The Many-Worlds Interpretation and
Quantum Computation

Armond Duwellft

David Deutsch and others have suggested that the Many-Worlds Interpretation of
quantum mechanics is the only interpretation capable of explaining the special efficiency
quantum computers seem to enjoy over classical ones. I argue that this view is not
tenable. Using a toy algorithm I show that the Many-Worlds Interpretation must
crucially use the ontological status of the universal state vector to explain quantum
computational efficiency, as opposed to the particular ontology of the MWI, that is,
the computational histories of worlds. As such, any other interpretation that treats the
state vector as representing real ontological features of a system can explain quantum
speedup too.

1. Introduction. Why are quantum computers faster than classical com-
puters? Deutsch (1997) and others (e.g., Jozsa 2000) have suggested that
the reason quantum computers are more efficient than classical computers
is that they can compute multiple values of a function in a single com-
putational step. Call this the quantum parallelism thesis (QPT).' Deutsch
(1997) has also suggested that the only interpretation of quantum me-
chanics that can support the QPT is the many worlds interpretation
(MWI). The quantum parallelism process (QPP) is often pointed to in
order to justify these claims.

Consider a system of n + m qubits. Let n qubits be the input register,
system i, for our quantum computer and let m qubits be the output register,
system o. Each qubit can represent a single binary number, 0 or 1, where
0 corresponds to z-spin up, and 1 z-spin down. The n qubit input register
can represent any integer from 0 to 2” — 1. Further, the input register can
be put into a superposition of all quantum states representing the integers
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1. This seems like a reasonable account of quantum computational efficiency if classical
computers are not capable of such behavior.
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from 0 to 2" — 1. For convenience, adopt the following notation: |x) will
stand for the n qubit state representing the number x in binary. Suppose
that n = 2. The number three would then be represented by the state
|3) = |1)|1). With this notation, an n qubit system that is a superposition
of all numbers from 0 to 2" — 1 is given by

211
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where normalization coefficients are suppressed throughout this paper.
Consider a unitary gate, U, that performs the following evolution:

19y) = 191/ (0) D y), )

where f: {0,1}" — {0,1}" and & is addition mod 2. If the input register
is put into a superposition of all points in the domain of the function,
the system evolves as

21—1 Uy 2"—1
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(2) is the quantum parallelism process.

An argument needs to be made that the QPP can be appealed to show
that the QPT is true. For the purposes of this paper, a functionalist
criterion for computation is adopted (COMP FUNC): Given some fixed
interpretation of input and output states of a computer, the functional
behavior between input and output states determines which function a
computer computes, and when a computation takes place (see Duwell
[2004], Section 7, for details regarding this functional view of computa-
tion). If the additional assumption is made that the different pure states
of quantum systems are taken to be correlated to different ontological
features of a system, an assumption which will be called benign realism
(BR), there is no doubt the computation was successful.” The computer
delivered the functional behavior requisite for the evaluation of a function
at multiple points. So, COMP FUNC + BR + QPP — QPT is true.

Given that COMP FUNC + BR + QPP — QPT is true, it appears that
any interpretation of quantum mechanics in which BR is true can support
the QPT. So, there must be something special about how the MWI secures
the truth of QPT that differentiates it from other interpretations.

Consider the story a MWI advocate might tell about the QPP. Each
term in the initial superposition in (2) corresponds to a different world.
Those terms are the state vectors describing the quantum mechanics of

2. BR does not entail a commitment to definite values or any particular kind of
ontological feature or entity.
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each world. The initial states of these worlds correspond to points at
which values of a function are to be computed. In each world, the quantum
system representing the point of the function to be computed is then
submitted to a quantum gate that computes each value of the function.
After the quantum system passes through the gate, in each world, the
value of the function will have been computed. Put another way, the
functional behavior of each world secures the computation of a value of
the function. All values of the function are computed in virtue of all
individual values being computed in different worlds. So, the truth of the
QPT supervenes on the computational histories of individual worlds, not
only on the computational history of the whole universe. This view seems
especially compelling because in each world, the computer computes the
value of a function at a particular point just as a classical circuit computer
would.

Distinguish two ways in which multiple values of a function might be
computed:

Local computation: The functional behavior of the computational
device secures the computation of each value individually by satis-
fying COMP FUNC for each value of the function.

Global computation: The functional behavior of the computational
device secures the computation of all values by satisfying COMP
FUNC, but not for each value.

In order to claim a privileged status regarding the account of quantum
computational efficiency, proponents of the MWI would have to claim
that only “local” accounts of the truth of the QPT are satisfactory,
“global” accounts are not. So, interpretations of quantum theories can
account for quantum computational efficiency only if they are such that
the ontological features of the computational device evolve in such a way
that each of the values of the function are computed individually. In terms
of the MWI, the computational histories of the worlds are what accounts
for the truth of QPT, and the computational history of the entire system
only derivatively.

Regardless of whether there is a local account of the truth of the QPT
or not, Steane (2003) argues that an instance of the QPP does not con-
stitute the calculation of multiple values of a function, that is, the QPT
is false. Steane points out that for a system that undergoes the quantum
parallelism process, there is no way to access the points of a function that
were purportedly evaluated. If access to the values is necessary to qualify
the quantum parallelism process as a computation of multiple values in
a single step, then there is no evidence that the QPT is true.

Steane’s challenge to the truth of the QPT can be met. One can simply
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make an appeal to the fact that COMP FUNC + BR + QPP — QPT is
true. Ontologically the computer has done its job, regardless of whether
the computational results are accessible. Though Steane’s objection does
not successfully challenge the truth of the QPT, it does challenge the
sufficiency of any account of quantum computational efficiency that sim-
ply points to the truth of the QPT. The mere fact that a quantum computer
can compute multiple values in a single step shows nothing when at most
one of those results is accessible. One must indicate how the computation
of those inaccessible values can be used to perform computational work
efficiently.

The MWI account of quantum computational efficiency sketched above
needs to be extended to give an account of how one utilizes the results
of the QPT to do useful computational work. It will be argued that in
order to do this, an advocate of the MWI must go global. The advocate
must appeal to computational history of the universe, not simply the
computational histories of each individual world. In order to account for
quantum computational efficiency, the advocate of the MWI must appeal
to the ontological features of the computational device that are crucial
to account for computational efficiency, but irrelevant to the truth of the
QPT. In doing so, advocates of the MWI must utilize the type of onto-
logical features of the computational device that they reject in other ac-
counts of the truth of the QPT. They must appeal to BR and the evolution
of the universal state vector throughout the computational process to
account for quantum computational efficiency. Put another way, what
advocates of the MWI reject in other accounts of quantum computational
efficiency in order to claim superiority for their account is exactly what
they need to account for quantum computational efficiency. Hence, it will
be argued that MWI accounts of quantum computational efficiency are
no better off than others in which BR is true. Note that it will not be
argued that the MWI account is deficient or that other accounts are better.

Section 2 describes an algorithm for determining if a binary function
is constant or balanced. This simple algorithm makes it explicit how the
results of the QPP can be utilized to do useful computational work. Section
3 shows that the success of the algorithm cannot supervene on the in-
dividual computational histories of each world. Indeed, it must supervene
on the computation history of the entire universe, and hence make appeal
to the ontological status of the universal state vector.

2. A Problematic Algorithm. In this section a toy algorithm is examined
to decide whether a function is constant or balanced. A function is bal-
anced if exactly half of the values in the range of the function are 0 and
the other half are 1. A constant function takes a single value for every
point in its domain. This algorithm seems to compute multiple values of
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a function in a single computational step and is a good test case for the
claim that the MWI interpretation is a superior explanation of quantum
efficiency.

Below is an example, taken from Mermin (2000), of a quantum algo-
rithm used to determine if a function is constant or balanced. Consider
a function f: {0, 1} — {0, 1}. Now, let the initial input system and output
system be in the states (|0) — |1)). The initial state of the system is

|\I,ini> = |0>i|0>0 - |1>i|0>a - |0>i|1>o + |1>i|1>0' (3)

Allow these qubits to pass through quantum gate U, as described by (1).
The state, ignoring normalization factors, becomes

%) = [0)]£(0)), = [DAD), = [0),LA0), + [DJAL),. (4)

where /= 1—f If the function is constant, f(0) = (1), then A0) =
(1), and the state is

(10}, = DA, = L0, (5)
and if the function is balanced, f(0) = (1), and f(1) = f(0), the state is

(10), + [, — [AO),). (6)

It is plain to see from (5) and (6) that a measurement on the input state
will determine whether the function is constant or balanced. The states
(10), = |1)) and (|0), + |1),) are eigenstates of x-spin down and up, re-
spectively. Furthermore, the two possible final states for i are orthogonal
and can always be distinguished by a single measurement.

3. MWI Account of the Toy Algorithm. The challenge for the MWI in
accounting for the success of this algorithm is twofold. The MWI must
secure the truth of the QPT, but also secure the evaluation of the function
as constant or balanced, as that is what is required to account for the
efficiency of the algorithm. Recall that in order to differentiate between
the MWI account of quantum computational efficiency and other inter-
pretations’ accounts, one must demand that the QPT be secured locally.
An advocate of the MWI must produce an account of quantum com-
putational efficiency that secures the evaluation of the function as constant
or balanced locally as well. That is, the sure-fire disposition to indicate
if a function was constant or balanced must supervene on the compu-
tational histories of each world individually. In terms more specific to the
situation, the evaluation cannot depend on phase relations between the
worlds that are not relevant to the computations performed in each in-
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dividual world.? If the MWTI does not have the resources to do this, then
the claimed superiority vanishes, as the resources required to account for
quantum computational efficiency will be exactly what advocates of the
MWI find faulty with other accounts. It will be argued that this superiority
cannot be maintained.

There appear to be four exhaustive options for an advocate of the MWI
to account for the truth of the QPT and the evaluation of the function
as constant or balanced (EVAL), using the ontology of worlds: Option
1: the history of quantum states in each world account for the truth of
the QPT and EVAL; Option 2: the history of definite values associated
with the worlds account for the truth of the QPT and EVAL; Option 3:
the history of quantum states associated with each world accounts for
the truth of the QPT, while the history of definite values associated with
the worlds account for the EVAL; and Option 4: the history of definite
values associated with each world accounts for the truth of the QPT, while
the EVAL is secured by the quantum states associated with each world.
Options 2 and 4 assume that measurement devices are responsive to the
possessed definite values in worlds as opposed to the quantum state of a
world. This assumption is not as bad as it seems, as the possessed values
attributed to worlds correspond to eigenstates of the global state assigned
to the universe.*

It is rather quick and easy to dismiss Options 1 and 2. For simplicity,
adopt the following notation. To describe a world at a given time, two
features will be considered: the quantum state of the world and the definite
values that it possesses. The state that a system posses will occur in kets,
and definite values will be without kets. A description of a world will be
given by a pair (-, -), where the first slot describes the feature of the
world relevant for the truth of the QPT, while the second slot describes
the feature of the world relevant for the EVAL. So, (]00), C) would be a
world with a quantum state given by |00) which is relevant for the truth
of the QPT, but which possesses a definite value that underwrites the
EVAL as Constant.

Consider Option 1. Assume that the computational basis is the z-basis,
and worlds correspond to terms in the state vector written in that basis,

3. I take phase relations between worlds to be relational properties between worlds
that do not supervene on the individual properties of worlds, hence they are global,
but irreducible properties. The justification comes from the fact that relative phases
between worlds can be shifted by the simple multiplication of a global phase factor
that has no observational consequences. The price of rejecting this interpretation is an
unnecessarily inflated ontology with absolutely no observational consequences.

4. This way of structuring the problem is inspired by Clifton (1996). Some of the
arguments against these options parallel Clifton’s (1996) arguments against the MWI
generally.
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and those terms give the state of the world they individuate.” Hence, the
descriptions of the worlds are initially given by (|00), -), (|10), -),
(|01), -), and (|11), -). The right slots in the description of the worlds are
left blank because there is nothing at the initial start of the computation
that can or ought to secure the EVAL. The states for each world must
evolve to ([07(0), [E,)), (JLA(D), |E.)). (|0RO), |ES)), and (JIAD), E.)),
in order for quantum states to secure the truth of the QPT where |E)) is
the quantum state in world j which is supposed to secure the EVAL. Now,
clearly there can be only one final state of a world after the computation.
So, the states in each of the slots that compose the description of a world
must be equal—for example, |E,) must be equal to |0f(0)), and so on.
Now, recall that a measurement of spin on the input state in the x-direction
reveals whether f is constant or balanced. Hence in order to secure the
EVAL, |E;), whatever it is, would be in an eigenstate of x-spin of the
input qubit. Of course, the states assigned to the worlds that can secure
the truth of the QPT are z-spin eigenstates, which are incompatible with
x-spin eigenstates. The only obvious move to make within the constraints
of Option 1 is to suppose that the final state of the worlds is given by
the final global state |¥,), (4). That state will secure the EVAL. The price
of this move is to give up the local account of the truth of the QPT. The
initial states are all different, but all evolve to the same final state:

(100), ) = (1), %)

(111), ) = (%), [¥).

Thus, the functional behavior of the worlds cannot underwrite the truth
of the QPT. So, Option 1 is unacceptable.

Consider Option 2. Local definite values secure the truth of the QPT
and the EVAL. For local definite values to secure the truth of the QPT,
there must be definite values for z-spin corresponding to the terms that
individuate worlds in the global state vector. Moreover, the change in these

5. Clifton’s (1996) paper indicates the problems associated with this last assumption,
but if the truth of the QPT is to be secured with local quantum states, there appears
to be no other reasonable quantum state assignments to those worlds given the story
advocates of the MWI want to give about computations of individual values in those
worlds. Similar justifications can be given for the definite value assignments that un-
derwrite the truth of the QPT in other options.
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values in each world must parallel the evolution of the terms in the state
vector through the computational process. So, the evolution must be

(00, ) = (0£(0), E,)
(10, ) = (1f(1), E,)
(01, ) = (0A0), E5)

(11, ) = (1A1), E,),

where E; is the definite value that secures the EVAL in world j. This is
required to get the appropriate functional behavior of definite values to
secure the truth of the QPT. According to Option 2, definite values must
also secure the EVAL. Definite x-spin values are required in each world
to secure the EVAL, but these are incompatible with the definite z-spin
values that secure the truth of the QPT. Now, one might attempt to resolve
this problem by suggesting that z-spin values need not be the values that
underwrite the truth of the QPT. But in order to secure the EVAL, all
worlds must end up with the same definite value for x-spin at the end of
the computational process. Hence, similar to the objection raised in the
discussion of Option 1, there is no possible way for the right functional
behavior to be instituted in each world using definite values that secure
the truth of the QPT and the EVAL at the same time. More sophisticated
attempts to secure the truth of the QPT and the EVAL are considered
below.

Option 3 is that the quantum state of each world secures the truth of
the QPT while a definite value secures the EVAL. To secure the EVAL,
add a definite value of x-spin to the final state of each world. Now, there
is no problem with the quantum state of a world being a z-eigenstate, but
possessing a definite value for x-spin, so the objections that were raised for
Options | and 2 just don’t apply. So, it seems that the evolution could be

(100), -) = (|0f(0)), E)
(110), ) = ([1/(1)), E)
(|01), ) = (|00)), E)

(1), ) = ([LAD), E),
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where E is the definite value of x-spin that secures the EVAL. We can
assume that it is the same for all worlds because of the independence of
states and definite values. (Note that E is a definite value corresponding
to the global state.)

If this path is taken, one has to say what made the worlds take on the
particular definite value of x-spin that they did. The only plausible option
is to suggest that the possessed value that secures the evaluation super-
venes on the computational history of all of the individual worlds. This
does not violate the constraint on accounts of quantum computational
efficiency because the definite value supervenes on the computational his-
tory of the individual worlds, and not the computational history of the
entire universe. Recall that the computational history of the entire universe
involves phase relations between worlds, which cannot be part of an
acceptable account of quantum computational efficiency if the MWI is
to retain its superiority.

There is a problem with this suggestion. An argument can be made
that the definite values that the worlds acquire cannot supervene on the
computational histories of the individual worlds alone. Consider a dif-
ferent initial state:

.0 = [0):]0), + [1):]0), + [0),]1), + [1),[1),. O]

The only differences between |¥,,) and |®,,) are the phase relations be-
tween worlds, which should be irrelevant to an account of quantum com-
putational efficiency if the MWI is to retain its superiority.

So, the evolution of the worlds if the initial state is |®,,) should be

(100), ) = (|0/(0)), E)

ini

([10), ) = ([1/(1), E)
(|01), ) = (|0/0)), E)

(1), ) = (JIAL), E).

There should be a definite value that is taken on in the course of the
computation, that underwrites the EVAL, but that isn’t what happens. If
|®,.) is the initial state, no matter what function is computed, the final
state is always equal to |®,,). |®,,) has the disposition to indicate that
the function is balanced (see (6)), even if the function computed was
constant. So, the definite value that each world is to acquire either does
not exist, does not dispose measurement devices to indicate whether the
function is constant or balanced, or supervenes on more than the com-
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putational histories of the individual worlds. Either way, Option 3 is
unacceptable.

Option 4 is that the truth of the QPT is underwritten by definite values,
but the EVAL is underwritten by a quantum state. As with Option 3,
there is no obvious incompatibility between the ontological features that
secure the truth of the QPT and the EVAL. The evolution in this case
would be

(00, ) = (0£(0), |E))
(10, ) = (1/(1), |E))
(01, ) = (0A(0), |E))

(11, 9) = (1AD), |E)),

where |E) is the state which underwrites the EVAL. The obvious candidate
for |E) is |¥,). Much like the case in Option 3, something needs to be
said about where this state comes from. It is tantalizing to simply make
an appeal to the initial global state and the unitary evolution that in-
stantiates the computation, but this is exactly what cannot be done. This
would be an explicit appeal to the ontological status of the global state
vector and unitary evolution, which must be deemed illegitimate in order
to claim superiority for the MWI. Again, the only recourse seems to be
that the quantum state supervenes on the computational histories of each
world. But this will not work. Again, suppose the initial global state is
|®,,.). If |®,,) is the initial state, no matter what function is computed,
the final state is always equal to |®,,), which is disposed to indicate that
the function is balanced, no matter whether it is or not. So, the quantum
state that each world is supposed to acquire does not exist, does not
dispose measurement devices to indicate whether the function is constant
or balanced, or supervenes on more than the computational histories of
the individual worlds. Either way, Option 4 is unacceptable.

One might think that more options might be entertained whereby some
combination of quantum states and definite values might underwrite the
truth of the QPT, and then some quantum state or definite value might
secure the EVAL. But the same argument in the discussion of Options 3
and 4 can be given against this possibility. The ontological feature that
secures the EVAL has to supervene on the computational history that
secures the truth of the QPT, but an appeal to |®,,) demonstrates that it
cannot. Phase relations between worlds are crucial to accounting for the
success of the toy algorithm. That said, appeal to phase relations and the
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unitary evolution of that state is an appeal to the ontological significance
of the global state as opposed to the local ontological features of worlds,
precisely what an advocate of the MWI must find unacceptable in alter-
native accounts of quantum computational efficiency in order to claim
superiority for the MWI.

4. Conclusion. The claim examined in this paper is that the MWI is the
only interpretation that can account for why quantum computers seem
faster than classical computers. This claim is based on the ability of the
MWI to underwrite the truth of the QPT locally; however, if one takes
the ontological status of the state vector seriously, there is little question
about whether the QPT is true. In order to maintain that the MWI is
superior to alternative accounts of quantum computational efficiency, pro-
ponents of the MWI must suggest that the ontological status of the uni-
versal state vector alone is not sufficient to explain quantum computa-
tional efficiency. In order for this objection to have any significance, the
proponent of the MWI must show how to account for the extraction of
information about a function that depends on the truth of the QPT with-
out having to implicate the ontological status of the universal state vector.

This paper examined how various ontological features of worlds might
account for the success of the toy algorithm in computing whether a
function was constant or balanced. This was subject to the constraint that
worlds were at least individuated by the terms in the computational basis.
Four Options were considered as ways that local changes in worlds would
secure the truth of the QPT and have the requisite ontological features
to account for the success of the toy algorithm.

The universal validity of the Schrodinger evolution of the entire quantum
system must be appealed to to account for the success of the efficiency
of the toy algorithm. Now, those who endorse MWI surely would accept
this account. The universal validity of the Schrddinger evolution is a
fundamental assumption for MWIs. Moreover, it involves no introduction
of definite values, which many advocates of the MWI would find objec-
tionable. However, surely quantum computations as the one above cannot
be used as evidence for the superiority of the MWI over other interpre-
tations. Any interpretation in which BR is true and subscribes to the
universal validity of the Schrodinger evolution will at least be on equal
footing with the MWI regarding an account of quantum computational
efficiency.
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