
TLP 7 (5): 537–582, 2007. C© 2007 Cambridge University Press

doi:10.1017/S1471068406002924 Printed in the United Kingdom

537

Constraint functional logic programming over
finite domains

ANTONIO J. FERNÁNDEZ�
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Abstract

In this paper, we present our proposal to Constraint Functional Logic Programming

over Finite Domains (CFLP (FD) ) with a lazy functional logic programming language

which seamlessly embodies finite domain (FD) constraints. This proposal increases the

expressiveness and power of constraint logic programming over finite domains (CLP (FD) )

by combining functional and relational notation, curried expressions, higher-order functions,

patterns, partial applications, non-determinism, lazy evaluation, logical variables, types,

domain variables, constraint composition, and finite domain constraints. We describe the

syntax of the language, its type discipline, and its declarative and operational semantics.

We also describe TOY(FD), an implementation for CFLP (FD) , and a comparison of our

approach with respect to CLP (FD) from a programming point of view, showing the new

features we introduce. And, finally, we show a performance analysis which demonstrates that

our implementation is competitive with respect to existing CLP (FD) systems and that clearly

outperforms the closer approach to CFLP (FD) .

KEYWORDS: constraint logic programming, functional logic programming, finite domains.

1 Introduction

Constraint logic programming (CLP ) (Jaffar and Maher 1994) was born from

a desire to have both a better problem expression and performance than logic

programming (LP ). Its success lies in that it combines the declarativeness of LP

with the efficiency of the constraint programming (CP ) paradigm. The essential
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component of the CLP schema is that it can be parameterized by a computational

domain so that different domains determine different instances of the schema.

Constraint Programming over finite domains (CP (FD)) (Marriot and Stuckey

1998; Henz and Müller 2000) has emerged as one of the most exciting paradigms

of programming in recent decades. There are several reasons for the interest that

CP (FD) has raised: (1) the strong theoretical foundations (Tsang 1993; Apt 2003;

Frühwirth and Abdennadher 2003) that make CP a sound programming paradigm;

(2) CP (FD) is a heterogeneous field of research ranging from theoretical topics

in mathematical logic to practical applications in industry (particularly, problems

involving heterogeneous constraints and combinatorial search) and (3) CP is based

on posing constraints, which are basically true relations among domain variables.

For this last reason, the declarative languages seem to be more appropriate than

imperative languages to formulate FD constraint problems. In particular, one of

the most successful instances of CP (FD) is CLP (FD) .

Another well-known instance of declarative programming (DP ) is functional

programming (FP ). The basic operations in functional languages are defined using

functions which are invoked using function applications and put together using

function composition. FP gives great flexibility, different from that provided by

(C)LP , to the programmer, because functions are first-class citizens, that is, they

can be used as any other object in the language (i.e., results, arguments, elements

of data structures, etc). Functional languages provide evident advantages such as

declarativeness, higher-order functions, polymorphism and lazy evaluation, among

others. To increase the performance, one may think of integrating FD constraints

into FP (as already done in LP ). However, literature lacks proposals in this sense

and the reason seems to lie in the relational nature of FD constraints, which do not

fit well in FP . In spite of this limitation, it seems clear that the integration of FD
constraints into FP is interesting not only for FP but also for discrete constraint

programming, as the constraint community may benefit from the multiple advantages

of FP .

More recently, functional logic programming (FLP ) emerges with the aim to

integrate the declarative advantages from both FP and LP . FLP gives rise to new

features which cannot be found neither in FP nor in LP (Hanus 1994). FLP has

not the inherent limitations of FP and thus it is an adequate framework for the

integration of functions and constraints. To our best knowledge, the first proposal for

a constraint functional logic programming scheme (CFLP ) that attempts to combine

constraint logic programming and functional logic programming is (Darlington et al.

1992). The idea behind this approach can be roughly described by the equation

CFLP (D) = CLP (FP (D)), intended to mean that a CFLP language over the

constraint domain D is viewed as a CLP language over an extended constraint

domain FP (D) whose constraints include equations between expressions involving

user defined functions, which will be solved via narrowing. Further, the CFLP

scheme proposed by F. J. López-Fraguas (1992) tried to provide a declarative

semantics such that CLP (D) programs could be formally understood as a particular

case of CFLP (D) programs. In the classical approach to CLP semantics, a constraint

domain is viewed as a first-order structure D, and constraints are viewed as first-
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order formulas that can be interpreted in D. In López-Fraguas (1992), CFLP (D)

programs were built as sets of constrained rewriting rules. In order to support a

lazy semantics for the user defined functions, constraint domains D were formalized

as continuous structures, with a Scott domain (Gunter and Scott 1990) as a carrier,

and a continuous interpretation of function and predicate symbols. The resulting

semantics had many pleasant properties, but also some limitations. In particular,

defined functions had to be first-order and deterministic, and the use of patterns in

function definitions had to be simulated by means of special constraints.

In a recent work (López-Fraguas et al. 2004a), a new generic scheme CFLP (D)

has been proposed, intended as a logical and semantic framework for lazy Constraint

Functional Logic Programming over a parametrically given constraint domain D,

which provides a clean and rigorous declarative semantics for CFLP (D) languages

as in the CLP (D) scheme, overcoming the limitations of the older CFLP (D)

scheme (López-Fraguas 1992). CFLP (D) programs are presented as sets of con-

strained rewriting rules that define the behavior of possibly higher-order and/or

non-deterministic lazy functions over D. The main novelties in (López-Fraguas

et al. 2004a) were a new formalization of constraint domains for CFLP , a

new notion of interpretation for CFLP (D) programs, and a new Constraint

Rewriting Logic CRWL(D) parameterized by a constraint domain, which provides a

logical characterization of program semantics. Further, López-Fraguas et al. (2004b)

has formalized an operational semantics for the new generic scheme CFLP (D)

proposed in (López-Fraguas et al. 2004a). This work presented a constrained lazy

narrowing calculus CLNC(D) for solving goals for CFLP (D) programs, which

was proved sound and strongly complete with respect to CRWL(D)’s semantics.

These properties qualified CLNC(D) as a convenient computation mechanism for

declarative constraint programming languages. More recently, del Vado-Vı́rseda

(2005) presented an optimization of the CLNC(D) calculus by means of definitional

trees (Antoy 1992) to efficiently control the computation. This new constrained

demanded narrowing calculus CDNC(D) preserves the soundness and completeness

properties of CLNC(D) and maintains the good properties shown for needed and

demand-driven narrowing strategies (Loogen et al. 1993; Antoy et al. 2000; del

Vado-Vı́rseda 2003). These properties adequately render CDNC(D) as a concrete

specification for the implementation of the computational behavior in existing

CFLP (D) systems such as TOY (Caballero et al. 1997) and Curry (Hanus 1999).

The main contributions of the paper are listed below:

• The paper describes the theoretical foundations for the CFLP (FD) language,

i.e., a concrete instance of the general scheme CFLP (D) (López-Fraguas et al.

2004a; López-Fraguas et al. 2004b). First, this instance includes an explicit

treatment of a type system for constraints as well as for programs, goals

and answers. Second, it also presents a new formalization of the constraint

finite domain FD for CFLP that includes a succinct declarative semantics

(similarly as done for CLP ) for an enough-expressive primitive constraints

set. Finally, it provides the formal specification of a finite domain constraint
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solver defined over those primitive constraints that constitutes the theoretical

basis for the implementation of correct propagation solvers.

• The paper presents an operational semantics for finite domain constraint

solving on declarative languages using a new constraint lazy narrowing calculus

CLNC(FD), consisting of a natural and novel combination of lazy evaluation

and FD constraint solving that does not exist, to our knowledge, in any

declarative constraint solver (López-Fraguas et al. 2004b) (and see Section 5).

This operational semantics is defined with respect to a constraint rewriting

logic over a FD setting that makes it very different from the operational

behavior of CLP (FD) languages.

• The paper presents TOY(FD) from a programming point of view, which

is the first CFLP (FD) system that provides a wide set of FD constraints

comparable to existing CLP (FD) systems and which is competitive with

them, as shown with performance results. Also, the advantages of combining

FD constraints into FLP are highlighted via examples. Our system is therefore

a contribution for increasing the expressiveness and efficiency of FLP by using

FD constraints and a state-of-the-art propagation solver.

The structure of the paper is as follows. Section 2 presents our CFLP (FD)

language by describing its type discipline, patterns and expressions, finite domains,

and constraint solvers. In Section 3, we provide a constraint lazy narrowing

calculus over FD domains (CLNC(FD)) along with the notions of well-typed

programs, admissible goals, and correct answers. Next, Section 4 describes our

implementation of CFLP (FD): TOY(FD), highlighting the advantages obtained

from embodying constraints into a functional logic language with respect to

CLP (FD) , and comparing the performance of our CFLP (FD) system with other

declarative constraint systems. Section 5 discusses related work and, finally, Section 6

summarizes some conclusions and points out future work.

2 The CFLP (FD) language

We propose a constraint functional logic programming language over finite domains

which is a pure declarative language, typed, lazy, and higher-order, and that

provides support for constraint solving over finite domains. CFLP (FD) aims to

the integration of the best features of existing functional and logic languages into

FD constraint solving.

In this section, we present the basis of our CFLP (FD) language about syntax,

type discipline, and declarative semantics. We also formalize the notion of a

constraint finite domain and specify the expected behavior that a FD constraint

solver attached to our CFLP (FD) language must hold.

2.1 Polymorphic signatures

We assume a countable set TVar of type variables α, β, . . . and a countable ranked

alphabet TC =
⋃

n∈� TCn of type constructors C ∈ TCn. Types τ ∈ Type have the

syntax τ ::= α | C τ1 . . . τn | τ→ τ′ | (τ1, . . . , τn).
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By convention, C τn abbreviates C τ1 . . . τn, “→” associates to the right, τn → τ

abbreviates τ1 → · · · → τn → τ, and the set of type variables occurring in τ is

written tvar(τ). A type τ is called monomorphic iff tvar(τ) = ∅, and polymorphic

otherwise. (τ1, . . . , τn) is a type intended to denote n-tuples. A type without any

occurrence of “→” is called a datatype. Datatype definitions declare new (possibly

polymorphic) constructed types and determine a set of data constructors for each

type. Our CFLP (FD) language provides predefined types such as [A] (the type

of polymorphic lists, for which Prolog notation is used), bool (with constants true

and false), int for integer numbers, char (with constants a, b, . . .) or success (with

constant �).

A polymorphic signature over TC is a triple Σ = 〈TC, DC, FS〉, where DC =
⋃

n∈� DCn and FS =
⋃

n∈� FSn are ranked sets of data constructors and evaluable

function symbols. Evaluable functions can be further classified into domain dependent

primitive functions PFn ⊆ FSn and user defined functions DFn = FSn \ PFn for each

n ∈ �.

Each n-ary c ∈ DCn comes with a principal type declaration c :: τn → C αk , where

n, k � 0, α1, . . . , αk are pairwise different, τi are datatypes, and tvar(τi) ⊆ {α1, . . . , αk}
for all 1 � i � n. Also, every n-ary f ∈ FSn comes with a principal type declaration

f :: τn → τ, where τi, τ are arbitrary types. For any polymorphic signature Σ, we

write Σ⊥ for the result of extending DC0 in Σ with a special data constructor

⊥, intended to represent an undefined value that belongs to every type. We also

assume that DC0 includes the three constants mentioned above true, false :: bool,

and � :: success, which are useful for representing the results returned by various

primitive functions. As notational conventions, in the rest of the paper, we use

c, d ∈ DC , f, g ∈ FS and h ∈ DC ∪ FS , and we define the arity of h ∈ DCn ∪ FSn as

ar(h) = n.

2.2 Expressions, patterns and substitutions

In the sequel, we always assume a given polymorphic signature Σ, often not made

explicit in the notation. We introduce the syntax of applicative expressions and

patterns, which is needed for understanding the construction of constraint finite

domains and constraint finite domain solvers. We assume a countably infinite set

Var of (data) variables X,Y, . . . and the integer set � of primitive elements 0, 1, −1,

2, −2, . . . , mutually disjoint and disjoint from TVar and Σ. Primitive elements are

intended to represent the finite domain specific set of integer values.

An expression e ∈ Exp⊥(�) has the syntax e ::=⊥ | u | X | h | (e e′) | (e1, . . . , en)

where u ∈ �, X ∈ Var, h ∈ DC ∪ FS , (e e′) stands for the application operation which

applies the function denoted by e to the argument denoted by e′ and (e1, . . . , en)

represents tuples with n components. The set of data variables occurring in e is

written var(e). Moreover, e is called linear iff every X ∈ var(e) has a single occurrence

in e, ground iff var(e) = ∅ and total iff is an expression with no occurrences of ⊥.

Partial patterns t ∈ Pat⊥(�) ⊂ Exp⊥(�) are built as t ::= ⊥ | u | X | c t1 . . . tm |
f t1 . . . tn where u ∈ �, X ∈ Var, c ∈ DC with m � ar(c), and f ∈ FS with n < ar(f).

Notice that partial applications (i.e., application to less arguments than indicated

https://doi.org/10.1017/S1471068406002924 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002924


542 A. J. Fernández et al.

by the arity) of c and f are allowed as patterns, which are then called higher-order

patterns (González-Moreno et al. 1999b), because they have a functional type. We

define the information ordering  as the least partial ordering over Pat⊥(�) satisfying

the following properties: ⊥  t for all t ∈ Pat⊥(�) and h tm  h t′m whenever these

two expressions are patterns and ti  t′i for all i ∈ {1, . . . , m}.
As usual, we define (data) substitutions σ ∈ Sub⊥(�) as mappings σ : Var →

Pat⊥(�) extended to σ : Exp⊥(�) → Exp⊥(�) in the natural way. By convention, we

write ε for the identity substitution, eσ instead of σ(e) and σθ for the composition

of σ and θ. We define the domain dom(σ) of a substitution σ in the usual way. A

substitution σ such that σσ = σ is called idempotent. For any set of variables X ⊆
Var we define the restriction σ � X as the substitution σ′ such that dom(σ′) = X and

σ′(X) = σ(X) for all X ∈ X. We use the notation σ =X θ to indicate that σ � X =

θ � X, and we abbreviate σ =Var\X θ as σ =\X θ. Type substitutions can be defined

similarly, as mappings σt : TVar → Type with a unique extension σ̂t : Type → Type,

denoted also as σt. The set of all type substitutions is denoted as TSubst . Most of

the concepts and notations for data substitutions (such as domain, composition, etc.)

make sense also for type substitutions, and we will freely use them when needed.

2.3 Well-typed expressions

Inspired by Milner’s type system (Damas and Milner 1982) we now introduce the

notion of well-typed expression. We define a type environment as any set T of

type assumptions X :: τ for data variables s.t. T does not include two different

assumptions for the same variable. The domain dom(T ) of a type environment is

the set of all the data variables that occur in T . For any variable X ∈ dom(T ), the

unique type τ s.t. (X :: τ) ∈ T is denoted as T (X). The notation (h :: τ) ∈var Σ is

used to indicate that Σ includes the type declaration h :: τ up to a renaming of type

variables. Type judgements (Σ, T ) �WT e :: τ with e ∈ Exp⊥(�) are derived by means

of the following type inference rules:

(Σ, T ) �WT u :: int, for every u ∈ �.

(Σ, T ) �WT X :: τ, if T (X) = τ.

(Σ, T ) �WT h :: τσt, if (h :: τ) ∈var Σ⊥, σt ∈ TSubst .

(Σ, T ) �WT (e e′) :: τ, if (Σ, T ) �WT e :: (τ′ → τ), (Σ, T ) �WT e′ :: τ′,

for some τ′ ∈ Type.

(Σ, T ) �WT (e1, . . . ,en) :: (τ1, . . . ,τn), if ∀i ∈ {1, . . . ,n} : (Σ, T ) �WT ei ::τi.

An expression e ∈ Exp⊥ is called well-typed iff there exist some type environment

T and some type τ, such that the type judgement (Σ, T ) �WT e :: τ can be derived.

Expressions that admit more than one type are called polymorphic. A well-typed

expression always admits a so-called principal type (PT) that is more general than any

other. A pattern whose PT determines the PTs of its subpatterns is called transparent.

2.4 The constraint finite domain FD

Adopting a general approach (López-Fraguas et al. 2004a; López-Fraguas et al.

2004b), a constraint finite domainFD can be formalized as a structure with carrier set
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D�, consisting of ground patterns built from the symbols in a polymorphic signature

Σ and the set of primitive elements �. Symbols in Σ are intended to represent

data constructors (e.g., the list constructor), domain specific primitive functions

(e.g., addition and multiplication over �) satisfying monotonicity, antimonotonicity

and radicality properties (López-Fraguas et al. 2004a), and user defined functions.

Requiring primitives to be radical, which just means that for given arguments, they

are expected to return a total result, unless the arguments bear too few information

for returning any result different from ⊥. As we will see in the next subsection, it is

also possible to instantiate this notion of constraint finite domain by adding a new

formal specification of a constraint finite domain solver SolveFD as the theoretical

basis of our operational semantics and implementation.

Assuming then a constraint finite domain FD, we define first the syntax and

semantics of constraints over FD used in this work. In contrast to CLP (FD), our

constraints can include now occurrences of user defined functions and can return

any value of the Type set.

• Primitive constraints have the syntactic form p tn →! t , being p ∈ PFn a

primitive function symbol and t1, . . . , tn, t ∈ Pat⊥(�) with t total.

• Constraints have the syntactic form p en →! t , with p ∈ PFn, e1, . . . , en ∈
Exp⊥(�) and t ∈ Pat⊥(�) total.

In the sequel, we use the notation PCon(FD) for the set of all the primitive

constraints π over FD. We reserve the capital letter Π for sets of primitive

constraints, often interpreted as conjunctions. The semantics of primitive constraints

depends on the notion of valuation Val(FD) over FD, defined as the set of

substitutions of ground patterns for variables. The set of solutions of π ∈ PCon(FD)

is a subset SolFD(π) ⊆ Val(FD) that satisfy π inFD in the sense of (López-Fraguas

et al. 2004a). Analogously, the set of solutions of Π ⊆ PCon(FD) is defined as

SolFD(Π) =
⋂

π∈ Π SolFD(π). Moreover, we define the set of solutions of a pair Π

σ with σ ∈ Sub⊥(�) as SolFD(Π σ) = SolFD(Π) ∩ Sol(σ), where Sol(σ) is the

set of valuations η such that Xη ≡ tη for each X �→ t ∈ σ.

The next definition presents a possible specific polymorphic signature with finite

domain constraints constituted by a minimum set of primitive function symbols

with their corresponding declarative semantics. By means of this signature, our

CFLP (FD) language allows the management of the usual finite domain constraints

defined over � in CLP (FD) and also equality and disequality constraints defined

over Pat⊥(�) in a similar way as done in (González-Moreno et al. 1999b).

Definition 1

Consider the following usual primitive operators and relations defined over �:

⊗� :: int → int → int, where ⊗ ∈ {+,−, ∗, /}
�� :: int → int → bool, where � ∈ {=, �=, <,�, >,�}.

Table 1 shows the set of primitive functions p ∈ PFn with their corresponding

type declarations and their declarative interpretation pFD ⊆ Dn
� × D� considered in

our constraint finite domain FD (we use the notation pFDtn → t to indicate that
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Table 1. Primitive function symbols in FD and their declarative interpretation

Strict Equality seq :: α→ α→ bool

(on patterns) seqFD : D� × D� → {true, false,⊥}
seqFD t t→ true, ∀t ∈ D� total

seqFD t1 t2 → false,∀t1, t2 ∈ D�. t1, t2 have no common upper

bound w.r.t. the information ordering 
seqFD t1 t2 → ⊥, otherwise

Less or Equal leq :: int→ int → bool

(on integers) leqFD : D� × D� → {true, false,⊥}
leqFD u1 u2 → true, if u1, u2 ∈ � and u1 �� u2

leqFD u1 u2 → false, if u1, u2 ∈ � and u1 >
� u2

leqFD u1 u2 → ⊥, otherwise

Operators ⊗ :: int→ int → int

(on integers) ⊗FD : D� × D� → D�

⊗FD u1 u2 → u1 ⊗� u2, if u1, u2 ∈ �
⊗FD u1 u2 → ⊥, otherwise

Finite Domains domain :: int→ [int] → bool

domainFD : D� × D� → {true, false,⊥}
domainFD u [u1, . . . , un] → true,

if ∀i ∈ {1, . . . , n−1}.ui �� ui+1 and ∃i ∈ {1, . . . , n}.u =� ui
domainFD u [u1, . . . , un] → false,

if ∃i ∈ {1, . . . , n−1}.ui >� ui+1 or ∀i ∈ {1, . . . , n}.u �=� ui
domainFD u [u1, . . . , un] → ⊥, otherwise

Variable Labeling indomain :: int→ success

indomainFD : D� → {�,⊥}
indomainFD u → �, if u ∈ �
indomainFD u → ⊥, otherwise

(tn, t) ∈ pFD). We note that all our primitive functions satisfy the aforementioned

properties.

The function indomain is the basis for a labeling (enumeration or search) strategy,

which is crucial in constraint solving efficiency. labeling is applied when no more

constraint propagation is possible, and its basic step consists of selecting a variable

X with a non-empty, non-singleton domain, selecting a value u of this domain,

and assigning u to X. We note that in our framework, various labeling strategies

(variable and value selection) have all the same declarative semantics, but they may

differ in their operational behavior and therefore in efficiency as it happens in the

CLP (FD) setting (more details can be found in Section 4.5.1). In the rest of the

paper, when opportune, we use the following notations:

• t == s abbreviates seq t s →! true and t \ = s abbreviates seq t s →! false

(the notations = and �= can be understood as a particular case of the notations

== and \ = when these are applied to integers and/or integer variables).
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• a � b abbreviates leq a b→! true (and analogously for the other comparison

primitives <, > and �).

• a⊗ b � c abbreviates a⊗ b→! r, r � c.

• u ∈ D abbreviates domain u D →! true and u1, . . . , un ∈ D abbreviates u1 ∈ D

∧ . . . ∧ un ∈ D. Analogously, u /∈ D abbreviates domain u D →! false and

u1, . . . , un /∈ D abbreviates u1 /∈ D ∧ . . . ∧ un /∈ D.

• domain [u1, . . . , un] a b with a, b ∈ � (a � b) abbreviates u1, . . . , un ∈ [a .. b],

where [a .. b] represents the integer list [a, a + 1, . . . , b − 1, b] that intuitively

represents the integer interval [a,b].

• labeling L [u1, . . . , un] abbreviates and extends indomain u1 →! � ∧ . . . ∧
indomain un →! � with a list L of predefined constants that allow to specify

different labeling strategies.

Using these notations, a primitive constraint store S ⊆ PCon(FD) can be expressed

as a finite conjunction of primitive constraints of the form t == s, t \ = s, u ∈ D,

u /∈ D, a⊗ b � c, domain [u1, . . . , un] a b and/or labeling L [u1, . . . , un] where t, s are

total patterns, ui, u, a, b, c ∈ � ∪ Var, and L,D are total patterns representing a

variable or a list.

2.5 Constraint solvers over FD

The design of a suitable operational semantics over finite domains for goal solving

in CFLP (FD) combines constrained lazy narrowing with constraint solving over

a given constraint finite domain FD. The central notion of lazy narrowing can be

found in the literature (Middeldorp and Okui 1998; Middeldorp et al. 2002). In this

subsection, we describe the expected behavior of a constraint solver over the finite

constraint domain FD w.r.t. the semantics given in the previous subsection, as the

basis of our goal solving mechanism.

Definition 2

A constraint solver over a given constraint domainFD is a function named SolveFD

expecting as parameters a finite primitive constraint store S ⊆ PCon(FD) in the

sense of Definition 1 and a finite set of variables χ ⊆ Var called the set of protected

variables. The constraint solver is expected to return a finite disjunction of k

alternatives: SolveFD(S, χ) =
∨k

i=1(Si σi), where each Si ⊆ PCon(FD) and each σi ∈
Sub⊥(�) is a total idempotent substitution satisfying the following requirements: no

alternative can bind protected variables, for each alternative either all the protected

variables disappear or some protected variable becomes demanded (i.e., no solution

can bind these variables to an undefined value), no solution is lost by the constraint

solver, and the solution space associated to each alternative is included in one of the

input constraint stores (i.e., SolFD(S) =
⋃k

i=1 SolFD(Si σi)). In the case k = 0, the

disjunction is understood as failure and SolFD(S) = ∅ (that means failure detection).

López-Fraguas et al. (2004b) describe a constraint solver defined on the domain

Hseq in which the constraints considered are just those for the strict (dis)equality

on pure patterns (i.e. those patterns constructed over an empty set of primitive

elements). Now, in this paper, we extend this solver to the constraint domain FD in
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Table 2. General rules for the constraint solver

seq t s →! R, S σ ��χ (t == s, Sθ1 σθ1) ∨ (t \ = s, Sθ2 σθ2)

leq a b →! R, S σ ��χ (a � b, Sθ1 σθ1) ∨ (a > b, Sθ2 σθ2)

domain u [u1, . . . , un] →! R, S σ ��χ (u ∈ [u1, . . . , un], Sθ1 σθ1) ∨
(u /∈ [u1, . . . , un], Sθ2 σθ2)

(For the 3 rules) only if R /∈ χ; with θ1 = {R �→ true} and θ2 = {R �→ false}

Table 3. Rules for strict (dis)-equality

u == u, S σ ��χ S σ, if u ∈ �
X == t, S σ ��χ t == t, Sθ σθ, if X /∈ χ ∪ var(t), var(t) ∩ χ = ∅, θ = {X �→ t}
(h t1 . . . tn) == (h s1 . . . sn), S σ ��χ t1 == s1, . . . , tn == sn, S σ

u \ = u′, S σ ��χ S σ, if u, u′ ∈ �, and u �=� u′

X \ = (h t1 . . . tn), S σ ��χ (
∨

i(Sθi σθi)) ∨ (
∨n

k=1(Uk \ = tkθ, Sθ σθ))

if X /∈ χ, var(h t1 . . . tn)∩ χ �= ∅, θi = {X �→ hi Y mi
}, with hi �= h, and

θ = {X �→ h Un}, Y mi
, Un are new fresh variables.

(h t1 . . . tn) \ = u, S σ ��χ S σ if u ∈ �
(h t1 . . . tn) \ = (h s1 . . . sn), S σ ��χ (t1 \ = s1, S σ) ∨ . . . ∨ (tn \ = sn, S σ)

(h t1 . . . tn) \ = (h′s1 . . . sm), S σ ��χ S σ, if h �= h′ or m �= n

which we consider � as the set of primitive elements. We follow this approach and

assume that the solver SolveFD will behave as follows: SolveFD(S, χ) =
∨k

i=1(Si σi)

iff S ε ��∗χ
∨k

i=1(Si σi) ���χ, where the relation ��χ expresses a solver resolution step,

and S ε ���χ indicates that S is in solved form w.r.t. the action of the constraint solver

in the sense of Definition 2. Moreover, the relation ��χ manipulates disjunctions by

combining them as follows:

. . . ∨ Si σi ∨ . . . ��χ . . . ∨
∨

j(Sj σj) ∨ . . . if Si σi ��χ
∨

j(Sj σj)

Tables 2–5 show the sets of rules that define the relation ��χ. These rules extend

and complement those presented in López-Fraguas et al. (2004b) specifically to work

with finite domain constraints defined on the set of integer patterns. For clarity, we

omit the corresponding failure rules, which can be easily deduced from our tables.

Table 2 captures the operational behavior of the constraint solver SolveFD to

manage constraints of the form seq, leq or domain when these return a variable

as a result. The result variable is instantiated to each of its possible values (i.e.,

true and false) giving rise to different alternatives for each of the possibilities and

propagating the corresponding bind to the remaining alternatives.

Observe that, by applying the rules shown in Table 2, all the constraints based

on the primitive seq are proposed as explicit constraints in form of strict equality

or strict disequality. Then, the solver distinguishes several cases depending on the

syntactic structure of the (integer) patterns used as arguments. Table 3 shows
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Table 4. Rules for the specific primitive constraints of FD

u � u′, S σ ��χ S σ, if u, u′ ∈ �, and u �� u′

u > u′, S σ ��χ S σ, if u, u′ ∈ �, and u >� u′

a⊗ b � c, S σ ��χ S σ, if a, b, c ∈ � and a⊗� b �� c

a⊗ b = X, S σ ��χ Sθ σθ, if X /∈ χ, a, b ∈ � and θ = {X �→ a⊗� b}

Table 5. Rules for finite domain and variable labeling

u ∈ [u1, . . . , un], S σ ��χ S σ, if u, ui ∈ � ∪ Var and ∃i ∈ {1, . . . , n}. ui ≡ u.

u /∈ [u1, . . . , un], S σ ��χ S σ, if u, ui ∈ � and ∀i ∈ {1, . . . , n}. ui �=� u.

labeling [. . . ] [X], X ∈ [u1, . . . , un], S σ ��χ
∨n

i=1(Sθi σθi),

if X /∈ χ, and ∀i ∈ {1, . . . , n}, ui ∈ � and θi = {X �→ ui}
labeling [. . . ] [u], S σ ��χ S σ, if u ∈ �

the rules to cover these cases that reproduce the process of syntactic unification

between equalities and disequalities as it is done in the classical syntactic unification

algorithms (Fernández 1992).

In addition to the rules for the strict (dis)equality over integer patterns, the solver

has also to consider, by contrast to the solver given in López-Fraguas et al. (2004b),

new rules for the particular treatment of the primitive constraints (specific for FD)

defined over the primitive elements in �. These rules are shown in Table 4.

Moreover, the solver also has to cover the domain and indomain classical con-

straints in finite domain constraint programming languages, to respectively fix the

domain of the constrained variables and label them according to their corresponding

domain (Dechter 2003). Table 5 shows the new rules that consider these cases.

After applying the constraint solver SolveFD, a primitive constraint store S ⊆
PCon(FD) is expressed in solved form as a finite conjunction of primitive constraints

of the form (we use the notations given in Section 2.4) X == t, X \ = t, u ∈ D and

a⊗ b � c where X ∈ Var, t is a total pattern, u, a, b, c ∈ � ∪ Var and D is a total

pattern defining a list of variables and/or integers.

Example 1

We illustrate the operational semantics of our finite domain constraint solver provid-

ing a constraint solver derivation from the initial constraint store {seq X (s K) →!

R, A + B < Z} and taking into account the set of protected variables {Z}. We

describe in detail the rules applied by the constraint solver and, at each goal

transformation step, we underline which subgoal is selected:

seq X (s K) →! R, A + B < Z ε ��{Z}
({X == s K, A + B < Z} {R �→ true}) ∨
({X \ = s K, A + B < Z} {R �→ false}) ��{Z}
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• ({X == s K, A + B < Z} {R �→ true}) ��{Z}
({s K == s K, A + B < Z} {R �→ true, X �→ s K}) ��{Z}
({K == K, A + B < Z} {R �→ true, X �→ s K}) ���{Z}

• ({X \ = s K, A + B < Z} {R �→ false}) ��{Z}
({A + B < Z} {R �→ false, X �→ 0}) ∨
({A + B < Z, M \ = K} {R �→ false, X �→ s M}) ���{Z}

Therefore, the constraint solver returns the following solved forms:

SolveFD({ seq X (s K) →! R, A + B < Z }, {Z} ) =

({A + B < Z, K == K} {R �→ true, X �→ s K}) ∨
({A + B < Z} {R �→ false, X �→ 0}) ∨
({A + B < Z, M \ = K} {R �→ false, X �→ s M})

As shown in Tables 2–5, our new constraint solver for the finite domain FD with

strict equality and disequality has been designed to hold all the initial assumptions

required in the general framework CFLP for constraint solvers (see Definition 2).

It can be formally proved by means of the following result.

Theorem 1

Let S ⊆ PCon(FD) be a primitive constraint store, σ ∈ Sub⊥(�) an idempotent

total substitution and χ ⊆ Var a set of protected variables. If S σ satisfies the

requirements of Definition 2 and S σ ��χ
∨k

i=1(Si σi), then SolFD(S σ) =
⋃k

i=1

SolFD(Si σi), where dom(σi) ∩ var(Si) = ∅ and χ ∩ (dom(σi) ∪ ran(σi)) = ∅ for

all 1 � i � k. Moreover, if S σ ��χ fails then SolFD(S σ) = ∅.

The proof of this theorem (see 6) can be done distinguishing several cases from

the declarative semantics of each primitive function symbol given in Table 1 and the

requirements of each constraint solver rule in Tables 2–5. According to this result,

the relation ��χ preserves the requirements of a constraint solver and the constraint

solver steps fail only in case of an unsatisfiable constraint store. Therefore, if we

repeatedly apply this result from an initial constraint store and a set of protected

variables in order to compute a constraint store in solved form, we directly obtain

the correctness of our finite domain constraint solver w.r.t. CFLP (FD)’s semantics.

3 The CLNC(FD) calculus

This section describes a lazy narrowing calculus with constraints defined on the

finite domain FD (the Constraint Lazy Narrowing Calculus CLNC(FD) for short)

for the solving of goals from programs. Since we have proved in the previous section

that our finite domain constraint solver holds the properties required in the general

framework, this calculus can be obtained as a simplified instantiation of the general

scheme for CFLP described in López-Fraguas et al. (2004b), and used in this work

as the formal foundation of the operational semantics in TOY(FD).

In order to understand the main ideas of our operational semantics, we first give a

precise definition for the class of well-typed programs, admissible goals and correct

answers we are going to work with.
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3.1 Programs, goals and answers

Our well-typed CFLP (FD)-programs are sets of constrained rewriting rules that

define the behavior of possibly higher-order and/or non-deterministic lazy functions

over FD, called program rules. More precisely, a program rule R for a defined

function symbol f ∈ DFn with an associated principal type τ1 → . . . → τn → τ has

the form f t1 . . . tn = r ⇐ C and is required to satisfy the conditions listed below:

1. t1 . . . tn is a linear sequence of transparent patterns and r ∈ Exp⊥(�) is a total

expression.

2. C is a finite set of total constraints (in the form of Definition 1), intended to

be interpreted as conjunction, and possibly including occurrences of defined

function symbols.

3. There exists some type environment T with domain var(R) which well-types

the defining rule in the following sense:

(a) For 1 � i � n: (Σ, T ) �WT ti :: τi.

(b) (Σ, T ) �WT r :: τ.

(c) For each (e == e′) ∈ C: ∃µ ∈ Type s.t. (Σ, T ) �WT e :: µ :: e′.

(d) For each (e \ = e′) ∈ C: ∃µ ∈ Type s.t. (Σ, T ) �WT e :: µ :: e′.

(e) For each (u ∈ D) ∈ C: (Σ, T ) �WT u :: int, D :: [int].

(f) For each (a⊗ b � c) ∈ C: (Σ, T ) �WT a, b, c :: int

where (Σ, T ) �WT e :: τ :: e′ denotes (Σ, T ) �WT e :: τ, (Σ, T ) �WT e′ :: τ.

The left-linearity condition required in item 1 is quite common in functional and

functional logic programming. As in constraint logic programming, the conditional

part of a program rule needs no explicit occurrences of existential quantifiers.

Another distinguished feature of our language is that no confluence properties are

required for the programs, and therefore functions can be non-deterministic, i.e.

return several values for given (even ground) arguments.

Example 2

The following example illustrates the previous definition of typed CFLP (FD)-

programs by showing some constrained program rules which will be used for lazy

evaluation of infinite lists in the next subsections.

take :: int → [α] → [α]
(T1) take 0 Xs = [ ]

(T2) take N [ ] = [ ] ⇐ N > 0

(T3) take N [X | Xs]= [X|take (N - 1) Xs]⇐ N > 0

check list :: [int] → int
(CL1) check list [ ] = 0

(CL2) check list [X|Xs]= 1⇐ domain [X] 1 2

(CL3) check list [X|Xs]= 2⇐ domain [X] 3 4

(CL4) check list [X|Xs]= 4⇐ domain [X] 5 7
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generateFD :: int → [int]
(G1) generateFD 0 = [ ]

(G2) generateFD N= [X | generateFD N]⇐ N > 0, domain [X] 0 N-1

from :: int → [int]

(F) from N = [N | from (N+1)]

According to López-Fraguas et al. (2004b), we define goals for this kind of

programs in the general form G ≡ ∃U. P C S σ, where the symbol must

be interpreted as conjunction, U is the finite set of so-called existential variables of

the goal G, P is a multiset of so-called productions of the form e1 → t1, . . . , en → tn,

where ei ∈ Exp⊥(�) and ti ∈ Pat⊥(�) are totals for all 1 � i � n (the set of

produced variables of G is defined as the set of variables occurring in t1 . . . tn), C is a

finite conjunction of constraints (possibly including occurrences of defined function

symbols), S is a finite conjunction of primitive constraints in the form of Definition 1,

called constraint store, and σ is an idempotent substitution called answer substitution

such that dom(σ) ∩ var(P C S) = ∅.
Additionally, we say that a goal G is an admissible goal iff it is well-typed: satisfies

the same admissibility criteria given above for programs for each constraint in C

and S , and the same conditions of compatible types for each production in P and

each binding in σ given in (González-Moreno et al. 1999b). Moreover, it must hold

the so-called goal invariants given in (López-Fraguas et al. 2004b): each produced

variable is produced only once, all the produced variables must be existential, the

transitive closure of the relation between produced variables must be irreflexive, and

no produced variable enters the answer substitution. An admissible goal is called a

solved goal iff P and C are empty and S is in solved form w.r.t. the action of the

constraint solver in the sense of Definition 2.

Similarly to González-Moreno et al. (1999a); González-Moreno et al. (1999b); del

Vado-Vı́rseda (2003), the CLNC(FD) calculus uses a notion of demanded variable

to deal with lazy evaluation.

Definition 3

Let G be an admissible goal. We say that X ∈ var(G) is a demanded variable iff

1. X is demanded by the constraint store S of G, i.e. µ(X) �= ⊥ holds for every

µ ∈ SolFD(S) (for practical use, the calculation of this kind of demanded

variables in FD can be easily done extending the rules given in the appendix

of López-Fraguas et al. (2004b) in the line of our rules shown in Tables 2–5).

2. X is demanded by a production (Xak → t) ∈ P such that, t /∈ Var or k > 0 and

t is a demanded variable in G.

Example 3

We suppose an admissible goal with only the primitive constraint seq X (s K) →!

R in the associated constraint store S . We note that K is not a demanded variable

by S , because µ = {X �→ 0, K �→ ⊥, R �→ false} ∈ SolFD(S) (clearly, seqFD µ(X)

(s K)µ → µ(R) = false where µ(X) = 0 and (s K)µ = s (µ(K)) = s (⊥) have no

common upper bound w.r.t. the information ordering , according to Table 1) but

µ(K) = ⊥. However, X and R are both demanded variables by S (according to the
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radicality property, any µ ∈ SolFD(S) must satisfy µ(R) total and then µ(R) �= ⊥ and

consequently µ(X) �= ⊥). In this situation, if we have also a production F 1 → X

in the produced part of the goal involving a higher-order variable F , automatically

F is also a demanded variable (by a production but not by the constraint store S).

Moreover, we note that it is also possible to have a variable F demanded by both

the constraint store (for example, if we add the primitive constraint F == ⊕ 2 to

S) and a production (for example, F 1 → 3 instead of F 1 → X). In this case, F is

demanded twice, supplying more relevant and precise information for goal solving

in the produced part and the constraint store of the goal.

Finally, we describe the notion of correct answer that we want to compute from

goals and programs in our CFLP (FD)-framework. Since the calculus CLNC(FD)

is semantically based on the Constraint ReWriting Calculus CRWL(FD), that

represents a concrete instance over the constraint domain FD of the constraint

rewriting logic described in López-Fraguas et al. (2004a), this logic can be also used

as a logical characterization of our program semantics. On the basis of this logic,

we define our concept of correct answer with respect to an admissible goal G and a

given CFLP (FD)-program as a pair of the form Π θ, where Π ⊆ PCon(FD)

and θ ∈ Sub⊥(�) is an idempotent substitution such that dom(θ) ∩ var(Π) = ∅,
fulfilling the same semantic conditions given in López-Fraguas et al. (2004b) w.r.t.

CRWL(D)’s semantics.

The following example shows a correct answer for the admissible goal with only a

strict equality take 3 (generateFD 10) == List and the CFLP (FD)-program

given in Example 2:

{X1, X2, X3 ∈ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]} � {List �→ [X1, X2, X3]}

Analogously, it is also possible to prove that M ∈ [1..2] and M ∈ [3..4] (both of

them with an empty substitution) are correct answers for the admissible goal with

only a user defined finite domain constraint check list (from M) < 3 . We

will see in the next subsection how to compute all of these answers by means of the

constrained lazy narrowing over FD.

3.2 Constrained lazy narrowing over FD

The calculus CLNC(FD) can be obtained as a particular instantiation from the

general CLNC(D) calculus because we have proved that our finite domain constraint

solver satisfies the requirements given in the general framework. Therefore, the

calculus CLNC(FD) can be described as a set of transformation rules for admissible

goals of the form G �� G′, specifying one of the possible ways of performing one step

of goal solving. In this sense, derivations are sequences of ��-steps where successful

derivations will eventually end with a solved goal and failing derivations end with

an inconsistent goal �. We have two classes of goal transformation rules: rules

for constrained lazy narrowing by means of productions, and rules for constraint

solving and failure detection.

The goal transformation rules concerning productions are the same rules given

in López-Fraguas et al. (2004b) for general productions and are designed with the
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aim of modeling the behavior of constrained lazy narrowing with sharing, but now

involving only the primitive functions over finite domains given in Definition 1,

possibly higher-order defined functions and functional variables.

The goal transformation rules concerning constraints can also be used to combine

(primitive or used defined) finite domain constraints with the action of our constraint

finite domain solver. As the main novelty, we note that only primitive constraints are

sent to the FD constraint solver. This is because non-primitive constraints are first

translated to primitive ones by replacing the non-primitives arguments by new fresh

variables before executing constraint solving and by registering new productions

between the non-primitive arguments and the new variables for lazy evaluation.

Moreover, the constraint solver must protect all the produced variables of the goal

in order to respect the constrained lazy evaluation and the admissibility conditions

of goals. Additionally, the usual failure rules can also be used for failure detection in

constraint solving and failure detection in the syntactic unification of the produced

part of the goal.

Finally, we note that since Theorem 1 proves the correctness of our finite

domain constraint solver w.r.t. the general framework, the main properties of

the lazy narrowing calculus CLNC(FD), soundness and completeness w.r.t. the

declarative semantics of CRWL(FD), follows directly from the general results of

(López-Fraguas et al. 2004b). Obviously, these properties qualify CLNC(FD) as

a convenient computation mechanism for constraint functional logic programming

over finite domains and provide a formal foundation for our CFLP (FD) imple-

mentation TOY(FD). From the viewpoint of efficiency, a computation strategy for

CLNC(FD) using definitional trees (Antoy 1992) has been proposed recently in del

Vado-Vı́rseda (2005) and Estévez-Martı́n and del Vado-Vı́rseda (2005) for ensuring

only needed narrowing steps and extend the efficient properties shown in Loogen

et al. (1993); Antoy et al. (2000); del Vado-Vı́rseda (2003) guiding and avoiding

don’t know choices of constrained program rules over FD.

3.3 Example of goal resolution by using CLNC(FD)

This section is closed with a simple example which illustrates the process of goal

solving via the narrowing calculus CLNC(FD) and our finite domain constraint

solver SolveFD. We compute all the answers from the goal check list (from

M) < 3 using the CFLP (FD)-programs given in Example 2. Its resolution

corresponds to the following sequence of goal transformation rules in López-Fraguas

et al. (2004b) where, at each goal transformation step, we underline which subgoal

is selected. ��R indicates that the rule R in that work is applied.

check list (from M) < 3 ε ��AC

∃X. check list (from M) → X X < 3 ε ��DF

At this point, we note that X is a variable demanded by the constraint store

and we have several alternatives due to don’t know choice of the program rule
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check list:

∃X. check list (from M) → X X < 3 ε ��DF(CL1)

∃X. from M → [ ], 0 → X X < 3 ε ��SP{X�→0}
from M → [ ] 0 < 3 ε ��CS{∅} (SolveFD({0 < 3}, ∅) = ∅ ε)

from M → [ ] ε ��DF(F)

[M | from (M + 1)] → [ ] ε ��CF �

The application of the first program rule for check list leads to a failure derivation

without answer. We apply now the second program rule of check list:

∃X. check list (from M) → X X < 3 ε ��DF(CL2)

∃X ′, Xs′, X. from M → [X ′|Xs′], 1 → X

domain [X ′] 1 2 X < 3 ε ��SP{X�→1}
∃X ′, Xs′. from M → [X ′|Xs′] domain [X ′] 1 2 1 < 3 ε ��AC

∃X ′, Xs′. from M → [X ′|Xs′] 1 < 3, domain [X ′] 1 2 ε ��DF(F)

∃X ′, Xs′. [M | from (M + 1)] → [X ′|Xs′] 1 < 3, domain [X ′] 1 2 ε ��DC

∃X ′, Xs′. M → X ′, from (M + 1) → Xs′

1 < 3, domain [X ′] 1 2 ε ��SP{X′ �→M}
∃Xs′. from (M + 1) → Xs′ 1 < 3, domain [M] 1 2 ε ��EL

1 < 3, domain [M] 1 2 ε ��CS(∅) M ∈ [1..2] ε, because

SolveFD({1 < 3, domain [M] 1 2}, ∅) = {M ∈ [1..2]} ε

Therefore, we obtain the first computed answer Π1 θ1 ≡ {M ∈ [1..2]} ε.

Analogously, we can apply the third program rule of check list:

∃X. check list (from M) → X X < 3 ε ��∗DF(CL3)

M ∈ [3..4] ε

and we obtain the second computed answer Π2 θ2 ≡ {M ∈ [3..4]} ε. No more

answers can be computed, because if we apply the fourth program rule of check list

we have again a failing derivation:

∃X. check list (from M) → X X < 3 ε ��DF(CL4)

∃X ′, Xs′, X. from M → [X ′|Xs′], 4 → X domain [X ′] 5 7 X < 3 ε ��SP{X�→4}
∃X ′, Xs′. from M → [X ′|Xs′] domain [X ′] 5 7 4 < 3 ε ��AC

∃X ′, Xs′. from M → [X ′|Xs′] 4 < 3, domain [X ′] 5 7 ε ��SF{X′ ,Xs′} �
because SolveFD({4 < 3, domain [X ′] 5 7}, {X ′, Xs′}) = ∅

A detailed explanation of the computation of these answers using definitional trees

in CLNC(FD) to efficiently guide and avoid don’t know choices of constrained

program rules can be found in (Estévez-Martı́n and del Vado-Vı́rseda 2005).

Moreover, we will see in the next section that these are exactly the same answers

computed by our CFLP (FD) implementation TOY(FD).

4 TOY(FD)

So far, we have introduced the theoretical framework. Now, in this section we

introduce TOY(FD), a CFLP (FD) implementation that extends the TOY
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system to deal with FD constraints, highlight its advantages, and show its per-

formance.

4.1 Introducing TOY(FD)

In this section, we describe TOY(FD) from a programming point of view, briefly

describing its concrete syntax and some predefined FD constraints.

4.1.1 An overview of TOY(FD)

TOY(FD) programs consist of datatypes, type alias, infix operator definitions, and

rules for defining functions. The syntax is mostly borrowed from Haskell with

the remarkable exception that variables and type variables begin with upper-case

letters, whereas constructor symbols and type symbols begin with lower-case. In

particular, functions are curried and the usual conventions about associativity of

application hold. As usual in functional programming, types are inferred, checked

and, optionally, can be declared in the program. To illustrate the datatype definitions,

we present the following examples using the concrete syntax of TOY :

• data nat = zero | suc nat, to define the naturals, and

• the Boolean predefined type as data bool = false | true;

A TOY(FD) program P is a set of defining rules for the function symbols

in its signature. Defining rules for a function f have the syntactic basic form

f t1 . . . tn = r <== C and, informally, its intended meaning is that a call to f

can be reduced to r whenever the actual parameters match the patterns ti, and the

conditions in C are satisfied. TOY(FD) also allows predicates (defined similarly as

in logic programming) where predicates are viewed as a particular kind of functions,

with type p :: τn → bool. As a syntactic facility, we can use clauses as a shorthand for

defining rules whose right-hand side is true. This allows to write Prolog-like predicate

definitions, so that a clause p t1 . . . tn : − C abbreviates a defining rule of the form

p t1 . . . tn = true <== C . With this sugaring in mind and some obvious changes

(like currying elimination) it should be clear that (pure) CLP (FD) -programs can

be straightforwardly translated to CFLP (FD) -programs.

4.1.2 Simple programming examples

Table 6 shows introductory programming examples in TOY that do not make use

of the extension over FD, together with some goals and their outcomes (López-

Fraguas and Sánchez-Hernández 1999). Note that infix constraint operators are

allowed in TOY(FD) , such as // to build the expression X // Y, which is

understood as // X Y. The goal (a) in the table sorts a list, in a pure functional

computation. The answer for the goal (b) involves a syntactic disequality. In goal

(c), F is a higher-order logic variable, and the obtained values for this variable are

higher-order patterns (permut, sort, . . . ).
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Table 6. TOY programming basic examples

% Non-deterministic choice of one of two values

infixr 40 //

X // Y = X

X // Y = Y

% Non-deterministic insertion of an element into a list

insert X [] = [X]

insert X [Y|Ys] = [X,Y|Ys] // [Y|insert X Ys]

% Non-deterministic generation of list permutations

permut [] = []

permut [X|Xs] = insert X (permut Xs)

% Testing whether a list of numbers is sorted

sorted [] = true

sorted [X] = true

sorted [X,Y|Ys] = sorted [Y|Ys] <== X <= Y

% Lazy ‘generate-and-test’ permutation sort. ’check’ calls ’sorted’ which demands its

% argument, which is lazily, non-deterministically generated by ’permut’. As soon as

% the test fails, ’permut’ stops the generation and tries another alternative

sort Xs = check (permut Xs)

check Xs = Xs <== sorted Xs == true

Goal Answers

(a) sort [4,2,5,1,3] == L L == [1,2,3,4,5]; no more solutions

(b) sort [3,2,1] /= L L /= [1,2,3] ; no more solutions

(c) F [2,1,3] == [1,2,3] F == permut; F == sort; . . .

4.1.3 FD Constraints in TOY(FD)

Table 7 shows a small subset of the FD constraints supported by TOY(FD) ,

which are typical instances found in CP systems, and covers adequately the primitive

constraints summarized in Table 1. In Table 7, int is a predefined type for integers,

and [τ] is the type ‘list of τ’. The datatype labelType is a predefined type which is

used to define many search strategies for finite domain variable labeling (Fernández

et al. 2004).

Relational constraint operators are applied to integers and return a Boolean value.

Arithmetical constraint operators are applied to and return integer values (the set

of primitive elements). They can be combined with relational constraint operators

to build (non)linear (dis)equations as constraints. Moreover, reified constraints1 can

be implemented by equating a Boolean variable to a Boolean constraint, for all of

the constraints built from the operators in this table and the contraint domain (see

1 Reified constraints reflect the entailment of a constraint in a Boolean variable. In general, constraints in
reified form allow their fulfillment to be reflected back in an FD variable. For example, X = (Y +Z >
V ) constrains X to true as soon as the disequation is known to be true and to false as soon as the
disequation is known to be false. On the other hand, constraining X to true imposes the disequation,
and constraining X to false imposes its negation. Usually, in CLP (FD) languages, the Boolean values
false and true directly correspond to the numerical values 0 and 1, respectively.
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Table 7. A subset of predefined FD constraints in TOY(FD)

RELATIONAL CONSTRAINT OPERATORS

(# =), (#\=) :: int → int → bool (Strict Equality)

(#<), (#<=), (#>), (#>=) :: int → int → bool (Less or Equal)

ARITHMETICAL CONSTRAINT OPERATORS

(#+), (#−), (#∗), (#/) :: int → int → int (Operators)

MEMBERSHIP CONSTRAINTS

domain :: [int] → int → int → bool (Finite Domains)

ENUMERATION CONSTRAINTS

labeling :: [labelType] → [int] → bool (Variable Labeling)

COMBINATORIAL CONSTRAINTS

all different :: [int] → bool (Global Constraints)

Example 4). Due to the functional component, we can apply this technique to equate

Boolean expressions to Boolean constraints, as well. Both relational and arithmetical

constraint operators are syntactically distinguished (by prefixing them with #) from

standard relational operators in order to denote its different operational behavior.

Whereas a standard arithmetical operator demands its arguments, an arithmetical

constraint does not. The membership constraint domain restricts a list of variables

(its first argument) to have values in an integer interval (defined by its two next

integer arguments) whenever its return value is true, whereas it restricts these

variables to have values different from the interval when its return value is false. The

enumeration constraint labeling assigns values to the variables in its input integer

list according to the options specified with the argument of type list of labelType. In

this list, search strategies, such as first-fail (see Section 4.5.1), as well as optimization

options for finding minimum and maximum values for cost functions can be specified.

The combinatorial constraint all different ensures different values for the ele-

ments in its list argument and is an example of the set of global constraints (for which

an efficient propagation algorithm has been developed) supported by TOY(FD) .

We do neither mention nor explain all the predefined constraints in detail and

encourage the interested reader to visit the link proposed in Fernández et al. (2004)

for a more detailed explanation. We emphasize that all the pieces of code in this

paper are executable in TOY(FD) and the answers for example goals correspond

to actual executions of the programs.

4.1.4 Simple examples with FD Constraints

Example 4

Below, we show the resolution at the TOY(FD) command line level of a simple

goal that does not involve labeling.

TOY(FD)> domain [X, Y] 10 20, X #<= Y == L

yes L == true, X in 10..20, Y in 10..20;

yes L == false, X in 11..20, Y in 10..19;

no
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Also note that this CFLP (FD) implementation only inform about a limited

outcome, which consists of: (1) substitutions of the form Variable == Pattern,

(2) disequality constraints Variable /= Pattern, (3) disjunctions D of constraints

Variable in IntegerRange (these constraints denote the possible values a variable

might take, as in common constraint systems; i.e., they do not state D, but negated D),

and (4) success information: yes and no stand for success and failure, respectively.

Finally, ‘;’ separates the solutions which has been explicitly requested by the user.

Primitive constraints in the finite domain constraint store are not shown.

Example 5

We show a TOY(FD) program involving labeling to solve the classical N-queens

problem whose objective is to place N queens on an N×N chessboard so that there

are no threatening queens.

include "misc.toy"

include "cflpfd.toy"

queens :: int -> [labelType] -> [int]

queens N Label = L <== length L == N, domain L 1 N,

constrain_all L, labeling Label L

constrain_all :: [int] -> bool

constrain_all [] = true

constrain_all [X|Xs] = true <== constrain_between X Xs 1,

constrain_all Xs

constrain_between :: int -> [int] -> int -> bool

constrain_between X [] N = true

constrain_between X [Y|Ys] N = true <== no_threat X Y N,

constrain_between X Ys (N+1)

no_threat:: int -> int -> int -> bool

no_threat X Y I = true <== X #\= Y, X #+ I #\= Y, X #- I #\= Y

The intended meaning of the functions should be clear from their names and

definitions, provided that length L returns the length of the list L. The first two

lines are needed to include predefined functions such as length and domain. An

example of solving at the command prompt, where ff stands for the first-fail

enumeration strategy (see Section 4.5.1), is

TOY(FD)> queens 15 [ff] == L

yes L == [1,3,5,14,11,4,10,7,13,15,2,8,6,9,12]

Example 6

We present a TOY(FD) program using syntactic sugaring for predicate-like

functions that solves the well-known CLP (FD) program Send+More=Money.

smm :: int -> int -> int -> int -> int -> int -> int -> int

-> [labelType] -> bool
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Table 8. Examples of goal solving

Goal Answers

domain [A,B] 1 (1+2), A#>B, A==2,B==1; A==3,B==1;

all different [A,B], labeling [ ] [A,B] A==3,B==2; no more solutions

domain [X,Y,Z] 1 10, X in 1..2,Y==1,Z in 8..10;

2 #* X #+ 3 #* Y #+ 2 #< Z no more solutions

domain [X,Y,Z] 1 5, X #> Y, X in 4..5,Y in 3..4,Z in 1..3;

2 #* Y #> Z #+ 4, X #>= Z no more solutions

smm S E N D M O R Y [] == T S==9,E==5,N==6,D==7,M==1,O==0,

R==8,Y==2,T==true;

no more solutions

queens 5 [] == [M,A,E,Y,B], M==1,A==3,E==5,Y==2,B==4,S==9,

smm S E N D M O R Y [] N==6,D==7,O==0,R==8;

no more solutions

smm S E N D M O R Y Label :-

domain [S,E,N,D,M,O,R,Y] 0 9, S #> 0, M #> 0,

all_different [S,E,N,D,M,O,R,Y], add S E N D M O R Y,

labeling Label [S,E,N,D,M,O,R,Y]

add :: int -> int -> int -> int -> int -> int -> int -> int -> bool

add S E N D M O R Y :- 1000#*S #+ 100#*E #+ 10#*N #+ D

#+ 1000#*M #+ 100#*O #+ 10#*R #+ E

#= 10000#*M #+ 1000#*O #+ 100#*N #+ 10#*E #+ Y

For our simple TOY(FD) programs, some examples of goals and answers which

can be computed by TOY(FD) are shown in Table 8.

4.2 CFLP (FD) vs. CLP (FD)

It is commonly acknowledged that CLP (FD) is a successful declarative approach;

hence, we discuss the advantages of CFLP (FD) , focusing on the TOY(FD)

implementation, with respect to CLP (FD). This section explains why the addition

of FP features enhances the CLP setting. When necessary, we illustrate different

features of CFLP (FD) by means of examples. Further programming examples in

pure functional logic programming and CFLP (FD) can be found, respectively, in

López-Fraguas and Sánchez-Hernández (1999) and Fernández et al. (2004).

4.2.1 CFLP (FD) ⊃ CLP(FD)

As already pointed out, besides other features, CFLP (FD) provides the main char-

acteristics of CLP (FD), i.e.,FD constraint solving, non-determinism and relational
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form. Moreover, CFLP (FD) provides a sugaring syntax for LP predicates and

thus, as already commented, any pure CLP (FD)-program can be straightforwardly

translated into a CFLP (FD)-program. In this sense, CLP (FD) may be considered

as a strict subset of CFLP (FD) with respect to problem formulation. As a direct

consequence, our language is able to cope with a wide range of applications (at least

with all those applications that can be formulated with a CLP (FD) language). We

will not insist here on this matter, but prefer to concentrate on the extra capabilities

of CFLP (FD) with respect to CLP (FD).

4.2.2 CFLP (FD) \ CLP(FD)

Due to its functional component, CFLP (FD) adds further expressiveness to

CLP (FD) as allows the declaration of functions and their evaluation in the FP

style. In the following, we enumerate and discuss other features not present (or

unusual) in the CLP (FD) paradigm.

Types. Our language is strongly typed and thus involves all the well-known advant-

ages of a type checking process, enhancing program development and maintenance.

Each FD constraint has associated, like any function, a type declaration, which

means that a wrong use can be straightforwardly detected in the typical type checking

process.

Functional Notation. It is well-known that functional notation reduces the number

of variables with respect to relational notation, and thus, CFLP (FD) increases

the expressiveness of CLP (FD) as it combines relational and functional notation.

For instance, in CLP (FD) the constraint conjunction N=2, X ∈ [1,10-N] cannot

be expressed directly and must be written adding a third component, as N=2, Max

is 10-N, domain([X],1,Max) that uses an extra variable. However, TOY(FD)

expresses that constraint directly as N==2, domain [X] 1 (10-N).

Currying. Again, due to its functional component, TOY(FD) allows curried func-

tions (and thus constraints); for instance, see the application of curried FD
constraint (3#<)/1 in Example 7 later in this section.

Higher-Order and Polymorphism. In TOY(FD) functions are first-class citizens,

which means that a function (and thus an FD constraint) can appear in any

place where data do. As a direct consequence, an FD constraint may appear as

an argument (or even as a result) of another function or constraint. The functions

managing other functions are called higher-order (HO) functions. Also, polymorphic

arguments are allowed in CFLP (FD).

Example 7

A traditional example of a polymorphic HO function is

map :: (A -> B) -> [A] -> [B]

map F [] = []

map F [X|Xs] = [(F X) | (map F Xs)]

that receives both a function F and a list as arguments and produces a list resulting

from applying the function to each element in the list. Now, suppose that X and
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Y are FD variables ranging in the domain [0..100] (expressed, for instance, via

the constraint domain [X,Y] 0 100). Then, the goal map (3#<) [X,Y] returns the

Boolean list [true,true] resulting from evaluating the list [3#<X,3#<Y], and X

and Y are also restricted to have values in the range [4,100] as the constraints

3#<X and 3#<Y are sent to the constraint solver. Note also the use of the curried

function (3#<).

Laziness. In contrast to logic languages, functional languages support lazy eval-

uation, where function arguments are evaluated to the required extend (the call-

by-value used in LP vs. the call-by-need used in FP ). Strictly speaking, lazy

evaluation may also correspond to the notion of only once evaluated in addition

to only required extent (Peyton-Jones 1987). TOY(FD) increases the power of

CLP (FD) by incorporating a novel mechanism that combines lazy evaluation and

FD constraint solving, in such a way that only the demanded constraints are sent

to the solver. This is a powerful mechanism that opens new possibilities for FD
constraint solving. For example, in contrast to CLP (FD), it is possible to manage

infinite structures.

Example 8

Consider the recursive functions take and generateFD from Example 2. An eager

evaluation of the following goal does not terminate as it tries to completely evaluate

the second argument, yielding to an infinite computation. However, a lazy evaluation

generates just the first 3 elements of the list, as shown below:

TOY(FD)> take 3 (generateFD 10) == List

yes List == [ _A, _B, _C ] _A, _B, _C in 0..9

In general, lazy narrowing avoids computations which are not demanded, therefore

saving computation time. Example 9 contains a formulation of the typical magic

series (or sequences) problem (Van Hentenryck 1989). This example highlights the

expressive power of TOY(FD) by solving multiple problem instances that can be

described and solved via lazy evaluation of infinite lists.

Example 9

Let S = (s0, s1, . . ., s N−1) be a non-empty finite series of non-negative integers.

The series S is said N-magic if and only if there are si occurrences of i in S, for all

i ∈ {0, . . ., N-1}. Below, we propose a TOY(FD) program to calculate magic

series where the function generateFD is as defined in Example 2.

lazymagic :: int -> [int]

lazymagic N = L <== take N (generateFD N) == L,

constrain L L 0 Cs, sum L (#=) N,

scalar_product Cs L (#=) N, labeling [ff] L

constrain :: [int] -> [int] -> int -> [int] -> bool

constrain [] A B [] = true

constrain [X|Xs] L I [J|Js] = true <== I==J, count I L (#=) X,

constrain Xs L (I+1) Js
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sum/3, scalar product/4 and count/4 are predefined HO constraints (Fernández

et al. 2004), that accept a relational FD constraint operator with type int →
int→ bool as argument (e.g., the constraint #=). sum L C N means that the summa-

tion of the elements in the list L is related through C with the integer N (in the example,

the summation is constrained to be equal to N). scalar product and count stand

for scalar product and element counting under the same parameters as sum.

A goal lazymagic N, for some natural N, returns the N-magic series where the

condition take N (generateFD N) is evaluated lazily as (generateFD N) produces

an infinite list. More interesting is to return a list of different solutions starting from

N. This can be done using a recursive definition to produce the infinite list of magic

series (from N) as shown below.

magicfrom :: int -> [[int]]

magicfrom N = [lazymagic N | magicfrom (N+1)]

Now, it is easy to generate a list of magic series by lazy evaluation. For example,

the following goal generates a 3-element list containing, respectively, the solution to

the problems of 7-magic, 8-magic and 9-magic series.

TOY(FD)> take 3 (magicfrom 7) == L

yes L == [ [ 3, 2, 1, 1, 0, 0, 0 ],

[ 4, 2, 1, 0, 1, 0, 0, 0 ],

[ 5, 2, 1, 0, 0, 1, 0, 0, 0 ] ]

More expressiveness is shown by mixing curried functions, HO functions and

function composition (another nice feature from the functional component of

TOY(FD)). For example, consider the TOY(FD) code shown below:

from :: int -> [int]

from N = [N | from (N+1)]

(.):: (B -> C) -> (A -> B) -> (A -> C)

(F . G) X = F (G X)

lazyseries :: int -> [[int]]

lazyseries = map lazymagic . from

where (.)/2 defines the composition of functions. Observe that lazyseries curries the

composition (map lazymagic) . from. Then, it is easy to generate the 3-element

list shown above by just typing the goal

TOY(FD)> take 3 (lazyseries 7) == L

This simple example gives an idea of the nice features of CFLP (FD) that

combines FD constraint solving, management of infinite lists and lazy evalu-

ation, curried notation of functions, polymorphism, HO functions (and thus HO

constraints), composition of functions and a number of other characteristics that

increase the potentialities with respect to CLP (FD).

https://doi.org/10.1017/S1471068406002924 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002924


562 A. J. Fernández et al.

4.3 Correctness of the CFLP(FD) implementation

In this section, we briefly discuss the correctness of our TOY(FD) implementation

with respect to our CFLP (FD) framework.

TOY(FD) integrates, as a host language, the higher-order lazy functional logic

language TOY (López-Fraguas and Sánchez-Hernández 1999) and, as constraint

solver, the efficient FD constraint solver of SICStus Prolog (Carlsson et al. 1997).

Under the condition of considering just an empty set of protected variables, the

SICStus Prolog finite domain solver always satisfies the conditions for constraint

solvers required in Section 2.5. Since the CLNC(FD) calculus is strongly complete

(see López-Fraguas et al. (2004b)) in the sense that the choice of goal transformation

rules can be a don’t care choice, in practice, we can choose a suitable demand-driven

strategy: our FD constraint solver is only applied at the end of the process of goal

solving, when we have an empty set of protected variables (as we have done in the

example in Section 3.3) or when protected variables are not relevant. This strategy

can be performed in the CLNC(FD) calculus in the line of del Vado-Vı́rseda (2005)

as well as in TOY(FD) in the line of Estévez-Martı́n and del Vado-Vı́rseda (2005).

Therefore, we can conclude that our operational semantics with this strategy covers

adequately the TOY(FD) implementation.

Additionally, we have run a number of tests in the implementation and have

compared the derivations produced by the calculus CLNC(FD) to the traces ob-

tained from debugging in TOY(FD), and the results show that these are effectively

identical by following an adequate demand-driven strategy in CLNC(FD). For

instance, the CFLP (FD) program shown in Example 2 corresponds almost directly

to a TOY(FD) program, and the solving of the goal check list (from M) < 3 in

TOY(FD) is shown below (see (Estévez-Martı́n and del Vado-Vı́rseda 2005) for

more details).

Toy(FD)> check_list (from M) < 3

yes

M in 1..2

Elapsed time: 0 ms.

more solutions (y/n/d) [y]?

yes

M in 3..4

Elapsed time: 0 ms.

more solutions (y/n/d) [y]?

no.

Elapsed time: 0 ms.

Note that the computed answers correspond exactly to those obtained in the goal

solving process described in Section 3.3 via the narrowing calculus CLNC(FD).
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4.4 Notes about the implementation

In TOY(FD), FD constraints are evaluated internally by using mainly two

predicates: hnf(E,H), which specifies that H is one of the possible results of

narrowing the expression E into head normal form, and solve/1, which checks

the satisfiability of constraints (of rules and goals) before the evaluation of a given

rule. This predicate is, basically, defined as follows2:

(1) solve((ϕ,ϕ′)) :− solve(ϕ), solve(ϕ′).

(2) solve(L == R) :− hnf(L, L′), hnf(R, R′), equal(L′, R′).

(3) solve(L / = R) :− hnf(L, L′), hnf(R, R′), notequal(L′, R′).

(4) solve(L#♦ R) :− hnf(L, L′), hnf(R, R′), {L′#♦R′}.
where ♦ ∈ {=, \=, <,<=, >,>=}.

(5) solve(C A1 . . . An) :− hnf(A1, A′1), . . . , hnf(An, A
′
n), {C(A′1, . . . , A′n)}.

where C is any constraint returning a Boolean.

The interaction with the constraint solver (i.e., SICStus FD constraint solver in

the current TOY(FD) version) is reflected in the last two clauses: every time an

FD constraint appears, the solver is eventually invoked with a goal {G} where G

is the translation of the FD constraint from TOY(FD) to SICStus Prolog. Head

normal forms are required for constraint arguments in order to allow the solver to

solve the constraint.

4.5 Performance

As far as we know, TOY(FD) was the first FLP system integrating a FD
constraint system. However, we know about the existence of an implementation

of the FLP language Curry (Hanus 1999) that supports a limited set of FD
constraints (Hanus M. (editor) 2005). This implementation, called PAKCS, provides

the following constraints:

(1) a set of arithmetical operations {*#,+#,-#,=#,/=#,<#,<=#,>#,>=#},
(2) a membership constraint domain /3,

(3) some global constraints3 and

(4) an enumeration constraint labeling /1 that also provides searching options.

In this section, we compare the performance of TOY(FD) with that of the

Curry2Prolog compiler, which is the most efficient implementation of Curry inside

PAKCS (version 1.7.1 of December 2005).

In addition, for evaluating if TOY(FD) is competitive with respect to existing

CLP (FD) systems, we have also considered four well-known CLP (FD) systems:

1. The version 3.12.1 of April 2005 of theFD constraint solver of SICStus Prolog

(Carlsson et al. 1997; SICStus Prolog 2005). This solver was included in order

to measure the overhead due to the management of functional logic expressions,

2 The code does not correspond exactly to the implementation, which is the result of many
transformations and optimizations.

3 Exactly, those named in this paper, i.e. all different/1, count/4, scalar product/4 and sum/3.
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which are compiled to SICStus Prolog in TOY(FD), and, therefore, including

all the stuff needed to handle the FLP characteristics such as laziness and

higher-order functions.

2. The GNU Prolog system (version 1.2.16) (Diaz and Codognet 2001; GNU

Prolog 2005), which is a free Prolog compiler that includes one of the most

efficient finite domain constraint solver. This solver is based on the concept of

indexicals (Codognet and Diaz 1996) and it has been demonstrated that it has

a performance comparable to commercial systems.

3. SWI-Prolog (version 5.4.x) (Wielemaker 2003; SWI-Prolog 2005) that it is an

emergent and very promising Prolog system that provides an integer domain

constraint solver implemented with attributed variables.

4. Ciao Prolog (version 1.10#5 of August 2004) which is a full multi-paradigm

programming environment for developing programs in the Prolog language

and in several other languages which are extensions and modifications of

Prolog in several interesting and useful directions. Ciao Prolog provides a

package, based upon the indexical concept, to write and evaluate constraint

programming expressions over finite domains in a Ciao program.

4.5.1 Labeling

Constraint solving can be implemented with a combination of two processes:

constraint propagation and labeling (i.e., search) (Dechter 2003). The labeling

process consists of (1) choosing a variable (variable ordering) and (2) assigning

to the variable a value which belongs to its domain (value ordering). The variable

ordering and the value ordering used for the labeling can considerably influence

the efficiency of the constraint solving when only one solution to the problem is

required. It has little effect when the search is for all solutions. In this study, we

consider two labelings, the näıve labeling that chooses the leftmost variable of a

list of variables and then selects the smallest value in its domain, and the first-fail

labeling that uses a principle (Haralick and Elliot 1980) which says that to succeed,

try first where you are the most likely to fail. This principle recommends the choice of

the most constrained variable, which often means (for the finite domain) choosing a

variable with the smallest domain. The näıve labeling assures that both variable and

value ordering are the same for all the systems and hence (although less efficient) is

better for comparing the different systems when only one solution is required.

4.5.2 The benchmarks

We have used a wide set of benchmarks4 and, for the sake of fairness, whenever it

was possible, we used exactly the same formulation of the problems for all systems

as well as the same FD constraints. The benchmarks used are:

• cars: solve a car sequencing problem with 10 cars (Dincbas et al. 1988).

This benchmark deals with 100 Boolean variables (i.e., finite domain variables

4 All the programs used in the comparison are available at http://www.lcc.uma.es/∼afdez/cflpfd/.
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ranging over [0,1]), 10 finite domain variables ranging over [1,6], 6 atmost

constraints, 50 element constraints, and 49 linear disequations.

• equation 10: a system of 10 linear equations with 7 variables ranging over

[0,10].

• equation 20: a system of 20 linear equations with 7 variables ranging over

[0,10].

• magic series (N): calculate a series of N numbers such that each of them is

the number of occurrences in the series of its position in the series (Codognet

and Diaz 1996).

• optimal Golomb ruler (N): find an ordered set of n distinct non-negative

integers, called marks, a1 < . . . < an, such that all the differences ai− aj (i > j)

are distinct and an is minimum (Shearer 1990).

• queens (N): place N queens on a N×N chessboard such that no queen attacks

each other (Van Hentenryck 1989).

• pythagoras: calculate the proportions of a triangle by using the Pythagorean

theorem. This problem involves 3 variables ranging over [1,1000], and 7

disequality (non-linear) equations.

• sendmore: a cryptoarithmethic problem with 8 variables ranging over [0,9], with

one linear equation, 2 disequations and 28 inequality constraints (or altern-

atively one all different constraint imposed over the whole set of constrained

variables). It consists of solving the equation SEND + MORE = MONEY .

• suudoku: the problem is to fill partially filled 9x9 squares of 81 squares such

that each row and column are permutations of [1, . . . , 9], and each 3×3 square,

where the leftmost column modulo 3 is 0, is a permutation of [1, . . . , 9].

The programs equation 10, equation 20 and sendmore test the efficiency of the

systems to solve linear equation problems. The programs cars and suudoku check

the efficiency of specialized constraints such as the all different constraint. The

pythagoras problem deals with non-linear equations.

The queens and magic series programs are scalable and therefore useful to test

how the systems work for bigger instances of the same problem. Note that both the

number of variables and the number of values for each variable grow linearly with

the parameter N in the examples. That is, given a value N, at least N FD variables

must be declared with domains that range between 0 or 1 and N.

The search for optimal Golomb rulers is an extremely difficult task as it is

a combinatorial problem whose bounds grow geometrically with respect to the

solution size (Shearer 1990). This (also scalable) benchmark allows us to check the

optimization capabilities of the system.

4.5.3 Results

All the benchmarks were performed on the same Linux machine (under Fedora

Core system, 2.69-1667) with an Intel(R) Pentium 4 processor running at 2.40 GHz

and with a RAM memory of 512 Mb. For the sake of brevity, we only provide the

results for first solution search.
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Table 9. TOY(FD) vs. C(F)LP systems: Naı̈ve Labeling

Benchmark TOY(FD) PAKCS SICStus SWI GNU Ciao

cars 5 N 5 N 1 N

equation10 20 50 10 590 2 -

equation20 35 60 10 1185 4 -

magic(64) 265 340 (430) 260 N (OGS) 134 N

magic(100) 910 980 (1520) 900 N (OGS) 901 N

magic(150) 2700 3180 (4770) 2560 N (OGS) (SO) 4894 N

magic(200) 5970 6540 (10870) 5690 N (OGS) (SO) 14570 N

magic(300) 18365 22750 (RE) 17780 N (OGS) (SO) 68020 N

pythagoras 50 80 20 940 10 902

queens(8) 10 20 10 110 1 31

queens(16) 180 200 170 38720 11 6873

queens(20) 4030 4200 3930 1064130 216 190435

queens(24) 8330 8400 8120 ?? 460 576625

queens(30) 1141760 1141940 1069750 ?? 67745 ??

sendmore 0 5 0 15 0 14

suudoku 10 20 10 60 1 51

Table 9 shows the results using näıve labeling. The meaning for the columns is as

follows. The first column gives the name of the benchmark used in the comparison,

and the next six columns show the running (elapsed) time (measured in milliseconds)

to find the first answer of the benchmark for each system.

Table 10 shows the results shown in Table 9 in terms of the speed-up ofTOY(FD)

with respect to the rest of the systems (that is, the result of dividing the time of a

given system by the time of TOY(FD)).

Table 11 shows the results of solving the same benchmarks by using first-fail

labeling. Note that the current versions of SWI Prolog and Ciao Prolog do not

provide first-fail labeling. Also, Table 12 shows the speed-up corresponding to the

results in Table 11 and again displays the performance of TOY(FD) with respect

to the rest of the systems. The meaning for the columns is as in Table 10, but a

last column is added in order to show the speed-up of TOY(FD) using first-fail

labeling with respect to the same system with näıve labeling.

Tables 13 and 14 display corresponding results for optimization. Particularly,

Table 13 shows the (elapsed) time measured in milliseconds to solve the optimization

problem considered in the benchmarking process, whereas Table 14 shows the speed-

up of our system with respect to the rest of the systems.

In these tables, all numbers represent the average of ten runs. The symbol ??

means that we did not receive a solution for the benchmark in a reasonable time

and (?) indicates a non-determined value. The symbol N in the PAKCS, SWI Prolog

and Ciao Prolog columns mean that we could not formulate the benchmark because

of insufficient provision for constraints.

Also the notation OGS in the SWI column indicates that we received an error of

Out Of Global Stack and, consequently, no answer was returned. In the GNU Prolog
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Table 10. Speed-up of TOY(FD) wrt. other C(F)LP systems for naı̈ve labeling

Benchmark PAKCS SICStus SWI GNU Ciao

cars ∞ 1 00 ∞ 0.20 ∞
equation10 2.50 0.50 29.50 0.10 ∞
equation20 1.71 0.28 33.85 0.11 ∞
magic (64) 1.28 (1.62) 0.98 ∞ 0.50 ∞
magic (100) 1.07 (1.67) 0.98 ∞ 0.99 ∞
magic (150) 1.17 (1.76) 0.98 ∞ (∞) 1.81 ∞
magic (200) 1.09 (1.82) 0.99 ∞ (∞) 2.44 ∞
magic (300) 1.23 (∞) 0.96 ∞ (∞) 3.70 ∞
pythagoras 1.60 0.40 18.80 0.20 18.04

queens (8) 2.00 1.00 11.00 0.10 3.12

queens (16) 1.11 0.94 215.11 0.06 38.18

queens (20) 1.04 0.97 264.05 0.05 42.25

queens (24) 1.00 0.97 (?) 0.05 69.22

queens (30) 1.00 0.93 (?) 0.05 (?)

sendmore � 5.00 � 1.00 � 15.00 � 1.00 � 14.00

suudoku 2.00 1.00 6.00 0.10 5.10

Table 11. TOY(FD) vs. C(F)LP systems: first-fail labeling

Benchmark TOY(FD) PAKCS SICStus SWI GNU Ciao

cars 0 N 0 N 0 N

equation10 20 50 10 N 3 N

equation20 30 55 15 N 4 N

magic (64) 90 150 (320) 80 N 18 N

magic (100) 220 310 (1090) 195 N 53 N

magic (150) 470 690 (3440) 465 N (SO) 52 N

magic (200) 870 1480 (7950) 850 N (SO) 125 N

magic (300) 1835 3610 (RE) 1820 N (SO) 568 N

magic (400) 3420 10050 (RE) 3370 N (SO) 1088 N

magic (500) 5510 13100 (RE) 5250 N (SO) 1830 N

pythagoras 50 80 10 N 10 N

queens (8) 10 15 5 N 1 N

queens (16) 20 50 8 N 2 N

queens (20) 45 75 10 N 3 N

queens (24) 40 80 15 N 4 N

queens (30) 150 190 25 N 6 N

sendmore 0 5 0 N 0 N

suudoku 10 20 10 N 1 N

column, the notation (SO) number means that, in the first execution of the program

no answer was calculated because a Stack Overflow error was raised, and that, after

increasing significantly the corresponding (cstr and trail) environment variables, in

further executions we obtained an answer in the (average) time indicated by number.
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Table 12. Speed-up of TOY(FD) wrt. other C(F)LP systems for first-fail labeling

Benchmark PAKCS SICStus SWI GNU Ciao TOY(FD)

(näıve)

cars ∞ � 1.00 ∞ � 1.00 ∞ � 5.00

equation10 2.50 0.50 ∞ 0.15 ∞ 1.00

equation20 1.83 0.50 ∞ 0.13 ∞ 1.16

magic (64) 1.66 (3.55) 0.88 ∞ 0.20 ∞ 2.94

magic (100) 1.40 (4.95) 0.88 ∞ 0.24 ∞ 4.13

magic (150) 1.46 (7.31) 0.98 ∞ (∞) 0.11 ∞ 5.74

magic (200) 1.70 (9.13) 0.97 ∞ (∞) 0.14 ∞ 6.86

magic (300) 1.96 (∞) 0.99 ∞ (∞) 0.30 ∞ 10.00

magic (400) 2.93 (∞) 0.98 ∞ (∞) 0.31 ∞ (?)

magic (500) 2.37 (∞) 0.95 ∞ (∞) 0.33 ∞ (?)

pythagoras 1.60 0.20 ∞ 0.20 ∞ 1.00

queens (8) 1.50 0.50 ∞ 0.10 ∞ 1.00

queens (16) 2.50 0.40 ∞ 0.10 ∞ 9.00

queens (20) 1.66 0.22 ∞ 0.06 ∞ 89.55

queens (24) 2.00 0.37 ∞ 0.10 ∞ 208.25

queens (30) 1.26 0.16 ∞ 0.04 ∞ 7611.73

sendmore � 5.0 � 1.00 ∞ � 1.00 ∞ � 1.00

suudoku 2.00 1.00 ∞ 0.10 ∞ 1.00

Table 13. TOY(FD) vs. C(F)LP systems: optimization benchmarks

Benchmark TOY(FD) PAKCS SICStus SWI GNU Ciao

golomb(8) 360 350 280 N 86 N

golomb(10) 26230 27500 25730 N 8595 N

golomb(12) 5280170 5453220 5208760 N 2162863 N

Table 14. Speed-up of TOY(FD) wrt. other C(F)LP systems for optimization

benchmarks

Benchmark SICStus PAKCS SWI GNU Ciao

golomb(8) 0.77 0.97 ∞ 0.23 ∞
golomb(10) 0.98 1.04 ∞ 0.32 ∞
golomb(12) 0.98 1.03 ∞ 0.40 ∞

The notation RE in the SICStus Prolog column indicates that we also did not

compute an answer because a Resource Error by Insufficient Memory was returned.

The dash (-) in the Ciao Prolog column means that we received an incorrect answer

for this benchmark5.

5 This event seems to be caused by a bug existing in the FD constraint package.
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As already declared, whenever possible we maintained the same formulation for

all the benchmarks in each system. However, this was not always possible in the

magic series benchmark. In the TOY(FD), PAKCS and SICStus Prolog systems,

this problem was coded by using specific constraints (i.e., count/4, sum/3 and

scalar product/4 - see formulation in Example 9). However, the GNU Prolog system

lacks these constraints and, therefore, we used a classical formulation that requires

to use reified constraints (Codognet and Diaz 1996). This classical formulation is

somewhat different in TOY(FD) since reification applies to Boolean types (whilst

in GNU Prolog, as in general in CLP (FD) languages, the Boolean values false and

true correspond to the numerical values 0 and 1 respectively). On the other hand,

it was not possible in PAKCS as reified constraints are not available in this system.

However, since SICStus Prolog allows reified constraints, the two formulations were

considered in this system. Then, in the SICStus column and for the magic series

benchmark row, we show between parentheses the (elapsed solving) time associated

with the reified constraints-based formulation followed by the time associated to the

alternative formulation based on the use of specific constraints.

In the speed-up tables, in those cases in which for a particular system either a

problem could not be expressed (e.g., for PAKCS, SWI Prolog or Ciao Prolog), or

an error was returned avoiding to compute a first answer, or an incorrect answer

was returned, we use the symbol ∞ to express that our system clearly outperforms

that system since our system provides constraint support to formulate a solution

for the benchmark and compute an answer. Also, a result � x.00 indicates that

TOY(FD) computed an answer in 0.0 milliseconds and thus no speed-up can be

calculated; in these cases, x.00 indicates that TOY(FD) is, at least, x times faster

than the compared system.

4.5.4 Analysis of the results

The third column in Tables 10 and 12, and column 2 in Table 14 show that, in

general, our implementation behaves closely to that of SICStus Prolog in both

constraint satisfaction and constraint optimization (in fact, this is not surprising as

current version of TOY(FD) uses SICStus Prolog FD solver) except for solving

linear equations (in these cases it is between two and four times slower). The reason

seems to be in the transformation process previous to the invocation of the FD
solver. Expressions have to be transformed into head normal form, which means

that their arguments are also transformed into head normal form (see Section 4.4).

Thus, there seems to be an overhead when expressions (such as those for linear

equations) involve a high number of arguments and sub-expressions. This may be

the same reason argued to explain the slow-down of TOY(FD) in the solving of

the queens benchmark via first-fail labeling, although no appreciable slow-down was

shown in the solving via näıve labeling.

PAKCS is between one and three times slower than our implementation. This is

quite interesting as the PAKCS implementation is fairly efficient and is also based on

the SICStus Prolog FD library. Perhaps the reason of this slowdown with respect

to TOY(FD) is that PAKCS implements an alternative operational model that
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also supports concurrency, and this model introduces some kind of overhead in the

solving of goals.

TOY(FD) also performs reasonably well compared to the other CLP (FD)

systems. It clearly outperforms both Ciao Prolog’s and SWI Prolog’s constraint

solvers which are far, in their current versions, from the efficiency of TOY(FD)

in the solving of constraint satisfaction problems (for fairness, we have to say that

these results cannot be extrapolated to the whole Ciao Prolog and SWI Prolog

systems which are quite efficient; in fact, the integer bounds constraint solver of

SWI Prolog seems to be a rather non-optimized simple integer constraint solver

that probably will be largely improved in future versions. This same argument can

be applied to the finite domain constraint solving package currently existing in the

Ciao Prolog system that seems to be non-mature yet). With respect to GNU Prolog’s

constraint solver, our system behaves acceptably well if we take into account that

this solver has shown an efficiency comparable to commercial systems. Except for

the N-queens benchmark (that seems to be particularly optimized for GNU solver)

our system is in the same order of efficiency. Moreover, it even behaves better on

scalable problems when the size of the problem increases (e.g., in the magic series

problem with näıve labeling). In this sense, again with the exception of the N-queens

problem, as the instance of the problem increases, the performance of TOY(FD)

becomes closer to that of GNU Prolog (this result is confirmed for both constraint

satisfaction and constraint optimization).

Further, with regard to the comparison to the other CFLP (FD) system, we

have to say that PAKCS provides a small set of global constraints (i.e., exactly

four) as mentioned in Section 4.5, whereas TOY(FD) also gives support to

specialized constraints for particular problems such as scheduling and placements

problems. Moreover, PAKCS does not provide FD constraints that help users to

recover statistics of the constraint solving process (e.g., number of domain prunings,

entailments detected by a constraint, backtracks due to inconsistencies, constraint

resumptions, etc) which is very useful in practice, as TOY(FD) does. (For the sake

of fairness, we mention again that PAKCS supports the concurrent evaluation of

constraints which is also very convenient in practice.)

Based on the results shown in this Section, we can assure that TOY(FD) is

the first pure CFLP (FD) system that provides a wide set of FD constraints that

makes it really competitive compared to existing CLP (FD) systems. These results

encourage us to continue working on our approach, and we hope to further improve

the results in a close future by means of introducing further optimizations.

5 Related work

In addition to already cited related work, in this section we discuss some more related

work. As already said, most of the work to integrate constraints in the declarative

programming paradigm has been developed on LP (Codognet and Diaz 1996;

Carlsson et al. 1997). However, there exist some attempts to integrate constraints in

the functional logic framework. For instance, Arenas et al. (1996); López-Fraguas

and Sánchez-Hernández (1999) show how to integrate both linear constraints over
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real numbers and disequality constraints in the FLP language TOY. Also, Lux

(2001) describes the addition of linear constraints over real numbers to the FLP

language Curry (Hanus 1999). Our work is guided to the FD constraint, instead

of real constraints (although they are preserved), which allows to use non-linear

constraints and adapts better to a range of FD applications.

With respect to FD, the closer proposal to ours is that described in Antoy and

Hanus (2000) that indicated how the integration of FD constraints in FLP could

be carried out. As already indicated, PAKCS is an implementation that follows these

indications.

TOY(FD) may also be considered from a multiparadigmatic view that means

to combine constraint programming with another paradigms in one setting. In

this context, there are some similarities with the language Oz (Van Roy et al.

2003; Van Roy and Haridi 2004) as this provides salient features of FP such as

compositional syntax and first-class functions, and features of LP and constraint

programming including logic variables, constraints, and programmable search mech-

anisms. However, Oz is quite different to TOY(FD) because of a number or

reasons: (1) Oz does not provide main features of classical functional languages

such as explicit types or curried notation; (2) functional notation is provided in

Oz as a syntactic convenience; (3) The Oz computation mechanism is not based on

rewriting logic as that of TOY(FD) ; (4) Oz supports a class of lazy functions

based on a demand-driven computation but this is not an inherent feature of the

language (as in TOY(FD) ) and functions have to be made lazy explicitly (e.g., via

the concept of futures); (5) functions and constraints are not really integrated, that

is to say, they do not have the same category as in TOY(FD) (i.e., constraints are

functions) and both coexist in a concurrent setting, and (6) Oz programs follow a far

less concise program syntax than TOY(FD). In fact, Oz generalizes the CLP and

concurrent constraint programming paradigms to provide a very flexible approach

to constraint programming very different to our proposal for CFLP (FD).

Also, LIFE (Aı̈t-kaci and Podelski 1993) is an experimental language aiming to

integrate logic programming and functional programming but, as Oz, the proposal

is quite different to TOY(FD) as firstly, it is considered in the framework of

object-oriented programming, and, secondly, LIFE enables the computation over an

order-sorted domain of feature trees by allowing the equality (i.e., unification) and

entailment (i.e., matching) constraints over order-sorted feature terms.

There exist other constraint systems that share some aspects with TOY(FD)

although they are very different. One of those systems is FaCiLe (Barnier and

Brisset 2001), a constraint programming library that provides constraint solving

over integer finite domains, HO functions, type inference, strong typing, and user-

defined constraints. However, despite these similarities, FaCiLe is very different to

TOY(FD) as it is built on top of the functional language OCaml that provides

full imperative capabilities and does not have a logical component; also OCaml is a

strict language, as opposed to lazy ones. In fact, as Oz , it allows the manipulation of

potentially infinite data structures by explicit delayed expressions, but laziness is not

an inherent characteristic of the resolution mechanism as in TOY(FD). Moreover,

FaCiLe is a library and thus it lacks programming language features.
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Other interesting systems are OPL (Van Hentenryck 1999) and AMPL (Fourer

et al. 1993) that cannot be compared to our work because they are algebraic

languages which therefore are not general programming languages. Moreover, these

languages do not benefit neither from complex terms and patterns nor from non-

determinism as TOY(FD) does.

Finally, we mention here another CFLP scheme proposed in the Phd Thesis

of Marin (Marin 2000). This approach introduces CFLP (D, S, L), a family of

languages parameterized by a constraint domain D, a strategy S which defines the

cooperation of several constraint solvers over D, and a constraint lazy narrowing

calculus L for solving constraints involving functions defined by user given con-

strained rewriting rules. This approach relies on solid work on higher-order lazy

narrowing calculi and has been implemented on top of Mathematica (Marin et al.

1999; Marin et al. 2000). Its main limitation from our viewpoint is the lack of

declarative semantics.

Generally speaking, TOY(FD) is, from its nature, different to all the constraints

systems discussed above since TOY(FD) is a pure FLP language that combines

characteristics of pure LP and pure FP paradigms, and its operational mechanism is

the result of combining the operational methods of logic languages (i.e., unification

and resolution) and functional languages (i.e., rewriting).

6 Conclusions and future work

In this paper we have presented CFLP (FD), a functional logic programming

approach toFD constraint solving. CFLP (FD) is not only a declarative alternative

to CLP (FD) but also extends its capabilities with new characteristics unusual or

not existing in CLP (FD) such as functional and curried notation, types, curried

and higher-order functions (e.g., higher-order constraints), constraint composition,

higher-order patterns, lazy evaluation and polymorphism, among others. As a

consequence, CFLP (FD) provides better tools, when compared to CLP (FD),

for a productive declarative programming as it implicitly enables more expressivity,

due to the combination of functional, relational and curried notation as well as type

system. Moreover, lazy evaluation allows the use of structures hard to manage in

CLP (FD), such as infinite lists.

A CFLP (FD) language is also presented by describing its syntax, type discipline

and both declarative and operational semantics. FD constraints are integrated as

functions to make them first-class citizens and allow their use in any place where a

data can (e.g., as arguments of functions). This provides a powerful mechanism to

define higher-order constraints.

We have also reported an implementation of the CFLP (FD) proposal which

connects a FLP language to a FD constraint solver, that provides both lazy com-

putation andFD constraint solving. TheFD solver is required to hold termination,

soundness and completeness properties. TOY(FD) is our implementation of the

CFLP (FD) language previously described, that connects the functional logic

language TOY to the efficient FD constraint solver of SICStus Prolog. The result

is that TOY(FD) is a lazy functional logic system with support for FD constraint

solving.
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We have also explained the most important contributions by showing the extra

capabilities of CFLP (FD) with respect to CLP (FD) . This comparison points out

the main benefits of integrating FLP and FD in a declarative language.

Moreover, we have also shown that constraint solving in TOY(FD) is fairly

efficient as, in general, behaves closely to SICStus Prolog, which means that the wrap-

ping of SICStus Prolog by TOY does not increase significantly the computation

time. In addition, TOY(FD) clearly outperforms existing CLP (FD) systems such

as SWI Prolog and Ciao Prolog and also is competitive with respect to GNU Prolog,

one of the most efficient CLP (FD) systems. Furthermore,TOY(FD) is around one

and three times faster than PAKCS, its closer CFLP (FD) implementation. Practical

applications of TOY(FD) can be found in (Fernández et al. 2002; Fernández et al.

2003).

Throughout the paper it should have been clear that one inherent advantage of

the CFLP (FD) approach is that it enables to solve all the CLP (FD) applications

as well as other problems closer to the functional setting.

We claim that the integration of FD constraints into a FLP language receive

benefits from both worlds, i.e., taking functions, higher-order patterns, partial

applications, non-determinism, lazy evaluation, logical variables, and types from

FLP and domain variables, constraints, and propagators from the FD constraint

programming.

In addition, we claim that the idea of interfacing a FLP language and constraint

solvers can be extended to other kind of interesting constraint systems, such as

non-linear constraints, constraints over sets, or Boolean constraints, to name a few.

Observe that TOY(FD) can be thought of as a constraint solving procedure

integrated into a sophisticated, state-of-the-art execution mechanism for lazy nar-

rowing. Operationally speaking, TOY(FD) compiles CFLP (FD)-programs into

Prolog-programs in a system equipped with a constraint solver. This makes both

lazy evaluation and constraint solving be inherent features of the system.

Appendix A [Proof of Theorem 1] in Page 548

The proof of theorem 1 can be done distinguishing several cases from the declarative

semantics of each primitive function symbol given in Table 1 and the requirements

of each constraint solver rule or failure rule in Tables 2–5:

Rules of Table 2

We examine for example the first rule in Table 2: seq t s →! R, S σ ��χ
(t == s, Sθ1 σθ1) ∨ (t \ = s, Sθ2 σθ2) with R /∈ χ, θ1 = {R �→ true} and

θ2 = {R �→ false} (the rest of rules in Table 2 are analogous). We prove that

SolFD(seq t s →! R, S σ) = SolFD(t == s, Sθ1 σθ1) ∪ SolFD(t \ = s, Sθ2

σθ2):

⊆) Let η ∈ SolFD(seq t s →! R, S σ). By definition of SolFD we have η ∈
SolFD(seq t s →! R) and η ∈ SolFD(S σ). Since η ∈ SolFD(seq t s →! R) we
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obtain seqFD tη sη → η(R) with η(R) total. According to Table 1, η(R) must be

only true or false. We distinguish two cases:

• If η(R) = true then trivially η ∈ SolFD(seq t s →! true) or equivalently η ∈
SolFD(t == s). Moreover, since η(R) = true = (true)η we have η ∈ Sol(θ1)

and then θ1η = η (because η(θ1(R)) = (true)η = η(R) and η(θ1(X)) = η(X) for

all X �= R). Then, since η ∈ SolFD(S σ) we also have θ1η ∈ SolFD(S σ),

or equivalently η ∈ SolFD(Sθ1 σθ1). We can conclude η ∈ SolFD(t == s,

Sθ1 σθ1).

• If η(R) = false, using an analogous reasoning, we can also conclude η ∈
SolFD(t \ = s, Sθ2 σθ2).

Therefore, η ∈ SolFD(t == s, Sθ1 σθ1) ∪ SolFD(t \ = s, Sθ2 σθ2).

⊇) Let η ∈ SolFD(t == s, Sθ1 σθ1) ∪ SolFD(t \ = s, Sθ2 σθ2). We distinguish

again two cases:

• If η ∈ SolFD(t == s, Sθ1 σθ1) then, by definition of SolFD we have η ∈
SolFD(t == s) and η ∈ SolFD(Sθ1 σθ1) (or equivalently, η ∈ SolFD(Sθ1) and

η ∈ SolFD(σθ1)). Since η ∈ SolFD(σθ1) and R /∈ dom(σ) (by initial hypothesis,

seq t s →! R, S σ satisfy the requirements of Definition 2) we deduce η ∈
Sol(θ1) and then η(R) = (true)η = true. But then, η ∈ SolFD(seq t s →! R)

because seqFD tη sη→ η(R) = true and we have η ∈ SolFD(t == s). Moreover,

θ1η = η (because η(θ1(R)) = (true)η = η(R) and η(θ1(X)) = η(X) for all X �=
R) and we can also obtain η ∈ SolFD(S σ) because η ∈ SolFD(Sθ1 σθ1),

or equivalently, θ1η ∈ SolFD(S σ). Therefore, η ∈ SolFD(seq t s →! R, S

σ).

• If η ∈ SolFD(t \ = s, Sθ2 σθ2), using an analogous reasoning, we can also

conclude η ∈ SolFD(seq t s →! R, S σ).

The remaining conditions of the theorem for this rule trivially hold because of the

initial hypothesis seq t s →! R, S σ satisfies the requirements of Definition 2, and

because of the conditions of the rule R /∈ χ.

Rules of Table 3

We examine the first rule in Table 3: u == u, S σ ��χ S σ with u ∈ �.

In this case, trivially SolFD(u == u, S σ) = SolFD(u == u) ∩ SolFD(S σ)

= Val(FD) ∩ SolFD(S σ) = SolFD(S σ). The remaining conditions of the

theorem trivially holds by initial hypothesis. We examine now the second rule in

Table 3: X == t, S σ ��χ t == t, Sθ σθ with X /∈ χ ∪ var(t), var(t) ∩ χ =

∅ and θ = {X �→ t}. We prove that SolFD(X == t, S σ) = SolFD(t == t, Sθ σθ):

⊆) Let η ∈ SolFD(X == t, S σ). By definition of SolFD we have η ∈ SolFD(X ==

t) and η ∈ SolFD(S σ). Since η ∈ SolFD(X == t) we obtain seqFD η(X) tη →
true. According to Table 1 we obtain η(X) = tη with tη total and then η ∈ Sol(θ).

In this situation, trivially η ∈ SolFD(t == t). Moreover, since η ∈ Sol(θ), we
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deduce θη = η (because η(θ(X)) = tη = η(X) and η(θ(Y )) = η(Y ) for all Y �= X).

Then, since η ∈ SolFD(S σ), we also have θη ∈ SolFD(S σ), or equivalently η

∈ SolFD(Sθ σθ). Therefore, we can conclude η ∈ SolFD(t == t, Sθ σθ).

⊇) Let η ∈ SolFD(t == t, Sθ σθ). By definition of SolFD we have η ∈
SolFD(t == t) and η ∈ SolFD(Sθ σθ) (or equivalently, η ∈ SolFD(Sθ) and

η ∈ SolFD(σθ)). Since η ∈ SolFD(σθ) and X /∈ dom(σ) (by initial hypothesis,

X == t, S σ satisfies the requirements of Definition 2) we deduce η ∈ Sol(θ)

and then η(X) = tη. But then, η ∈ SolFD(X == t) because η ∈ SolFD(t == t) and

seqFD η(X) tη → true with η(X) = tη total. Moreover, θη = η (because η(θ(X)) =

tη = η(X) and η(θ(Y )) = η(Y ) for all Y �= X) and we can obtain η ∈ SolFD(S

σ) because η ∈ SolFD(Sθ σθ), or equivalently, θη ∈ SolFD(S σ). Therefore η

∈ SolFD(X == t, S σ).

The remaining conditions of the theorem for this rule trivially hold because of

the initial hypothesis X == t, S σ satisfies the requirements of Definition 2,

and because of the conditions of the rule X /∈ χ ∪ var(t) and var(t) ∩ χ = ∅.
Finally, we examine the main rule in Table 3 for strict disequality (the rest of rules

in Table 3 are analogous or more simples): X \ = h tn, S σ ��χ (
∨

i(Sθi σθi))

∨ (
∨n

k=1(Uk \ = tkθ, Sθ σθ)) with X /∈ χ, var(h tn) ∩ χ �= ∅, θi = {X �→ hi
Y mi

} with hi �= h, and θ = {X �→ h Un} with Y mi
, Un new fresh variables. We

prove that SolFD(X \ = h tn, S σ) = (
⋃

i SolFD(∃Y mi
. (Sθi σθi))) ∪ (

⋃n
k=1

SolFD(∃Un.(Uk \ = tkθ, Sθ σθ))):

⊆) Let η ∈ SolFD(X \ = h tn, S σ). By definition of SolFD we have η ∈
SolFD(X \ = h tn) and η ∈ SolFD(S σ). Since η ∈ SolFD(X \ = h tn) we obtain

seqFD η(X) (h tn)η → false. According to Table 1, η(X) and (h tn)η = h tnη have

no common upper bound w.r.t. the information ordering , and we can distinguish

two cases:

• η(X) = hi smi
with hi �= h. Since Y mi

are new variables, we can define η′ =\Y mi

η such that η′(Yk) = sk for all 1 � k � mi and η′(Z) = η(Z) for all Z /∈ Y mi
.

Clearly, η′(X) = η(X) = hi smi
= hi η′(Ymi

) = (hi Y mi
)η′ and then η′ ∈ Sol(θi).

Moreover, θiη
′ =\Y mi

η because η′(θi(X)) = (hi Y mi
)η′ = hi η′(Ymi

) = hi smi
=

η(X) and η′(θi(Z)) = η′(Z)= η(Z) for all Z /∈ {X} ∪ Y mi
. Since η ∈ SolFD(S

σ) and Y mi
are new variables in S σ, we also have θiη

′ ∈ SolFD(S σ),

or equivalently, η′ ∈ SolFD(Sθi σθi). Finally, since there exists η′ =\Y mi
η

with Y mi
new variables such that η′ ∈ SolFD(Sθi σθi) we can deduce η ∈

SolFD(∃Y mi
. (Sθi σθi)) for any i such that hi �= h.

• η(X) = h sn with a pattern sk (1 � k � n) such that sk and tkη have no

common upper bound w.r.t. the information ordering  (i.e., seqFD sk tkη →
false). Since Un are new variables, we can define η′ =\Un

η such that η′(Uk)

= sk for all 1 � k � n and η′(Y ) = η(Y ) for all Y /∈ Un. Clearly, η′(X) =

η(X) = h sn = h η′(Un) = (h Un)η
′ and then η′ ∈ Sol(θ). Moreover, θη′ =\Un

η

because η′(θ(X)) = (h Un)η
′ = h η′(Un) = h sn = η(X) and η′(θ(Y )) = η′(Y )=
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η(Y ) for all Y /∈ {X} ∪ Un. Therefore, there exists 1 � k � n such that seqFD

η′(Uk) tkθη
′ → false because η′(Uk) = sk and tkθη

′ = tkη (since Un are new

variables, var(tk) ∩ Un = ∅) and we can deduce η′ ∈ SolFD(Uk \ = tkθ). On the

other hand, η ∈ SolFD(S σ), or equivalently θη′ ∈ SolFD(S σ), because

Un are again new variables in S σ. We can also conclude η′ ∈ SolFD(Sθ

σθ). Finally, since there exists η′ =\Un
η with Un new variables such that η′ ∈

SolFD(Uk \ = tkθ, Sθ σθ), we obtain η ∈ SolFD(∃Un. (Uk \ = tkθ, Sθ

σθ)) (1 � k � n).

⊇) Let η ∈ (
⋃

i SolFD(∃Y mi
. (Sθi σθi)) ) ∪ (

⋃n
k=1 SolFD(∃Un. (Uk \ = tkθ, Sθ

σθ)) ). We distinguish again two cases:

• η ∈ SolFD(∃Y mi
. (Sθi σθi)) for any i such that hi �= h. By definition of SolFD,

there exists η′ =\Y mi
η such that η′ ∈ SolFD(Sθi σθi) (or equivalently, η′ ∈

SolFD(Sθi) and η′ ∈ SolFD(σθi)). Since η′ ∈ SolFD(σθi) and X /∈ dom(σ) (by

initial hypothesis, X \ = h tn, S σ satisfies the requirements of Definition

2), we deduce η′ ∈ Sol(θi) and then η′(X) = (hi Y mi
)η′ = hi η′(Ymi

). Moreover,

since η′ =\Y mi
η, we also deduce θiη

′ =\Y mi
η because η′(θi(X)) = (hi Y mi

)η′

= η′(X) = η(X) and η′(θi(Z)) = η′(Z) = η(Z) for all Z /∈ {X} ∪ Y mi
. In this

situation, seqFD η′(X) (h tn)η
′ → false, because η′(X) = (hi Y mi

)η′ = hi η′(Ymi
)

and (h tn)η
′ = h tnη′ with hi �= h have no common upper bound w.r.t. the

information ordering . Therefore, η′ ∈ SolFD(X \ = h tn), and we also have

η ∈ SolFD(X \ = h tn) because Y mi
are new variables in X \ = h tn and η′

=\Y mi
η. On the other hand, since η′ ∈ SolFD(Sθi σθi), or equivalently θiη

′

∈ SolFD(S σ), and Y mi
are new variables in S σ, we obtain η ∈ SolFD(S

σ) because θiη
′ =\Y mi

η. Therefore, η ∈ SolFD(X \ = h tn, S σ).

• η ∈ SolFD(∃Un. (Uk \ = tkθ, Sθ σθ)) (1 � k � n). By definition of SolFD,

there exists η′ =\Un
η such that η′ ∈ SolFD(Uk \ = tkθ, Sθ σθ) (1 � k �

n). By definition of SolFD again we have η′ ∈ SolFD(Uk \ = tkθ) and η′ ∈
SolFD(Sθ σθ) (or equivalently, η′ ∈ SolFD(Sθ) and η′ ∈ SolFD(σθ)). Since

η′ ∈ SolFD(σθ) and X /∈ dom(σ) (by initial hypothesis, X \ = h tn, S σ

satisfies the requirements of Definition 2) we deduce η′ ∈ Sol(θ) and then

η′(X) = (h Un)η
′ = h η′(Un). Moreover, since η′ =\Un

η, we also deduce θη′

=\Un
η because η′(θ(X)) = (h Un)η

′ = η′(X) = η(X) and η′(θ(Z)) = η′(Z)

= η(Z) for all Z /∈ {X} ∪ Un. Since η′ ∈ SolFD(Uk \ = tkθ), and according

to Table 1, we have seqFD η′(Uk) tkθη
′ → false where η′(Uk) and tkθη

′ =

tkη (because var(tk) ∩ Un = ∅) have no common upper bound w.r.t. the

information ordering . In this situation, we also have seqFD η(X) (h tn)η →
false because η(X) = (h Un)η

′ = h η′(Un), (h tn)η = h tnη, and clearly η(X)

and (h tn)η have no common upper bound w.r.t. the information ordering 
(there exists 1 � k � n such that η′(Uk) and tkη have no common upper bound

w.r.t. the information ordering ). Therefore, η ∈ SolFD(X \ = h tn). On the

other hand, since η′ ∈ SolFD(Sθ σθ), or equivalently θη′ ∈ SolFD(S σ),

and Un are new variables in S σ, we obtain η ∈ SolFD(S σ) because θη′

=\Un
η. Therefore, η ∈ SolFD(X \ = h tn, S σ).
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The remaining conditions of the theorem for this rule trivially hold because of the

initial hypothesis X \ = h tn, S σ satisfies the requirements of Definition 2, and

because of the conditions of the rule X /∈ χ, var(h tn) ∩ χ �= ∅, and Y mi
, Un are new

fresh variables.

Rules of Table 4

We examine the first rule in Table 4: u � u′, S σ ��χ S σ with u, u′ ∈ �
and u �� u′. In this case, trivially SolFD(u � u′, S σ) = SolFD(u � u′) ∩ SolFD(S

σ) = Val(FD) ∩ SolFD(S σ) = SolFD(S σ). The remaining conditions of

the theorem trivially hold by the initial hypothesis. We examine now the main rule

in Table 4 (the rest of rules are analogous or more simples): a ⊗ b = X, S σ ��χ
Sθ σθ with X /∈ χ, a, b ∈ � and θ = {X �→ a ⊗� b}. We prove that SolFD(a ⊗ b

= X, S σ) = SolFD(Sθ σθ):

⊆) Let η ∈ SolFD(a ⊗ b = X, S σ). By definition of SolFD we have η ∈
SolFD(a ⊗ b = X) and η ∈ SolFD(S σ). Since η ∈ SolFD(a ⊗ b = X) we obtain

⊗FD a b→ a ⊗� b, seqFD (a ⊗� b) η(X) → true where a, b, a ⊗� b ∈ �. According

to Table 1, we obtain η(X) = a ⊗� b = (a ⊗� b)η and then η ∈ Sol(θ). Moreover,

we deduce θη = η because η(θ(X)) = (a ⊗� b)η = a ⊗� b = η(X) and η(θ(Y )) =

η(Y ) for all Y �= X. Since η ∈ SolFD(S σ) we also have θη ∈ SolFD(S σ), or

equivalently, η ∈ SolFD(Sθ σθ).

⊇) Let η ∈ SolFD(Sθ σθ). By definition of SolFD we have η ∈ SolFD(Sθ)

and η ∈ SolFD(σθ). Since by initial hypothesis a ⊗ b = X, S σ satisfies the

requirements of Definition 2, we have X /∈ dom(σ) and then η ∈ Sol(θ) (i.e., η(X) =

(a ⊗� b)η = (a ⊗� b) ∈ �, where a, b ∈ �). But then ⊗FD a b → a ⊗� b, seqFD (a

⊗� b) η(X) → true, and therefore η ∈ SolFD(a ⊗ b = X). Moreover, θη = η because

η(θ(X)) = (a ⊗� b)η = a ⊗� b = η(X) and η(θ(Y )) = η(Y ) for all Y �= X. Since η ∈
SolFD(Sθ σθ), or equivalently θη ∈ SolFD(S σ), we obtain η ∈ SolFD(S σ).

Therefore, η ∈ SolFD(a ⊗ b = X, S σ).

The remaining conditions of the theorem for this rule trivially hold because of

the initial hypothesis a ⊗ b = X, S σ satisfies the requirements of Definition 2,

and because of the conditions of the rule X /∈ χ.

Rules of Table 5

We examine the first rule in Table 5: u ∈ [u1, . . . , un], S σ ��χ S σ with

u, ui ∈ � ∪ Var and ∃i ∈ {1, . . . , n}. ui ≡ u. In this situation, and according to

Table 1, we have SolFD(u ∈ [u1, . . . , un]) = Val(FD): η ∈ SolFD(u ∈ [u1,. . . , un])

implies that domainFD uη [u1η, . . . , unη] → true where ∀i ∈ {1, . . . , n−1}. uiη ��

ui+1η and ∃i ∈ {1, . . . , n}. uη =� uiη. It holds for all η ∈ Val(FD) because of the

initial hypothesis u ∈ [u1, . . . , un], S σ satisfies the requirements of Definition 2

(i.e., [u1, . . . , un] represents an increasing integer list), and because of the conditions
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of this rule (i.e., ∃i ∈ {1, . . . , n}. ui ≡ u). Then, trivially SolFD(u ∈ [u1, . . . , un], S

σ) = SolFD(u ∈ [u1, . . . , un]) ∩ SolFD(S σ) = Val(FD) ∩ SolFD(S σ)

= SolFD(S σ). The remaining conditions of the theorem for this rule trivially

hold by the initial hypothesis. The second rule in Table 5 is completely analogous:

SolFD(u /∈ [u1, . . . , un]) = Val(FD) because u, ui ∈ �, ∀i ∈ {1, . . . , n}. ui �=� u, and

according to Table 1, domainFD uη [u1η, . . . , unη]→ false holds for all η ∈ Val(FD).

Finally, we examine the main rule for labeling in Table 5: labeling [. . . ] [X], X

∈ [u1, . . . , un], S σ ��χ
∨n

i=1 (Sθi σθi) with X /∈ χ, and ∀i ∈ {1, . . . , n}, ui ∈ �,

θi = {X �→ ui}. We prove that SolFD(labeling [. . . ] [X], X ∈ [u1, . . . , un], S σ) =
⋃n

i=1 SolFD(Sθi σθi):

⊆) Let η ∈ SolFD(labeling [. . . ] [X], X ∈ [u1, . . . , un], S σ). By definition of

SolFD we have η ∈ SolFD(labeling [. . . ] [X], X ∈ [u1, . . . , un]) and η ∈ SolFD(S

σ). Then, indomainFD η(X) → �, domainFD η(X) [u1, . . . , un] → true because ui ∈
� for all 1 � i � n. According to Table 1, we deduce η(X) ∈ �, ∀i ∈ {1, . . . , n−1}.
ui �� ui+1 and ∃i ∈ {1, . . . , n}. η(X) =� ui. Therefore, η(X) = ui = uiη and then η

∈ Sol(θi) (1 � i � n). Moreover, we have θiη = η because η(θi(X)) = uiη = ui =

η(X) and η(θi(Y )) = η(Y ) for all Y �= X. Finally, since η ∈ SolFD(S σ) we can

conclude θiη ∈ SolFD(S σ) or equivalently η ∈ SolFD(Sθi σθi) (1 � i � n).

⊇) Let η ∈ SolFD(Sθi σθi) (1 � i � n). By definition of SolFD we have η ∈
SolFD(Sθi) and η ∈ SolFD(σθi). By the initial hypothesis labeling [. . . ] [X], X ∈
[u1, . . . , un], S σ satisfies the requirements of Definition 2, we have X /∈ dom(σ)

and then η ∈ Sol(θi) (i.e., η(X) = uiη = ui due to ui ∈ �). Moreover, we have θiη =

η because η(θi(X)) = uiη = ui = η(X) and η(θi(Y )) = η(Y ) for all Y �= X. Then,

since η ∈ SolFD(Sθi σθi), or equivalently, θiη ∈ SolFD(S σ), we deduce η ∈
SolFD(S σ). Finally, we prove that η ∈ SolFD(labeling [. . . ] [X], X ∈ [u1, . . . ,

un]). Since η(X), ui ∈ � for all 1 � i � n, [u1, . . . , un] is an increasing integer list

by the initial hypothesis, and there exists 1 � i � n such that η(X) = ui ∈ �,

according to Table 1 we can deduce domainFD η(X) [u1, . . . , un] → true. Moreover,

since η(X) ∈ �, trivially indomainFD η(X) → � according again to Table 1. Then,

indomainFD η(X) → �, domainFD η(X) [u1, . . . , un] → true, and we can conclude

that η ∈ SolFD(labeling [. . . ] [X], X ∈ [u1, . . . , un]). Therefore, η ∈ SolFD(labeling

[. . . ] [X], X ∈ [u1, . . . , un], S σ).

The remaining conditions of the theorem for this rule trivially hold because of the

initial hypothesis labeling [. . . ] [X], X ∈ [u1, . . . , un], S σ satisfies the requirements

of Definition 2, and because of the conditions of the rule X /∈ χ. The last rule for

labeling follows a trivial reasoning because SolFD(labeling [. . . ] [u]) = Val(FD) if

u ∈ �. According to Table 1, indomainFD uη → � for all η ∈ Val(FD). Therefore,

SolFD(labeling [. . . ] [u], S σ) = SolFD(labeling [. . . ] [u]) ∩ SolFD(S σ) =

Val(FD) ∩ SolFD(S σ) = SolFD(S σ). The remaining conditions of the

theorem are also trivial by initial hypothesis.
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Failure Rules

Finally, we suppose any arbitrary failure rule such that S σ ��χ fail and we

prove that SolFD(S σ) = ∅. First, we note that any failure rule must have the

following syntactic form: S1, S2 σ ��χ fail with conditions such that SolFD(S1)

= ∅. For example, consider the failure rule associated to Table 4: u � u′, S σ

��χ fail with u, u′ ∈ � and u >� u′. Clearly, SolFD(u � u′) = ∅. In this situation,

SolFD(S1, S2 σ) = SolFD(S1) ∩ SolFD(S2 σ) = ∅ ∩ SolFD(S2 σ) = ∅. �
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