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We address the sensitivity of large-eddy simulations (LES) to parametric uncertainty
in the subgrid-scale model. More specifically, we investigate the sensitivity of the LES
statistical moments of decaying homogeneous isotropic turbulence to the uncertainty
in the Smagorinsky model free parameter Cs (i.e. the Smagorinsky constant). Our
sensitivity methodology relies on the non-intrusive approach of the generalized
Polynomial Chaos (gPC) method; the gPC is a spectral non-statistical numerical
method well-suited to representing random processes not restricted to Gaussian
fields. The analysis is carried out at Reλ = 100 and for different grid resolutions
and Cs distributions. Numerical predictions are also compared to direct numerical
simulation evidence. We have shown that the different turbulent scales of the LES
solution respond differently to the variability in Cs . In particular, the study of the
relative turbulent kinetic energy distributions for different Cs distributions indicates
that small scales are mainly affected by changes in the subgrid-model parametric
uncertainty.

1. Introduction
Large-eddy simulation (LES) is an often-used computational method to predict

turbulent flows in various applications. In order to control the computational cost
associated with such predictions, LES reduces the dynamic complexity of the Navier–
Stokes equations by means of a low-pass filter. A side effect is the emergence of
subgrid-scale stresses, which have to be modelled by means of a subgrid-scale model.

Subgrid-scale modelling in LES has been the subject of a large number of studies
in recent decades (see e.g. Sagaut 2006, for an overview). Regrettably, as reviewed by
Jiménez & Moser (2000), one can estimate, based on conditional averages, that the
statistical error between the ‘best’ model based on resolved properties and the effective
subgrid-scale stresses is at best of the order of 80 %. This not only illustrates the
difficulty in the formulation of subgrid-scale closures, but also shows the limitations
of the LES approach to predicting turbulence, indicating that instantaneous LES
solutions will quickly diverge from the exact filtered solution. It is however one of
the central assumptions in LES that statistically averaged properties, such as mean
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profiles, the average turbulent kinetic energy distribution, etc., can be predicted well
when a suitable subgrid closure is used (Meneveau 1994).

In most cases, a deterministic approach has been followed for the formulation
of models. That is, typically based on the filtered velocity field u and its gradients
∇ ⊗ u, and using physical insight into turbulence, an expression mij (u, ∇ ⊗ u, . . .) is
proposed which should approximate on average the effect of the effective unclosed
subgrid stresses τij = uiuj − uiuj . To this end, models should in the first instance
yield the correct level of subgrid dissipation, while, e.g. in boundary layers, the
distribution of subgrid transport is also very important in determining good simulation
results (Völker, Moser & Venugopal 2002). Further properties which are thought
valuable for models are the preservation of symmetry properties of the differential
equations, the inclusion of back-scatter effects, the prediction of intermittency levels,
realizability, etc. (see among others Vreman, Geurts & Kuerten 1994; Meneveau 1994;
Fureby & Tabor 1997; Ghosal 1999; Carati, Winckelmans & Jeanmart 2001, for more
information).

In simulations, subgrid-scale models do not always yield their theoretically expected
solution, and this is often shown in the significant discrepancy between a priori tests
and a posteriori results. This is caused by simplifications and assumptions related
to the shape of the LES filter, the type of turbulence at the filter cutoff, etc., in
combination with the nonlinear nature of the Navier–Stokes equations. All this leads
to a level of uncertainty in the performance of subgrid-scale models and the quality
of simulation results, most notoriously when the models contain an adaptable model
parameter, such as the well-known Smagorinsky (1963) model.

In Smagorinsky LES, the correct selection of the model parameter Cs is central
for the quality of results. In early literature, Cs was often hypothesized to be a
universal constant related to the model. Different values for Cs are quoted, such
as 0.1 (Deardoff 1970), 0.15 (Pope 2000), 0.17 (McMillan & Ferziger 1979), 0.17
(Lilly 1967), 0.185, and 0.23 (Lilly 1966). Some of these values are a result of
an empirical fit, while others come from theoretical estimations. More recently,
it was shown that the Smagorinsky coefficient is not constant, but depends on
the local Reynolds number, and the resolution of the turbulent integral-length
scales (Meyers & Sagaut 2006; Voke 1996). Based on the dynamic procedure
(Germano 1992), Cs can be adapted in space and time during a simulation (Germano
et al. 1991). However, a correct dependence on the Reynolds number and the
resolution of the integral-length scale is not guaranteed (Meneveau & Lund 1997;
Porté-Agel, Meneveau & Parlange 2000).

Discretization of the LES equations further complicates the matter. It has been
demonstrated that modelling and discretization errors strongly interact, and are
difficult to separate (Ghosal 1996; Vreman, Geurts & Kuerten 1996; Geurts &
Fröhlich 2002; Meyers, Geurts & Baelmans 2003). In a pragmatic approach to this
problem, it was shown that optimal settings (leading to minimal simulation errors) of
the Smagorinsky coefficient Cs can be determined (Meyers et al. 2003). This approach
has been refined by evaluating a range of simulation errors simultaneously, leading to
the identification of multi-objective parameter regions (Meyers, Sagaut & Geurts
2006). Moreover, simulation errors increase rapidly when model coefficients are
selected outside the multi-objective optimal regions. Hence, a good selection of
the Smagorinsky coefficient is important, but difficult in practice. This is further
substantiated by the fact that the dynamic procedure does not guarantee an optimal
setting of the Smagorinsky model (Meyers et al. 2005, 2006), with dynamic errors
which can be a posteriori twice as large as the minimal error levels.
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Reliability of LES results is usually evaluated through an extensive set of validation
cases. However, in the absence of an experimental or direct numerical simulation
(DNS) reference solution, validation is not always an option. Moreover, in the absence
of the exhaustive LES database, such as employed by Meyers et al. (2006), the selection
of the model coefficient Cs and the corresponding simulation quality are uncertain. In
these cases, confidence in simulation results is typically founded on a mix of common
sense and an extensive sensitivity analysis of parameters which might affect simulation
results. The source of variable parameters that can be thought of as uncertain,
and which require attention, can be initial or boundary conditions (wall roughness,
turbulent inflow parameters, etc.), material properties, source and interaction terms,
geometry, etc. Such types of uncertainty are ubiquitous in engineering applications,
and are often modelled as random processes. Less typical is the study of the effect
of the model coefficients which are not always well-known from a theoretical point
of view. In the present study, we address the sensitivity of LES to parametric
uncertainties in the Smagorinsky (1963) model, more specifically the sensitivity to
the coefficient Cs that controls this model. To this end, we introduce techniques used
in nonlinear uncertainty analysis to support the evaluation of parameter sensitivity
and uncertainty. It is important to note that the occurrence of uncertain parameters
in a computational model yields a change in the definition of the problem: instead
of looking for the unique solution of a single fully deterministic problem, one is
now interested in parameterizing the space of all solutions spanned by the uncertain
parameters. The sensitivity of the solution with respect to a parameter is therefore
related to the local value of the Jacobian of the solution in this space.

Clearly, a sensitivity analysis may not be expected to yield a direct evaluation
of the above-discussed error sources and the different effects which determine
correct settings of Cs . But, it is the only approach which is feasible in many
practical engineering applications. Therefore, an assessment of the strengths and
limitations of such an approach for large-eddy simulation, where the effect of
modelling and discretization errors are difficult to gauge, is very useful. Further,
the evaluation of Cs as a stochastic parameter may provide an estimation of the
variation in LES predictions resulting from the uncertainty in the model coefficient.
We will demonstrate that large differences exist in the obtained probability density
functions (p.d.f.s) for the large and small scales. Moreover, in the present simulations,
Cs-invariant scales are detected, which are seen to separate the large scales and the
small scales in the solution. For large values of Cs these Cs-invariant scales disappear.

Uncertainty quantification requires the propagation of uncertainty through a given
model, and affects all stages of the numerical simulation. Non-statistical stochastic
approaches are available to efficiently treat stochastic partial differential equations.
Spanos & Ghanem (1989) pioneered the computational use of the Polynomial Chaos
(PC) expansion method, which is based on the ‘homogeneous chaos’ theory of Wiener
(1938), and is well-suited to solve stochastic differential equations. Wiener was the
first to define homogeneous chaos as the span of Hermite polynomial functionals of
a Gaussian process. According to the Cameron–Martin theorem (Cameron & Martin
1947): “any nonlinear functional of a brownian motion can be represented with
mean-square convergence as a Wiener-hermite series”. As pointed out by one of the
reviewers, the importance of this theorem is that it extends obvious results from
finite-dimensional approximations (where various polynomials are complete with
respect to their respective measures), to an infinite-dimensional context (Brownian
motion instead of a finite set of random variables). Except for the Poisson and
binomial measure (Schoutens 1999), there is no parallel result for general measures.
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Spanos & Ghanem (1989) have successfully applied PC to various problems subject
to Gaussian uncertainties in solid mechanics (Ghanem & Spanos 1991).

The PC representation is a spectral decomposition of a second-order random
process in terms of orthogonal basis functions. The spatial and temporal evolutions
of the basis coefficients provide quantitative estimates of the modelled random process
solution. The efficiency of this approach depends crucially on the judicious choice
of ‘coordinates’ in probability space. Fast convergence in PC expansions implies that
the polynomial basis on which PC expansions of the random solution are sought
should be optimized to the statistics of the input data and of the random solution.
The dimensionality of the representation, i.e. the number of terms required in the
truncated PC expansion, grows rapidly as function of the number of random sources
and their nature, and the degree of nonlinearity of the problem. The representation
of a very ‘noisy’ random process (e.g. white noise) will theoretically require an infinity
of terms. In this study, we use the generalized Polynomial Chaos (gPC) method
(Xiu & Karniadakis 2002) which has the advantage that Gaussian and non-Gaussian
random processes can be represented. We emphasize that even if the gPC method does
not provide a rigorous probabilistic framework to extend Wiener’s theory to general
measures, it has been successfully used to solve stochastic differential equations
relying on finite-dimensional approximations (Xiu & Karniadakis 2002; Lucor &
Karniadakis 2004b; Wan & Karniadakis 2006). Moreover, it often allows a high-
order deterministic approximation of random fields and appears to exhibit spectral
convergence in many cases.

PC-based methods have been applied to different flow problems, such as porous
media flows (Ghanem & Dham 1998; Zhang & Lu 2004), thermal problems
(Hien & Kleiber 1997; Hien & Kleiber 1998; Xiu & Karniadakis 2003b), and
combustion. However, fewer studies exist that deal with full stochastic incompressible
Navier–Stokes equations, see the review in Knio & Le Maı̂tre (2006). Le Maı̂tre
et al. (2001, 2002) have derived and implemented a stochastic Navier–Stokes
PC solver using finite differences to investigate laminar fluid flow and transport
problems. Xiu & Karniadakis (2002) have generalized the approach to other
non-Gaussian types of randomness and polynomials, and have applied it to
incompressible stochastic two-dimensional flows (Xiu & Karniadakis 2003a). Lucor
(2004) has used the approach for three-dimensional flows as well. All of these
have used spectral/hp element methods to solve the large time- and space-
dependent deterministic PDE system produced by the Galerkin projection of the
gPC method. Asokan & Zabaras have developed a two-dimensional stabilized finite-
element stochastic formulation by considering an extension of the deterministic
variational multi-scale approach with algebraic subgrid-scale modelling for the
stochastic advection and the incompressible stochastic Navier–Stokes equations
(Asokan & Zabaras 2005b), and applied it to natural convection problems
(Asokan & Zabaras 2005a). While most of the PC-based studies have dealt with
stochastic input generated by a finite number of random variables, Hou et al. (2006)
have considered stochastic Burgers and two-dimensional Navier–Stokes equations (in
a stream function–vorticity formulation) driven by Gaussian Brownian motion. They
have introduced a PC compression technique similar to the sparse tensor products
approach developed by Schwab (Frauenfelder, Schwab & Todor 2005) to handle
the constant flux of new random variables due to the Brownian motion and they
obtained satisfactory results for short-time integration.

Nevertheless, many challenges remain to be resolved for the PC and gPC
representations of complex and highly nonlinear processes. This is particularly true
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for cases where the stochastic solution does not depend smoothly and continuously
on the random inputs, or for long-time integration of stochastic systems characterized
by a limit-cycle oscillation response. For these cases, it was noticed that a spectral
decomposition of the solution in terms of a global basis exhibits severe limitations.
Different solutions have been proposed to mitigate those effects, such as an adaptive
truncation strategy (Li & Ghanem 1998; Lucor & Karniadakis 2004a; Hou et al.
2006), or an adaptive decomposition based on a local basis combined with local
refinement techniques (Le Maı̂tre et al. 2004; Wan & Karniadakis 2005). In Le Maı̂tre
et al. (2004), a multi-wavelet-based decomposition (Wiener–Haar) is proposed while
in Wan & Karniadakis (2005) an adaptive multi-element gPC is formulated improving
the effectiveness of the gPC representation, as exemplified for the Kraichnan–Orszag
three-mode problem (Orszag & Bissonnette 1967).

There have been several attempts to apply the PC approach to turbulence. This
was suggested in the early work of Wiener in 1939, but the idea lay dormant for
twenty years. During the 1960s, several proposals were made to develop a theory of
turbulence involving a truncated Wiener–Hermite expansion of the velocity field (by,
among others, Orszag & Bissonnette 1967; Meecham & Jeng 1968; Crow & Canavan
1970; Canavan 1970; Chorin 1974). The Hermite polynomial basis was used thanks
to a quasi-normal hypothesis. All these works failed in the sense that the truncated
expansion yields non-physical kinetic energy spectra. The main reason is that, owing
to the non-local and nonlinear character of turbulence, a truncated PC approach is
not able to account for all couplings and to describe correctly the kinetic energy
transfers among modes and their correlations. Owing to its chaotic nature, a very
large number of degrees of freedom are excited by the turbulent dynamics and the
PC expansion is observed to converge very slowly. A consequence is that a direct
numerical simulation of developed turbulence on the PC basis would necessitate
the use of a unreasonably high-order polynomial basis, resulting in a untractable
computational model. Some surrogate models have been developed to account for
the effects of unresolved modes, but none of them yield fully satisfactory results.
Therefore, the direct decomposition of the instantaneous turbulent field into a PC
approach cannot at present be considered as an efficient way to address the issue of
the sensitivity of a simulated turbulent flow. In the present study, we examine the use
of polynomial chaos for the study of parametric uncertainty in large-eddy simulations.
Though LES solutions do not formally correspond to Navier–Stokes turbulence, the
governing equations are akin, such that the same convergence problems associated
with the decomposition of the instantaneous LES field into a PC approach may be
expected. What is proposed here is to preclude the problem mentioned above by
considering the statistical moments of the simulated LES field (or related quantities
such as the kinetic energy spectrum) as functions of the uncertain parameters, instead
of decomposing the resolved turbulent velocity field itself. It will be shown that this
approach makes it possible to obtain a fast-converging PC expansion of all statistical
moments that are usually of interest, leading to a statistical parameterization of the
space of the LES solutions spanned by the uncertain parameters under consideration.

We will address the sensitivity of LES to parametric variations in the subgrid-scale
model. We choose the extensively documented Smagorinsky (1963) model, and we
consider decaying homogeneous isotropic turbulence to illustrate the main principles.
Although the Smagorinsky model is far from being the most advanced subgrid-
scale model for LES, it has been studied extensively, which makes it a particularly
interesting model to demonstrate our uncertainty approach. As well as the sensitivity
analysis discussed above, we will also include, as an independent point of reference,
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comparisons with a direct numerical simulation. This will allow us to assess the value
and limitations of conclusions from the sensitivity analysis. However, in view of the
above discussion on the different error sources and contributions to model uncertainty,
it is not the aim of the present study to provide a full DNS-based decomposition of
these different contributions.

The paper is organized as follows. First, we present in § 2 an overview of the
sensitivity methodology that will guide us in our study. Next, in § 3, we present the
results of this methodology when applied to the analysis of the Smagorinsky model.
Finally, our conclusions are summarized in § 4.

2. An overview of the sensitivity methodology
First, in § 2.1, some LES fundamentals are briefly introduced, and the computational

set-up is discussed. Next, in § 2.2, we will detail the methodology which will be
employed for the advanced sensitivity analysis.

2.1. LES fundamentals and simulation set-up

The dimensionless filtered Navier–Stokes equations for incompressible flows are given
by

∂ui

∂t
+

∂uiuj

∂xj

+
∂p

∂xi

− 2

Re

∂Sij

∂xj

− ∂τij

∂xj

= 0 with i = 1, 2, 3 (2.1)

where ui is the filtered velocity component in the xi-direction, p the filtered pressure
and Re the computational Reynolds number. The LES filter is denoted by (·), and
Sij = [∂ui/∂xj + ∂uj/∂xi]/2 corresponds to the filtered strain tensor. The filtering of
the convective terms in the Navier–Stokes equations gives rise to the subgrid-scale
stress tensor τij given by

τij = uiuj − uiuj . (2.2)

In LES, these subgrid-scale stresses are replaced by a model mij , which approximates
their dynamic effect and is based on the resolved velocity field ui only.

One of the most often employed formulations for mij is the Smagorinsky (1963)
model, which approximates the deviatoric part of τij as

mij = −2(Cs�)2|S|Sij , (2.3)

with Cs the Smagorinsky coefficient, � the LES filter width, and |S| = (2SijSij )
1/2 the

magnitude of the filtered strain-rate tensor.
In all simulations a second-order cell-centred finite-volume method is employed to

discretize the closed LES equations This is combined with a four-stage second-order-
accurate Runge–Kutta time integration. LES of decaying homogeneous isotropic
turbulence is carried out at a number of resolutions and different values for the
model parameter Cs , and a Taylor-scale-based Reynolds number Reλ = 100. The
initial fields for the LES are generated by filtering initial DNS fields taken from
Meyers et al. (2003) with a sharp cutoff filter, with cutoff related to the grid cutoff
wavenumber. During the simulations, no additional explicit filtering is performed and
for the implementation of the Smagorinsky model, we further take �= h.

2.2. Space of possible solutions, sensitivity analysis and Polynomial Chaos

We address the sensitivity of LES to parametric uncertainties in the subgrid-scale
model. More specifically, we focus on the Smagorinsky parameter Cs that controls
the Smagorinsky model. Various Cs distribution types and supports are considered.
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We use the generalized Polynomial Chaos method as a numerical tool to quantify the
effect of the Cs uncertainty on the LES solution. We first briefly recall the different
stochastic approaches that are available before describing generalized Polynomial
Chaos and its advantages.

2.2.1. Statistical versus non-statistical stochastic approaches

For the numerical solution of stochastic differential equations, we broadly
distinguish statistical and deterministic methods.

The statistical approach includes among others Monte Carlo simulation, stratified
sampling, and Latin hypercube sampling (Fishman 1996). These methods are
straightforward to implement but the simulations can become prohibitively expensive,
especially for systems that are already computationally complex even in their
deterministic version.

Alternatively, one can develop deterministic methods for stochastic PDEs. The most
widely used is the perturbation method, where input random fields are represented as
infinite perturbation expansions of fluctuations around their mean fields. In practical
applications, at most second-order expansions are employed (Kleiber & Hien 1992;
Liu & Der Kiureghian 1991; Vanmarcke & Grigoriu 1983; Zhu & Wu 1991). A
related approach is based on manipulation of the stochastic operators. Such methods
include the Neumann expansion, which is based on expanding the inverse of the
stochastic operator in a Neumann series (Shinozuka & Deodatis 1988; Zhu, Ren &
Wu 1992), and the weighted integral method (Deodatis 1991; Deodatis & Shinozuka
1991). But these methods have limitations and are restricted to small uncertainties.

Another approach to deterministic numerical solution of stochastic PDEs is based
on introducing geometry and coordinates in the probability space on which input and
solution uncertainty are modelled. The efficiency of this approach depends crucially
on the judicious choice of ‘coordinates’ in probability space. Spanos & Ghanem (1989)
pioneered the computational use of the Polynomial Chaos (PC) expansion method,
and have successfully applied it to various problems in solid mechanics (Ghanem &
Spanos 1991). PC expansions are based on the homogeneous chaos theory of Wiener
(1938) and they allow a high-order deterministic approximation of random fields and
appear to exhibit spectral convergence in many cases.

Thus, generalized PC expansions, also including the so-called Wiener–Askey chaos
expansions, that are orthogonal with respect to non-Gaussian probability measures
were first employed in computational algorithms by Xiu & Karniadakis (2002),
following developments in probability by Ogura (1972) and Schoutens (1999), and
in orthogonal polynomials by Askey & Wilson (1985) and Koekoek & Swarttouw
(1998). In gPC, the polynomials are chosen from the hypergeometric polynomials of
the Askey family where the underlying random variables are not restricted to Gaussian
random variables.

2.2.2. Generalized Polynomial Chaos

The generalized Polynomial Chaos (gPC) method is a non-statistical method used
to solve stochastic differential (SDE) and stochastic partial differential equations
(SPDE) (Spanos & Ghanem 1989). It has recently emerged as a reliable and efficient
numerical tool for numerous applications (Xiu & Karniadakis 2003b; Ghanem &
Hayek 2002; Ghanem 1999; Ghanem & Brzakala 1996; Ghanem & Red-Horse 1999;
Lucor & Karniadakis 2004b). In the following, the gPC framework will be briefly
described and Ghanem & Spanos (1991) contains more details on the subject.
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Stochastic mathematical models are based on a probability space (Ω, A, P) where
Ω is the event space, A ⊂ 2Ω its σ -algebra, and P its probability measure.

Consider a random field X(ω), i.e. mappings X : Ω → V from the probability space
into a function space V . If V = �, X(ω) are random variables, and if V is a function
space over a time and/or space interval, random fields are stochastic processes. V is
a Hilbert space with dual V ′, norm ‖ · ‖ and inner product (·, ·) : V × V → �. As V

is densely embedded in V ′, we abuse notation and denote by (·, ·) the V × V ′ duality
pairing also.

We will consider second-order random fields, i.e. X :Ω → V is a second-order random
field over V , if

�‖X‖2 = �(X, X) < ∞,

where � denotes the expectation of a random variable Y ∈ L1(Ω, �), and is defined
by

�Y =

∫
ω∈Ω

Y (ω) dP (ω).

Generalized polynomial chaos is a means of representing second-order random
fields X(ω) parametrically through a set of random variables {ξj (ω)}N

j=1, N ∈ �,

through the events ω ∈ Ω:

X(ω) =

∞∑
k=0

akΦk(ξ (ω)). (2.4)

Here {Φj (ξ (ω))} are orthogonal polynomials in terms of a zero-mean random vector
ξ := {ξj (ω)}N

j=1, satisfying the orthogonality relation

〈ΦiΦj 〉 = 〈Φ2
i 〉δij , (2.5)

where 〈·, ·〉 denotes the ensemble average. We note that the modal coefficients ak are
purely deterministic quantities. The number of random variables N ∈ � is in general
infinite, so is the index in (2.4). In practice, however, we need to retain a finite set of
random variables, i.e. to {ξj }N

j=1 with N < ∞, and a finite-term truncation of (2.4).
The inner product in (2.5) is based on the measure W (ξ ) of the random variables:

〈f (ξ )g(ξ )〉 =

∫
ω∈Ω

f (ξ )g(ξ ) dP (ω) =

∫
f (ξ )g(ξ )W (ξ ) dξ , (2.6)

with W (ξ ) denoting the density of the law dP (ω) with respect to the Lebesgue measure
dξ and with integration taken over a suitable domain, determined by the range of ξ .

In equation (2.4), there is a one-to-one correspondence between the type of the
polynomial {Φ} and W (ξ ). Indeed, the weighting function of {Φ} has a similar form
to W (ξ ). For instance, the weighting function of Hermite orthogonal polynomials
corresponds to exp(− 1

2
ξ T ξ )/(2π)n/2, and is the same as the probability density function

(p.d.f.) of the N -dimensional Gaussian random variables ξ . Hence, the classical Wiener
polynomial chaos is an expansion of Hermite polynomials in terms of Gaussian
random variables. A correspondence between orthogonal polynomials and random
variables was first established by Ogura (1972) and Schoutens (1999).

The expansion in equation (2.4) is truncated to a finite-dimensional space based
on a ‘finite-dimensional noise assumption’ that is accomplished by characterizing the
probability space by a finite number N of random variables. Further, the highest order
P of the polynomials {Φ} is selected based on accuracy requirements. Consequently,
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the finite-term expansion takes the form

X(ω) =

M−1∑
j=0

ajΦj (ξ (ω)), (2.7)

where ξ = (ξ1, . . . , ξN )T is an N-dimensional random vector with ξi independent of ξj

for all 1 � i �= j � N . If we denote the highest order of polynomial {Φ} as P , then the
total number of expansion terms M is (Ghanem & Spanos 1991),

M = (N + P )!/(N!P !). (2.8)

The multi-dimensional gPC expansion is constructed as the tensor product of the
corresponding one-dimensional expansion. Note that in one-dimensional expansions
(N =1), we have M =P + 1.

2.2.3. Non-intrusive formulation of the problem

For our application, the Smagorinsky constant Cs takes the role of the uncertain
parametric quantity. We treat Cs as an uncertain input to the stochastic problem, and
its probability distribution is assumed. In order to simplify the system, we make the
additional assumption than Cs is a random variable, which means that its statistical
properties do not depend on spatial or temporal dimensions. Therefore, N =1 in (2.8)
and only two terms in ξ (ω) (zero- and first-order term) are needed to represent Cs

exactly. Because of the dependence of the LES solution on the uncertain parameter Cs ,
any physical quantity part of (or derived from) the LES solution becomes a random
process itself. This applies for instance, to the turbulent kinetic energy spectrum,
E(k, t), and it can then be expressed as

E(k, t, ω) =

M−1∑
j=0

ej (k, t)Φj (Cs(ω)). (2.9)

We emphasize that this explicit representation of the solution (or derived quantity)
as a function of Cs holds if the distribution of Cs is known and if the M coefficients
ej (k, t) have been computed.

In order to compute those coefficients, there exists a so-called ‘intrusive’ approach
of the gPC application (Le Maı̂tre et al. 2001; Xiu & Karniadakis 2003a). It is based
on the substitution of the gPC expansion (2.4) into the SDE in order to represent
both the solution and the random inputs. The new system is then projected (with
a Galerkin-type projection) onto the orthogonal polynomial basis. This leads to a
deterministic coupled system of M differential equations, the coefficients ej being
solutions of that system. This approach will not be discussed further in this study,
and we should point out that it requires substantial modifications of the existing
deterministic solver.

Another so-called ‘non-intrusive’ approach of the gPC application consists of
projecting the stochastic solution directly onto each member of the orthogonal basis
chosen to span the random space (Webster, Tatang & McRae 1996; Tatang et al.
1997). In order to do so, a set of deterministic solutions is first generated. The
projection is analogous to a collocation method, as opposed to the Galerkin method,
in the sense that it requires knowledge of the solutions at some discrete quadrature
points. This approach is generally much more efficient than brute-force sampling
methods such as Monte-Carlo-based methods. Moreover, the non-intrusive approach
does not require any substantial modifications to the existing deterministic solver.
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This approach will be used in this study. The ej random coefficients can be directly
computed as they take the following form:

(∀j ∈ {0, . . . , M − 1}) ej (k, t) =
〈E(k, t, ω) Φj (Cs(ω))〉

〈Φ2
j (Cs(ω))〉 . (2.10)

We recall that 〈Φj 〉 = 0 for j > 0, and the denominator 〈Φ2
j 〉 can be tabulated

prior to the projection. The evaluation of (2.10) is equivalent to computing multi-
dimensional integrals over the domain Ω (2.6). Different ways of dealing with high-
dimensional integrations can be considered depending on the relative prevalence of
accuracy and efficiency (Keese 2005). Here, we use a numerical quadrature of Gauss or
Gauss–Lobatto type by full tensor products. This approach remains computationally
efficient for moderate N . The number of quadrature points Nq to use depends on the
regularity of the function to integrate. We emphasize that the deterministic solver will
compute/provide the value of E(k, t) at those known quadrature points and not at
randomly selected locations.

After solving for the deterministic coefficients ej , we have an explicit functional
representation (in random space) of the solution process. It is then possible to
explicitly reconstruct the response surface of the random process E(k, t) by drawing
a population of samples Cs according to their probability distribution (2.4). This
reconstruction is trivial and computationally fast.

Moreover, it is also possible to perform a number of analytical operations on
the stochastic solution. Moments, sensitivity analysis, confidence intervals and the
p.d.f. of the solution can be evaluated. Owing to the orthogonality of the modes, the
moments can be easily computed. The mean solution is contained in the expansion
term with zero-index. The second moment, i.e. the covariance function is given by a
linear combination of the modal fluctuations. We have

µE(k,t) = 〈E(k, t, ω)〉 = e0(k, t)

σ 2
E(k,t) = 〈(E(k, t, ω) − e0(k, t))2〉 =

M−1∑
j=1

[
e2
j (k, t)〈Φ2

j 〉
]
.

⎫⎪⎬
⎪⎭ (2.11)

Note that, once the response surface for given random input data is determined,
we can determine the statistics of the solution for any random input with different
statistics (Knio & Le Maı̂tre 2006). This approach performs well as long as the initial
response surface is sufficiently accurate, and provided the new data event space Ω

is the same as the previous one. In this case, this leads to significant computational
savings since the associated sampling costs are substantially smaller than those
required to determine the original stochastic solution.

3. The sensitivity methodology applied to the Smagorinsky model
First, in § 3.1, a detailed overview of the LES results and error behaviour is presented,

using DNS results as a reference. These results illustrate the typical variations in LES
results associated with changes in the Smagorinsky coefficient or the resolution. They
provide a useful reference framework, which will be used to better understand and
interpret the trends which are observed in the effective sensitivity analysis in § 3.2
and § 3.3. In § 3.2, no a priori knowledge is assumed on the relevant range of the
coefficient, but rather we will investigate whether and how sensitivity analysis can
help to select a Cs range. Finally, in § 3.3 the effect of the Cs-distribution on the LES
probability density functions is considered.
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Figure 1. Energy decay of 323 LES with Smagorinsky constants ranging between 0 and 0.7.
—, LES results; −−, filtered DNS results.

3.1. LES sensitivity for a wide range of Cs values

A good selection of Cs values depends on several factors such as the simulation
Reynolds number, the resolution, and the numerical implementation. Experience
dictates that a sensible selection for Cs ranges from 0 to 0.2. Though the Smagorinsky
model and its coefficient Cs are subjects of a large number of studies in the literature,
this is not necessarily the case for other models. Therefore, in the present sensitivity
study, we will try to avoid the use of a priori knowledge for the selection of a
parametric range.

LES results are first evaluated for a wide range of Cs values, and we select somewhat
arbitrarily 0 � Cs � 0.7, i.e. an interval which is considerably larger than commonly
accepted. Based on the analysis of these results, and without the use of any external
information (such as e.g. DNS data), a refinement of the Cs interval is made. In
the next sections, this smaller Cs range will be used as our study interval for more
detailed sensitivity analysis.

In figure 1, the decay of kinetic energy as function of time is presented for
0 � Cs � 0.7 and a 323 simulation. The filtered DNS results are also shown as a
reference. Results demonstrate that the LES solution changes strongly with Cs .
Clearly, if the DNS data are not taken into consideration, no obvious preference can
be given to any of these solutions, and this illustrates a typical limitation which is
often encountered in sensitivity analysis.

In order to further establish the dependence of the LES solution on Cs , the evolution
of energy spectra as function of Cs is presented in figure 2. To this end, spectra for
0 � Cs � 0.7 are presented at t = 0.8, i.e. near the end of the decay period considered
in the present simulations. Results are shown for the 323, 483, and 643 resolutions, and
several interesting features appear. First, for the small resolved modes in the solution
k � 1, one can observe that the energy E(k) in those modes decreases monotonically
with Cs . In contrast, for the large scales k ≈ 1, E(k) typically first increases, and then
decreases when Cs increases from 0 to 0.7.

For low to moderate values of Cs (0 � Cs � 0.2), one can further observe in figure 2
that all spectra share a common point (k ≈ 5, k ≈ 6, and k ≈ 9 for 323, 483 and 643

respectively), at which the energy is independent of Cs . To the right of this point, we
observe the above-discussed monotonic decrease of E(k). To the left, E(k) does not
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Figure 2. Energy spectra at t = 0.8 of (a) 323, (b) 483, and (c) 643 LES with Smagorinsky
constants ranging between 0 and 0.7. —, low to medium Cs range (0 � Cs � 0.2); −·−, medium
to high Cs range (0.2 � Cs � 0.7).

change monotonically with Cs . Obviously, for higher values of Cs , one can appreciate
that the ‘common point’ disappears. These observations are intriguing and need some
further discussion.

In high-Reynolds-number turbulence, it is well-known that the large-scale flow
features are independent of the small-scale dissipation mechanism which converts the
turbulent kinetic energy into heat (see e.g. Pope 2000; Frisch 1995). Hence, a change
in the dissipation mechanism (e.g. small variations in the viscosity) is not reflected
in the large scales but, rather, the small-scale energy distribution automatically
adjusts, such that the overall turbulent kinetic energy balance is maintained. In
LES, these properties allow, from a conceptual point of view, the classical Navier–
Stokes dissipation mechanism to be replaced with a subgrid-scale closure. The LES
aim is to reproduce the effect of the smallest turbulent scales in a computational more
affordable way. Even though at marginal resolutions, and for ‘imperfect’ subgrid-scale
models, this ideal separation between the dissipation mechanism and the large scales
is not present, some of its features appear to remain. One of the few studies in this
context, Jiménez (1999), showed that for Smagorinsky LES, slightly incorrect settings
of Cs will be counterbalanced by a change in the tail of the spectrum. Too low settings
of Cs result in an energy pile up at the tail of the spectrum, while too high values
result in a tail which falls of too steeply.
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The observations in figure 2 can be seen in this context. For a reasonable range
of Cs settings (0 � Cs � 0.2) the tail of the spectrum is adapted drastically. Because
of the low simulation resolution, the variation of Cs also is reflected on the large
scales. However, their dependence on Cs is weaker, and the transition to small-scale
behaviour is sharply marked by the common point discussed above.

If results for Cs � 0.2 in figure 2 are considered, one observes that spectra no longer
include this common point. Hence, the clear demarcation between large and small
scales disappears for higher Cs values, and the full spectrum shows the properties of
a dissipation range. We propose to use the value C+

s , which separates the two regimes
observed, i.e. LES spectra having a common point (low Cs) and not having such a
point (high Cs), as an upper limit for a sound Cs range.

3.2. Sensitivity analysis: determination of an appropriate parametric range

We now turn to an extensive sensitivity analysis of the current LES case to the
parameter Cs by means of generalized polynomial chaos. This provides an elegant
and efficient way to reconstruct the Cs dependence of the LES solution, and also
allows quantification of how uncertainty in Cs affects the LES results.

In the current section, Cs is considered to follow a uniform distribution U , which is
a particular case of a beta distribution, and 0 � Cs � 0.7. We designate the distribution
by U (α, β), where α is the mean value of the distribution and β is half the width
of the support. This distribution has a finite support and does not ‘favour’ any Cs

choice. We use the gPC method with an orthogonal basis of Legendre polynomials
that are the most appropriate for this type of distribution (Xiu & Karniadakis 2002).
We emphasize that this choice is not indisputable. The optimality is only guaranteed
for the stochastic inputs. For nonlinear problems, it is not clear that an optimal
representation of the inputs is necessarily optimal for the entire problem.

Therefore, before turning to the effective presentation of sensitivity results, we will
describe a brief convergence analysis of the gPC results. Two types of errors can affect
the accuracy of the non-intrusive gPC representation. The first is the quadrature error
that enters the computation of each random mode (2.10). The number of quadrature
points required to reach a prescribed accuracy depends on the regularity of the
product between the polynomial basis and the random process to be represented
(which is not known a priori). The second error is the approximation error due to the
truncation of the gPC expansion (2.9).

We briefly study the behaviour of each of these errors for our specific problem.
We first look at the quadrature error for the computation of the mean solution.
Subsequently, we investigate the approximation error in the reconstructed gPC
solution. The convergence study is carried out for the 643 case, taking a uniform
distribution for Cs .

In figure 3(a), we present the convergence rate of the first gPC mode (or mean
solution (2.11)) versus the number of Gauss–Lobatto quadrature points Nq . To this
end, we evaluated the convergence of L2 norms based on the energy spectra E(k, t),
representative of the convergence of large-scale flow features, and based on the
enstrophy spectra k2E(k, t), which characterize the resolved small-scale part of the
solution. The error (in percent) is relative to a very fine quadrature employing Nq =70
points. The curves decay exponentially fast and only few realizations are needed to
get accurate results. For instance, only seven quadrature points are required to get
both mean physical quantities within 0.1 %.

In figure 3(b), we present the convergence rate of the error of the gPC reconstructed
solutions versus the order P of the polynomial basis. Here, Nq =16 quadrature points
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Figure 3. Convergence rates of the gPC representation for the 643 case. (a) L2 norms of the
error in the mean kinetic energy and enstrophy spectra versus number of quadrature points;
Cs follows U (0.35, 0.35). (b) L2 norms of the error in kinetic energy and enstrophy spectra
versus polynomial order P . Two different Smagorinsky constant ranges are presented: large
range: Cs follows U (0.35, 0.35) and small range: Cs follows U (0.0702, 0.0702).

have been used to produce the results. The error (in percent) is computed relative to
the deterministic LES solution and depends on the resolution Nr as

εE (Nr ) =

⎡
⎢⎢⎣

∫ kc

0

∫
Ω

{EgPC(k, t, Cs(ω)) − ELES(k, t, Cs(ω))}2
dω dk

∫ kc

0

∫
Ω

E2
LES(k, t, Cs(ω)) dω dk

⎤
⎥⎥⎦

1/2

, (3.1)

for the energy spectra E(k, t), and a similar definition is used for the enstrophy spectra
k2E(k, t). The wavenumber kc = πL/Nr corresponds to the grid cutoff, and L is the
computational box size.

The integrals over Ω in (3.1) are numerically evaluated over a discrete set of points
Np distinct from the quadrature set of points Nq , e.g. Np = 70 points are used for the
large Cs range. Two different Cs ranges are investigated. Both cases exhibit spectral
convergence. As expected, it is computationally more costly to reach a given accuracy
with a gPC representation for the large Cs interval than the short one.

In the remainder of this paper, we will use a maximum of Nq = 22 deterministic
realizations in the interval 0 � Cs � 0.7 and a corresponding order P = 20, such that
errors related to the gPC reconstruction and the quadrature rule are small.

We now return to the sensitivity analysis, and first elaborate on the determination
of C+

s . In order to easily determine C+
s , one can display the energy in the first

modes of the spectrum as function of Cs . After solving for the deterministic gPC
coefficients (2.10), we reconstruct the energy distribution by drawing a population of
samples Cs according to their probability distribution (2.9). The results are shown in
figure 4. Obviously the energy in these modes changes non-monotonically with Cs ,
and hence, for low values of k, maxima can be observed which differ from Cs =0.
Apart from mode k =1, where the maximum is presumably located at Cs > 0.7, these
maxima are marked on figure 4. One can further observe that the Cs value at which
the energy reaches its maximum roughly decreases for smaller turbulent scales. For
higher modes, the maximum energy E(k, Cs) occurs at Cs = 0, and also, for Cs � 0,
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Figure 4. Turbulent kinetic energy distribution vs. Cs with uniform distribution U (0.35, 0.35),
for the largest turbulent scales. Circles show the maximum energy for each scale. (a) 323 grid
cells; (b) 483 grid cells.
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Figure 5. Cs positions of maximum kinetic energy for the large turbulent scales and for
three different grid sizes.

E(k, Cs) ∼ exp(−Cs). Hence, these modes are in the small-scale part of the spectrum
and change monotonically with Cs . A summary of these results is presented in figure 5,
where the (k, Cs) coordinates of these maxima are displayed for LES with 323, 483

and 643 resolutions. Hence, the last point of these curves (at highest k) provides an
estimation for C+

s : C+
s = 0.1879 for the 323 resolution, C+

s = 0.2064 for the 483

resolution and C+
s = 0.1404 for the 643 resolution. Note that the dependence of C+

s

on the resolution is not monotonic. However, in particular for marginal simulation
resolutions, the dependence of LES results on the resolution can be quite irregular
(see e.g. Meyers et al. 2006).

To further evaluate the relevance of C+
s as an upper bound for a parametric

uncertainty evaluation of Cs , the simulation error (using filtered DNS as reference
data) is evaluated as function of Cs in figure 6. To this end, we define a simulation
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Figure 6. gPC reconstructed errors in resolved kinetic energy at t = 0.8 of 323 (◦), 483 (�)
and 643 (×) LES as a function of Cs .

error δE as a function of the resolution Nr and the coefficient Cs as

δE (Nr, Cs) =

⎡
⎢⎢⎣

∫ kc

0

{ELES(k, t) − EDNS(k, t)}2
dk

∫ kc

0

E2
DNS(k, t) dk

⎤
⎥⎥⎦

1/2

. (3.2)

A more systematic approach to simulation errors in LES may be considered (see e.g.
Meyers et al. 2006, and our discussion in § 1), but does not shed further light on
our present discussion. In figure 6, we evaluated δE at t = 0.8. The symbols represent
the error between LES and DNS solutions at the different Cs quadrature points;
those points are chosen in accordance with a Gauss-type or Gauss–Lobatto-type
quadrature rule (in which case they also include the boundary points: Cs = 0 and
Cs =0.7). The dotted lines (reconstructed gPC solution) represent the population
of possible LES kinetic-energy-error events in the domain of uncertainty. Roughly
speaking, it predicts how accurate the LES solution is compared to the DNS solution
for a given Cs value. One can see in the figure that the sharp gradients of the
distributions around the optimal Cs values are correctly captured by the method.
Moreover, systematic Monte-Carlo samplings of the solution (not shown in the
figure) at various Cs values have been produced in order to check the accuracy of
the gPC predictions. Very good agreement was obtained at those points between the
gPC prediction and the deterministic computation.

It is now clear that C+
s (Nr ) as obtained in figure 5 is indeed a good upper bound

for all three resolutions considered (cf. figure 6). The existence of C+
s , and its use as

an upper bound for the model parameter, may be considered for other subgrid-scale
closures as well, e.g. various model formulations have a parameter similar to the
Smagorinsky coefficient (Meyers & Sagaut 2006; Vreman 2004; Hughes, Mazzei &
Oberai 2001; Nicoud & Ducros 1999). Further research is needed in order to establish
whether this type of limit, and the related invariant point in the spectra, also appears
for these subgrid-scale models.

We now show how the gPC approach can be used to visualize the space of LES
solutions spanned by the uncertainty in the Smagorinsky constant Cs . Figure 7 shows

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

67
51

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007006751


Sensitivity analysis of LES using polynomial chaos 271

100 101

104

103

102

(a) (b)
101

k
100 101

k

E(k)

10–4

10–3

10–2

10–1

DNS
99% Interval confidence

Figure 7. Turbulent kinetic energy spectrum with 99 % confidence interval; (a) Cs: uniform
distribution U (0.094, 0.094) for the 323 grid case; (b) Cs: uniform distribution U (0.1032, 0.1032)
for the 483 grid case.

the turbulent kinetic energy spectra plotted with logarithmic axes and their associated
99 % confidence intervals represented by error bars. The results are compared to the
deterministic DNS reference data. The LES solution computed at the gPC quadrature
points is shown as well in order to check that it lies within the envelop described by
the confidence intervals. We recall that here the Cs ranges have been reduced following
previous discussions. For each turbulent scale, once the gPC coefficients of the energy
have been computed, the stochastic response is then generated by drawing 500 000
uniformly distributed samples of Cs . We verified that this sample size is sufficient
for our application. The p.d.f. is then evaluated from the population ensemble. The
p.d.f. results converge as we increase the level of representation of the kinetic energy
through the polynomial order P and the number of samples. Moreover, we note that
convergence in the mean is fast but the convergence in the probability of the tails
requires more effort.

3.3. Sensitivity analysis: the effect of the distribution

A more systematic study is pursued in order to investigate the effect of the type of
probabilistic distribution of the parameter Cs on the LES solution. After the uniform
distribution, we naturally turn our attention to the beta distribution B which has a
finite support and that we designate by B(α, β) such that

f (ξ ) =
I[−1,1](ξ )

2α+β+1
× Beta(α + 1, β + 1) × (ξ + 1)β(1 − ξ )α, (3.3)

where Beta(·, ·) is the Beta function and the indicator function I[−1,1] ensures that
only values of ξ in the range [−1, 1] have non-zero probability. Since the uncertain
parameter Cs is positive and taken within a certain range [a, b], a change of variable
is required and the probability distribution is scaled accordingly.

For this analysis, we keep the reduced intervals introduced in the previous section,
i.e. 0 � Cs � C+

s . A natural choice is to pick the mean value of each distribution at
the centre of the interval of variability. This choice is somewhat empirical but is the
least biased when no additional information is available. We first consider symmetric
distributions, which in this case imposes that α = β , i.e. with zero skewness. Different
distributions are considered, as represented in figure 8(a), with increasingly higher
probability density around the mean value. The mean value µB(α,β) =

1
2
Cs/C+

s is the
same for each distribution but the variance decreases and the kurtosis increases as
the (α, β) pair increases. The skewness of these distributions is zero.
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Figure 8. Beta distributions B(α, β) for the Smagorinsky constant Cs . The p.d.f.s have:
(a) same mean µB(α,β) =

1
2
Cs/C+

s , different variance σ 2
B(α,α) and same skewness (zero value);

(b) different mean, same variance σ 2
B(α,β) = σ 2

B(2,2) (solid lines) or σ 2
B(α,β) = σ 2

B(10,10) (dashed
lines) and different skewness. Approximate values for the parameters are: α1 = β3 = 0.36,
β1 = α3 = 2.38, α2 = β4 = 4.14 and β2 = α4 = 11.72.

A sensitivity analysis is performed by means of the gPC representation. We use
an orthogonal basis of Jacobi polynomials that are most appropriate for beta
distributions (Xiu & Karniadakis 2002). The resulting probability density functions of
the turbulent kinetic energy, obtained for each turbulent scale, due to the uncertainty
in Cs are shown in figure 9(a–c). This time a linear scale is used to represent the
turbulent kinetic energy content. We notice that the turbulent kinetic energy response
is finite for each scale. Moreover, the non-zero skewness of most of the distributions
(as opposed to the input) emphasizes the nonlinearity of the phenomena. We can see
that the energy distribution among the different scales follows a similar trend for the
three cases.

In figure 10(a), we present the coefficient of variation cv of the turbulent kinetic
energy in each scale. The coefficient of variation is a non-dimensional number and is
a measure of dispersion of a probability distribution. It is defined, for each turbulent
scale, as the ratio of the standard deviation and the mean. The coefficient of variation
is relatively large for the large scales (except for the first one) with a sharp drop
toward the scale that is insensitive to changes in Cs (e.g. wavenumber k = 4 for the
323 grid), which explains the delta-function-like shape of the p.d.f. at that specific
scale. Then, there is a monotonic increase of the coefficient of variation for all scales
above the ‘critical’ scale. The growth rate for the small scales is regular and is almost
the same for all grid resolutions (as long as a proper normalization by the interval
size is made).

Obviously, figure 10(a) illustrates that the LES solution is sensitive to Cs for all
scales. From a conceptual point of view, one might expect changes in Cs to mainly
affect the small scales, which govern the dissipation mechanism (see e.g. Jiménez 1999).
The growth of the coefficient of variation for small scales (large k) in figure 10(a)
further confirms this.

In figure 10(b), the coefficient of variation is presented for centred distributions with
a decreasing variance (cf. figure 8a). We present results for the 643 resolution. The 323

and 483 results (not shown) display similar trends. We observe a vertical shift between
curves, associated with the different variance in the input distribution. The coefficient
of variation of the small scales remains linear with k. A careful examination of these
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Figure 9. Turbulent kinetic energy p.d.f. results for 323 grid cells with Cs following a beta
distribution (a) B(2, 2), (b) B(5, 5), (c) B(10, 10).
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Figure 10. Coefficient of variation cv = σE(k)/E(k) of the turbulent kinetic energy. (a) Cs

follows a beta distribution B(2, 2). The results are compared for the different grid resolutions.
(b) Cs follows centred beta distributions (cf. figure 8a) for the 643 grid.

results indicates that its slope is directly proportional to the Cs variance, e.g. a smaller
variance in Cs induces a smaller variance of the spectrum. The observed linear (with
k) increase of the coefficient of variation for the small turbulent scales is – to the
authors’ knowledge – never reported in the literature, and might be related to the
mechanisms governing ‘Smagorinsky turbulence’.

The skewness of the spectrum may provide further useful information. We recall
that positive-valued skewness indicates that the p.d.f.s are skewed to the right, i.e.
the right tails are longer than the left tails. Smaller values for the turbulent kinetic
energy are then more likely to be obtained. In figure 11, the skewness of the p.d.f.
of the spectra is displayed versus the wavenumber. Different distributions for Cs and
different resolutions are included. For the large scales, we observe that the sign of
the skewness varies considerably (cf. figure 11a). For the small scales, and for all
resolutions, the growth of the skewness is regular, and linear for large values of k.

We now consider the effect of non-symmetric beta distributions for the coefficient
Cs , which imposes in this case that α �= β . These distributions have a non-zero
skewness. These distributions are represented in figure 8(b). The mean values µB(α,β)

of these distributions are chosen such that they are located at the optimal Cs value
(in the sense of figure 6), or at its symmetric point relative to the centre of the
interval. The symmetric non-skewed distributions with µB(α,β) =

1
2
Cs/C+

s are kept
as reference. The first set of distributions (solid lines) share the same variance as
B(2, 2) (i.e. σ 2

B(α,β) = σ 2
B(2,2)). The second set (dashed lines) share the same variance as

B(10, 10). Further, the skewness of B(α1, β1) has the same magnitude as the skewness
of B(α3, β3) but with opposite sign. Similarly, the skewness of B(α2, β2) and B(α4, β4)
are the same.

Figure 11(b) shows the skewness distributions of the medium and small scales for
different skewed Cs distributions (cf. figure 8b) and the 643 case. The linear growth
with k is conserved for all cases. However, there is a clear vertical shift of the
responses, depending on the sign of the Cs input skewness. When the input skewness
is zero, the skewness of the spectrum distribution takes values close to zero. When
the input skewness is positive and the mean input value is lower than 1

2
Cs/C+

s , the
skewness of the spectrum p.d.f. is negative. When the input skewness is negative and
the mean input value coincides with the optimal Cs , the resulting skewness is positive.
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Figure 11. Skewness of the turbulent kinetic energy. (a) Cs follows a beta distribution B(2, 2).
The results are compared for the different grid resolutions. (b) Cs follows skewed beta
distributions (cf. figure 8b) for the 643 grid. Approximate values for the parameters are:
α1 = β3 = 0.36, β1 = α3 = 2.38, α2 = β4 = 4.14 and β2 = α4 = 11.72.

A change in variance of the input p.d.f.s is seen to play a much smaller role for the
output p.d.f.s, and results appear in closely matched pairs characterized by the mean
and skewness of their input distributions.

Results presented above show that the smallest resolved scales exhibit the largest
relative variation to a change in Cs . This is in agreement with the general idea
that the turbulent motion at small scales is more ‘random’ than the large-scale
motion. This view yielded the proposition of the local-chaos hypothesis (McComb,
Hunter & Johnston 2001). The observed behaviour of the skewness of the p.d.f. of
the smallest resolved scales corresponds to the dynamical picture that a preferentially
underestimated value of Cs will yield a preferential overestimation of the kinetic
energy of these scales, related to an energy pile-up. The change in the sign of the
skewness of the p.d.f. between very large and small scales can also be interpreted.
An overestimation of the smallest-scale kinetic energy may result in a too high
kinetic energy transfer rate from large to small scales due to triadic interactions, i.e.
an accelerated forward energy cascade process, leading to an underestimation of the
large-scale energy. On the other hand, an underestimation of the smallest-scale kinetic
energy can yield a too small energy-transfer rate and the so-called ‘bottleneck effect’,
i.e. an overestimation of the large-scale kinetic energy. The present gPC modelling
allows a useful evaluation of these phenomena.

4. Concluding remarks
The results presented above show that the sensitivity of the LES solution to

uncertain Cs can be successfully investigated using a generalized Polynomial Chaos
method. In order to obtain an efficient and fast converging parameterization of the
space of possible solutions spanned by uncertainties, a non-intrusive decomposition
of statistical moments of the LES solutions should be performed. On doing so,
the lack of convergence observed in the early trials to apply the Wiener–Hermite
decomposition to an instantaneous turbulent velocity field is prevented.

The pseudo-spectral representation of uncertainty offered by this method makes
it possible to get insight into the sensitivity of the solution. We have shown in the
present paper how response surfaces can be reconstructed and analysed via usual
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indicators such as probability density function, mean value, variance etc. The gPC
approach was shown here to be able to provide an accurate statistical description
(including the p.d.f.) of the space of possible LES solutions with minimum effort,
since the data are approximated with spectral accuracy. It offers a systematic and
mathematically grounded way to replace the usual sensitivity analysis of the solution
found in most papers presenting numerical results, in which a low-dimensional finite
set of computed solutions are visually compared, without quantitative analysis of the
sensitivity.

The results presented above also show that the sensitivity analysis may provide a
useful step in finding optimal values of some unknown parameters appearing in the
mathematical model. In the present case, it has been observed that a grid-dependent
value of the Smagorinsky constant, C+

s , can be identified. For Cs >C+
s , the computed

energy spectra are very similar to the usual spectrum shapes observed in the viscous
range of DNS spectra, showing that the subgrid-viscosity-induced dissipation is
dominant at almost all scales. An interesting result is that this critical value is very
close to the usual heuristic values found for Cs in the literature. This may lead to the
definition of an a priori criterion for the choice of the optimal Cs , and is an interesting
subject for further research.

Finally, the present work suggests that the construction of accurate response
surfaces relying on mathematically grounded approaches should be preferred to
‘brute force’ sampling for validation and analysis purposes.
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