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Abstract

Queues with advanced reservations are endemic in the real world. In such a queue, the
‘arrival’ process is an incoming stream of customer ‘booking requests’, rather than actual
customers requiring immediate service. We consider a model with a Poisson booking
request process with rate λ. Associated with each request is a pair of independent random
variables (Ri, Si) constituting a request for service over a period Si , starting at a time Ri
into the future. Our interest is in the probability that a customer will be rejected due
to capacity constraints. We present a simulation of a finite-capacity queue in which we
record the proportion of rejected customers, and then move to an analysis of a queue with
infinitely-many servers. Obviously no customers are rejected in the latter case. However,
the event that the arrival of the extra customer will cause the number of customers in the
queue to exceed C at some point during its service can be used as a proxy for the event
that the customer would have been rejected in a system with finite capacityC. We start by
calculating the transient and stationary distributions for some performance measures for
the infinite-server queue. By observing that the stationary measure for the bookings diary
(that is, the list of customers currently on hand, together with their start times and service
times) is the same as the law for the entire sample path of an infinite server queue with a
specified nonhomogenous Poisson input process, which we call the bookings queue, we
are able to write down expressions for the abovementioned probability that, at some time
during a requested service, the number of customers exceedsC. This measure serves as a
bound for the probability that an incoming arrival would be refused admission in a system
with C servers and, for a well-dimensioned system, it is to be hoped that it is a good
approximation. We test the quality of this approximation by comparing our analytical
results for the infinite-server case against simulation results for the finite-server case.

Keywords: Advanced reservations; infinite-server queue; blocking probability

2010 Mathematics Subject Classification: Primary 60K25
Secondary 68M20; 90B22

1. Introduction

Reservations are an inherent feature of many real-world queuing systems. They are used to
manage hotel and restaurant bookings, medical appointments, and operating theatre schedules,
where there is a need for certainty of service at some period in the future. They have also been
proposed to facilitate the operation of various telecommunications systems, especially optical
burst networks [3], [4], [11], [14], [15], [23]. Over the years, various authors have looked at
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14 R. J. MAILLARDET AND P. G. TAYLOR

queueing systems with advanced reservation. However, despite their ubiquity, these systems
have not received as much attention as might be expected.

Motivated by telecommunications applications, Liang et al. [17] proposed a slotted-time
model for a queue with advanced reservations, and used it to derive some approximate and
simulated results. Later, Kaheel et al. [14], [15] applied a similar analysis to optical burst
switching networks, in which a header packet precedes a burst and reserves capacity for it. By
assuming that calls making advanced reservations do so far ahead of time, Greenberg et al. [13]
used a separation of timescales approach to approximate the blocking probability of a stream of
calls making advanced reservations, as well as a stream of calls requesting immediate service.

Virtamo [22] and Coffman et al. [7]–[9] adopted a different approach. They analysed an
interval-packing model, in which reservations of varying duration arrive to fill up space in
an interval on the real line. The main measure of interest in these papers is the ‘reservation
probability’ that a particular point is covered by a reservation, either in the transient case, or in
the limiting case when all possible space is filled.

In the context of optical burst switching, a number of authors have analysed systems with a
finite number of classes, each with a fixed reservation offset. Dolzer and Gauger [11] used a
‘conservation law’ to give some approximate basic formulae for the rejection probabilities of
each class, while Barakat and Sargent [3], [4] defined the concept of a ‘contention window’ to
obtain an exact expression for the blocking probability of the class with the largest reservation
offset, andVu and Zukerman [23] proposed an approximating M/G/k/kmodel to derive blocking
probabilities for each class.

A feature of the work of [3] and [4] was that the authors studied an infinite-server system,
and approximated the blocking probability of a call arriving to a system with finite-capacity C
by the probability that it would cause the occupancy of the infinite-server system to exceed C
at some point in time during its duration. We adopt a similar infinite-server approximation for
the blocking probability in this paper.

For a simple system with a single server, van de Vrugt et al. [21] made a number of obser-
vations. In particular, the authors identified classes of queues where the advanced reservation
increases the blocking probabilities and other classes where it decreases them.

Recently, in two heavy-traffic regimes: the critically-loaded and Halfin–Whitt regimes, Levi
and Shi [16] studied methods of revenue management in queues with advanced reservation that
could involve rejecting customers who are likely to tie up resources that will be required by
more profitable customers. In order to bound and approximate the blocking probabilities, the
authors also assumed that the queue has infinite capacity and calculated the probability that the
number of customers exceeds C at some point during the service of the arriving customer.

In this paper we shall consider a model for a reservation queue that has the following
characteristics.

1. The booking process is Poisson with rate λ.

2. Associated with each booking is a pair of random variables (Ri, Si) constituting a request
for service over a period Si starting at a timeRi into the future. The random variables {Ri}
are independent and identically distributed, and independent of the sequence {Si}, which
are also independent and identically distributed. We denote the distribution functions
of Ri and Si by FR and FS , and assume that they have finite means E(R) = ξ and
E(S) = η, respectively.

3. There is a fixed number C of servers, which may be finite or infinite. If C is finite, a
customer arriving at time t and requesting service over the time interval [t + r, t + r + s)
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Queues with advanced reservations 15

Figure 1: Simulated blocking probabilities for the reservation queue as a function of d. Service times
are exponential with η = 1. Other parameters are C = 10, λ = 6, and γ = 1

4 .

is admitted if and only if the number of customers booked at time t is less than or equal
to C − 1 for the entire time interval.

With respect to the third item above, our real interest is in calculating the blocking probability
in systems where the number C of servers is finite. However, it appears that analysis of
such queues is extremely difficult, if not intractable. As a consequence, apart from our initial
simulation reported below, we shall follow the lead of Barakat and Sargent [3], [4] and Levi
and Shi [16], and analyse an infinite-server model, calculating the probability that admission of
an arriving customer would result in a given capacity C being exceeded at some point during
its service time. A coupling argument can be used to establish that this is an upper bound for
the blocking probability in an actual system and, for a well-dimensioned system in which the
blocking probability is low, we would expect that it will constitute a reasonable approximation.

In our model, requested booking start times occur according to a Poisson process with rate λ
(since they are independent and identically distributed translations of the request process using
the reservation distribution) but, due to the different nature of the blocking mechanism, the
blocking probability is not given by the well-known Erlang loss formula.

By way of motivation, we start with some simulation results for a finite capacity (C = 10)
model with a simple discrete reservation distribution: a proportion γ = 1

4 of arriving customers
request immediate service and a proportion 1−γ = 3

4 request service commencing at exactly d
time units into the future. We call these customers nonreserving and reserving, respectively.
Arrivals occur in a Poisson process with λ = 6, and the service time is taken to be either
exponential or deterministic, in both cases with mean η = 1.

In Figures 1 and 2 we illustrate how the simulated blocking probabilities vary with d for the
cases of exponential service and deterministic service, respectively. Plotted are the proportions
of blocked nonreserving customers and reserving customers, together with the overall propor-
tion of blocked customers as a function of d . The blocking probability given by the Erlang loss
formula is shown as a reference line. As d approaches 0, the blocking probability of both nonre-
serving and reserving customers approaches this value. For large d, the blocking probabilities
for both the nonreserving and reserving customers become constant with respect to d.
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Figure 2: Simulated blocking probabilities for the reservation queue as a function of d. Service times
are deterministic with η = 1. Other parameters are C = 10, λ = 6, and γ = 1

4 .

Furthermore, there is a degradation of overall system performance when the service times
are deterministic, but a slight improvement when service times are exponential. This veri-
fies the observation of [21] that there are circumstances where reservation improves average
blocking performance, and circumstances where it does not. For both types of service time
distribution, the blocking probabilities for reserving requests are similar for large enough d, and
the difference in performance is largely explained by a significantly lower blocking probability
for nonreserving requests with exponential service times compared with deterministic service
times. As suggested by the authors of [21], we believe that this can be explained by the fact
that there are more frequent requests for a short service that could fit in before an existing
reservation in the exponential case than in the deterministic case.

For the rest of this paper we shall assume that C = ∞. This will enable us to exploit
independence properties that are inherent in infinite-server queueing systems. However, it is
still nontrivial to derive expressions for the performance measure that we are interested in,
the probability that addition of an arriving customer will cause the occupancy of the queue to
exceed C at some point.

In Section 2 we derive stationary and transient distributions for some simple performance
measures of the infinite-capacity model. This is followed in Section 3 by an analysis of
the ‘bookings diary’ generated by this model, which retains full information on the start and
service times for all confirmed bookings. In Section 4 we derive the stationary measure for the
‘bookings profile’ which represents the variation of total booking load with time, sacrificing
unique identification of every booking. Section 5 contains the main observation of this paper,
that the stationary distribution of the bookings diary is the same as the law of sample paths of an
associated M(t)/G/∞ queue, which we shall call the bookings queue. In Section 6 we carry out
the analysis for the two examples that were simulated above. We conclude with a conclusion
and a discussion of future research directions in Section 7.

2. Distributions of numbers of customers in the C = ∞ case

In the case where C = ∞, we can obtain transient and stationary distributions for certain
performance measures by adapting the approach to analysing an M/G/∞ queue that was used
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by Foley [12]. Let

• ND(t) be the total number of diary bookings at time t ,

• NA(t) be the number of active (that is, ‘in service’) bookings at time t ,

• NP(t) be the number of pending (that is, reserved but not yet active) bookings at time t ,

• NA(t, x) be the number of bookings at time t that will be active at time t + x.

All of these quantities are of the general form ‘N�(t) is the number of bookings meeting
condition � from requests in [0, t]’.

The numberN(t) of booking requests received by time t is distributed according to a Poisson
distribution with parameter λt . If N(t) = n then it is well known (see, for example, [5,
Theorem 5.2]) that the n arrival times are uniformly and independently distributed on [0, t]. So
each of the n booking requests has probability

p(t) = 1

t

∫ t

0
P(the booking meets condition � | it arrives at u) du

of meeting condition �, independently of the other requests. Hence,

N�(t)
d= Binomial(N(t), p(t)),

where N(t)
d= Poisson(λt). It follows that

N�(t)
d= Poisson(ν(t)),

where ν(t) = λp(t).
With FR+S the convolution of FR and FS , the specific processes that we defined earlier have

functions ν(t) given in Table 1. Letting t → ∞, we obtain the fact that, for each of the random
variables discussed above,

lim
t→∞ P(N�(t) ≤ n) = P(N� ≤ n),

where N� has a Poisson distribution with parameter ν given in Table 2. Note that the limiting
distributions for ND(t), NA(t), and NP(t) are insensitive to the form of the distributions FR
and FS .

Table 1: Parameters for N�(t).

Name Type ν(t)

ND(t) Diary λ

∫ t

0
(1 − FR+S(t − u)) du

NA(t) Active λ

∫ t

0

∫ t−u

0
(1 − FS(t − u− v)) dFR(v) du

NP(t) Pending λ

∫ t

0
(1 − FR(t − u)) du

NA(t, x) Hits t + x λ

∫ t

0

∫ t+x−u

0
(1 − FS(t + x − u− v)) dFR(v) du
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Table 2: Parameters for N� .

Name Type ν

ND(·) Diary λ(η + ξ)

NA(·) Active λη

NP(·) Pending λξ

NA(·, x) Hits future time x λ

∫ ∞

x

∫ u

0
(1 − FS(u− v)) dFR(v) du

Using arguments similar to those above, we can derive the fact that the distribution at time t
of the number of customers already booked at time t whose service intersects with an interval
of the form [t + r, t + r + s) is also Poisson. The parameter of this distribution is

ψ(t, r, s) = λ

∫ t

0

∫ t+r−u

0
(1 − FS(t + r − u− v)) dFR(v) du

+ λ

∫ t

0
[FR(t + r + s − u)− FR(t + r − u)] du.

The first term in this expansion takes into account customers who arrive at time u ∈ [0, t],
whose reservation time expires at time u+ v ∈ [0, t + r] and who are still being served at time
t + r , while the second term takes into account customers who arrive at time u ∈ [0, t] and
whose reservation time expires during the interval [t + r, t + r + s]. Making the substitution
w = t + r − u in both integrals, we can write

ψ(t, r, s) = λ

∫ t+r

r

∫ w

0
(1 − FS(w − v)) dFR(v) dw

+ λ

∫ t+r

r

[FR(w + s)− FR(w)] dw.

Now letting t → ∞, we see that the parameter of the corresponding limiting distribution is

ψ(r, s) = λ

∫ ∞

r

∫ w

0
(1 − FS(w − v)) dFR(v) dw + λ

∫ ∞

r

[FR(w + s)− FR(w)] dw.

If there is a point in the interval [t + r, t + r + s) where C customers are simultaneously
present, then there must be at least C customers covering this interval. However, the converse
does not hold: there can be more than C customers covering the interval while the maximum
at any given time during the interval is strictly less than C. So, the above result gives an upper
bound for our infinite-server bound for the blocking probability of a customer arriving at time t
with a reservation time r and a service time s in the finite-capacity system. However, this bound
is unlikely to be tight, and we would really like a method for calculating the infinite-server bound
itself. The rest of this paper is devoted to this derivation.

3. The bookings diary

In this section we analyse a process whose states give a complete characterisation of the
‘current’ bookings diary. This description includes the start times and service times of active
and pending bookings. To define such a state, we use the description

(ND(t),Y (t),X(t)) = (ND(t), Y1(t), . . . , YND(t)(t), X1(t), . . . , XND(t)(t)), (1)
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where, as above, ND(t) is the total number of diary bookings at time t and the individual
bookings are allocated labels j = 1, . . . , ND(t). The random variable Yj (t) is the requested
service time of the customer with label j and Xj(t) is its residual reservation time, that is, the
time difference between the customer’s commencement of service and t . Note that Xj(t) will
be negative if customer j has already commenced service, but it must be greater than −Yj (t),
because the customer will depart the system when Xj(t) = −Yj (t). So, the state space is

{(n, y, x) : n ∈ Z+, yj > 0 and xj > −yj , j = 1, . . . , n}.

Consider the situation where the ith customer arrives at time τi to find the system in state
(ND(τi),Y (τi),X(τi))withND(τi) = n and he/she samples a service time Si and a reservation
time Ri independently from their respective distributions. We allocate the customer a label j
chosen uniformly from the numbers 1 to n+1 and put its service time Yj (τi) = Si . We also put
its residual reservation time Xj(τi) = Ri . The customers that previously had labels j, . . . , n
each have their label increased by one, so that their labels are now j + 1, . . . , n+ 1, and their
service and residual reservation times are relabelled in accordance with this.

Notwithstanding changes of labels, the customer’s service time remains constant throughout
its stay in the system. However, for t > τi , its residual reservation time Xj(t) = Ri + τi − t

decreases linearly at unit rate until it is equal to −Yj , at which time the customer has completed
service and we remove it from the current bookings diary. When this happens, the labels of
customers j + 1, . . . , n are each decreased by one, so that their new labels are j, . . . , n − 1,
again with their service and residual reservation times relabelled in accordance.

Assuming that the queue starts empty, the following theorem gives an expression for the law
of the bookings diary at time t . In it, we use

∏n
j=1(aj , bj ] to denote the Cartesian product of

intervals in R
n.

Theorem 1. Assume that the bookings diary starts empty at time 0. For time t > 0, n =
0, 1, . . . ,Y = ∏n

j=1(0, yj ], and X = ∏n
j=1(−yj , xj ], letπ(n,Y,X, t) be the probability that

there aren customers in the bookings diary at time t withYj (t) ∈ (0, yj ] andXj(t) ∈ (−yj , xj ].
Then

π(n,Y,X, t) = π(0, t)
λn

n!
n∏
j=1

[∫ yj

0

∫ xj

max(−wj ,−t)

∫ vj+t

max(0,vj )
FR(duj ) dvjFS(dwj)

]
, (2)

where

π(0, t) = exp

(
−λ

∫ t

0
(1 − FR+S(t − u)) du

)
. (3)

Proof. As in Section 2 we adapt the approach of Foley [12], using the fact that the number
N(t) of booking requests received by time t is distributed according to a Poisson distribution
with parameter λt , and that, if N(t) = n, the n arrival times are uniformly and independently
distributed on [0, t].

A customer who arrived at time τ with a requested service time Y and reservation time R
has a residual reservation time X(t) at time t equal to R + τ − t if R + τ − t > −Y , and is
no longer recorded in the bookings diary otherwise. Such a customer could have arrived at any
time during the interval [0, t] if X(t) is nonnegative, but if X(t) is negative the customer must
have arrived at least |X(t)| before time t . We conclude that a customer can arrive at any time
in the interval [0, t +X(t)] if X(t) is negative. Note that this means that X(t) ≥ −t .
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So, conditional on Y = w,

P(X(t) ∈ (−w, x]) =
∫ x

max(−w,−t)

∫ t+min(0,v)

0

1

t
dFR(t + v − τ) dv,

independently of the service and residual reservation times of other customers. Making the
substitution u = t + v − τ in the inner integral, we see that this expression reduces to

P(X(t) ∈ (−w, x]) =
∫ x

max(−w,−t)

∫ v+t

max(0,v)

1

t
dFR(u) dv.

Integrating with respect to the distribution of the requested service time Y , we see that the
probability that a given customer with label j who arrived in the interval [0, t] has Yj ∈ (0, yj ]
and Xj(t) ∈ (−yj , xj ] is

p(t) = 1

t

∫ yj

0

∫ xj

max(−wj ,−t)

∫ vj+t

max(0,vj )
FR(duj ) dvjFS(dwj).

The independence of the arrival times, given that N(t) = n, the reservation times Ri and the
service times Si and the random allocation of labels means that the probability that Yj ∈ (0, yj ]
and Xj(t) ∈ (−yj , xj ] for all j = 1, . . . , n is

1

tn

n∏
j=1

∫ yj

0

∫ xj

max(−wj ,−t)

∫ vj+t

max(0,vj )
FR(duj ) dvjFS(dwj).

Removing the conditioning on n by observing that the number of arrivals in [0, t] is a Poisson
random variable with parameter λt gives the result.

The fact that π(0, t) is given by (3) follows immediately from the first line of Table 1.
However, it can also be established by showing that

∫ ∞

0

∫ ∞

max(−w,−t)

∫ v+t

max(0,v)
FR(du) dvFS(dw) =

∫ t

0
(1 − FR+S(t − u)) du.

This can be achieved via a somewhat tedious series of integral substitutions and uses of Fubini’s
theorem that we choose not to detail here. �

Letting t → ∞ in the transient measure (2), we can derive a limiting measure for the
bookings diary.

Corollary 1. Assume that the bookings diary starts empty at time 0. For n = 0, 1, . . . , Y =∏n
j=1(0, yj ], and X = ∏n

j=1(−yj , xj ], let π(n,Y,X) = limt→∞ π(n,Y,X, t). Then

π(n,Y,X) = π(0)
λn

n!
n∏
j=1

[∫ yj

0

∫ xj

−wj

∫ ∞

max(0,vj )
FR(duj ) dvjFS(dwj)

]
, (4)

where π(0) = exp(−λ(η + ξ)).
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4. The bookings profile

The state description (1) that we used to characterise the bookings diary in Section 3 is more
detailed than we need to decide on whether the number of customers will exceed C during the
requested service interval of an arriving customer. To make this decision, we just need to know
the service commencement times and departure times of the customers that are present in the
bookings diary. We call such a description the bookings profile. An example of a bookings
profile is depicted in Figure 3.

Given that ND(t) = n, let i(j) be the position in the arrival sequence of the customer
that is labelled j at time t . Then, τi(j), Si(j), and Ri(j), are the arrival time, service request,
and reservation request of the customer that is labelled j at time t . So, as in Section 3,
Xj(t) = τi(j) + Ri(j) − t is the residual reservation time of customer j and Dj(t) =
τi(j) + Ri(j) + Si(j) − t is the remaining time until it departs. Now let X(�)(t) be the �th
order statistic of (X1(t), . . . , Xn(t)) andD(�)(t) be the �th order statistic of (D1(t), . . . , Dn(t)).
Then theX(�)(t) are the ordered residual reservation times, which we can think of as the service
commencement times relative to time t , andD(�)(t) the ordered departure times relative to time t .
A knowledge of the bookings profile defined by the X(�)(t) and D(�)(t) is sufficient to decide
whether the acceptance of an arriving customer will cause the limit C to be exceeded at some
time during its service. It is thus of interest to derive the law of (ND(t), X(�)(t),D(�)(t),� =
1, . . . , ND(t)).

An immediate observation is that there can be more than one bookings diary that has the
same bookings profile. First, the labelling of customers in the distribution for the bookings
diary is arbitrary and each labelling leads to the same bookings profile. Thus, we need to sum
the distributions (2) and (4) over all n! possible labellings when ND(t) = n.

The second thing to note is that the bookings profile (ND(t), X(�)(t),D(�)(t)) defines the
starting points and ending points of services, but it does not specify which customer departs
at each departure time. That is, it does not match a departure point D(�)(t) with the service
commencement time of the departing customer. Consider, for example, Figure 4. In the first
bookings diary the customer who departs at time 1.2 commenced service at time 0.5 and the
customer who departs at time 1.5 commenced service at time 0.6, while these commencement
times are interchanged in the second bookings diary. Both bookings diaries have the same
bookings profile.

In general, bookings diaries, such as those in Figure 4, that lead to the same bookings profile
have different distributions as given by (2) and (4). However, in some cases, this problem does

Figure 3: A bookings profile.
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2

1

2

1

0.5 0.6 1.2
t

1.5

Figure 4: Two bookings diaries that give the same bookings profile.

not arise. When the service time distribution is deterministic, the departure time does indeed
define the service commencement time, and the phenomenon described in Figure 4 cannot
occur.

Furthermore, if the service times are exponential with parameterμ = 1/η, then the measures
defined by (2) and (4) have densities

φ(n, x, y, t) = π(0, t)
(λμ)n

n! exp

(
−μ

n∑
j=1

yj

) n∏
j=1

[FR(xj + t)− FR(max(0, xj ))]

and

φ(n, x, y) = π(0)
(λμ)n

n! exp

(
−μ

n∑
j=1

yj

) n∏
j=1

[1 − FR(max(0, xj ))]

over the set E = {y > 0, x > −y}. These densities are invariant over states that lead to the
same bookings profile, since the total service time is identical for such states.

By realising that whenever a departure occurs, the assumption that service times are expo-
nential means that the departing customer is chosen uniformly from those present just before
the departure, we see that the number of bookings diaries that corresponds to a given bookings
profile is

∏ND(t)
�=1 Q(D(�)(t)

−), where Q(D(�)(t)−) is the number of customers present just
before the �th departure in the bookings profile. We arrive at the following corollary.

Corollary 2. Assume that the reservation distribution is general, but that the service time
distribution is exponential with parameter μ, and that the queue starts empty at time 0.
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1. The bookings profile (ND(t), X(�)(t),D(�)(t)) at time t has a density

ψ(n, x, d, t) = π(0, t)(λμ)ne(−μ
∑n
�=1(d�−x�))

×
n∏
�=1

Q(d−
� )[FR(x� + t)− FR(max(0, x�))].

2. The limiting bookings profile (ND, X(�),D(�)) has a density

ψ(n, x, d) = π(0)(λμ)ne(−μ
∑n
�=1(d�−x�))

n∏
�=1

Q(d−
� )[1 − FR(max(0, x�))]

= π(0)(λμ)ne(−μ
∑n
�=1(d�−x�))

[ n∏
�=1

Q(d−
� )

][ ∏
� : x�>0

∫ ∞

xj

dFR(uj )

]
.

5. The bookings queue

Both Theorem 1 and Corollary 1 are product-form results. They establish that the distribution
of the service times and residual reservation times in the bookings diary can be decomposed into
a product of the distribution of the service times and residual reservation times of the individual
customers.

Considering a single customer, we see that, for y > 0 and x > −y, the limiting joint
distribution of the service time of a customer present in the bookings diary and its residual
reservation time is given by

FX,Y (x, y) = A

∫ y

0

∫ x

−w

∫ ∞

max(0,v)
FR(du) dvFS(dw). (5)

A normalisation argument can be used to show that the constant A in (5) is equal to (η+ ξ)−1.
We can decompose the right-hand side of (5), so that

FX,Y (x, y) = A

∫ x

−y

∫ y

max(−v,0)

∫ ∞

max(0,v)
FR(du)FS(dw) dv

= A

[∫ 0

−y

∫ y

−v

∫ ∞

0
FR(du)FS(dw) dv +

∫ x

0

∫ y

0

∫ ∞

v

FR(du)FS(dw) dv

]

= A

[∫ 0

−y

∫ y

−v
FS(dw) dv +

∫ x

0

∫ y

0
[1 − FR(v)]FS(dw) dv

]

= A

[
η

∫ y

0

[FS(y)− FS(v)]
η

dv + ξFS(y)

∫ x

0

[1 − FR(v)]
ξ

dv

]
. (6)

Noting that a customer in the bookings diary is currently in service if and only if its residual
reservation time is negative, we can think of the first term as characterising the distribution of
the service time of an active customer, and the second term as giving the joint distribution of the
service time and residual reservation time of a pending customer. From Table 2 we know that
the numbers of active and pending customers have Poisson distributions with parameters λη

and λξ , respectively, a fact that we can also derive from (4). We conclude that a customer in
the bookings diary is active with probability η/(η+ ξ) and pending with probability ξ/(η+ ξ).
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We recognise the integral in the first term in (6) as the limiting distribution of the spread of a
renewal process with inter-event time distribution FS (see, for example, [24, p. 67]). It follows
that the limiting distribution of an active customer’s remaining service time in the bookings
diary is

F e
S (w) =

∫ w

0

[1 − FS(u)]
η

du. (7)

So we can conclude that the number of active customers has a Poisson distribution with
parameter λη and that their remaining service times are chosen independently according to
the distribution (7).

Now focussing on the second term of (6), we see that the time until the commencement of
service of a pending customer has limiting distribution

FX(x) =
∫ x

0

[1 − FR(v)]
ξ

dv. (8)

Furthermore, the service commencement times of the NP pending customers are chosen
independently according to the distribution (8). It follows from Daley and Vere-Jones [10,
Exercise 2.1.6(a)] that the order statistics of these commencement times have the same distri-
bution as the points of a nonhomogeneous Poisson process with intensity

α(x) = λ[1 − FR(x)], (9)

conditional on there being NP points in total. Since NP has a Poisson distribution, the process
of service commencement times follows a nonhomogeneous Poisson process with parameter
α(x) as defined in (9).

We arrive at the observation that the limiting distribution of the bookings diary is identical
to the law of whole sample paths of an associated M(t)/G/∞ queue, which we shall call the
bookings queue. As with any queue, the law of this queue can be specified by giving

• the distribution of the number of customers initially in the queue,

• the distribution of the remaining service times of each of these customers,

• a characterisation of the arrival process, and

• the distribution of the service times of the customers.

Specifically, for the bookings queue,

• the number of customers initially present has a Poisson distribution with parameter λη,

• the remaining service times of these customers are chosen independently according to
F e
S in (7),

• the arrival process is a nonhomogeneous Poisson process with intensity α(x) at time x,
as in (9), and

• service times are selected independently from FS .

Note that the bookings queue has almost surely finitely-many customers in total. In fact, the
total number of customers that are ever served in this queue has a Poisson distribution with
parameter λ(η + ξ).
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6. Examples

In the situation where the bookings diary has reached stationarity, we are interested in
determining the probability that the addition of a customer who arrives at time t with a
reservation request r and service request s would result in the number of customers in the diary
exceedingC at some point in the interval [t+ r, t+ r+ s). We approach this by considering the
probability that the number of customers in the bookings queue defined in Section 5 is greater
than or equal to C at some point in the interval [r, r + s). If this is the case, then the addition
of the extra customer will cause the occupancy to exceed C.

Evaluating this probability for general reservation and service time distributions can still
be a difficult calculation. Here, we shall carry out the analysis for the two examples that we
presented in Section 1: when the reservation distribution is a two point distribution with mass γ
at 0 and mass 1 − γ at d , and the service time distribution is either exponential or deterministic
with mean η. Note that the mean ξ of the reservation distribution in this case is equal to (1−γ )d .

In both of the abovementioned cases, the nonhomogeneous Poisson arrival process to the
bookings queue, defined in (9), has constant rate λ̃ ≡ λ(1 − γ ) on the interval [0, d) and is
equal to 0 on the interval [d,∞).

6.1. Exponential service times

Customers who arrive at the reservation queue at time t with a reservation time equal to d
require service during the interval [t + d, t + d + s) for some s. To derive our infinite-server
bound for the blocking probability of these customers, we consider the probability that the
number of customers in the bookings queue exceeds C during the interval [d, d + s). Since
the bookings queue has no arrivals subsequent to time d, this is the same as the probability that
the number of customers in the bookings queue exceeds C at time d. With μ = 1/η, we know
from the final line of Table 2 that the number of such customers follows a Poisson distribution
with parameter

ν(d) = λ

∫ ∞

d

(γ exp(−μu)+ (1 − γ ) exp(−μ(u− d))) du = λ

μ
[γ e−μd + (1 − γ )],

and our infinite-server bound for the blocking probability of customers who have a reservation
time of d is then

Bd =
∞∑
�=C

(ν(d))�e−ν(d)

�! . (10)

Note that the dependence of ν(d) on d decays rapidly for large d, which explains the limiting
behaviour that we observed in Figure 1.

To calculate the infinite-server bound for the blocking probability for customers who arrive
to the queue with a reservation time of 0 and a service request S equal to s, we need to calculate
the probability that the bookings queue reaches a capacity C at some time in the interval [0, s).
This queue is an infinite-server queue with a Poisson (λ/μ) initial number of customers, arrival
rate λ̃ on the time interval [0, d), and 0 thereafter, and per-customer service rate μ.

The Laplace transform of the probability of such a queue reaching a capacityC in time [0, s)
can be derived using techniques of transient analysis of infinite-server queues, as described
in [19, Chapter 5], [20] or [2]. This result is stated explicitly in [18, Equation (28)].
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Let Lm0(t) be the probability that the capacity of the bookings queue reaches C in the
interval [0, t) given that there were m0 < C customers initially present, and L̃m0(σ ) be its
Laplace transform. Then

L̃m0(σ ) = Hm0(σ/λ̃)

σHC(σ/λ̃)
,

where Hk(σ/λ̃) = (−μ/λ̃)kC(λ̃/μ)k (−σ/μ), and C(λ̃/μ)k (·) is a Charlier polynomial; see [6].
To derive the bound for the blocking probability of a customer who requests immediate

service of length s when there are m0 customers present, we need to invert L̃m0(σ ) and then
evaluate Lm0(min(s, d)). This could be done using the techniques described in [1]. However,
we did it by defining the Laplace transform symbolically and using the symbolic computation
package in MATLAB�.

Integrating with respect to the service request and summing over possible initial distributions,
we arrive at the conclusion that the probability that the number of customers in the bookings
queue will exceed C during the newly-arriving customer’s service is

B0 =
∞∑

m0=C

(λ/μ)m0 e−λ/μ

m0! +
C−1∑
m0=0

(λ/μ)m0 e−λ/μ

m0!
[∫ d

0
μe−μuLm0(u) du+ e−μdLm0(d)

]
.

(11)

This serves as our infinite-server bound for the blocking probability of nonreserving customers.
The results of our analytical calculations for an example with the same parameters as that

simulated in Figure 1 are shown in Figure 5. There, we have plotted the value of the analytic
upper bounds (10) and (11), as well as the simulation for both reserving and nonreserving
customers, against the value of d . We observe that the upper bounds exceed the simulated
values by an amount in the region of 0.01 to 0.04 for the reserving customers and consistently
by about 0.04 for nonreserving customers. The upper bounds do, however, capture the shapes
of the simulated curves very well.
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Figure 5: Blocking probabilities derived from (10) and (11), together with simulated results for the finite
capacity system, plotted as a function of d. Parameters are C = 10, λ = 6, and γ = 1
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6.2. Deterministic service times

Now consider the case where the service time distribution is deterministic, with requested
services equal to ηwith probability 1. Then the number of customers who are initially in service
in the bookings queue has a Poisson distribution with mean λη and the remaining service times
of these customers are chosen independently according to the distribution F e

S (w) in (7), which
is uniform on [0, η]. On the other hand, as in the exponential example in Section 6.1, the
inhomogeneous Poisson process of arrival times in the bookings queue has rate λ̃ on the interval
[0, d) and 0 on the interval [d,∞).

As in the previous section, since the bookings queue has no arrivals subsequent to d, we can
derive our bound for the blocking probability by calculating the probability that the number
of customers present in the reservation queue at a time d into the future is greater than C. By
the final line of Table 2, the number of such customers follows a Poisson distribution with
parameter

ν(d) = λ

∫ ∞

d

(γ [1 − Fs(u)] + (1 − γ )[1 − Fs(u− d)]) du, (12)

where Fs is the distribution of a deterministic random variable with mass concentrated at η.
If d > η then (12) reduces to ν(d) = λ(1−γ )η, and if d ≤ η it reduces to ν(d) = λ(η−γ d).

We conclude that our infinite-server bound for the blocking probabilities of reserving customers
in the case where service times are deterministic is

Bd = exp(−ν(d))
∞∑
k=C

(ν(d))k

k! .

Note again that, provided that d > η, this expression does not depend on d, verifying our
observations about Figure 2.

Calculating the infinite-server bound for the blocking probability of nonreserving customers
is a little more complicated, because these customers can be blocked by customers who are in
the bookings diary but are yet to commence service. We have to calculate the probability that
the occupancy of the bookings queue is greater than or equal to C during the interval [0, η).
There are two classes of customers present in this interval:

• customers who were initially present in the queue, the number of which follows a Poisson
distribution with parameter λη and whose remaining service times are independently and
uniformly distributed on [0, η];

• customers who arrive during the interval [0, η) in a Poisson process with parameter λ̃:
since they request service time equal to η, such customers must necessarily remain in the
queue for the remainder of this interval.

Assume d > η and that there arem0 < C customers initially present in the bookings queue.
Then, the departure times V1, . . . , Vm0 of these customers are distributed as the order statistics
of m0 independent uniform random variables on [0, η]. Thus, for k = 1, . . . , m0 − 1, the
conditional density function of Vk+1 given Vk = vk is

fVk+1 |Vk (vk+1 | vk) = (m0 − k)(η − vk+1)
m0−k−1

(η − vk)m0−k , (13)

where we can take v0 = 0. Putting (13) together with the fact that the arrival process of the
bookings queue is Poisson with parameter λ̃ on the interval [0, d), which contains [0, η), we
can generate a recursive expression for the probability that the queue size ever hits C in [0, η).
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It turns out that it is more convenient to do this by writing (13) in terms of uk = η− vk . So,
for 0 ≤ k ≤ m0, 0 ≤ �k < C − m0 + k, and uk ∈ [0, η), let �m0,k(�k, uk) be the probability
that the queue reaches capacity C in [η − uk, η) given that Vk = η − uk and �k new arrivals
have occurred in [0, η − uk). Then, conditioning on Vk+1,

�m0,k(�k, uk)

=
C−m0+k−1∑
�k+1=�k

∫ uk

0

[
(m0 − k)(uk+1)

m0−k−1e−λ̃(uk−uk+1)(λ̃(uk − uk+1))
�k+1−�k

(uk)m0−k(�k+1 − �k)!
]

× �m0,k+1(�k+1, uk+1) duk+1

+
∞∑

�k+1=C−m0+k

∫ uk

0

(m0 − k)(uk+1)
m0−k−1e−λ̃(uk−uk+1)(λ̃(uk − uk+1))

�k+1−�k
(uk)m0−k(�k+1 − �k)! duk+1.

(14)

The integrand in the first term of (14) contains the probability that there are �k+1 < C−m0 +k
arrivals to the bookings queue in the time interval (0, η−uk+1] and then the queue subsequently
reaches capacity C, while the integrand in the second term contains the probability that the
number of arrivals to the bookings queue reaches C − m0 + k, and so the total number of
customers in the queue reaches C, in the time interval (η − uk, η − uk+1].

If there are �m0 < C new customers when the final initially-present customer departs at
time vm0 = η − um0 , then the probability that the bookings queue will fill up in the interval
[η − um0 , η) is

�m0,m0(�m0 , um0) =
∞∑

�m0+1=C
exp(−λ̃(um0))

(λ̃(um0))
�m0+1−�m0

(�m0+1 − �m0)!
,

which serves as a starting point for the backward recursion (14).

Given that there arem0 < C customers present at time 0, the probability that the number of
customers in the bookings queue reaches C at some point in the interval [0, η) is given, in the
above notation, by the function �m0,0(0, η). With this in hand, our infinite-server bound for the
blocking probability is given by

B0 =
C−1∑
m0=0

e−λη(λη)m0

m0! �m0,0(0, η)+
∞∑

m0=C

e−λη(λη)m0

m0! .

Note once more that, provided that d > η, all the calculations that lead to this expression do
not depend on d , again verifying our observation about Figure 2.

When d ≤ η, (13) still holds for the conditional departure points of the customers initially
present in the bookings queue. However, there are no more arrivals to the bookings queue after
time d, and so if the occupancy of the bookings queue has not reached C before time d, then it
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will not do so in the interval [d, η). In this case, (14) takes the form

�m0,k(�k, uk)

=
C−m0+k−1∑
�k+1=�k

∫ uk

η−d

[
(m0 − k)(uk+1)

m0−k−1e−λ̃(uk−uk+1)(λ̃(uk − uk+1))
�k+1−�k

(uk)m0−k(�k+1 − �k)!
]

× �m0,k+1(�k+1, uk+1) duk+1

+
∞∑

�k+1=C−m0+k

∫ uk

η−d
(m0 − k)(uk+1)

m0−k−1e−λ̃(uk−uk+1)(λ̃(uk − uk+1))
�k+1−�k

(uk)m0−k(�k+1 − �k)! duk+1

+
∞∑

�k+1=C−m0+k

e−λ̃(uk−η+d)(λ̃(uk − η + d))�k+1−�k
(�k+1 − �k)!

[
(η − d)

(uk)

]m0−k
. (15)

The first two terms in this recursion are analogous to the two terms on the right-hand side
of (14), while the third covers the possibility that the (k+ 1)th departure of an initial customer
occurs after time d , and so there is a time period of only uk − η + d after the kth departure
of an initial customer in which further arrivals can occur. Consequently, λ̃(uk − η + d) is the
parameter of the Poisson number of customers that arrive after the kth departure of an initial
customer.

Similar reasoning leads to the initial term of the backwards recursion. If the final initial
customer departs before time d , that is, um0 > η − d, with �m0 < C new customers present,
we can express the probability that the queue length exceeds C before time d as

�m0,m0(�m0 , um0) =
∞∑

�m0+1=C
exp(−λ̃(um0 − η + d))

(λ̃(um0 − η + d))�m0+1−�m0

(�m0+1 − �m0)!
.

We implemented the two recursions (14) and (15) using the symbolic mathematics toolbox
in MATLAB and produced Figure 6, in which the analytic bounds and the results of the finite
capacity simulation are plotted against d for both reserving and nonreserving customers, against
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Figure 6: Blocking probabilities derived from (10) and (11), together with simulated results for the finite
capacity system, plotted as a function of d. Parameters are C = 10, λ = 6, and γ = 1
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the value of d . We can make similar observations to those that we made about Figure 5. Again
we see that the distance between the upper bound and the simulated values varies between 0.01
and 0.04 for reserving customers and is relatively consistent at about 0.04 for nonreserving
customers. Again the shapes of the simulated curves are captured very well by the infinite-
server bounds.

7. Conclusion

We have presented an infinite-server model for a continuous-time queueing system with
advanced reservations. Analysis of this model provides an upper bound for the rejection proba-
bilities experienced by customers arriving to a finite-capacity queue. Our major observation is
that the stationary measure of the bookings diary is identical to the law of the M(t)/G/∞ queue
that we have called the bookings queue, which has almost surely finitely-many customers
in total. This observation opens the possibility of deriving approximations to the blocking
probability of reservation queues by analysing the time dependent behaviour of such queues,
even if it is just via simulation.

In Section 6 we carried out the necessary analytical calculations for two examples. It would
be of interest to extend these calculations to more general situations. Indeed, we think that
the recursive procedure that we used to analyse the case with deterministic service times can
be used more generally. Furthermore, the link between the bookings queue and queues with
advanced reservations provides a good motivation for a general study of the properties of queues
with inhomogeneous Poisson arrival processes and almost surely finitely-many customers.
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[8] Coffman, E. G. Jr., Jelenković, P. and Poonen, B. (1999). Reservation probabilities. Adv. Performance Anal.

2, 129–158.
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