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ABSTRACT
One of the key challenges of the gas turbine community is to empower the condition based
maintenance with simulation, diagnostic and prognostic tools which improve the reliability
and availability of the engines. Within this context, the inverse adaptive modelling methods
have generated much attention for their capability to tune engine models for matching
experimental test data and/or simulation data. In this study, an integrated performance
adaptation system for estimating the steady-state off-design performance of gas turbines
is presented. In the system, a novel method for compressor map generation and a genetic
algorithm-based method for engine off-design performance adaptation are introduced. The
methods are integrated into PYTHIA gas turbine simulation software, developed at Cranfield
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University and tested with experimental data of an aero derivative gas turbine. The results
demonstrate the promising capabilities of the proposed system for accurate prediction of
the gas turbine performance. This is achieved by matching simultaneously a set of multiple
off-design operating points. It is proven that the proposed methods and the system have the
capability to progressively update and refine gas turbine performance models with improved
accuracy, which is crucial for model-based gas path diagnostics and prognostics.

Keywords: gas turbine performance; inverse modelling; engine model tuning; performance
adaptation; off-design performance

NOMENCLATURE
ai, j weighting factor of OF
ETA isentropic efficiency
ETAa elliptical coefficient for the semi-major axis
ETAb elliptical coefficient for the semi-minor axis
ETAb1-3 efficiency sub-coefficients
ff engine fuel flow (kg/s)
k number of measureable parameters
l number of operating points
N compressor shaft speed
OF objective function
p performance parameter vector
pMi, j measurable parameters
pi, j predicted parameters
P total pressure (atm)
PR pressure ratio
PR1-2 pressure ratio sub-coefficient
PRb elliptical coefficient for pressure ratio
T total temperature (K)
u ambient and operating condition vector
UW power output (W)
x independent component characteristics vector
WAC corrected mass flow rate
W mass flow rate (kg/s)/elliptical coefficient
WACa mass flow rate
W1-2 mass flow sub-coefficient

Greek

η efficiency

Subscripts

1–8 engine stations (see Fig. 8),
amb ambient
DP design point
g exhaust gas
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s surge
SM surge margin
th thermal

1.0 INTRODUCTION
The continuously stringent environmental regulations imposed on the gas turbines for
propulsion and power applications, along with the competitive market environment, has
triggered diverse challenges. One of these challenges is the development of multi-fidelity,
accurate and reliable engine performance models which leads towards a better understanding
of the behaviour of these highly non-linear and complex machines. A successful operation
and maintenance strategy for gas turbine assets depends on the informed decisions that gas
turbine operators make according to the available information from condition monitoring,
diagnostic and prognostic tools. An example of the impact that the engine models may have
on the implementation of these decision making tools can be found in the General Electric’s
latest Digital Twin technology(1). One of the engaging tasks of the gas turbine community is
the continuous development of engine modelling techniques(2-6) for improving the accuracy
of performance simulation(7-9), diagnostics(10,11) and prognostics(12-14).

Gas turbines have to operate at any point between idle and full power at various ambient,
altitudes and/or flight conditions. The off-design performance behaviour of each gas turbine
engine is determined by the behaviour of its key gas path components represented by their
“characteristic maps”. These maps represent the interrelationships among the component
performance parameters such as pressure ratio, air mass flow rate, isentropic efficiency and
shaft rotational speed. The characteristic maps may be obtained from a long and expensive
development effort by original equipment manufacturers and remain, apart from a few
examples in the literature, proprietary information.

Given the proprietary nature of the compressor maps and their emphasised importance
in engine performance estimation, the gas turbine research community has addressed this
limitation by utilising generic component maps and then tuning and scaling the maps in
order to match the actual engine performance obtained from engine tests. In recent years,
the topic of inverse modelling with experimental data has generated much attention(15,16) for
several scientific disciplines because it enables a fast and accurate representation of a system’s
behaviour for a wide range of operating conditions and applications.

One of the most common inverse mathematical modelling processes for estimating the gas
turbine performance is the multiple point performance adaptation. This process may involve
adaptation of an engine model in order to match simultaneously a set of measurements taken
from a service engine at off-design conditions. Stamatis et al(9) introduced such a method of
adapting an engine model through an optimal set of scaling factors applied to the compressor
map after an optimisation process. The work of Kong and Ki(17) suggested a scaling method
based on system identification and later on a compressor map generation method through a
Genetic Algorithm (GA)(18). Lo Gatto et al(19) used a GA method to search for an optimal
set of scaling factors based on rig test data at a single off-design point. This method was
further developed by Wang et al(20) and Li et al(21) by seeking an optimal set of scaling factors
to compromise the accuracy of multiple off-design point test data. Recently, Li et al(22,23)

proposed a variable scaling factors for multiple off-design operating points in order to perform
a non-linear multiple point adaptation.
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Figure 1. (Colour online) Compressor Map of GE LM2500 as reproduced from Ref. 25.

In contrast to the existing scaling techniques(9,17-24) this paper proposes a non-linear
compressor map modelling and generation method based on engine off-design test data.
The compressor map generation procedure is analytical and can therefore capture non-
linear distribution of speed lines and efficiency contours. This method is then integrated
into an engine model and a GA-based performance adaptation system for multiple off-
design performance simulation. It should be noted that both the compressor map generation
method and the inverse modelling optimisation process have integrated into the PYTHIA gas
turbine software platform, which has been utilised by Manx Utilities for improved condition-
based maintenance of a combined cycle power plant. Two test cases are conducted for an
aero derivative industrial gas turbine engine to demonstrate the capability of the proposed
method, in comparison with an earlier adaptation approach(19), in the estimation of off-design
performance of the engine.

2.0 METHODOLOGY
2.1 Map representation

The first step of the methodology involves the development of a mathematical model to present
a compressor characteristic map. Among a limited number of compressor maps available in
the literature, the characteristic map of GE’s LM2500 gas turbine(25) is taken as an example for
this analysis. This map has been digitised and reproduced as seen in Fig. 1. The input ambient
operating conditions of this compressor map refer to ISA conditions of Ta = 288.15 K and
Pa = 101.325 kPa.

The form of the compressor map shown in Fig. 1 graphically represents the
interrelationships of all component characteristic parameters, namely mass flow rate WAC,
pressure ratio PR, isentropic efficiency ETA and referred shaft rotational speed N. In order
to facilitate the interpretation of such compressor characteristics by an engine simulation
program, two separate maps may be presented: one for PR-WAC relationship and the other
for ETA-WAC relationship. Normally, such compressor characteristics may be represented in
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Figure 2. (Colour online) Schematic representation of the speed lines using elliptic curves.

either a graph or a table. To represent compressor maps in a more generic form for the purpose
of performance adaptation, a new method is introduced as follows.

It is assumed that the compressor map speed lines are segments of a set of ellipses

(
x − xc

a

)2

+
(

y − yc

b

)2

= 1, … (1)

where (xc, yc) are the coordinates of the centre of the ellipse. In case of the PR-WAC map
it may be assumed that the centre of the ellipse is fixed at the origin (0, 0). Therefore,
Equation (1) becomes

(
WAC
WACa

)2

+
(

PR
PRb

)2

= 1, … (2)

where WACa and PRb denote the semi-major and semi-minor axes of the ellipse. These
coefficients correspond to the points at which each curve meets the x and y axis when PR = 0
and WAC = 0, respectively.

A similar fitting approach has been employed for the second form of the compressor map,
which represents the relationship between mass flow and isentropic efficiency. As before, it is
assumed that each efficiency line belongs to an elliptic curve, with its centre fixed at (xc, 0),
which is given by

(
WAC − xc

ET Aa

)2

+
(

ETA
ET Ab

)2

= 1 … (3)

The only difference in our approach for this form of the map is the fact that the coordinate
of the ellipse’s centre in x axis (xc) is assumed to coincide with the mid-point of air mass
flow range for each line of constant speed, as shown in Fig. 3. The range of the mass flow
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Figure 3. (Colour online) Schematic representation of the efficiency map generation by elliptic function.

Figure 4. (Colour online) Original speed lines of LM2500 compressor map vs. generated speed lines.

rate is known from the PR-WAC map; hence, the only unknown parameter that needs to be
determined is the coefficient ETAb.

The proposed mathematical representation method has been tested for fitting the
characteristic map of GE’s LM2500, and the resulted map for the PR-WAC relationship is
shown in Fig. 4. Taking into account that 50 operating points have been selected for fitting
each map the mean prediction error for the PR-WAC and the ETA-WAC maps is 0.2% and
0.1%, respectively.
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2.2 Map generation

The second step of the methodology deals with the mathematical analysis of the proposed
elliptical coefficients and more specifically their variation with respect to the rotational
speed N. This analysis is carried out in order to establish the mathematical relationships for
controlling and generating the compressor map shape. Starting off with the PR-WAC map, the
coefficient WACa may be expressed as an exponential function of relative shaft speed

WACa = WACDP · W1 · NW2 , … (4)

where W1 and W2 are the sub-coefficients of this exponential function and WACDP denotes the
mass flow rate at design point conditions.

The elliptical coefficient PRb may be similarly expressed by an exponential function of
relative shaft speed

PRb = PRDP · PR1 · NPR2 , … (5)

where PR1 and PR2 are the sub-coefficients of the equation and PRDP denotes the design point
pressure ratio.

The parameter PRs, schematically illustrated in Fig. 2, denotes the pressure ratio at the surge
point of a speed line. Assuming a reasonable surge margin (SM) of 20% (i.e., SM = 0.2), then
PRs can be determined as

PRs = PRDP (SM + 1) … (6)

The mass flow rate corresponding to the surge point of the same speed line can be
determined by the elliptical equation

WACs =
√

WACa2 ·
[
1 − (PRs/PRb)2

]
… (7)

The sub-coefficients W1, W2, PR1 and PR2 determine the pressure ratio and mass flow rate
within the specified range of 50% up to 115% of compressor relative shaft speed N. A similar
procedure has been followed for the map that represents the ETA-WAC relationship. For this
form of the map, it was assumed that the isentropic efficiency can be accurately approximated
by a quadratic function as

ETAb = ET ADP
(
ET Ab1 · N2 + ET Ab2 · N + ET Ab3

)
, … (8)

where ETAb1, ETAb2 and ETAb3 are the sub-coefficients of the equation and ETADP denotes
the design point isentropic efficiency. This is because the contour of ETAb represents the peak
efficiency of different speed lines on the ETA-WAC graph shown in Fig. 3 and the distribution
of the peak efficiency curve is close to a quadratic curve.

To evaluate the impact of each sub-coefficient, a sensitivity analysis is performed. This
sensitivity analysis examines the effect that a –10% drop of each sub-coefficient has on the
pressure ratio, the mass flow rate and the isentropic efficiency of the compressor. As shown
in Fig. 5, the pressure ratio has an increased sensitivity to sub-coefficients PR1 and PR2. A
sensitivity of similar magnitude is also noticed for the mass flow rate to the sub-coefficients
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Table 1
Compressor map sub-coefficients

Symbol Description Equation

W1 Mass Flow exponential function (4)
W2 Mass Flow exponential function (4)
PR1 Pressure Ratio exponential function (5)
PR2 Pressure Ratio exponential function (5)
ETAb1 Efficiency quadratic function (8)
ETAb2 Efficiency quadratic function (8)
ETAb3 Efficiency quadratic function (8)

W1 W2 PR1 PR2 ETAb1 ETAb2 ETAb3
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Figure 5. (Colour online) The deviation of component map parameters PR, WAC and ETA corresponding
to a –10% drop of each sub-coefficient.

W1, W2. Finally, the isentropic efficiency is solely affected by the sub-coefficients ETAb1,
ETAb2 and ETAb3. It is also worth noting that a 10% drop in ETAb2 leads to –25% deviation
in efficiency, a fact that emphasises the amplified influence that this sub-coefficient has. It
follows that the efficiency depends very much on ETAb2 which shows that the relationship is
mainly linear and to a second degree non-linear (ETAb2). The sensitivity analysis can serve as
a guide for setting the upper and lower bounds of these sub-coefficients when these are used
for a constrained optimal coefficient searching process.

The total number of sub-coefficients for this analysis is seven, as summarised in Table 1.
Tuning these sub-coefficients through an optimisation algorithm allows the modification of
the generated compressor map in a non-linear fashion. As a result, an engine model could
be adapted to real engine off-design performance by modifying the compressor maps using
engine test data.

2.3 Performance adaptation

Performance adaptation is an inverse mathematical process with the objective of
tuning/adapting an engine model so as to match the observable measurements of an engine.
Generally, the measurable engine performance parameters are gas path measurements such
as temperatures and pressures represented by a vector p. The measurable engine performance
parameters are a function of ambient and operating condition parameters represented by a
vector u (Pamb, Tamb, “handle”) and the component characteristics represented by a vector x
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as follows:

p = f (x, u) … (9)

Note that the “handle” parameter refers to the control parameter of the engine which might
be shaft rotational speed, shaft power output, turbine entry temperature or any other quantity.
The “handle” is an input to the engine model and determines the power level of the engine.

Now the objective of the performance adaptation is to modify the component characteristics
vector x in order to match the measurable gas path parameters vector p at off-design operating
conditions. To assess the accuracy of the adaptation, the difference between the predicted
measurements p by the engine model, and the observed measurements of the engine pm is
evaluated by an Objective Function (OF)

OF =
l∑

j=1

k∑
i=1

∣∣∣∣ pi, j − pMi, j

pMi, j

∣∣∣∣ · 100, … (10)

where pMi, j are the values of the observed measurements, and pi, j are the corresponding
predicted measurements. The parameter k denotes the total number of measurable parameters,
and l the number of off-design operating points used in the adaptation process.

2.4 GA optimisation

For the minimisation problem of the objective function a GA optimiser is developed and
implemented. GA is an adaptive heuristic search algorithm based on the evolutionary needs of
natural selection and genetics(21,26). The GA initially generates a population of a large number
of possible solutions, called strings, of the compressor map’s sub-coefficients over a specified
range. It then calls the performance simulation module in PYTHIA software to predict the
off-design performance in order to calculate the fitness of the strings within the population.

GA Fitness = 1
1 + OF

… (11)

Crossovers and mutations may be used to generate extra strings to replace worse strings
in the population in order to improve the average fitness of the whole population. Such a
process of GA search is repeated until the specified maximum number of generations has
been reached. Then the best string of the whole population, i.e. the best set of compressor
map sub-coefficients with the highest fitness is selected as the solution of the performance
adaptation. The quality of each set of sub-coefficients within the population is assessed by the
fitness criterion of Equation (11). A value of fitness approaching 1 indicates a good set while
a value approaching 0 represents a poor set. The flow chart of such an adaptation process is
shown in Fig. 6. The result of this process is an updated and more accurate engine model that
can be used for future diagnostic analysis of the engine. It should be noted that the turbine map
has not been utilised for this adaptation process due to the fact that the turbine is operating
at choking conditions for a wide operating range. Moreover, the variation of turbine pressure
ratio with respect to the corrected mass flow rate can be approximated by a horizontal line.
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Figure 6. (Colour online) The flow chart of the proposed adaptation method.

Figure 7. (Colour online) LM2500+gas turbine, courtesy of GE ©.

3.0 APPLICATION, RESULTS AND DISCUSSIONS
The accuracy of the proposed method has been tested for a GE LM2500+ aero derivative gas
turbine engine, shown in Fig. 7, that operates in Manx Utilities’ (MU) combined cycle power
plant in the Isle of Man, UK.

The GE LM2500+ engine, which is a derivative of GE’s CF6 jet engine core, is used for
land and marine power applications. It has a 17-stage compressor(27), with the first seven stages
having variable stator vanes. The engine is also configured with a single annular combustor,
a two-stage high-pressure turbine and a two-stage free-power turbine of Nuovo Pignone. The
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Table 2
LM2500+ISA performance specification(28)

Symbol Parameter Value Units

UW Power Output 30.2 MW
PR Pressure Ratio 23.1
ηth Thermal Efficiency 38 %
Wg Exh. Flow rate 85.9 kg/s

Table 3
Engine model input parameters

Symbol Parameter Units

P2 Compressor Entry Pressure atm
T2 Compressor Entry Temperature K
UW Power Output MW

Figure 8. (Colour online) Engine model layout configuration.

layout of the developed engine model is shown in Fig. 8. The bleed flow at the discharge of
the compressor is used for cooling the high-pressure turbine.

The design point performance specification of the GE LM2500+ engine is summarised in
Table 2(28).

The engine model input and the measurable parameters for the off-design performance
adaptation are summarised in Tables 3 and 4, respectively. The power output is set as the
handle/control parameter of the engine.

A design point performance adaptation(29) for the model at 30 MW is carried out in order
to match the available design point performance of the engine. Once the engine model has
been properly updated for the selected design point, an initial compressor map is generated.
Then the off-design performance adaptation as described in the following test cases is applied
to modify the initial compressor map in a non-linear way so as to match multiple off-design
measurable parameters while keeping the same design point.

Two test cases have been carried out to test the effectiveness of the developed methods
and system. The objective of the first test case is to match a set of “deck data” that are
measurements generated by an engine model, which uses a default compressor map shape.
The power output is reduced from 30 MW to 27 MW at incremental steps of –0.5 to –1.0 MW.
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Table 4
Engine measurable performance parameters

Symbol Parameter Units

P3 Compressor Discharge Pressure atm
T3 Compressor Discharge Temperature K
P6 High Pressure Turbine Discharge Pressure atm
T6 High Pressure Turbine Discharge Temperature K
T8 Power Turbine Discharge Temperature K
ff Fuel Flow rate kg/s

Table 5
Adaptation test case parameters

Case No Power (MW) Target data Op. points Method

1 30–27 Deck data 4 New
2 30–27 Test data 4 Earlier & New

The accuracy of the proposed adaptation is tested by generating and tuning a compressor map
through the GA optimiser in order to match the “deck data”.

The objective of the second test case is to examine the performance of the proposed method
for real service engine measurements that are designated as “test data” and obtained from
the LM2500+ engine operating in the MU’s combined cycle power plant. The earlier linear
scaling adaptation technique developed by Li(19) and the proposed map generation adaptation
are employed for this test case and are going to be referred to as “earlier” and “new” adaptation
methods, respectively. For both methods the engine model configuration was the same. A
summary of the adaptation test cases is presented in the Table 5.

Initially the upper and lower bounds for the sub-coefficients W1, W2, PR1, PR2, ETAb1,
ETAb2 and ETAb3 were adjusted several times during the trial adaptation process to find
appropriate searching domains for the sub-coefficients. During this initial phase, a default
map shape available from PYTHIA software has been used for testing the validity of the
proposed method. This testing phase enabled the selection of the upper and lower bounds of
the sub-coefficients, which were identical for both test cases. The final bounds used for the
adaptation are shown in Table 6.

The GA parameters for this study are shown in Table 7, where 20 GA generations with a
population size of 50 were used. The probabilities of crossover and mutation are 0.35 and
0.3, respectively. Normally the mutation rate ranges from 10% to 20% for providing a good
balance between the searching space and the convergence of the optimiser. However, in this
study the mutation rate selected is intentionally higher at 30% in order to provide additional
searching space to the algorithm since the upper and lower bounds for W1, PR1 and ETAb2 is
wide. Once convergence is accomplished, one may reduce the mutation probability, limit the
range of the two sub-coefficients and rerun the optimiser in order to improve the prediction
accuracy of the engine model.
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Table 6
Upper and lower bounds for sub-coefficients

Coefficient Lower Upper

W1 1 6
W2 2.4 2.8
PR1 14 21
PR2 3.8 3.9
ETAb1 –0.95 –1.2
ETAb2 1.9 6
ETAb3 –0.01 –0.05

Table 7
GA parameters

GA parameter Value

Generations 20
Population 50
Crossover probability (%) 35
Mutation probability (%) 30
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Figure 9. (Colour online) Prediction error for the selected parameters at different power output.

3.1 Test Case 1

The results of the off-design performance adaptation in this test case are shown in Fig. 9,
illustrating that all the selected gas path measurements are matched very well with an accuracy
spanning from –0.01 % up to 0.33 for the entire range of power output in concern. The
measurements corresponding to the compressor exit namely P3 and T3 are the ones that
present the lowest prediction accuracy compared to the other measurements. The reason for
this is due to the fact that both computed measurements rely heavily on the generated shape of
the compressor map. For high-pressure ratio compressors, the curves in the high-speed region
of the map (i.e., close to 100% referred speed N) are quite steep and almost vertical. This
characteristic limits the searching space of the GA optimiser and, therefore, the interpolation
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Figure 10. (Colour online) Data samples representing the MU’s LM2500+off-design
performance for test case 2.

Figure 11. (Colour online) Schematic representation of the proposed adaptation process for test case 2.

capability of the proposed elliptical method. However, it should be noted that the general trend
of the adaptation process is characterised by prediction of high accuracy.

3.2 Test Case 2

In the second test case, a set of “test data” from MU’s power plant is used. A series of tests
have been performed in MU’s power plant to obtain off-design steady-state data for one of the
gas turbines.

One of these tests involved the shutdown of the engine for a prolonged period of 3 hours at
specified power increments. For this test, the engine was allowed sufficient time to stabilise at
each power setting in order to examine its steady-state behaviour at off-design conditions.

A sample of this “test data” selected for the adaptation can be seen in Fig. 10. Data
correction and reduction techniques have been employed in order to select the appropriate
set of operating points for this multiple-point adaptation application, which is schematically
represented in Fig. 11. The above process has been facilitated by the large amount of data
available from the engine test. Specifically, since the engine had sufficient time to stabilise
at each power setting the operating points corresponding to the final stages of each setting
have been selected. It follows that the operating points of the engine before changing the
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Figure 12. (Colour online) Prediction of P3 from new and earlier adaptation.
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Figure 13. (Colour online) Prediction of T3 from new and earlier adaptation.

power demand represent the most suitable and representative samples of data for steady-state
off-design performance.

Averaged measurement samples at several stabilised power levels are used for the off-design
performance adaptation.

The results for both the new and earlier(19) adaptation methods can be viewed from Figs 12
and 13, where the predicted off-design measurable parameters P3 and T3 are plotted against
the engine power output. The same level of accuracy has been achieved for all the selected
measurements, but only P3 and T3 are presented here because they had the lower prediction
accuracy in Test Case 1. It is evident from Figs 12 and 13 that the new adaptation method is
superior compared with the earlier method(19) in terms of prediction accuracy.

The earlier adaptation method has a maximum error in temperatures equivalent to 8K
to 10K and is characterised by an over prediction of the measurable parameters. The error
distributions from the new adaptation method follow the same trend where its maximum
prediction error occurs at the lowest power setting of 0.9.

Typically for a single point adaptation with a population size of 50 it takes around 12
seconds per generation. The multi-point adaptation with the same size of population takes
slightly longer time to get a solution as shown in Table 8. In other words, it takes around 48
seconds per generation in Case 1 and 21 seconds per generation in Case 2. The maximum
fitness achieved using the new adaptation method is 0.91 in Test Case 1 and 0.94 in Test
Case 2.
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Table 8
Simulation parameters of test cases

GA parameters Case 1 New Case 2 Reference Case 2 New

Generations 5 20 20
Population 50 50 50
GA Fitness 0.91 0.67 0.94
Minimum OF 0.12 0.51 0.10
Computation time per generation (s) 48 15 21
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Figure 14. (Colour online) Converge plot of the GA fitness for the test case 2 of the proposed method.

The convergence plot of the GA fitness is shown in Fig. 14. It is evident from Fig. 14 that
the initial fitness of the GA is 0.6, and it takes about 8 generations to reach a fitness value of
0.9. Given that the computation time per generation is 21 seconds, the optimiser needs 168
seconds to reach the aforementioned level of fitness.

The prediction accuracy of the proposed adaptation is superior to the reference method as
seen from the fitness of the genetic algorithm which is 27% more accurate. The time taken for
the developed adaptation to converge is greater than that of the earlier adaptation. The reason
for this is that there are seven sub-coefficients controlling the compressor map generation,
opposed to only three for the earlier adaptation, which in turn increases the searching space
of the optimiser.

The setting window of PYTHIA’s new adaptation method and the adaptation results window
for such a test case are shown in Figs 15 and 16, respectively. The user has to set the handle
of the gas turbine, which is the power output for this engine model and then the target
measurements should be selected.

The results window provides the GA parameters and the simulated measurements results
with their corresponding errors as shown in Fig. 16. Once the adaptation is completed, a
comparison of the initial and final compressor map shape generated after design-point and
off-design adaptation, respectively, are shown in Figs 17 and 18. The graphical representation
of the generated compressor map can serve as a tool for ‘on the spot’ judgments of the engine’s
performance.

The shape of the compressor maps generated depend firstly on the set of the sub-coefficients
optimised through GA and secondly on the number of computed points that each curve has.
The proposed adaptation method has an improved accuracy. Another advantage of this method
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Figure 15. (Colour online) Adaptation setting window of PYTHIA.

Figure 16. (Colour online) Adaptation results window of PYTHIA.
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Figure 17. (Colour online) Compressor map in PR-WAC plane. The black and red lines correspond to the
generated maps before and after off-design adaptation.

Figure 18. (Colour online) Compressor performance map in ETA-PR plane. The black and red lines
correspond to the generated maps before and after off-design adaptation.

is its unique feature of the compressor map generation that has the potential for a wide range
of applications.

4.0 CONCLUSIONS
In this paper, an advanced performance adaptation system is introduced that aims to improve
the accuracy of gas turbine performance models at off-design conditions. This is achieved by

https://doi.org/10.1017/aer.2017.96 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2017.96


1776 November 2017The Aeronautical Journal

introducing a new compressor map generation method, which introduces a set of parameters
to control the shape of the characteristic maps in a non-linear way. The set of parameters that
control the shape of the map are optimised by a genetic algorithm in order to match as accurate
as possible the gas path measurements of an engine at off-design conditions.

Application of the developed approach to a model aero derivative gas turbine has proved
the following.

� Its comparison to a reference adaptation method demonstrates that it offers around 27%
improved prediction accuracy for the engine model.

� The computational time for a typical multiple operating point adaptation case with a
population size of 50 is slightly higher than the reference adaptation method. In other
words, it takes around 21 seconds per generation for the new method compared with 15
seconds per generation for the reference method.

The proposed non-linear adaptation method is capable of generating and tuning compressor
maps of an engine performance model through implementation of available engine test data.
It is a very useful tool for supporting model-based gas path diagnostics and prognostics
applications that rely on accurate gas turbine performance models.
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