9 1
87/ Ufa + far +fa + far + (fa-fart, ,3.3,

13 1 ^ *"* h

"I"** 2M \(fa + faY ̂  (fa - fa)\
§ 4. So far we have assumed that neither (fa + fa) nor (fa — fa)

is small. We now consider the state of affairs when (fa — fa) is
small. Let fa — fa = £, where £ is small. We also write fa + fa = i).
Then, since .

and ft-^ft-i

the equations (2-6) take the form

« - «o = 4 (! - cos ¥) + -a (¥ -sin

Corresponding to equations (2-71) we shall have
A = E a + ~Fat + Ga cos T)t + Ha sin -qt + \Mat*

+ Wafr-&MaP* (4-1).
The new coefficients Ma, Na, E o , F a , etc., may be found by sub-
stituting in (2-70) from (4-0) and comparing the result with (4-1).
Thus corresponding to equation (2-8) we have
a = {Eo + Fat + Ga cos r,t + Ha sin vt + \Mat* + $Na£t3

?t*} cos rfi
2t4} sin-qt

e + Fet+...

(4-2).
* For justification of these approximations see footnote on p. 281.
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276 Mr Taylor, An approximation to the motion of

We now require to take some new averages. As in § 3 we choose
the time 2T to be sufficiently large to contain a large number of

periods of . tut and yet sufficiently small for r and 6 to be effec-
tively constant, and we then average over the time t = — T to
t — + T*. Now we are comparing the actual motion with a com-
parison motion in which the effects of individual rotations are
smoothed out. In this comparison motion the average acceleration
during the time t= — Ttot= + ria the sum of two terms:

(i) the actual acceleration (in the comparison motion) at time
« = 0.

(ii) a term which tends to zero as T tends to zero.
We are trying to find the actual acceleration at time t = 0 in
the comparison smoothed out motion. Consequently terms in our
average which tend to zero as T tends to zero are to be identified with
(ii) and hence omitted. Terms which fluctuate equally positive and
negative disappear as before in the smoothing out process, e.g.

^^^———— 1 f f rr 9

t2 cos rit= 7T- t2 cos ritdt = - sin r\r + - ; cos TIT
IT) _T ' r] ' r)2 ' TfT

We may either say that each term in this expression fluctuates
equally positive and negative and is therefore to be omitted; or
we may say that t2 cos r\t -* 0 as r -*• 0 (as is clear without integra-
tion) and hence t2 cos r\t is to be omitted. Hence we write

t\ cos i)t = 0.
Similarly we put t2 sin -qt = 0,

sin '
T« = 0, n = 1, 2, 3, 4.

Applying these results to equation (4-2) we have
H = i (Ga + Hs) + E0 (4-3).

Evaluating the right-hand side of this equation explicitly we find

« - I^M^V- + 8MIJ0V 2Mr* ^C0S W

COS (*O + ho) (cos fe, + 6) + cos (e0 - 6)}

s i n (eo + 2*o) {sin (e0 + 6) - sin fe, - 6)}

Sin (e° ~
(4-4),

* We have already seen that this choice of T is possible when the doublets
represent normal hydrogen atoms.
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where ^ = <j>0 - fa, and Xo = fa-6 ...(4-41), (4-42).
COS

Now the terms in . (e0 + 2̂ 6) change sign in every quarter
sin

revolution of either doublet, the periods of revolution of the two
doublets being the same. That is, these terms change sign whenever
the centre (t = 0 in previous work) of the time over which the
average is taken is made earlier or later by a quarter of the period
of revolution of either doublet. Thus on the average the terms
in . (e0 + 2xb) contribute nothing permanent to S*. Therefore

Sillwe write

° (2Mhfr*
Alao, as before,
and therefore

T = M T = 0

S

r*

= p cos 6 —

r2) 3,x

T sin 5,

x^cose
2Mr*

?i cos 0.

,V 1(4-5).
Now similarly to equation (4-3) we have

I = lo = \ (Ga" + Sb") + Ec" (4-6).
By the first of equations (3-21) and an explicit evaluation of Ec"
this becomes

27a, V«2 sin e0 cos (e0 + 2v0)

^ - 4 ) cos e0 sin (e0 + 2Xo)

by the same argument as before. Hence we cannot now say that
the angular velocities of the doublets remain constant and equal
to their initial values; and if (</>x — fa) is small initially, we do not
know that it will remain small.

§ 5. In order to discuss this case more fully we make the
additional assumption that the two doublets have the same

• If the average value of . (e0 + 2^0) is not exactly zero, it will be very small

compared with unity, and the coefficient of r~" . (fo + 2xo) in equation (4-4) is only

about J or J of the corresponding coefficient of r~" in the terms independent of
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278 Mr Taylor, An approximation to the motion of

moment of inertia, I1 = IZ = I (say)*. Using Lagrange's equations
of motion in <j) and tfi, deduced from equations (2-0) and (2-1), we
obtain the accurate (unaveraged) equation

where e = <f> — ift.

Or e + w 2 s ine = 0 (5-0),

where n =Vfj.1f^2/Ir
3 (5-01).

Thus there is a pendulum motion in e, in which the length of the
simple equivalent pendulum is a function of the distance apart of
the doublets. Thus the motion in e is analogous to the motion of a
pendulum of variable length.

We now want to compare the motion in e with the motion of a
pendulum of slowly varying length. We assume that the length
of the equivalent simple pendulum only changes by a very small
fraction of itself during one period in e, and that there is no
resonance between the vibrations in e and the rotations of the
doublets. We proceed to investigate whether these assumptions
are fulfilled when the doublets represent hydrogen atoms in their
principal quantum orbits. If (— e) and m are the charge and mass
respectively of an electron, and a the radius of the principal
quantum orbit in the hydrogen atom, we have /x = /*' = ea, I = ma2.
Therefore

ni=e2/mr3 (5-1).
We find that if rt is the period of vibration in e for small amplitudes,
and T the period of revolution of a doublet,

TJ = 3-95.10-4.r*sees., r = 1-52. lO"16 sees. (5-20), (5-21),

therefore Tl/T' = 2-6.^t (5-22),
o

where r = x. 10~8, so that x is the measure of r in Angstrom units.
Now our work is based on the assumption that r is large com-

pared with a, i.e. x is large compared with ^J. Hence TX is large
compared with •/. Thus the period in e contains many periods of
revolution of the doublets, and there is no resonance between the
vibrations in e and the rotations of the doublets.

Let us suppose now that the relative velocity of the doublets is
such that during the time TX Sr/r is very small, where 8r denotes

* This condition is always fulfilled when the doublets represent hydrogen
atoms, for two hydrogen atoms would only have the same initial angular velocities
if they had the same quantum numbers, and then they would have the same
moments of inertia.

f Numerical results are calculated from formulae and data given by Sommerfeld,
Atomic Structure and Spectral Lines (transl. Brose), and Jeans, Dynamical Theory of
Oases {Sided.). „

X o = 0-532 A. Even if r were only 10a, TX would be 3 0 T \
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the change in r during one period in e. Then by equation (5-1)
8n/n = — fSr/r, and is very small, i.e. the length of the simple
equivalent pendulum changes by a very small fraction of itself
during one of its own oscillations.

The conditions are now satisfied for the motion in e to be
analogous to the motion of a pendulum of slowly varying length
and for Ehrenfest's invariant to apply. The energy integral of
equation (5-0) is

£e2 = n* (cos e - cos y) (5-3),
where y is the amplitude in e*; and Ehrenfest's invariant is

h ede = const. (5-4).

Equations (5-1), (5-3), (54) can easily be shown to lead to the
equation

r = Ay$ (5-5),
where A is an arbitrary constant and

y = sm^
c o s 2 <j> d<f>

sin2 (5-51)Jo Vl - sin2

= E - K cos2 \y (5-52),
K and E being the complete elliptic integrals of the first and second
kind respectively to the modulus sin £y. By considering the in-
tegral in equation (5-51) we can show that r/A or y% steadily increases
from 0 to 1 as y increases from 0 to n. From tables of elliptic
functions we easily calculate the following values:

y

T

A

20°

0083

40°

0-205

80°

0-491

120°

0-768

160°

0-963

Hence the curve giving r/A as a function of y is as shown in Fig. 2.
When we are given the value of y corresponding to any given

value of r, we can determine A from the curve and then read off
the value of y for any value of r smaller than A. y and r increase
and decrease together. If y is real for any given value of r, y is
real for any smaller value of r.

Now before two rotating doublets with the same moment of
inertia enter each other's fields their angular velocities will be the
same if they have the same quantum number. That is, when r is

* The case of one doublet gaining complete revolutions on the other, corre-
sponding to the equivalent pendulum swinging right round, would be represented
in the analysis by y imaginary or | cos y \ > 1.
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infinite, e = 0. Now y is the value of | e |* when i = 0. Therefore,
when r is infinite, y is the angle between the doublets and is there-
fore real. Therefore r/X is finite. Therefore A is infinite. Therefore
when r is finite, r/X = 0, y = 0, and e = 0. This conclusion is only
true if the preceding work is valid for all values of r greater than
some definite finite value. We now investigate the limits of validity
of our work.

When the doublets correspond to hydrogen atoms in their
principal quantum orbits, we must have r > r1( where rx is mode-
rately large compared with a, the radius of a hydrogen atom.

0-8 -

0-6 •

0-4

0-2

120 180
Fig. 2

Suppose for definiteness we take rx = 10a = 5 A. This satisfies
Debye's condition mentioned in § 1 for considering the field of
a hydrogen atom as due to a rotating doublet. The force on an
electron due to an electron or proton at a distance of 10a is only
jfo of the force on it due to its own proton. Hence the "coupling"
is small. The distance travelled in one revolution of either doublet,
when the doublets have the kinetic theory velocity appropriate
to hydrogen atoms at 0° C. is 3>8.10~11cm., or less than y ^ of
their distance apart. Thus the condition mentioned just before
equation (2-6) is satisfied. Also a choice of T is possible for
averaging purposes; and the condition that TJT' is large is satisfied.

Also the condition that 8r/r is to be small leads to the condition

* I.e. the absolute value of e, when e is taken to satisfy -w<e §w.
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r<R1, where 2^ is small compared with 10,000 A., i^ = 500 A.
(say). Then our treatment of the motion is valid when r1<r<R1.

Now we can see from Fig. 2 that whatever value y had when
r = B^, when r < -foR^, y < about 24°, i.e. 1 > cos y > 0-9. Now
cos e varies between cos y and 1, hence very little error will result
from putting cos e — 1 for that part of the motion for which

Thus, if r±<r < -J -̂RD or 5 A. < r < 50 A., the two rotating
doublets move as if there were a force of repulsion (R) between
them given by

R = - A4r-* + V" 7 + V ~ 9 (5-6),
where

(5-61), (5-62), (5-63),

obtained by putting /x = I2 = I and cos e = 1 in equation (4*5).
From_equation (4-7) and the similar one for ifi we see that when

h — h> $ + $ = 0. Also the relative angular velocity is so small
that one doublet gains an angle y (< TT) on the other only in the
course of a large number of revolutions of either (since TJT' is
large)*. Hence the angular velocities of the two doublets remain
approximately constant and equal to their initial values, which
are, of course, equal. Hence the A's in equation (5-6) are constants,
their numerical values being A4 = 9-68.10~f, X, = 1-62.lO"60,
A9 = 4-34.IO-79. We notice that when r = 1 A. (= 10"8 cm.) the
repulsive term varying as r~9 is very small compared with the
repulsive term varying as r~' (the ratio being about ^y ) ; the term
in r~9 diminishes more rapidly with increasing distance than the
term in r~7. Thus at the distances for which our work is valid, we
may write without sensible error

R= - 9-68.10~36r-4+ 1-62.10-80/-7 (5-7).

This is a law of force of the same form as that obtained empirically
by Lennard-Jones for helium, argon, and neon.

The attractive forceoin R just balances the repulsive force
(i.e. R = 0) if r = 0-55 A. This distance is much less than the
minimum distance for which our work is valid. All we can deduce
is that at distances for which our work is valid the attractive force
preponderates. This excessive attractive force is not in accordance
with the empirical results of Lennard-Jones. There are two pos-
sibilities, it may be due to the specialization of the mathematical

* This statement justifies the expansions of °?s (t in § 4 in the case when the

rotating doublets represent normal Bohr hydrogen atoms, for we only require
these expansions to be true for moderately few periods of revolution of each atom
including the time t=0; hence £f is small compared with y, itself less than n.
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model; or, as a gas of hydrogen atoms is unstable and forms into
a gas of ordinary hydrogen, it may be that the attractive force is
greater in the case of hydrogen than in the case of the three
monatomic gases helium, argon, and neon.

A useful way of comparing repulsive fields is by means of
" diameters " as defined by Lennard-Jones*. If a is the " diameter "
corresponding to a repulsive force Anr-", we have

a = {An/2-06.10-16 (n - I)}1/!"-!).

Applying this conception to the repulsive term in equation (5-7),
we find a = 3-31 A. This is of the same order of magnitude as the
values obtained empirically Jby Lennard-Jones for o helium
(a = 3-124 A.), neon (a = 4-300 A.), and argon (a = 7-053 A.). The
value of n (n = 7) is rather smaller than those obtained empirically
by Lennard-Jones for helium (n = 14), neon (n = 11), and argon
(n = 9). It is to be noticed that the hydrogen atom is very much
more unsymmetrical than the atoms of the three inert gases
mentioned; on this account we should expect the index n to have
a smaller value than in the case of these three inert gases. The
agreement between the calculated and observed repulsive forces
is quite good in view of the model chosen.

§ 6. Summary. We may summarize our conclusions as follows.
If the rotating doublets have quite different angular velocities
initially, then they repel each other with a force (R) given by

R = Ar~7 + /xr-9 (6-0),

<f>x and 0j being the (constant) angular velocities of the two doublets.
If the doublets have the same angular velocities initially, and

the same moments of inertia, then over a certain range of r we have

R = - ^r-4 + V~7 + V-» (6-1),
where

(6-11), (6-12), (6-13),

and (x) is the common value of the angular velocities of the doublets.
When the doublets correspond to hydrogen atoms in their principal

• J. E. Jones, Proc. Soy. Soc. A, vol. cvi, pp. 452 et seq. (1924).
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quantum orbits, the range of distance becomes 5 A. to 50 A. and
the formula for R reduces to

R= - 9-68.10-Mr-»+ 1-62.10-«°r-7 (6-2).
This is a law of force of the type found empirically by Lennard-
Jones for helium, neon, and argon. The attractive term in this
formula is larger than the attractive terms found byLennard-
Jones. The repulsive term, however, which leads to a "diameter"
of 3-31 A., is in very satisfactory agreement with the repulsive
terms found by Lennard-Jones.
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